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1 Irrationality of some constants arising from
analysis

1.1 Irrationality and continued fractions

The history of irrationality is closely connected with the history of continued
fractions (see [3, 4]). Even the first examples of transcendental numbers pro-
duced by Liouville in 1844 [17] involved continued fractions, before he considered
series.

Recall that the definition of the continued fraction expansion of a real num-
ber.

Given a real number x, the Euclidean division in R of x by 1 yields a quotient
[x] ∈ Z (the integral part of x) and a remainder {x} in the interval [0, 1) (the
fractional part of x) satisfying

x = [x] + {x}.

Set a0 = [x]. Hence a0 ∈ Z. If x is an integer then x = [x] = a0 and {x} = 0.
In this case we just write x = a0 with a0 ∈ Z. Otherwise we have {x} > 0 and
we set x1 = 1/{x} and a1 = [x1]. Since {x} < 1 we have x1 > 1 and a1 ≥ 1.
Also

x = a0 +
1

a1 + {x1}
·

Again, we consider two cases: if x1 ∈ Z then {x1} = 0, x1 = a1 and

x = a0 +
1
a1

with two integers a0 and a1, with a1 ≥ 2 (recall x1 > 1). Otherwise we can
define x2 = 1/{x1}, a2 = [x2] and go one step further:

x = a0 +
1

a1 +
1

a2 + {x2}

·
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Inductively one obtains a relation

x = a0 +
1

a1 +
1

a2 +
1

. . .
an−1 +

1
an + {xn}

with 0 ≤ {xn} < 1. For ease of notation we write either

x = [a0, a1, a2, . . . , an−1, an + {xn}]

or

x = a0 +
1 |
|a1

+
1 |
|a2

+ · · · +
1 |
|an−1

+
1 |

|an + {xn}
·

This last notation is mainly used for irregular continued fractions1.
It is easy to check that a real number is rational if and only if its continued

fraction expansion is finite. This criterion is most often more convenient to use
than to check whether the expansion in a basis b ≥ 2 is periodic or not.

The question of the irrationality of π was raised in India by Nı̄lakan. t.ha
Somayāj̄ı, who was born around 1444 AD. In his comments on the work of
Āryabhat.a, (b. 476 AD) who stated that an approximation for π is π ∼ 3.1416,
Somayāj̄ı asks [19]:

Why then has an approximate value been mentioned here leaving be-
hind the actual value? Because it (exact value) cannot be expressed.

In 1767, H. Lambert [14] found the following continued fraction expansion
for the tangent function:

tanx =
x|
|1
−

x2|
| 3
−

x2|
| 5
−

x2|
| 7
− · · · −

x2 |
|2n+ 1

− · · · (1.1)

Here is how this irregular continued fraction occurs. Given two functions A0(x)
and A1(x), define inductively

An+1(x) = (2n+ 1)An(x)− x2An−1(x) (n ≥ 1)

and set un(x) = An(x)/An−1(x) (n ≥ 1). Hence

un(x) =
An(x)
An−1(x)

= − x2An(x)
(2n+ 1)An(x)−An+1

= − x2

(2n+ 1)− un+1(x)
·

1A continued fraction expansion of the form

x = a0 +
b1 |
|a1

+
b2 |
|a2

+ · · ·
bn−1 |
|an−1

+
bn |
|an

+ · · ·

is called “regular” if b1 = b2 = · · · = bn = 1.
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Therefore, for k ≥ 1,

un(x) = −
x2 |
|2n+ 1

−
x2 |
|2n+ 3

−
x2 |
|2n+ 5

− · · · −
x2 |

|2n+ 2k + 1
− un+k+1(x).

The main point is to see that the right hand side has a limit as n → ∞ for a
suitable choice of A0 and A1, namely

A0(x) = sinx, A1(x) = sinx− x cosx.

For this particular choice the sequence (An)n≥0 is given by the integral formula

An(x) =
∫ x

0

tAn−1(t)dt (n ≥ 1)

and there are sequences of polynomials fn and gn in Z[x] such that

An(x) = fn(x) sinx+ gn(x) cosx.

Using these properties, one checks (see for instance [9]) that the continued frac-
tion expansion is convergent; since

u1(x) = 1− x

tanx
,

one deduces

tanx =
x

1− u1(x)
with u1(x) = −

x2|
|3
−

x2|
|5
−

x2|
|7
− · · ·

This proves the formula (1.1).
Replacing x by ix yields the continued fraction expansion

ex − e−x

ex + e−x
=
x|
|1

+
x2|
| 3

+
x2|
| 5

+
x2|
| 7

+ · · ·+
x2 |
|2n+ 1

+ · · ·

involving the inductive relation

An+1(x) = (2n+ 1)An(x) + x2An−1(x) (n ≥ 1)

and the quotients −An(x)/An−1(x). With the initial values

A0(x) = ex − 1, A1(x) = ex(2− x)− 2− x

the solution is

An(x) =
x2n+1

n!

∫ 1

0

e−txtn(1− t),dt.

Compare with Hermite’s formulae in § 1.4. See also for instance [4] as well as
[9, 21, 23].
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Lambert proved in his paper [14] that for x rational and non–zero, the num-
ber tanx cannot be rational. Since tanπ/4 = 1, it follows that π is irrational.
Then he produced a continued fraction expansion for ex and deduced that er

is irrational when r is a non–zero rational number. This is equivalent to the
fact that non–zero positive rational numbers have an irrational logarithm. A
detailed description of Lambert’s proof is given in [9].

Euler gave continued fractions expansions not only for e and e2:

e = [2, 1, 2j, 1]j≥1 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1 . . . ], (1.2)

e2 = [7, 3j − 1, 1, 3j, 12j + 6]j≥1 = [7 2, 1, 3, 18, 5, 1, 6, 30, 18 . . . ],

but also for (e+1)/(e−1), for (e2 +1)/(e2−1), for e1/n with n > 1, for e2/nwith
odd n > 1 and Hurwitz (1896) for 2e and (e+ 1)/3:

e+ 1
e− 1

= [2(2j + 1)]j≥0 = [2, 6, 10, 14 . . . ],

e2 + 1
e2 − 1

= [2j + 1]j≥0 = [1, 3, 5, 7 . . . ],

e1/n = [1, (2j + 1)n− 1, 1]j≥0,

e2/n = [1, (n− 1)/2 + 3jn, 6n+ 12jn, (5n− 1)/2 + 3jn, 1]j≥0,

2e = [5, 2, 3, 2j, 3, 1, 2j, 1]j≥1,

e+ 1
3

=

[1, 4, 5, 4j − 3, 1, 1, 36j − 16, 1, 1, 4j − 2, 1, 1, 36j − 4, 1, 1, 4j − 1, 1, 5, 4j, 1]j≥1.

Hermite proved the irrationality of π and π2 (see [4] p. 207 and p. 247). Also
A.M. Legendre proved, in 1794, by a modification of Lambert’s proof, that π2

is an irrational number (see [4] p. 14).
There are not so many numbers for which one knows the irrationality but we

don’t know whether there are algebraic or transcendental. A notable exception
is ζ(3), known to be irrational (Apéry, 1978) and expected to be transcendental
- see [11].

1.2 Variation on a proof by Fourier (1815)

Since the continued fraction expansion (1.2) of e, which was known by L. Euler
in 1737 [8, 6, 21, 23, 3], is infinite, the number e is irrational. Since it is not
ultimately periodic, e is not a quadratic irrationality, as was shown by Lagrange
in 1770 – Euler knew already in 1737 that a number with an ultimately periodic
continued fraction expansion is quadratic (see [8, 5, 20]).

Exercise 1.3. a) Let b be a positive integer. Give the continued fraction ex-
pansion of the number

−b+
√
b2 + 4

2
·
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b) Let a and b be two positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0, a, b].

c) Let a, b and c be positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0, a, b, c].

The following easier and well known proof of the irrationality of e (§ 1.2.1)
was given by J. Fourier in his course at the École Polytechnique in 1815. Later,
in 1872, C. Hermite proved that e is transcendental, while the work of F. Linde-
mann a dozen of years later led to a proof of the so-called Hermite–Lindemann
Theorem 2.1: for any nonzero algebraic number α the number eα is transcen-
dental. However for this first section we study only weaker statements which
are very easy to prove. We also show that Fourier’s argument can be pushed
a little bit further than what is usually done, as pointed out by J. Liouville in
1840 [15, 16].

1.2.1 Irrationality of e

We truncate the exponential series giving the value of e at some point N :

N ! e−
N∑
n=0

N !
n!

=
∑
k≥1

N !
(N + k)!

· (1.4)

The right hand side of (1.4) is a sum of positive numbers, hence is positive (not
zero). From the lower bound (for the binomial coefficient)

(N + k)!
N !k!

≥ N + 1 for k ≥ 1,

one deduces ∑
k≥1

N !
(N + k)!

≤ 1
N + 1

∑
k≥1

1
k!

=
e− 1
N + 1

·

Therefore the right hand side of (1.4) tends to 0 when N tends to infinity. Since∑N
n=0N !/n! is an integer, it follows that for any positive integer N the number

N !e is not an integer. Hence e is an irrational number.
As pointed out by F. Beukers, a simpler proof is obtained by considering

the expansion of the Taylor series at z = −1 rather than at z = 1: with the
expansion of e−1 no computation is required for estimating the error term, since
it is alternate.
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1.2.2 The number e is not quadratic

.
The fact that e is not a rational number implies that for each m ≥ 1 the

number e1/m is not rational. To prove that e2 is also irrational is not so easy
(see the comment on this point in [1]).

The proof below is essentially the one given by J. Liouville in 1840 [15] which
is quoted by Ch. Hermite in [13] (“ces travaux de l’illustre géomètre”).

To prove that e does not satisfy a quadratic relation ae2 + be + c with a, b
and c rational integers, not all zero, requires some new trick. Indeed if we just
mimic the argument of § 1.1, we get

cN ! +
N∑
n=0

(2na+ b)
N !
n!

= −
∑
k≥0

(
2N+1+ka+ b

) N !
(N + 1 + k)!

·

The left hand side is a rational integer, but the right hand side tends to infinity
(and not 0) with N , so we draw no conclusion.

Liouville writes the quadratic relation as ae+ b+ ce−1 = 0. He deduces

bN ! +
N∑
n=0

(a+ (−1)nc)
N !
n!

= −
∑
k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

·

Again the left hand side is a rational integer, but now the right hand side tends
to 0 when N tends to infinity, which is what we expected. However a further
argument is necessary to conclude: we do not yet get the desired conclusion, we
only deduce that both sides vanish. Now let us look more closely to the series in
the right hand side. Write the two first terms AN for k = 0 and BN for k = 1:∑

k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

= AN +BN + CN

with

AN =
(
a− (−1)Nc

) 1
N + 1

, BN =
(
a+ (−1)Nc

) 1
(N + 1)(N + 2)

and
CN =

∑
k≥2

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

·

The above proof that the sum AN + BN + CN tends to zero as N tends to
infinity shows more: each of the three sequences(

AN
)
N≥1

,
(
(N + 1)BN

)
N≥1

,
(
(N + 1)(N + 2)CN

)
N≥1

tends to 0 as N tends to infinity. From the fact that the sum AN + BN + CN
vanishes for all sufficiently large N , it easily follows that for all sufficiently large
N , each of the three terms AN , BN and CN also vanishes, hence a − (−1)Nc
and a+ (−1)Nc vanish, therefore a = c = 0, and finally b = 0.
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Exercise 1.5. Let (an)n≥0 be a bounded sequence of rational integers.
Prove that the following conditions are equivalent:
(i) The number

ϑ1 =
∑
n≥0

an
n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.

1.2.3 Irrationality of e
√

2

We follow here a suggestion of D.M. Masser and use Fourier’s argument to prove
the irrationality of e

√
2.

The trick here is to prove the stronger statement that ϑ = e
√

2 + e−
√

2 is an
irrational number.

Summing the two series

e
√

2 =
∑
n≥0

2n/2

n!
and e−

√
2 =

∑
n≥0

(−1)n
2n/2

n!
,

we deduce
ϑ = 2

∑
m≥0

2m

(2m)!
·

Let N be a sufficiently large integer. Then

(2N)!
2N

ϑ− 2
N∑
m=0

(2N)!
2N−m(2m)!

= 4
∑
k≥0

2k(2N)!
(2N + 2k + 2)!

· (1.6)

The right hand side of (1.6) is a sum of positive numbers, in particular it is not
0. Moreover the upper bound

(2N)!
(2N + 2k + 2)!

≤ 1
(2N + 2)(2k + 1)!

shows that the right hand side of (1.6) is bounded by

2
N + 1

∑
k≥0

2k

(2k + 1)!
<

√
2e
√

2

N + 1
,

hence tends to 0 as N tends to infinity.
It remains to check that the coefficients (2N)!/2N and (2N)!/2N−m(2m)!

(0 ≤ m ≤ N) which occur in the left hand side of (1.6) are integers. The first
one is nothing else than the special case m = 0 of the second one. Now for
0 ≤ m ≤ N the quotient

(2N)!
(2m)!

= (2N)(2N − 1)(2N − 2) · · · (2m+ 2)(2m+ 1)
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is the product of 2N −2m consecutive integers, N −m of which are even; hence
it is an integral multiple of 2N−m.

The same proof shows that the number
√

2(e
√

2 − e−
√

2) is also irrational,
but the argument does not seem to lead to the conclusion that e

√
2 is not a

quadratic number.

1.2.4 The number e2 is not quadratic

The proof below is the one given by J. Liouville in 1840 [16]. See also [7].
We saw in § 1.2.2 that there was a difficulty to prove that e is not a quadratic

number if we were to follow too closely Fourier’s initial idea. Considering e−1

provided the clue. Now we prove that e2 is not a quadratic number by truncating
the series at carefully selected places. Consider a relation ae4 + be2 + c = 0 with
rational integer coefficients a, b and c. Write it ae2 + b+ ce−2 = 0. Hence

N !b
2N−1

+
N∑
n=0

(a+ (−1)nc)
N !

2N−n−1n!
= −

∑
k≥0

(
a+ (−1)N+1+kc

) 2kN !
(N + 1 + k)!

·

Like in § 1.2.2, the right hand side tends to 0 as N tends to infinity, and if
the two first terms of the series vanish for some value of N , then we conclude
a = c = 0. What remains to be proved is that the numbers

N !
2N−n−1n!

, (0 ≤ n ≤ N)

are integers. For n = 0 this is the coefficient of b, namely 2−N+1N !. The fact
that these numbers are integers is not true for all values of N , it is not true even
for all sufficiently large N ; but we do not need so much, it suffices that they are
integers for infinitely many N , and that much is true.

The exponent vp(N !) of p in the prime decomposition of N ! is given by the
(finite) sum (see for instance [12])

vp(N !) =
∑
j≥1

[
N

pj

]
. (1.7)

Using the trivial upper bound [m/pj ] ≤ m/pj , we deduce the upper bound

vp(n!) ≤ n

p− 1

for all n ≥ 0. In particular v2(n!) ≤ n. On the other hand, when N is a power
of p, say N = pt, then (1.7) yields

vp(N !) = pt−1 + pt−2 + · · ·+ p+ 1 =
pt − 1
p− 1

=
N − 1
p− 1

·

Therefore, when N is a power of 2, the number N ! is divisible by 2N−1 and we
have, for 0 ≤ m ≤ N ,

v2(N !/n!) ≥ N − n− 1,

which means that the numbers N !/2N−n−1n! are integers.
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Exercise 1.8. Let (an)n≥0 be a bounded sequence of rational integers.
Prove that the following conditions are equivalent:
(i) The number

ϑ2 =
∑
n≥0

an2n

n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.
(Compare with Exercise 1.5).

The irrationality of e2 follows from Exercise 1.8 with an = 1 for all n and
the irrationality of e

√
2 with

an =

{
0 if n is odd,
1 if n is even.

1.2.5 The number e
√

3 is irrational

Set ϑ = e
√

3 + e−
√

3. From the series expansion of the exponential function we
derive

(2N)!
3N−1

ϑ− 2
N∑
m=0

(2N)!
(2m)!3N−m−1

= 2
∑
k≥0

3k(2N)!
(2N + 2k + 2)!

·

Take N of the form (3t + 1)/2 for some sufficiently large integer t. We deduce
from (1.7) with p = 3

v3((2N)!) =
3t − 1

2
= N − 1, v3((2m)!) ≤ m, (0 ≤ m ≤ N)

hence v3((2N)!/(2m)!) ≥ N −m− 1.

1.2.6 Is-it possible to go further?

The same argument does not seem to yield the irrationality of e3 (a proof using
some particular continued fractions was given by Hurwitz in 1896 - see [3] p. 14–
15). The range of applications of this method is limited. The main ideas allowing
to go further have been introduced by Charles Hermite. They are basic for the
development of transcendental number theory which we shall discuss in § 2.

1.3 Irrationality Criteria

The main tool in Diophantine approximation is the basic property that any
non-zero integer has absolute value at least 1. There are many corollaries of
this fact. We consider here is the following:
If ϑ is a rational number, there is a positive constant c = c(ϑ) such that, for
any rational number p/q with p/q 6= ϑ,∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ c

q
· (1.9)
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This result is obvious: if ϑ = a/b, then an admissible value for c is 1/b, because
the non-zero integer aq − bp has absolute value at least 1.

This property is characteristic of rational numbers: a rational number cannot
be well approximated by other rational numbers, while an irrational number can
be well approximated by rational numbers.

1.3.1 First criterion

Lemma 1.10. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
qQ
·

(iv) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
q2
·

So far we needed only (ii)⇒(i), which is the easiest part, as we just checked
in (1.9).

According to this implication, in order to prove that some number is ir-
rational, it is sufficient (and in fact also necessary) to produce good rational
approximations. Lemma 1.10 tells us that an irrational real number ϑ has very
good friends among the rational numbers, the sharp inequality (iv) shows in-
deed that ϑ is well approximated by rational numbers (and a sharper version
of (iv), due to Hurwitz, will be proved in Lemma 1.12 below). Conversely, the
proof we just gave shows that a rational number has no good friend, apart from
himself. Hence in this world of rational approximation it suffices to have one
good friend (not counting oneself) to guarantee that one has many very good
friends.

The implication (i)⇒(iii) is a Theorem due to Dirichlet. We shall prove it
in a more general form below (Lemma 1.17).

The next exercise extends the irrationality criterion Lemma 1.10 by replacing
Q by Q(i). The elements in Q(i) are called the Gaussian numbers, the elements
in Z(i) are called the Gaussian integers. The elements of Q(i) will be written
p/q with p ∈ Z[i] and q ∈ Z, q > 0.

Exercise 1.11. Let ϑ be a complex number. Check that the following conditions
are equivalent.
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(i) ϑ 6∈ Q(i).
(ii) For any ε > 0 there exists p/q ∈ Q(i) such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any rational integer N ≥ 1 there exists a rational integer q in the range
1 ≤ q ≤ N2 and a Gaussian integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
qN
·

(iv) There exist infinitely many Gaussian numbers p/q ∈ Q(i) such that∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
q3/2
·

1.3.2 Hurwitz Theorem

The following result improves the implication (i)⇒(iv) of Lemma 1.10.

Lemma 1.12. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

Of course the implication (ii)⇒(i) in Lemma 1.12 is weaker than the impli-
cation (iv)⇒(i) in Lemma 1.10. What is new is the converse.

Classical proofs of the equivalence between (i) and (ii) in Lemma 1.12 involve
either continued fractions (see for instance [12], § 11.8, th. 193) or Farey series
(see [20], Chap. I, §. 2). We give here a proof which does not involve continued
fractions, but they occur implicitly.

Lemma 1.13. Let ϑ be a real irrational number. Then there exists infinitely
many pairs (p/q, r/s) of irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

In this statement and the next ones it is sufficient to prove inequalities ≤ in
place of <: the strict inequalities are plain from the irrationality of ϑ.

Proof. Let H be a positive integer. Among the irreducible rational fractions a/b
with 1 ≤ b ≤ H, select one for which |ϑ − a/b| is minimal. If a/b < ϑ rename
a/b as p/q, while if a/b > ϑ, then rename a/b as r/s.

First consider the case where a/b < ϑ, hence a/b = p/q. Since gcd(p, q) = 1,
using Euclidean’s algorithm, one deduces (Bézout’s Theorem) that there exist
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(r, s) ∈ Z2 such that qr − sp = 1 with 1 ≤ s < q and |r| < |p|. Since 1 ≤ s <
q ≤ H, from the choice of a/b it follows that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ ∣∣∣ϑ− r

s

∣∣∣ ,
hence r/s does not belong to the interval [p/q, ϑ]. Since qr − sp > 0 we also
have p/q < r/s, hence ϑ < r/s.

In the second case where a/b > ϑ and r/s = a/b we solve qr − sp = 1 by
Euclidean algorithm with 1 ≤ q < s and |p| < r, and the argument is similar.

We now complete the proof of infinitely many such pairs. Once we have a
finite set of such pairs (p/q, r/s), we use the fact that there is a rational number
m/n closer to ϑ than any of these rational fractions. We use the previous
argument with H ≥ n. This way we produce a new pair (p/q, r/s) of rational
numbers which is none of the previous ones (because one at least of the two
rational numbers p/q, r/s is a better approximation than the previous ones).
Hence this construction yields infinitely many pairs, as claimed.

Lemma 1.14. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
<

1
2
·

Proof. Define

δ = min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
.

From
δ

q2
≤ ϑ− p

q
and

δ

s2
≤ r

s
− ϑ

with qr − ps = 1 one deduces that the number t = s/q satisfies

t+
1
t
≤ 1
δ
·

Since the minimum of the function t 7→ t+ 1/t is 2 and since t 6= 1, we deduce
δ < 1/2.

Remark. The inequality t+ (1/t) ≥ 2 for all t > 0 with equality if and only if
t = 1 is equivalent to the arithmetico-geometric inequality

√
xy ≤ x+ y

2
,

when x and y are positive real numbers, with equality if and only if x = y. The
correspondance between both estimates is t =

√
x/y.

12



From Lemmas 1.13 and 1.14 it follows that for ϑ ∈ R\Q, there exist infinitely
many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

A further step is required in order to complete the proof of Lemma 1.12.

Lemma 1.15. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Define u = p+ r and v = q + s. Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)
, v2

∣∣∣ϑ− u

v

∣∣∣} <
1√
5
·

Proof. First notice that qu− pv = 1 and rv − su = 1. Hence

p

q
<
u

v
<
r

s
·

We repeat the proof of Lemma 1.14 ; we distinguish two cases according to
whether u/v is larger or smaller than ϑ. Since both cases are quite similar, let
us assume ϑ < u/v. The proof of Lemma 1.14 shows that

s

q
+
q

s
≤ 1
δ

and
v

q
+
q

v
≤ 1
δ
·

Hence each of the four numbers s/q, q/s, v/q, q/v satisfies t+ 1/t ≤ 1/δ. Now
the function t 7→ t+1/t is decreasing on the interval (0, 1) and increasing on the
interval (1,+∞). It follows that our four numbers all lie in the interval (1/x, x),
where x is the root > 1 of the equation x+1/x = 1/δ. The two roots x and 1/x
of the quadratic polynomial X2 − (1/δ)X + 1 are at a mutual distance equal to
the square root of the discriminant ∆ = (1/δ)2 − 4 of this polynomial. Now

v

q
− s

q
= 1,

hence the length
√

∆ of the interval (1/x, x) is ≥ 1 and therefore δ ≤ 1/
√

5.
This completes the proof of Lemma 1.15.

Denote by Φ = (1 +
√

5)/2 = 1.6180339887499 . . . the Golden ratio, root of
the polynomial X2 −X − 1, whose continued fraction expansion is

Φ = [1, 1, 1, 1, . . . ] = [1].

Recall also the definition of the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

13



Exercise 1.16. a) Show that, for any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

b) Show also

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

Deduce that Hurwitz’s estimate in Lemma 1.12 is optimal.

1.3.3 Irrationality of at least one number

Lemma 1.10 is a criterion for the irrationality of one number, we extend it to a
criterion for the irrationality of at least one number in a given set. There are far
reaching generalizations (especially due to Yu. V. Ñesterenko) of such results
to quantitative statements, yielding irrationality measures or even measures of
linear independence.

Lemma 1.17. Let ϑ1, . . . , ϑm be real numbers. The following conditions are
equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0 there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any integer Q > 1 there exists p1, . . . , pm, q in Z such that 1 ≤ q ≤ Qm
and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1
qQ
·

(iv) There is an infinite set of q ∈ Z, q > 0, for which there there exist p1, . . . , pm
in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1
q1+1/m

·

Proof. The proofs of (iii)⇒(iv)⇒(ii)⇒(i) are easy.
For (i)⇒(iii) we use Dirichlet’s box principle like in the proof of Lemma 1.10.

Consider the Qm + 1 elements

ξq =
(
{qϑ1}, . . . , {qϑm}

)
(q = 0, 1, . . . , Qm)

in the unit cube [0, 1)m of Rm. Split this unit cube into Qm cubes having sides
of lengths 1/Q. One at least of these small cubes contains at least two ξq, say
ξq1 and ξq2 , with 0 ≤ q2 < q1 ≤ Qm. Set q = q1 − q2 and take for pi the nearest
integer to ϑi, 1 ≤ i ≤ m. This completes the proof of Lemma 1.17.

An alternative arguments relies on geometry of numbers - see [20] Chap. II,
§ 1 - it follows that it is not necessary to assume Q to be an integer, and the
strict inequality q < Qm can be achieved.
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1.3.4 Another irrationality criterion

We give a further irrationality criterion which will be extended in § 2.1 to a
criterion of linear independence.

Lemma 1.18. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q and r/s in Q such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{qϑ− p ; r − sϑ} < ε.

(iii)There exist infinitely many pairs (p/q, r/s) of rational numbers such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{q(qϑ− p) ; s(r − sϑ)} < 1.

Proof. The implications (iii)⇒(ii)⇒(i) are easy. For (i)⇒(iii) we use the argu-
ments in the proof of Lemma 1.13, but we use also an auxiliary result from the
theory of continued fractions.

Since ϑ is irrational, Hurwitz Lemma 1.12 shows that there are infinitely
many p/q such that ∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

We shall use the fact that such a p/q is a so-called best approximation to ϑ: this
means that for any a/b ∈ Q with 1 ≤ b ≤ q and a/b 6= p/q, we have∣∣∣ϑ− a

b

∣∣∣ > ∣∣∣∣ϑ− p

q

∣∣∣∣ .
Assume first p/q < ϑ. Let r/s be defined by qr − ps = 1 and 1 ≤ s < q,

|r| < |p|. We have

0 <
r

s
− ϑ < r

s
− p

q
=

1
qs
≤ 1
s2
·

Next assume p/q > ϑ. In this case rename it r/s and define p/q by qr− ps = 1
and 1 ≤ q < s, |p| < |r|.

Finally repeat the argument in the proof of Lemma 1.13 to get an infinite
set of approximations. Lemma 1.18 follows.
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1.4 Introduction to Hermite’s work

The proofs given in subsection 1.2 of the irrationality of er for several rational
values of r (namely r ∈ {1/a, 2/a,

√
2/a,
√

3/a ; a ∈ Z, a 6= 0}) are similar:
the idea is to start from the expansion of the exponential function, to truncate
it and to deduce rational approximations to er. In terms of the exponential
function this amounts to approximate ez by a polynomial. Such polynomial
approximations to the exponential function ez yields, by substituting z = a,
rational approximations to ea with denominator n!. However there are better
approximation to ea if one allows other denominators.

The main idea, due to C. Hermite [13], is to approximate ez by ratio-
nal functions A(z)/B(z). The word “approximate” has the following meaning
(Hermite-Padé): an analytic function f is well approximated by a rational func-
tion A(z)/B(z) (where A and B are polynomial) if the first coefficients of the
Taylor expansions of both functions match:

f(z) =
A(z)
B(z)

+ zNg(z),

where g is analytic at the origin. It amounts to the same to say that the
difference B(z)f(z)−A(z) has a zero at the origin of high multiplicity:

B(z)f(z)−A(z) = zNB(z)g(z).

When we just truncate the series expansion of the exponential function, we ap-
proximate ez by a polynomial in z with rational coefficients; when we substitute
z = a where a is a positive integer, this polynomial produces a rational number,
but the denominator of this number is quite large (unless a = ±1). A trick gave
the result also for a = ±2, but definitely for a a larger prime number for instance
there is a problem: if we multiply by the denominator then the “remainder” is
by no means small. As shown by Hermite, to produce a sufficiently large gap in
the power expansion of B(z)ez will solve this problem.

Our first goal in this section is to prove Lambert’s result on the irrational-
ity of er when r is a non-zero rational number. Next we show how a slight
modification implies the irrationality of π.

This proof serves as an introduction to Hermite’s method. There are slightly
different ways to present it: one is Hermite’s original paper [13], another one is
Siegel more algebraic point of view [22], and another was derived by Yu. V.Ñesterenko
[2, 10, 18].

1.4.1 Irrationality of er for r ∈ Q: sketch of proof

If r = a/b is a rational number such that er is also rational, then e|a| is also
rational, and therefore the irrationality of er for any non-zero rational number r
follows from the irrationality of ea for any positive integer a. We shall approx-
imate the exponential function ez by a rational function A(z)/B(z) and show
that A(a)/B(a) is a good rational approximation to ea, sufficiently good in fact
so that one may use Lemma 1.10.
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Write

ez =
∑
k≥0

zk

k!
·

We wish to multiply this series by a polynomial so that the Taylor expansion
at the origin of the product B(z)ez has a large gap: the polynomial preceding
the gap will be A(z), the remainder R(z) = B(z)ez − A(z) will have a zero of
high multiplicity at the origin.

In order to create such a gap, we shall use the differential equation of the
exponential function - hence we introduce derivatives.

In Fourier’s proof, we use for B a constant polynomial, of degree 0. For N
sufficiently large set

BN = N !, AN (z) =
N∑
n=0

N !
n!
zn, RN (z) =

∑
n≥N+1

N !
n!
zn.

Notice that the first term in the Taylor expansion of RN is

1
N + 1

zN+1.

This is sufficient for proving the irrationality of e, since for z = 1 we have

lim
N→∞

RN (1) = 0.

But for a > 1 the sequence (RN (a))N≥1 tends to infinity.
Now take for BN a degree 1 polynomial in Z[z] that we select so that the

coefficient of zN vanishes. It is easy to check that the solution is to take a
multiple of z−N , and we take the product by (N −1)! in order to have integral
coefficients for A. So set

BN (z) = (N − 1)!z −N !, AN (z) = −N !−
N−1∑
n=1

(N − 1)!
n!

(N − n)zn, (1.19)

RN (z) =
∑

n≥N+1

(N − 1)!
n!

(n−N)zn

so that again BN (z)ez = AN (z) + RN (z). Here the first term in the Taylor
expansion of RN is

1
N(N + 1)

zN+1.

This is a tiny progress, since in the denominator we get a degree 2 polynomial
in place of a degree 1 polynomial in N . But this is not sufficient to ensure that
for fixed a > 1 the sequence (RN (a))N≥1 tends to zero. So we shall take for BN
a polynomial of larger degree, depending on N .
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1.4.2 First introduction to Hermite’s proof

We first explain how to produce, from an analytic function whose Taylor devel-
opment at the origin is

f(z) =
∑
k≥0

akz
k, (1.20)

another analytic function with one given Taylor coefficient, say the coefficient
of zm, is zero. The coefficient of zm for f is am = m!f (m)(0). The same number
am occurs when one computes the Taylor coefficient of zm−1 for the derivative
f ′ of f . Writing

mam = m!(zf ′)(m)(0),

we deduce that the coefficient of zm in the Taylor development of zf ′(z)−mf(z)
is 0, which is what we wanted.

It is the same thing to write

zf ′(z) =
∑
k≥0

kakz
k

so that
zf ′(z)−mf(z) =

∑
k≥0

(k −m)akzk.

Now we want that several consecutive Taylor coefficients cancel. It will be
convenient to introduce derivative operators.

We introduce the derivative operator D = d/dz. As usual, D2 denotes
D ◦D and Dm = Dm−1 ◦D for m ≥ 2. The Taylor expansion at the origin of
an analytic function f is

f(z) =
∑
`≥0

1
`!
D`f(0)z`.

The derivation D and the multiplication by z do not commute:

D(zf) = f + zD(f),

relation which we write Dz = 1+zD. From this relation it follows that the non-
commutative ring generated by z and D over C is also the ring of polynomials
in D with coefficients in C[z]. In this ring C[z][D] there is an element which
will be very useful for us, namely δ = zd/dz. It satisfies δ(zk) = kzk. To any
polynomial T ∈ C[t] one associates the derivative operator T (δ).

By induction on m, one checks δmzk = kmzk for all m ≥ 0. By linearity,
one deduces that if T is a polynomial with complex coefficients, then

T (δ)zk = T (k)zk.

For our function f with the Taylor development (1.20) we have

T (δ)f(z) =
∑
k≥0

akT (k)zk.
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Hence if we want a function with a Taylor expansion having 0 as coefficient of
zk, it suffices to consider T (δ)f(z) where T is a polynomial satisfying T (k) = 0.
For instance if n0 and n1 are two non-negative integers and if we take

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t− n0 − n1),

then the series T (δ)f(z) can be written A(z) +R(z) with

A(z) =
n0∑
k=0

T (k)akzk

and
R(z) =

∑
k≥n0+n1+1

T (k)akzk.

This means that in the Taylor expansion at the origin of T (δ)f(z), all coefficients
of zn0+1, zn0+2, . . . , zn0+n1 are 0.

Let n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1 and

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t−N).

Since T is monic of degree n1 with integer coefficients, it follows from the dif-
ferential equation of the exponential function

δ(ez) = zez

that there is a polynomial B ∈ Z[z], which is monic of degree n1, such that
T (δ)ez = B(z)ez.

Set

A(z) =
n0∑
k=0

T (k)
zk

k!
and R(z) =

∑
k≥N+1

T (k)
zk

k!
·

Then
B(z)ez = A(z) +R(z),

where A is a polynomial with rational coefficients of degree n0 and leading
coefficient

T (n0)
n0!

= (−1)n1
n1!
n0!
·

Also the analytic function R has a zero of multiplicity ≥ N + 1 at the origin.
We can explicit these formulae for A and R. For 0 ≤ k ≤ n0 we have

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N)
= (−1)n1(N − k) · · · (n0 + 2− k)(n0 + 1− k)

= (−1)n1
(N − k)!
(n0 − k)!

·

For k ≥ N + 1 we write in a similar way

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N) =
(k − n0 − 1)!
(k −N − 1)!

·

Hence we have proved:
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Proposition 1.21 (Hermite’s formulae for the exponential function). Let n0 ≥
0, n1 ≥ 0 be two integers. Define N = n0 + n1. Set

A(z) = (−1)n1

n0∑
k=0

(N − k)!
(n0 − k)!k!

· zk and R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk.

Finally, define B ∈ Z[z] by the condition

(δ − n0 + 1)(δ − n0 + 2) · · · (δ −N)ez = B(z)ez.

Then
B(z)ez = A(z) +R(z).

Further, B is a monic polynomial with integer coefficients of degree n1, A
is a polynomial with rational coefficients of degree n0 and leading coefficient
(−1)n1n1!/n0!, and the analytic function R has a zero of multiplicity N + 1 at
the origin.
Furthermore, the polynomial (n0!/n1!)A has integer coefficients. In particular,
if n1 ≥ n0, then the coefficients of A itself are integers.

Remark. For n1 < n0 the leading coefficient (−1)n1n1!/n0! of A is not an
integer.

Lemma 1.22. Let z ∈ C. Then

|R(z)| ≤ |z|
N+1

n0!
e|z|.

Proof. We have

R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk =
∑
`≥0

(`+ n1)!
(`+N + 1)!

· z
`+N+1

`!
·

The trivial estimates

(`+N + 1)!
(`+ n1)!

= (`+N + 1)(`+N)(`+N − 1) · · · (`+ n1 + 1) ≥ (n0 + 1)! ≥ n0!

yield

|R(z)| ≤ |z|
N+1

n0!

∑
`≥0

|z|`

`!
·

Lemma 1.22 follows.

1.4.3 Second introduction to Hermite’s proof

In [22], C.L. Siegel introduces an algebraic point of view which yields the fol-
lowing:
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Theorem 1.23. Given two integers n0 ≥ 0, n1 ≥ 0, there exist two polynomials
A and B in C[z] with A of degree ≤ n0 and B 6= 0 of degree ≤ n1 such that the
function R(z) = B(z)ez −A(z) has a zero at the origin of multiplicity ≥ N + 1
with N = n0 +n1. This solution (A,B,R) is unique if we require B to be monic.
Moreover A has degree n0, B has degree n1 and R has multiplicity N + 1 at the
origin.

Proof. We first prove the existence of a non-trivial solution (A,B,R). For n ≥ 0,
denote by C[z]≤n the C–vector space of polynomials of degree≤ n. Its dimension
is n+ 1. Consider the linear mapping

L : C[z]≤n1 −→ Cn1

B(z) 7−→
(
D`
(
B(z)ez

)
z=0

)
n0<`≤N

This map is not injective, its kernel has dimension ≥ 1. Let B ∈ kerL. Define

A(z) =
n0∑
`=0

D`
(
B(z)ez

)
z=0

z`

`!

and

R(z) =
∑

`≥N+1

D`
(
B(z)ez

)
z=0

z`

`!
·

Then (A,B,R) is a solution to the problem:

B(z)ez = A(z) +R(z). (1.24)

There is an alternative proof of the existence as follows [22]. Consider the
linear mapping

C[z]≤n0 × C[z]≤n1 −→ CN+1(
A(z), B(z)

)
7−→

(
D`
(
B(z)ez −A(z)

)
z=0

)
0≤`≤N

This map is not injective, its kernel has dimension ≥ 1. If (A,B) is a non-zero
element in the kernel, then B 6= 0.

We now check that the kernel of L has dimension 1. Let B ∈ kerL, B 6= 0
and let (A,B,R) be the corresponding solution to (1.24).

Since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),

hence it is the product of ez with a polynomial of the same degree as the degree
of B and same leading coefficient. Now R has a zero at the origin of multiplicity
≥ n0 + n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1 at the origin.
Therefore

Dn0+1R = czn1ez (1.25)
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where c is the leading coefficient of B; it follows also that B has degree n1. This
proves that kerL has dimension 1.

Since Dn0+1R has a zero of multiplicity exactly n1, it follows that R has a
zero at the origin of multiplicity exactly N + 1, so that R is the unique function
satisfying Dn0+1R = czn1ez with a zero of multiplicity ≥ n0 at 0.

It remains to check that A has degree n0. Multiplying (1.24) by e−z, we
deduce

A(z)e−z = B(z)−R(z)e−z.

We replace z by −z:

A(−z)ez = B(−z)−R(−z)ez. (1.26)

It follows that
(
B(−z), A(−z),−R(−z)ez

)
is a solution to the Padé problem

(1.24) for the parameters (n1, n0), hence A has degree n0.

Following [22], we give formulae for A, B and R.
Consider the operator J defined (on the set of analytic functions near the

origin) by

J(ϕ) =
∫ z

0

ϕ(t)dt.

It satisfies
DJϕ = ϕ and JDf = f(z)− f(0).

Hence the restriction of the operator of D to the functions vanishing at the
origin is a one-to-one map with inverse J .

The next lemma extends the fact that z log z − z is a primitive of log z.

Lemma 1.27. For n ≥ 0,

Jn+1ϕ =
1
n!

∫ z

0

(z − t)nϕ(t)dt.

Proof. The formula is valid for n = 0. We first check it for n = 1. The derivative
of the function ∫ z

0

(z − t)ϕ(t)dt = z

∫ z

0

ϕ(t)dt−
∫ z

0

tϕ(t)dt

is ∫ z

0

ϕ(t)dt+ zϕ(z)− zϕ(z) =
∫ z

0

ϕ(t)dt.

We now proceed by induction. For n ≥ 1 the derivative of the function of z

1
n!

∫ z

0

(z − t)nϕ(t)dt =
n∑
k=0

(−1)n−k

k!(n− k)!
· zk

∫ z

0

tn−kϕ(t)dt
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is
n∑
k=0

(−1)n−k

k!(n− k)!

(
kzk−1

∫ z

0

tn−kϕ(t)dt+ znϕ(z)
)
. (1.28)

Since n ≥ 1, we have
n∑
k=0

(−1)n−k

k!(n− k)!
= 0

and (1.28) is nothing else than

n∑
k=1

(−1)n−k

(k − 1)!(n− k)!
· zk−1

∫ z

0

tn−kϕ(t)dt =
1

(n− 1)!

∫ z

0

(z − t)n−1ϕ(t)dt.

Using (1.25) with c = 1 together with Lemma 1.27, we deduce:

Lemma 1.29. The remainder R(z) in Hermite’s fomula with parameters n0

and n1 (and B monic) is given by

R(z) =
1
n0!

∫ z

0

(z − t)n0tn1etdt.

Replacing t by tz yields

R(z) =
zN+1

n0!

∫ 1

0

(1− t)n0tn1etzdt.

This gives another proof of Lemma 1.22.

Remark. This is the estimate for B monic. When n1 < n0 the coefficients of
the associated polynomial A are not integers. For instance in case n1 = 0 (hence
n0 = N) the polynomial B is 1 and A (which is the head of the Taylor expansion
of the exponential function) has denominator N !. In case n1 = 1 we need to
multiply by (N − 1)!, as explained in (1.19) above, to get integer coefficients.
More generally in case n1 < n0 we need to multiply by n0!/n1! in order to get
integer coefficients, so the remainder in this case is bounded by

n0!
n1!
|R(z)| ≤ |z|

N+1

n1!
e|z|.

If we want to have a small remainder we need to take n1 at least a constant
times N/ logN . The choice n1 = n0 = N/2 is the most natural one.

We now give formulae for A and B in Theorem 1.23, following C.L. Siegel
[22].

When S ∈ C[[t]] is a power series, say

S(t) =
∑
i≥0

sit
i,
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and f an analytic complex valued function, we define

S(D)f =
∑
i≥0

siD
if,

and we shall use this notation only when the sum is finite: either S is a poly-
nomial in C[t] or f is a polynomial in C[z].

We reproduce [22], Chap.I § 1: for two powers series S1 and S2 and an
analytic function f we have(

S1(D) + S2(D)
)
f = S1(D)f + S2(D)f

and (
S1(D)S2(D)

)
f = S1(D)

(
S2(D)

)
f.

Also if s0 6= 0 then the series S has an inverse in the ring C[[t]]

S−1(t) =
∑
i≥0

σit
i, (σ0 = 1/s0)

and
S−1(D)

(
S(D)f

)
= f.

If the power series S and the polynomial f have integer coefficients, then S(D)f
is also a polynomial with integer coefficients. The same holds also for S−1(D)f
if, further, s0 = ±1.

For λ ∈ C and P ∈ C[z], we have

D(eλzP ) = eλz(λ+D)P.

Hence for n ≥ 1,
Dn(eλzP ) = eλz(λ+D)nP

and (λ+D)nP is again a polynomial; further it has the same degree as P when
λ 6= 0. Conversely, let λ 6= 0 be a complex number and let Q ∈ C[z] be a
polynomial. We wish to solve the equation

Dn
(
eλzP

)
= eλzQ,

where the unknown is the polynomial P . This amounts to solving the differential
equation

(λ+D)nP = Q,

and the unique solution P ∈ C[z] is

P = (λ+D)−nQ.

In the case λ = ±1, when Q has integer coefficients, then so does P .
We come back now to the solution (A,B,R) to the Padé problem (1.24) in

Theorem 1.23, where B ∈ C[z] is monic of degree n1 and A ∈ C[z] has degree
n0, while R ∈ C[[z]] has a zero of multiplicity N + 1 at 0.

From
Dn0+1

(
B(z)ez

)
= zn1ez

we deduce
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B(z) = (1 +D)−n0−1zn1 .

From this formula it follows that B has integer coefficients. It is easy to
explicit the polynomial B. From

(1 +D)−n0−1 =
∑
`≥0

(−1)`
(
n0 + `

`

)
D`,

we deduce

B(z) =
n1∑
`=0

(−1)`
(
n0 + `

`

)
n1!

(n1 − `)!
zn1−`,

which can be written also as

B(z) = (−1)n1
n1!
n0!

n1∑
k=0

(−1)k
(N − k)!

(n1 − k)!k!
zk. (1.30)

One readily checks that B is monic of degree n1.
If we request B to be monic, then c = 1 in (1.25) and it follows that the

coefficient of zN+1 in R is
n1!

(N + 1)!
·

In the proof of Theorem 1.23, we found a link (1.26) between the Padé solution
with parameters (n0, n1) and the solution with parameters (n1, n0). We explicit
this link. We denote by (An0,n1 , Bn0,n1 , Rn0,n1) the solution of (1.24) for the
parameters (n0, n1). From (1.26) we infer

An0,n1(z) = (−1)N
n1!
n0!

Bn1,n0(−z),

Bn0,n1(z) = (−1)N
n1!
n0!

An1,n0(−z),

Rn0,n1(z) = (−1)N
n1!
n0!

Rn1,n0(−z)e−z.

Hence

A(z) = (−1)n1

n0∑
k=0

(N − k)!
(n0 − k)!k!

· zk. (1.31)

The leading coefficient of A is (−1)n1n1!/n0!. It follows also from (1.31) that
(n0!/n1!)A has integer coefficients. In particular if n1 ≥ n0, then A is in Z[z].

We can also check this formula (1.31) starting from

Dn1+1
(
A(z)e−z

)
= −Dn1+1

(
R(z)e−z

)
,

where the left hand side is the product of e−z with a polynomial of degree ≤ n0,
while the right hand side has a multiplicity ≥ n0 at the origin. We deduce

Dn1+1
(
A(z)e−z

)
= (−1)n1+1azn0e−z
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where a is the leading coefficient of a. From

Dn1+1
(
A(z)e−z

)
= e−z(−1 +D)n1+1A(z)

we deduce
(−1 +D)n1+1A(z) = (−1)n1+1azn0

and

A(z) = (−1)n1+1a(−1 +D)−n1−1zn0 .

1.4.4 Irrationality of er: end of the proof

We are now able to complete the proof of the irrationality of er for ∈ Q, r 6= 0.
Let r = a/b be a non-zero rational number. Assume (wlog) r is positive. Set

s = er, let n be a sufficiently large integer, choose n0 = n1 = n and replace z
by a = br in (1.24); we deduce

Bn(a)sb −An(a) = Rn(a),

where An, Bn and Rn stand for A, B, R with our choice n0 = n1 = n. All
coefficients in Rn are positive, hence Rn(a) > 0. Therefore Bn(a)sb−An(a) 6= 0.
By Lemma 1.22, Rn(a) tends to 0 when n tends to infinity. Since Bn(a) and
An(a) are rational integers, we may use the implication (ii)⇒(i) in Lemma 1.10:
we deduce that the number sb is irrational. Hence s = er is also irrational.

1.4.5 Irrationality of π

This proof of the irrationality of log s for s a positive rational number given in
§ 1.4.4 can be extended to the case s = −1 in such a way that one deduces
Lambert’s result (see § 1.1) on the irrationality of the number π.

Assume π is a rational number, π = a/b. Again let n be a sufficiently large
integer, take n0 = n1 = n and denote by An, Bn and Rn the solution of the
Padé problem (1.24). Substitute z = ia = iπb. Notice that ez = (−1)b:

Bn(ia)(−1)b −An(ia) = Rn(ia),

and that the two complex numbers An(ia) and Bn(ia) are in Z[i]. The left hand
side is in Z[i], the right hand side tends to 0 as n tends to infinity, hence both
sides are 0.

In the proof of § 1.4.1, we used the positivity of the coefficients of Rn and
we deduced that Rn(a) was not 0 (this is the so-called ““zero estimate” in
transcendental number theory). Here we need another argument.

The last step of the proof of the irrationality of π is achieved by using two
consecutive indices n and n+ 1. We eliminate ez among the two relations

Bn(z)ez −An(z) = Rn(z) and Bn+1(z)ez −An+1(z) = Rn+1(z).
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We deduce that the polynomial

∆n = BnAn+1 −Bn+1An (1.32)

can also be written
∆n = −BnRn+1 +Bn+1Rn. (1.33)

As we have seen, the polynomial Bn is monic of degree n; the polynomial An
also has degree n, its highest degree term is (−1)nzn. It follows from (1.32) that
∆n is a polynomial of degree 2n+ 1 and highest degree term (−1)n2z2n+1. On
the other hand, since Rn has a zero of multiplicity at least 2n+ 1, the relation
(1.33) shows that it is the same for ∆n. Consequently

∆n(z) = (−1)n2z2n+1.

It follows that ∆n does not vanish outside 0. From (1.33) we deduce that Rn
and Rn+1 have no common zero apart from 0. This completes the proof of the
irrationality of π.
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