Ottawa CMS Winter Meeting 2002

December 8, 2002

Algebraic Values of Analytic Functions

Michel Waldschmidt

Institut de Mathématiques de Jussieu (Paris VI)

http://www.math.jussieu.fr/~miw/

Given an analytic function of one complex variable f, we investigate the arithmetic nature of the values of f at algebraic points. A typical question is whether $f(\alpha)$ is a transcendental number for each algebraic number α . Since there exist transcendental entire functions f such that

$$f^{(s)}(\alpha) \in \mathbb{Q}[\alpha]$$

for any $s \ge 0$ and any algebraic number α , one needs to restrict the situation by adding hypotheses, either on the functions, or on the points, or else on the set of values.

Hermite-Lindemann:

The entire function e^z takes an algebraic value at an algebraic point α only for $\alpha = 0$.

Weierstraß (1886):

There exists a transcendental entire function f such that

 $f(p/q) \in \mathbb{Q}$ for any $p/q \in \mathbb{Q}$.

In a letter to Straus he suggests: There exists a transcendental entire function f such that

 $f(\alpha) \in \overline{\mathbb{Q}}$ for any $\alpha \in \overline{\mathbb{Q}}$.

Here, $\overline{\mathbb{Q}}$ denotes the set of algebraic numbers (algebraic closure of \mathbb{Q} into \mathbb{C})

Strauss There exists an analytic function f on |z| < 1, not rational, such that

$$f(\alpha) \in \overline{\mathbb{Q}}$$
 for any $\alpha \in \overline{\mathbb{Q}}$ with $|\alpha| < 1$.

Stäckel (using Hilbert's irreducibility Theorem) This function f is transcendental.

Moreover,

If Σ is a countable subset of \mathbb{C} and T a dense subset of \mathbb{C} , then there exists a transcendental entire function such that $f(\Sigma) \subset T$. For a transcendental entire function f, define

$$S_f = \{ \alpha \in \overline{\mathbb{Q}} ; f(\alpha) \in \overline{\mathbb{Q}} \}.$$

Examples.

For $f(z) = e^z$, $S_f = \{0\}$ For $f(z) = e^{P(z)}$ with $P \in \mathbb{C}[z]$ any non constant polynomial, S_f is the set of zeroes of P. For $f(z) = e^{2i\pi z}$, $S_f = \mathbb{Q}$ using Gel'fond-Schneider's Theorem. For $f(z) = \sin(\pi z)e^z$, $S_f = \mathbb{Z}$ assuming Schanuel's Conjecture. There exists f with $S_f = \overline{\mathbb{Q}}$ Follows from Stäckel's Theorem with $\Sigma = \overline{\mathbb{Q}}$ and $T = \overline{\mathbb{Q}}$. There exists f with $S_f = \emptyset$ Follows from Stäckel's Theorem with $\Sigma = \overline{\mathbb{Q}}$ and $T = \mathbb{C} \setminus \overline{\mathbb{Q}}$. **Proposition.** For any subset Σ of $\overline{\mathbb{Q}}$, there exists a transcendental entire function f such that $S_f = \Sigma$.

For the proof, extend Stäckel's result as follows:

For any disjoint countable subsets Σ_1 and Σ_2 of \mathbb{C} , and any dense subsets T_1 and T_2 of \mathbb{C} , there exists a transcendental entire function f such that $f(\Sigma_1) \subset T_1$ and $f(\Sigma_2) \subset T_2$.

Moreover one can construct such a f of low growth order: if we set

$$|f|_r = \max_{|z|=r} |f(z)|$$

for $r \ge 0$, and if ψ is any non polynomial entire function with $\psi(0) \ne 0$, one can construct f such that $|f|_r \le |\psi|_r$ for any $r \ge 0$ Derivatives can be included:

$$f^{(s)} = (d/dz)^s f, \qquad s \ge 0.$$

Stäckel:

There exists a transcendental entire function f such that $f^{(s)}(\alpha) \in \overline{\mathbb{Q}}$ for any $\alpha \in \overline{\mathbb{Q}}$ and any $s \ge 0$.

A.J. Van der Poorten:

There exists a transcendental entire function f such that $f^{(s)}(\alpha) \in \mathbb{Q}(\alpha)$ for any $\alpha \in \overline{\mathbb{Q}}$ and any $s \ge 0$.

F. Gramain:

If Σ is a countable subset of \mathbb{R} and T a dense subset of \mathbb{R} , then there exists a transcendental entire function such that $f^{(s)}(\Sigma) \subset T$ for any $s \geq 0$.

Proposition. Denote by K either \mathbb{R} or else \mathbb{C} . Let $(\zeta_n)_{n\geq 1}$ be a sequence of pairwise distinct elements of K. For each $n \geq 1$ and $s \geq 0$, let T_{ns} be a dense subset of K. Let ψ be a transcendental entire function with $\psi(0) \neq 0$. Then there exists a transcendental entire function f satisfying

 $f^{(s)}(\zeta_n) \in T_{ns}$ for any $n \ge 1$ and $s \ge 0$

and

 $|f|_r \le |\psi|_r$ for any $r \ge 0$.

Proof.

Order the set

$$\{(\zeta_n, s); n \ge 1, s \ge 0\} \subset \mathbb{C} \times \mathbb{N}$$

by the usual diagonal process

$$\{(w_0, \sigma_0), (w_1, \sigma_1), \ldots\} = \\ \{(\zeta_1, 0), (\zeta_2, 0), (\zeta_1, 1), (\zeta_3, 0), \ldots, \\ (\zeta_n, 0), (\zeta_{n-1}, 1), \ldots, (\zeta_1, n), (\zeta_{n+1}, 0), \ldots\}.$$

For $k \ge 0$, if n_k is the positive integer such that

$$\frac{n_k(n_k - 1)}{2} \le k < \frac{n_k(n_k + 1)}{2}$$

then

$$\sigma_k = k - \frac{n_k(n_k - 1)}{2},$$

and

$$w_k = \zeta_{n_k - \sigma_k}.$$

The polynomial

$$P_k(z) = \prod_{j=0}^{k-1} (z - w_j)$$

for $k \ge 0$ (with $P_0 = 1$) has a zero of multiplicity σ_k at w_k , while for any $\ell > k$ the polynomial P_ℓ has a zero of multiplicity $> \sigma_k$ at w_k .

For r > 0, we have

$$|P|_r \le (r+r_k)^k$$

with

$$r_k = \max_{0 \le j < k} |w_j|.$$

We construct f as

$$\sum_{k\geq 0} a_k P_k(z)$$

where the coefficients $a_k \in K$ are selected by induction on k as follows. For k = 0, one selects $a_0 \in T_{10}$ with

$$0 < |a_0| < \frac{1}{2} |\psi(0)|.$$

Once $a_0, a_1, \ldots, a_{k-1}$ are known, one chooses $a_k \in K$, $a_k \neq 0$, such that

$$a_k P_k^{(\sigma_k)}(w_k) + \sum_{j=0}^{k-1} a_j P_j^{(\sigma_k)}(w_k) \in T_{n_k,\sigma_k}$$

and

$$|a_k| \le 2^{-k} \inf_{r>0} (r+r_k)^{-k} |\psi|_r.$$

How often can a transcendental function take algebraic values?

For $p/q \in \mathbb{Q}$ with gcd(p,q) = 1 and q > 0, define

$$h(p/q) = \log \max\{|p|, q\}.$$

N. Elkies: For any $\epsilon > 0$, there exists a positive constant A_{ϵ} such that, for any transcendental analytic function f in |z| < 1,

Card{
$$p/q \in \mathbb{Q}, |p| < q, f(p/q) \in \mathbb{Q},$$

 $h(p/q) \le N, h(f(p/q)) \le N$ } $\le A_{\epsilon} e^{\epsilon N}$

for any $N \geq 1$.

Question: Is this optimal? Answer by A. Surroca: One cannot replace ϵN by a function o(N). Define the *absolute logarithmic height* of an algebraic number α by

$$h(\alpha) = \frac{1}{d} \log |a_0| + \frac{1}{d} \sum_{j=1}^d \log \max\{1, |\alpha_j|\}$$

for $\alpha\in\overline{\mathbb{Q}}$ with minimal polynomial

$$a_0 X^d + \dots + a_d = a_0 \prod_{j=1}^d (X - \alpha_j) \in \mathbb{C}[X].$$

Let $E_{D,N}$ be the set of $\alpha \in \overline{\mathbb{Q}}$ with degree $\leq D$ and height $h(\alpha) \leq N$.

T. Loher:
$$\operatorname{Card} E_{D,N} \ge c(D)e^{D(D+1)N}$$

S.J. Chern, J.D. Vaaler : $\operatorname{Card} E_{D,N} \leq c'(D) e^{D(D+1)N}$.

•

For an analytic function f in the unit disk of \mathbb{C} , define

$$\Sigma_{D,N}(f) = \{ \alpha \in \overline{\mathbb{Q}} ; |\alpha| < 1, \ f(\alpha) \in \overline{\mathbb{Q}}, \\ [\mathbb{Q}(\alpha, f(\alpha)) : \mathbb{Q}] \le D, \ h(\alpha) \le N, \ h(f(\alpha)) \le N \}.$$

Theorem 1 (A. Surroca). Let ϕ be a real valued function satisfying $\phi(x)/x \to 0$ as $x \to \infty$. Then there exists a transcendental entire function f such that

 $f^{(s)}(\alpha) \in \mathbb{Q}(\alpha)$ for any $\alpha \in \overline{\mathbb{Q}}$ and any $s \ge 0$

and such that, for any $D \ge 1$, there exist infinitely may $N \ge 1$ for which

$$\operatorname{Card}\Sigma_{D,N}(f) > e^{D(D+1)\phi(N)}.$$

Theorem 2 (A. Surroca). Let f be a transcendental function f which is analytic in the unit disc |z| < 1. There exists a positive constant c such that, for any $D \ge 1$, there exist infinitely many $N \ge 1$ for which

$$\operatorname{Card}\Sigma_{D,N}(f) < cD^2 N^3.$$

Sketch of proof. Assume there exist $D \ge 1$ and a sufficiently large c > 0 such that

$$\operatorname{Card}\Sigma_{D,N}(f) > cD^2 N^3$$

for any $N \ge N_0$. For each $N \ge N_0$ let E_N be a subset of $\Sigma_{D,N}(f)$ with cD^2N^3 elements. Using Dirichlet's box principle (Thue-Siegel's Lemma - a refined version is required), construct a non zero auxiliary function

$$F(z) = P(z, f(z))$$

with a zero at each $\alpha \in E_{N_0}$. By induction show that F vanishes at each $\alpha \in E_N$, and conclude F = 0, hence the contradiction.