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2 Historical introduction to transcendence

In 1873 C. Hermite [4] proved that the number e is transcendental. In his paper
he explains in a very clear way how he found his proof. He starts with an analogy
between simultaneous Diophantine approximation of real numbers on the one
hand and analytic complex functions of one variable on the other. He first
solves the analytic problem by constructing explicitly what is now called Padé
approximants for the exponential function. In fact there are two types of such
approximants, they are now called type I and type II, and what Hermite did in
1873 was to compute Padé approximants of type II. He also found those of type I
in 1873 and studied them later in 1893. K. Mahler in 1932 related the properties
of the two types of Padé’s approximants and used those of type I in order to get
a new proof of Hermite’s transcendence Theorem (and also of the generalisation
by Lindemann and Weierstraß as well as quantitative refinements). See [3] and
[2] Chap. 2 § 3.

In the analogy with number theory, Padé approximants of type II are related
with the simultaneous approximation of real numbers ϑ1, . . . , ϑm by rational
numbers pi/q with the same denominator q (one does not require that the
fractions are irreducible), which means that we wish to bound from below

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣
in terms of q, while type I is related with the study of lower bounds for linear
combinations

|a0 + a1ϑ1 + · · ·+ amϑm|
when a0, . . . , am are rational integers, not all of which are 0, in terms of the
number max0≤i≤m |ai|.

After his seminal work, Ch. Hermite wrote to C.A. Borchardt (see [5, 1]:

Tout ce que je puis, c’est de refaire ce qu’a déjà fait Lambert, seule-
ment d’une autre manière.
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and

Je ne hasarderai point à la recherche d’une démonstration de la tran-
scendance du nombre π. Que d’autres tentent l’entreprise; mais
croyez m’en, mon cher ami, il ne laissera pas que de leur en coûter
quelques efforts.

F. Lindemann [6] was able to extend the argument and to prove the tran-
scendence of π (hence he solved the old greek problem of the quadrature of the
circle: it is not possible using ruler and compass to draw a square and a circle
having the same area). This extension led to the so-called Hermite-Lindemann’s
Theorem:

Theorem 2.1 (Hermite–Lindemann). Let α be a non–zero complex algebraic
number. Let logα be any non-zero logarithm of α. Then logα is transcendental.

Equivalently, let β be a non-zero algebraic number. Then eβ is transcenden-
tal.

Recall that any non-zero complex number z has complex logarithms: these
are the solutions ` ∈ C of the equation e` = z. If ` is one of them, then all
solutions ` to this equation e` = z are `+ 2ikπ with k ∈ Z. The only non-zero
complex of which 0 is a logarithm is 1.

The equivalence between both statements in Theorem 2.1 is easily seen by
setting eβ = α: one can phrase the result by saying that for any non-zero
complex number β, one at least of the two numbers β, eβ is transcendental.

After the proofs by Hermite and Lindemann, a number of authors in the XIX-
th century worked out variants of the argument. The main goal was apparently
to get the shorter possible proof, and most often the reason for which it works
is by no means so clear as in Hermite’s original version. One can find in the
literature such short proofs (see for instance [8]), the connection with Hermite’s
arguments are most often not so transparent. So we shall come back to the
origin and try to explain what is going on.

We concentrate now on Hermite’s proof for the transcendence of e. The
goal is to prove that for any positive integer m, the numbers 1, e, e2, . . . , em are
linearly independent over Q.

2.1 A criterion for linear independence

We first state a criterion for linear independence which will be used in § 2 for
the proof by Hermite of the transcendence of e. This is a generalisation (from
personal notes by Michel Laurent of a course he gave in Marseille) of one of
Lemma 1.18. Most often in mathematics there is sort of an entropy: when a
statement provides a necessary and sufficient condition, and when one of the two
implications is easy while the other requires more work, then it is the difficult
part which is most useful. Here we have a counterexample to this claim: in the
Criterion 2.2 below, one of the implications is easy while the other is deeper;
but it turns out that it is the easy one which is used in transcendence proofs.
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Let ϑ1, . . . , ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. Our goal is to prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.
The idea is to approximate simultaneously ϑ1, . . . , ϑm by rational numbers

p1/q, . . . , pm/q with the same denominator q > 0.
Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ µ ≤ m set

εµ = qϑµ − pµ.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z and R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.
One of the main difficulties is often to check M 6= 0. This question gives

rise to the so-called zero estimates or non-vanishing lemmas. In the present
situation, we wish to find a m + 1–tuple (q, p1, . . . , pm) giving a simultaneous
rational approximation to (ϑ1, . . . , ϑm), but we also require that it lies outside
the hyperplane a0x0 + a1x1 + · · · + amxm = 0 of Qm+1. Since this needs
to be checked for all hyperplanes, the solution is to construct not only one
tuple (q, p1, . . . , pm) in Zm+1 \ {0}, but m + 1 such tuples which are linearly
independent. This yields m+ 1 pairs (Mk, Rk), k = 0, . . . ,m in place of a single
pair (M,R). From (a0, . . . , am) 6= 0 one deduces that one at least of M0, . . . ,Mm

is not 0.
It turns out that nothing is lossed by using such arguments: existence of

linearly independent simultaneous rational approximations for ϑ1, . . . , ϑm are
characteristic of linearly independent numbers 1, ϑ1, . . . , ϑm. As we just said
earlier, we shall use only the easy part of the next Lemma 2.2.

Lemma 2.2. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following conditions are
equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0 there exist m+ 1 linearly independent elements b0, b1, . . . , bm
in Zm+1, say

bi = (qi, p1i, . . . , pmi), (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤µ≤m

∣∣∣∣ϑµ − pµi
qi

∣∣∣∣ ≤ ε

qi
, (0 ≤ i ≤ m). (2.3)

In (ii) there is no non-vanishing condition. For m = 1 this criterion is not
identical to the irrationality criterion: in Lemma 1.10, we required for each ε one
approximation p/q distinct from θ. Here, in case m = 1, we need two linearly
independent approximations: hence, even if θ is rational, at least one of them
is not the trivial one.
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The condition on linear independence of the elements b0, b1, . . . , bm means
that the determinant ∣∣∣∣∣∣∣

q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not 0.

We shall prove a more explicit version of (ii)⇒(i): we check that any tuple
(q, p1, . . . , pm) ∈ Zm+1 producing a tuple (p1/q, . . . , pm/q) ∈ Qm of sufficiently
good rational approximations to ϑ satisfies the same linear dependence relations
as 1, ϑ1, . . . , ϑm.

Lemma 2.4. Let ϑ1, . . . , ϑm be real numbers. Assume that the numbers 1, ϑ1, . . . , ϑm
are linearly dependent over Q: let a0, a1, . . . , am be rational integers, not all of
which are zero, satisfying

a0 + a1ϑ1 + · · ·+ amϑm = 0.

Let ε > 0 satisfy
∑m
µ=1 |aµ] < 1/ε. Assume further that (q, p1, . . . , pm) ∈ Zm+1

satisfies q > 0 and
max

1≤µ≤m
|qϑµ − pµ| ≤ ε.

Then
a0q + a1p1 + · · ·+ ampm = 0.

Proof. In the relation

qa0 +
m∑
µ=1

aµpµ = −
m∑
µ=1

aµ(qϑµ − pµ),

the right hand side has absolute value less than 1 and the left hand side is a
rational integer, so it is 0.

Proof of (ii)⇒(i) in Lemma 2.2. By assumption (ii) we have m+ 1 linearly in-
dependent elements bi ∈ Zm+1 such that the corresponding rational approxima-
tion satisfy the assumptions of Lemma 2.4. Consider a non–zero linear form L
in m+ 1 variables X = (X0, X1, . . . , Xm) with integer coefficients

L(X) = a0X0 + a1X1 + · · ·+ amXm.

Since L 6= 0, one at least of the L(bi) is not 0. For this bi the conclusion of
Lemma 2.4 is not satisfied, hence

a0 + a1ϑ1 + · · ·+ amϑm 6= 0.
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Proof of (i)⇒(ii) in Lemma 2.2. Let ε > 0. Assume (i) holds. By Dirichlet’s
box principle (Lemma 1.7), there exists b = (q, p1, . . . , pm) ∈ Zm+1 with q > 0
such that

max
1≤µ≤m

∣∣∣∣ϑµ − pµ
q

∣∣∣∣ ≤ ε

q
·

Consider the subset Eε ⊂ Zm+1 of these tuples. We show that the Q-vector
subspace Vε of Qm+1 spanned by Eε is Qm+1. It will follow that there are m+1
linearly independent elements in Eε.

If Vε 6= Qm+1, then there is a hyperplane a0z0 + a1z1 + · · · + amzm = 0
containing Eε. Any b = (q, p1, . . . , pm) in Eε has

a0q + a1p1 + · · ·+ ampm = 0.

For each n ≥ 1/ε, let bn = (qn, p1n, . . . , pmn) ∈ Eε satisfy

max
1≤µ≤m

∣∣∣∣ϑµ − pµn
qn

∣∣∣∣ ≤ 1
nqn
·

Then

a0 + a1θ1 + · · ·+ amθm =
m∑
µ=1

aµ

(
θµ −

pµn
qn

)
.

Hence

|a0 + a1θ1 + · · ·+ amθm| ≤
1
nqn

m∑
µ=1

|aµ|.

The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1, ϑ1, . . . , ϑm are Q–linearly dependent, which contradicts (i).

2.2 Transcendence of e, following Hermite

2.2.1 Padé approximants

Henri Eugène Padé (1863–1953), who was a student of Charles Hermite (1822–
1901), gave his name to the following objects which he studied thoroughly in
his thesis in 1892.

Lemma 2.5. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let n0, n1, . . . , nm be non-negative integers. Set

N = n0 + n1 + · · ·+ nm.

Then there exists a tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the
following properties:
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree ≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x 7→ Q(x)fµ(x) − Pµ(x) has a zero at the
origin of multiplicity ≥ N + 1.
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Definition. A tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the con-
dition of Lemma 2.5 is called a Padé system of the second type for (f1, . . . , fm)
attached to the parameters n0, n1, . . . , nm.

Proof of Lemma 2.5. The polynomial Q of Lemma 2.5 should have degree ≤
N − n0, so we have to find (or rather to prove the existence of) its N − n0 + 1
coefficients, not all being zero. We consider these coefficients as unknowns. The
property we require is that for 1 ≤ µ ≤ m, the Taylor expansion at the origin of
Q(x)fµ(x) has zero coefficients for xN−nµ+1, xN−nµ+1, . . . , xN . If this property
holds for 1 ≤ µ ≤ m, we shall define Pµ by truncating the Taylor series at the
origin of Q(x)fµ(x) at the rank xN−nµ , hence Pµ will have degree ≤ N − nµ,
while the remainder Q(x)fµ(x)− Pµ(x) will have a mutiplicity ≥ N + 1 at the
origin.

Now for each given µ the condition we stated amounts to require that our
unknowns (the coefficients of Q) satisfy nµ homogeneous linear relations, namely(

d

dx

)k
[Q(x)fµ(x)]x=0 = 0 for N − nµ < k ≤ N.

Therefore altogether we get n1+· · ·+nm = N−n0 homogeneous linear equations,
and since the number N − n0 + 1 of unknowns (the coefficients of Q) is larger,
linear algebra tells us that a non-trivial solution exists.

In other terms, the linear map

C[X]≤N−n0 −→ Cn1 × · · · × Cnm

Q 7−→

((
d

dz

)k [
Q(z)fµ(z)

]
z=0

)
N−nµ<k≤N, 1≤µ≤m

from a space of dimension N − n0 + 1 to a space of dimension n1 + · · ·+ nm =
N − n0 is not injective.

There is no unicity, because of the homogeneity of the problem: the set of
solutions (together with the trivial solution 0) is a vector space over C, and
Lemma 2.5 shows that it has positive dimension. In the case where this dimen-
sion is 1 (which means that there is unicity up to a multiplicative constant),
the system of approximants is called perfect. An example is with m = 1 and
f(x) = ex, as shown by Theorem 1.23.

Most often it is not easy to find explicit solutions: we only know their exis-
tence. As we are going to show, Hermite succeeded to produce explicit solutions
for the systems of Padé approximants of the functions (ex, e2x, . . . , emx).

2.2.2 Hermite’s proof of the transcendence of e

Hermite gave explicit formulae for solving the Padé problem for the exponential
function, and he deduced the transcendence of e as follows. The next formula
is one of the many disguises of what is called Hermite’s identity.
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Lemma 2.6. Let f be a polynomial of degree ≤ N . Define

F = f +Df +D2 + · · ·+DNf.

Then for z ∈ C ∫ z

0

e−tf(t)dt = F (0)− e−zF (z).

We can also write the definition of F as

F = (1−D)−1f where (1−D)−1 =
∑
k≥0

Dk.

The series in the right hand side is infinite, but when we apply the operator to a
polynomial only finitely many Dkf are not 0: when f is a polynomial of degree
≤ N then Dkf = 0 for k > N .

Proof. More generally, if f is a complex function which is analytic at the origin
and N is a positive integer, if we set

F = f +Df +D2 + · · ·+DNf,

then the derivative of e−tF (t) is −e−tf(t) + e−tDN+1f(t).

Let f be a polynomial. Hermite’s Lemma 2.6 gives a formula for∫ z

0

e−tf(t)dt

for z ∈ C. A change of variables leads to a formula for∫ u

0

e−xtf(t)dt

when x and u are complex numbers. Here, in place of using Lemma 2.6, we
repeat the proof. Integrate by part e−xtf(t) between 0 and u:∫ u

0

e−xtf(t)dt = −
[

1
x
e−xtf(t)

]u
0

+
1
x

∫ u

0

e−xtf ′(t)dt.

By induction we deduce∫ u

0

e−xtf(t)dt = −
m∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

+
1

xm+1

∫ u

0

e−xtDm+1f(t)dt.

Let N be an upper bound for the degree of f . For m = N the last integral
vanishes and∫ u

0

e−xtf(t)dt = −
N∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

=
N∑
k=0

1
xk+1

Dkf(0)− e−xu
N∑
k=0

1
xk+1

Dkf(u).

Multipling by xN+1eux yields:
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Lemma 2.7. Let f be a polynomial of degree ≤ N and let x, u be complex
numbers. Then

exu
N∑
k=0

xN−kDkf(0) =
N∑
k=0

xN−kDkf(u) + xN+1exu
∫ u

0

e−xtf(t)dt.

With the notation of Lemma 2.7, the function

x 7→
∫ u

0

e−xtf(t)dt

is analytic at x = 0, hence its product with xN+1 has a mutiplicity ≥ N + 1 at
the origin. Moreover

Q(x) =
N∑
k=0

xN−kDkf(0) and P (x) =
N∑
k=0

xN−kDkf(u)

are polynomials in x.
If the polynomial f has a zero of multiplicity ≥ n0 at the origin, then Q has

degree ≤ N −n0. If the polynomial f has a zero of multiplicity ≥ n1 at u, then
P has degree ≤ N − n1.

For instance in the case u = 1, N = n0 + n1, f(t) = tn0(t − 1)n1 , the two
polynomials P and Q defined by

Q(x) =
N∑

k=n0

xN−kDkf(0) and P (x) =
N∑

k=n1

xN−kDkf(1)

satisfy the properties which were required for A and B in section §1.4.1 (see
Proposition 1.21), namely R(z) = Q(z)ez − P (z) has a zero of multiplicity
> n0 + n1 at the origin, P has degree ≤ n0 and Q has degree ≤ n1.

Lemma 2.7 is a powerful tool to go much further.

Proposition 2.8. Let m be a positive integer, n0, . . . , nm be non-negative in-
tegers. Set N = n0 + · · · + nm. Define the polynomial f ∈ Z[t] of degree N
by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =
N∑

k=n0

xN−kDkf(0), Pµ(x) =
N∑

k=nµ

xN−kDkf(µ)

and
Rµ(x) = xN+1exµ

∫ µ

0

e−xtf(t)dt.
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Then the polynomial Q has exact degree N − n0, while Pµ has exact degree
N − nµ, and Rµ is an analytic function having at the origin a multiplicity
≥ N + 1. Further, for 1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q,P1, . . . , Pm) is a Padé system of the second type for the m-tuple of
functions (ex, e2x, . . . , emx), attached to the parameters n0, n1, . . . , nm. Fur-
thermore, the polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have integral
coefficients.

These polynomials Q,P1, . . . , Pm are called the Hermite-Padé polynomials
attached to the parameters n0, n1, . . . , nm.

Proof. The coefficient of xN−n0 in the polynomial Q is Dn0f(0), so it is not
zero since f has mutiplicity exactly n0 at the origin. Similarly for 1 ≤ µ ≤ m
the coefficient of xN−nµ in Pµ is Dn0f(µ) 6= 0.

The assertion on the integrality of the coefficients follows from the next
lemma.

Lemma 2.9. Let f be a polynomial with integer coefficients and let k be a
non-negative integer. Then the polynomial (1/k!)Dkf has integer coefficients.

Proof. If f(X) =
∑
n≥0 anX

n then

1
k!
Dkf =

∑
n≥0

an

(
n

k

)
Xn with

(
n

k

)
=

n!
k!(n− k)!

,

and the binomial coefficients are rational integers.

From Lemma 2.9 it follows that for any polynomial f ∈ Z[X] and for any
integers k and n with n ≥ k, the polynomial (1/k!)Dnf also belongs to Z[X].
This completes the proof of Proposition 2.8.

Exercise 2.10. Compare:
• the case m = 1 of Proposition 2.8,
• § 1.4.2
• § 1.4.3.
(and fix the misprints!)

In order to complete the proof of the transcendence of e, we shall substitute
1 to x in the relations

Q(x)eµx = Pµ(x) +Rµ(x)

and deduce simultaneous rational approximations (p1/q, p2/q, . . . , pm/q) to the
numbers e, e2, . . . , em. In order to use Lemma 2.2, we need to have independent
such approximations. This is a subtle point which Hermite did not find easy to
overcome: we quote from p. 77 of [4]:
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Mais une autre voie conduira à une démonstration plus rigoureuse

The following approach, due to K. Mahler, may be viewed as an extension of
the simple non-vanishing argument used in § 1.4.5 for the irrationality of π.

We fix integers n0, . . . , n1, all ≥ 1. For j = 0, 1, . . . ,m, we denote by
Qj , Pj1, . . . , Pjm the Hermite-Padé polynomials attached to the parameters

n0 − δj0, n1 − δj1, . . . , nm − δjm,

where δji is Kronecker’s symbol

δji =

{
1 if j = i,
0 if j 6= i.

These parameters are said to be contiguous to n0, n1, . . . , nm. They are the rows
of the matrix 

n0 − 1 n1 n2 · · · nm
n0 n1 − 1 n2 · · · nm
...

...
. . .

...
n0 n1 n2 · · · nm − 1

 .

Proposition 2.11. There exists a non-zero constant c such that the determi-
nant

∆(x) =

∣∣∣∣∣∣∣
Q0(x) P10(x) · · · Pm0(x)

...
...

. . .
...

Qm(x) P1m(x) · · · Pmm(x)

∣∣∣∣∣∣∣
is the monomial cxmN .

Proof. The matrix of degrees of the entries in the determinant defining ∆ is
N − n0 N − n1 − 1 · · · N − nm − 1

N − n0 − 1 N − n1 · · · N − nm − 1
...

...
. . .

...
N − n0 − 1 N − n1 − 1 · · · N − nm

 .

Therefore ∆ is a polynomial of exact degree N−n0+N−n1+· · ·+N−nm = mN ,
the leading coefficient arising from the diagonal. This leading coefficient is
c = c0c1 · · · cm, where c0 is the leading coefficient of Q0 and cµ is the leading
coefficient of Pµµ, 1 ≤ µ ≤ m.

It remains to check that ∆ has a multiplicity at least mN at the origin.
Linear combinations of the columns yield

∆(x) =

∣∣∣∣∣∣∣
Q0(x) P10(x)− exQ0(x) · · · Pm0(x)− emxQ0(x)

...
...

. . .
...

Qm(x) P1m(x)− exQm(x) · · · Pmm(x)− emxQm(x)

∣∣∣∣∣∣∣ .
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Each Pµj(x)− eµxQj(x), 1 ≤ µ ≤ m, 0 ≤ j ≤ m, has multiplicity at least N at
the origin, because for each contiguous triple (1 ≤ j ≤ m) we have

m∑
i=0

(ni − δji) = n0 + n1 + · · ·+ nm − 1 = N − 1.

Looking at the multiplicity at the origin, we can write

∆(x) =

∣∣∣∣∣∣∣
Q0(x) O(xN ) · · · O(xN )

...
...

. . .
...

Qm(x) O(xN ) · · · O(xN )

∣∣∣∣∣∣∣ .
This completes the proof of Proposition 2.11.

Now we fix a sufficiently large integer n and we use the previous results for
n0 = n1 = · · · = nm = n with N = (m + 1)n. We define, for 0 ≤ j ≤ m, the
integers qj , p1j , . . . , pnj by

(n− 1)!qj = Qj(1), (n− 1)!pµj = Pµj(1), (1 ≤ µ ≤ m).

Proposition 2.12. There exists a constant κ > 0 independent on n such that
for 1 ≤ µ ≤ m and 0 ≤ j ≤ m,

|qieµ − pµj | ≤
κn

n!
·

Further, the determinant ∣∣∣∣∣∣∣
q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not zero.

Proof. Recall Hermite’s formulae in Proposition 2.8:

Qj(x)eµx − Pµj(X) = xmneµx
∫ µ

0

e−xtfj(t)dt, (1 ≤ µ ≤ m, 0 ≤ j ≤ m),

where

fj(t) = (t− j)−1
(
t(t− 1) · · · (t−m)

)n
= (t− j)n−1

∏
1≤i≤m
i6=j

(t− i)n.

We substitute 1 to x and we divide by (n− 1)!:

qje
µ − pµj =

1
(n− 1)!

(
Qj(1)eµ − Pµj(1)

)
=

eµ

(n− 1)!

∫ µ

0

e−tfj(t)dt.

40



Now the integral is bounded from above by∫ µ

0

e−t|fj(t)|dt ≤ m sup
0≤t≤m

|fj(t)| ≤ m1+(m+1)n.

Finally the determinant in the statement of Proposition 2.12 is ∆(1)/n!m+1,
where ∆ is the determinant of Proposition 2.11. Hence it does not vanish since
∆(1) 6= 0.

Since κn/n! tends to 0 as n tends to infinity, we may apply the criterion
for linear independence Lemma 2.2. Therefore the numbers 1, e, e2, . . . , em are
linearly independent, and since this is true for all integers m, Hermite’s Theorem
on the transcendence of e follows.

Exercise 2.13. Using Hermite’s method as explained in § 2.2, prove that for
any non-zero r ∈ Q(i), the number er is transcendental.

Exercise 2.14. Let m be a positive integer and ε > 0 a real number. Show that
there exists q0 > 0 such that, for any q ≥ q0 and for any tuple (q, p1, . . . , pm) of
rational integers with q > q0,

max
1≤µ≤m

∣∣∣∣eµ − pµ
q

∣∣∣∣ ≥ 1
q1+(1/m)+ε

·

Is it possible to improve the exponent by replacing 1 + (1/m) with a smaller
number?
Hint. Consider Hermite’s proof of the transcendence of e (§ 1.4.3), especially
Proposition 2.12. First check (for instance using Cauchy’s formulae)

max
0≤j≤m

1
k!
|Dkfj(µ)| ≤ cn1 ,

where c1 is a positive real number which does not depend on n. Next, check that
the numbers pj and qµj satisfy

max{qj , |pµj |} ≤ (n!)mcm2

for 1 ≤ µ ≤ m and 0 ≤ j ≤ n, where again c2 > 0 does not depend on n.
Then repeat the proof of Hermite in § 2 with n satisfying

(n!)mc−2mn
3 ≤ q <

(
(n+ 1)!

)m
c
−2m(n+1)
3 ,

where c3 > 0 is a suitable constant independent on n. One does not need to
compute c1, c2 and c3 in terms of m, one only needs to show their existence so
that the proof yields the desired estimate.

41



References

[1] C. Brezinski – History of continued fractions and Padé approximants.
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logarithmes népériens des nombres commensurables ou des irrationnelles
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