
Ottawa CMS Winter Meeting 2002 December 8, 2002

Algebraic Values of Analytic Functions

Michel Waldschmidt
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Given an analytic function of one complex variable f , we
investigate the arithmetic nature of the values of f at algebraic
points. A typical question is whether f(α) is a transcendental
number for each algebraic number α. Since there exist tran-
scendental entire functions f such that

f (s)(α) ∈ Q[α]

for any s ≥ 0 and any algebraic number α, one needs to restrict
the situation by adding hypotheses, either on the functions, or
on the points, or else on the set of values.
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Hermite-Lindemann:
The entire function ez takes an algebraic value at an algebraic
point α only for α = 0.

Weierstraß (1886):
There exists a transcendental entire function f such that

f(p/q) ∈ Q for any p/q ∈ Q.

In a letter to Straus he suggests:
There exists a transcendental entire function f such that

f(α) ∈ Q for any α ∈ Q.

Here, Q denotes the set of algebraic numbers (algebraic closure
of Q into C)
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Strauss There exists an analytic function f on |z| < 1, not
rational, such that

f(α) ∈ Q for any α ∈ Q with |α| < 1.

Stäckel (using Hilbert’s irreducibility Theorem)
This function f is transcendental.
Moreover,

If Σ is a countable subset of C and T a dense
subset of C, then there exists a transcendental entire
function such that f(Σ) ⊂ T .
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For a transcendental entire function f , define

Sf = {α ∈ Q ; f(α) ∈ Q}.

Examples.
For f(z) = ez, Sf = {0}
For f(z) = eP (z) with P ∈ C[z] any non constant
polynomial, Sf is the set of zeroes of P .
For f(z) = e2iπz, Sf = Q

using Gel’fond-Schneider’s Theorem.
For f(z) = sin(πz)ez, Sf = Z

assuming Schanuel’s Conjecture.
There exists f with Sf = Q

Follows from Stäckel’s Theorem with
Σ = Q and T = Q.

There exists f with Sf = ∅
Follows from Stäckel’s Theorem with
Σ = Q and T = C \Q.
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Proposition. For any subset Σ of Q, there exists a
transcendental entire function f such that Sf = Σ.

For the proof, extend Stäckel’s result as follows:
For any disjoint countable subsets Σ1

and Σ2 of C, and any dense subsets T1 and
T2 of C, there exists a transcendental en-
tire function f such that f(Σ1) ⊂ T1 and
f(Σ2) ⊂ T2.

Moreover one can construct such a f of low growth
order: if we set

|f |r = max
|z|=r

|f(z)|

for r ≥ 0, and if ψ is any non polynomial entire func-
tion with ψ(0) 6= 0, one can construct f such that
|f |r ≤ |ψ|r for any r ≥ 0
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Derivatives can be included:

f (s) = (d/dz)sf, s ≥ 0.

Stäckel:
There exists a transcendental entire func-

tion f such that
f (s)(α) ∈ Q

for any α ∈ Q and any s ≥ 0.
A.J. Van der Poorten:

There exists a transcendental entire func-
tion f such that

f (s)(α) ∈ Q(α)
for any α ∈ Q and any s ≥ 0.

F. Gramain:
If Σ is a countable subset of R and T a

dense subset of R, then there exists a tran-
scendental entire function such that f (s)(Σ) ⊂
T for any s ≥ 0.
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Proposition. Denote by K either R or else C. Let
(ζn)n≥1 be a sequence of pairwise distinct elements of
K. For each n ≥ 1 and s ≥ 0, let Tns be a dense subset
of K. Let ψ be a transcendental entire function with
ψ(0) 6= 0. Then there exists a transcendental entire
function f satisfying

f (s)(ζn) ∈ Tns for any n ≥ 1 and s ≥ 0

and
|f |r ≤ |ψ|r for any r ≥ 0.
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Proof.
Order the set

{(ζn, s) ; n ≥ 1, s ≥ 0} ⊂ C× N

by the usual diagonal process

{(w0, σ0), (w1, σ1), . . .} =
{(ζ1, 0), (ζ2, 0), (ζ1, 1), (ζ3, 0), . . . ,

(ζn, 0), (ζn−1, 1), . . . , (ζ1, n), (ζn+1, 0), . . .}.

For k ≥ 0, if nk is the positive integer such that

nk(nk − 1)
2

≤ k <
nk(nk + 1)

2

then

σk = k − nk(nk − 1)
2

,

and
wk = ζnk−σk

.
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The polynomial

Pk(z) =
k−1∏
j=0

(z − wj)

for k ≥ 0 (with P0 = 1) has a zero of multiplicity σk

at wk, while for any ` > k the polynomial P` has a
zero of multiplicity > σk at wk.

For r > 0, we have

|P |r ≤ (r + rk)k

with
rk = max

0≤j<k
|wj |.
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We construct f as∑
k≥0

akPk(z)

where the coefficients ak ∈ K are selected by induc-
tion on k as follows. For k = 0, one selects a0 ∈ T10

with
0 < |a0| <

1
2
|ψ(0)|.

Once a0, a1, . . . , ak−1 are known, one chooses ak ∈ K,
ak 6= 0, such that

akP
(σk)
k (wk) +

k−1∑
j=0

ajP
(σk)
j (wk) ∈ Tnk,σk

and
|ak| ≤ 2−k inf

r>0
(r + rk)−k|ψ|r.
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How often can a transcendental func-
tion take algebraic values?

For p/q ∈ Q with gcd(p, q) = 1 and q > 0, define

h(p/q) = log max{|p|, q}.

N. Elkies: For any ε > 0, there exists a positive
constant Aε such that, for any transcendental analytic
function f in |z| < 1,

Card{p/q ∈ Q, |p| < q, f(p/q) ∈ Q,
h(p/q) ≤ N, h

(
f(p/q)

)
≤ N} ≤ Aεe

εN

for any N ≥ 1.

Question: Is this optimal?
Answer by A. Surroca:

One cannot replace εN by a function o(N).
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Define the absolute logarithmic height of an algebraic
number α by

h(α) =
1
d

log |a0|+
1
d

d∑
j=1

log max{1, |αj |}

for α ∈ Q with minimal polynomial

a0X
d + · · ·+ ad = a0

d∏
j=1

(X − αj) ∈ C[X].

Let ED,N be the set of α ∈ Q with degree ≤ D and
height h(α) ≤ N .

T. Loher : CardED,N ≥ c(D)eD(D+1)N .

S.J. Chern, J.D. V aaler : CardED,N ≤ c′(D)eD(D+1)N .
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For an analytic function f in the unit disk of C, define

ΣD,N (f) = {α ∈ Q ; |α| < 1, f(α) ∈ Q,
[Q

(
α, f(α)

)
: Q] ≤ D, h(α) ≤ N, h

(
f(α)

)
≤ N}.

Theorem 1 (A. Surroca). Let φ be a real valued
function satisfying φ(x)/x → 0 as x → ∞. Then
there exists a transcendental entire function f such
that

f (s)(α) ∈ Q(α) for any α ∈ Q and any s ≥ 0

and such that, for any D ≥ 1, there exist infinitely
may N ≥ 1 for which

CardΣD,N (f) > eD(D+1)φ(N).
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Theorem 2 (A. Surroca). Let f be a transcendental
function f which is analytic in the unit disc |z| < 1.
There exists a positive constant c such that, for any
D ≥ 1, there exist infinitely many N ≥ 1 for which

CardΣD,N (f) < cD2N3.

Sketch of proof. Assume there exist D ≥ 1 and a
sufficiently large c > 0 such that

CardΣD,N (f) > cD2N3

for any N ≥ N0. For each N ≥ N0 let EN be a subset
of ΣD,N (f) with cD2N3 elements. Using Dirichlet’s
box principle (Thue-Siegel’s Lemma - a refined version
is required), construct a non zero auxiliary function

F (z) = P
(
z, f(z)

)
with a zero at each α ∈ EN0 . By induction show that
F vanishes at each α ∈ EN , and conclude F = 0,
hence the contradiction.
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