Algebraic Values of Analytic Functions

Michel Waldschmidt

Institut de Mathématiques de Jussieu (Paris VI)
http://www.math.jussieu.fr/~miw/

Given an analytic function of one complex variable f, we investigate the arithmetic nature of the values of f at algebraic points. A typical question is whether $f(\alpha)$ is a transcendental number for each algebraic number α. Since there exist transcendental entire functions f such that

$$
f^{(s)}(\alpha) \in \mathbb{Q}[\alpha]
$$

for any $s \geq 0$ and any algebraic number α, one needs to restrict the situation by adding hypotheses, either on the functions, or on the points, or else on the set of values.

Hermite-Lindemann:

The entire function e^{z} takes an algebraic value at an algebraic point α only for $\alpha=0$.

Weierstraß (1886):
There exists a transcendental entire function f such that

$$
f(p / q) \in \mathbb{Q} \quad \text { for any } \quad p / q \in \mathbb{Q}
$$

In a letter to Straus he suggests:
There exists a transcendental entire function f such that

$$
f(\alpha) \in \overline{\mathbb{Q}} \quad \text { for any } \quad \alpha \in \overline{\mathbb{Q}} .
$$

Here, $\overline{\mathbb{Q}}$ denotes the set of algebraic numbers (algebraic closure of \mathbb{Q} into \mathbb{C})

Strauss There exists an analytic function f on $|z|<1$, not rational, such that

$$
f(\alpha) \in \overline{\mathbb{Q}} \quad \text { for any } \alpha \in \overline{\mathbb{Q}} \text { with }|\alpha|<1 .
$$

Stäckel (using Hilbert's irreducibility Theorem)
This function f is transcendental.
Moreover,
If Σ is a countable subset of \mathbb{C} and T a dense subset of \mathbb{C}, then there exists a transcendental entire function such that $f(\Sigma) \subset T$.

For a transcendental entire function f, define

$$
S_{f}=\{\alpha \in \overline{\mathbb{Q}} ; f(\alpha) \in \overline{\mathbb{Q}}\} .
$$

Examples.
For $f(z)=e^{z}, S_{f}=\{0\}$
For $f(z)=e^{P(z)}$ with $P \in \mathbb{C}[z]$ any non constant polynomial, S_{f} is the set of zeroes of P.
For $f(z)=e^{2 i \pi z}, S_{f}=\mathbb{Q}$
using Gel'fond-Schneider's Theorem.
For $f(z)=\sin (\pi z) e^{z}, S_{f}=\mathbb{Z}$ assuming Schanuel's Conjecture.
There exists f with $S_{f}=\overline{\mathbb{Q}}$ Follows from Stäckel's Theorem with $\Sigma=\overline{\mathbb{Q}}$ and $T=\overline{\mathbb{Q}}$.
There exists f with $S_{f}=\emptyset$
Follows from Stäckel's Theorem with $\Sigma=\overline{\mathbb{Q}} \quad$ and $\quad T=\mathbb{C} \backslash \overline{\mathbb{Q}}$.

Proposition. For any subset Σ of $\overline{\mathbb{Q}}$, there exists a transcendental entire function f such that $S_{f}=\Sigma$.

For the proof, extend Stäckel's result as follows:
For any disjoint countable subsets Σ_{1} and Σ_{2} of \mathbb{C}, and any dense subsets T_{1} and T_{2} of \mathbb{C}, there exists a transcendental entire function f such that $f\left(\Sigma_{1}\right) \subset T_{1}$ and $f\left(\Sigma_{2}\right) \subset T_{2}$.
Moreover one can construct such a f of low growth order: if we set

$$
|f|_{r}=\max _{|z|=r}|f(z)|
$$

for $r \geq 0$, and if ψ is any non polynomial entire function with $\psi(0) \neq 0$, one can construct f such that $|f|_{r} \leq|\psi|_{r}$ for any $r \geq 0$

Derivatives can be included:

$$
f^{(s)}=(d / d z)^{s} f, \quad s \geq 0
$$

Stäckel:
There exists a transcendental entire function f such that
$f^{(s)}(\alpha) \in \overline{\mathbb{Q}}$
for any $\alpha \in \overline{\mathbb{Q}}$ and any $s \geq 0$.
A.J. Van der Poorten:

There exists a transcendental entire function f such that
$f^{(s)}(\alpha) \in \mathbb{Q}(\alpha)$
for any $\alpha \in \overline{\mathbb{Q}}$ and any $s \geq 0$.
F. Gramain:

If Σ is a countable subset of \mathbb{R} and T a dense subset of \mathbb{R}, then there exists a transcendental entire function such that $f^{(s)}(\Sigma) \subset$ T for any $s \geq 0$.

Proposition. Denote by K either \mathbb{R} or else \mathbb{C}. Let $\left(\zeta_{n}\right)_{n \geq 1}$ be a sequence of pairwise distinct elements of K. For each $n \geq 1$ and $s \geq 0$, let $T_{n s}$ be a dense subset of K. Let ψ be a transcendental entire function with $\psi(0) \neq 0$. Then there exists a transcendental entire function f satisfying

$$
f^{(s)}\left(\zeta_{n}\right) \in T_{n s} \quad \text { for any } \quad n \geq 1 \quad \text { and } \quad s \geq 0
$$

and

$$
|f|_{r} \leq|\psi|_{r} \quad \text { for any } \quad r \geq 0 .
$$

Proof.

Order the set

$$
\left\{\left(\zeta_{n}, s\right) ; n \geq 1, s \geq 0\right\} \subset \mathbb{C} \times \mathbb{N}
$$

by the usual diagonal process

$$
\begin{aligned}
& \left\{\left(w_{0}, \sigma_{0}\right),\left(w_{1}, \sigma_{1}\right), \ldots\right\}= \\
& \quad\left\{\left(\zeta_{1}, 0\right),\left(\zeta_{2}, 0\right),\left(\zeta_{1}, 1\right),\left(\zeta_{3}, 0\right), \ldots\right. \\
& \left.\quad\left(\zeta_{n}, 0\right),\left(\zeta_{n-1}, 1\right), \ldots,\left(\zeta_{1}, n\right),\left(\zeta_{n+1}, 0\right), \ldots\right\}
\end{aligned}
$$

For $k \geq 0$, if n_{k} is the positive integer such that

$$
\frac{n_{k}\left(n_{k}-1\right)}{2} \leq k<\frac{n_{k}\left(n_{k}+1\right)}{2}
$$

then

$$
\sigma_{k}=k-\frac{n_{k}\left(n_{k}-1\right)}{2},
$$

and

$$
w_{k}=\zeta_{n_{k}-\sigma_{k}} .
$$

The polynomial

$$
P_{k}(z)=\prod_{j=0}^{k-1}\left(z-w_{j}\right)
$$

for $k \geq 0$ (with $P_{0}=1$) has a zero of multiplicity σ_{k} at w_{k}, while for any $\ell>k$ the polynomial P_{ℓ} has a zero of multiplicity $>\sigma_{k}$ at w_{k}.

For $r>0$, we have

$$
|P|_{r} \leq\left(r+r_{k}\right)^{k}
$$

with

$$
r_{k}=\max _{0 \leq j<k}\left|w_{j}\right| .
$$

We construct f as

$$
\sum_{k \geq 0} a_{k} P_{k}(z)
$$

where the coefficients $a_{k} \in K$ are selected by induction on k as follows. For $k=0$, one selects $a_{0} \in T_{10}$ with

$$
0<\left|a_{0}\right|<\frac{1}{2}|\psi(0)| .
$$

Once $a_{0}, a_{1}, \ldots, a_{k-1}$ are known, one chooses $a_{k} \in K$, $a_{k} \neq 0$, such that

$$
a_{k} P_{k}^{\left(\sigma_{k}\right)}\left(w_{k}\right)+\sum_{j=0}^{k-1} a_{j} P_{j}^{\left(\sigma_{k}\right)}\left(w_{k}\right) \in T_{n_{k}, \sigma_{k}}
$$

and

$$
\left|a_{k}\right| \leq 2^{-k} \inf _{r>0}\left(r+r_{k}\right)^{-k}|\psi|_{r}
$$

How often can a transcendental function take algebraic values?

For $p / q \in \mathbb{Q}$ with $\operatorname{gcd}(p, q)=1$ and $q>0$, define

$$
\mathrm{h}(p / q)=\log \max \{|p|, q\} .
$$

N. Elkies: For any $\epsilon>0$, there exists a positive constant A_{ϵ} such that, for any transcendental analytic function f in $|z|<1$,
$\operatorname{Card}\{p / q \in \mathbb{Q},|p|<q, f(p / q) \in \mathbb{Q}$, $\mathrm{h}(p / q) \leq N, \mathrm{~h}(f(p / q)) \leq N\} \leq A_{\epsilon} e^{\epsilon N}$
for any $N \geq 1$.
Question: Is this optimal?
Answer by A. Surroca:
One cannot replace ϵN by a function o(N).

Define the absolute logarithmic height of an algebraic number α by

$$
\mathrm{h}(\alpha)=\frac{1}{d} \log \left|a_{0}\right|+\frac{1}{d} \sum_{j=1}^{d} \log \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

for $\alpha \in \overline{\mathbb{Q}}$ with minimal polynomial

$$
a_{0} X^{d}+\cdots+a_{d}=a_{0} \prod_{j=1}^{d}\left(X-\alpha_{j}\right) \in \mathbb{C}[X] .
$$

Let $E_{D, N}$ be the set of $\alpha \in \overline{\mathbb{Q}}$ with degree $\leq D$ and height $\mathrm{h}(\alpha) \leq N$.
T. Loher :
$\operatorname{Card} E_{D, N} \geq c(D) e^{D(D+1) N}$.
S.J. Chern, J.D. Vaaler: $\quad \operatorname{Card} E_{D, N} \leq c^{\prime}(D) e^{D(D+1) N}$.

For an analytic function f in the unit disk of \mathbb{C}, define

$$
\begin{aligned}
& \Sigma_{D, N}(f)=\{\alpha \in \overline{\mathbb{Q}} ;|\alpha|<1, f(\alpha) \in \overline{\mathbb{Q}}, \\
& \quad[\mathbb{Q}(\alpha, f(\alpha)): \mathbb{Q}] \leq D, \mathrm{~h}(\alpha) \leq N, \mathrm{~h}(f(\alpha)) \leq N\} .
\end{aligned}
$$

Theorem 1 (A. Surroca). Let ϕ be a real valued function satisfying $\phi(x) / x \rightarrow 0$ as $x \rightarrow \infty$. Then there exists a transcendental entire function f such that

$$
f^{(s)}(\alpha) \in \mathbb{Q}(\alpha) \quad \text { for any } \alpha \in \overline{\mathbb{Q}} \text { and any } s \geq 0
$$

and such that, for any $D \geq 1$, there exist infinitely may $N \geq 1$ for which

$$
\operatorname{Card} \Sigma_{D, N}(f)>e^{D(D+1) \phi(N)} .
$$

Theorem 2 (A. Surroca). Let f be a transcendental function f which is analytic in the unit disc $|z|<1$. There exists a positive constant c such that, for any $D \geq 1$, there exist infinitely many $N \geq 1$ for which

$$
\operatorname{Card} \Sigma_{D, N}(f)<c D^{2} N^{3} .
$$

Sketch of proof. Assume there exist $D \geq 1$ and a sufficiently large $c>0$ such that

$$
\operatorname{Card} \Sigma_{D, N}(f)>c D^{2} N^{3}
$$

for any $N \geq N_{0}$. For each $N \geq N_{0}$ let E_{N} be a subset of $\Sigma_{D, N}(f)$ with $c D^{2} N^{3}$ elements. Using Dirichlet's box principle (Thue-Siegel's Lemma - a refined version is required), construct a non zero auxiliary function

$$
F(z)=P(z, f(z))
$$

with a zero at each $\alpha \in E_{N_{0}}$. By induction show that F vanishes at each $\alpha \in E_{N}$, and conclude $F=0$, hence the contradiction.

