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3 Auxiliary Functions in Transcendence Proofs

3.1 Explicit functions

3.1.1 Liouville

The first examples of transcendental numbers were produced by Liouville [50, 51]
in 1844. At that time, it was not yet known that transcendental numbers exist.
The idea of Liouville is to show that all algebraic real numbers α are badly
approximated by rational numbers. The simplest example is a rational number
α = a/b: for any rational number p/q 6= a/b, the inequality∣∣∣∣ab − p

q

∣∣∣∣ ≥ 1
bq

holds. For an irrational real number x, on the contrary, for any ε > 0 there
exists a rational number p/q such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1
q2
·

This yields an irrationality criterion (which is the basic tool for proving the
irrationality of specific numbers), and Liouville extended it into a transcendence
criterion.

The proof by Liouville involves the irreducible polynomial f ∈ Z[X] of the
given irrational algebraic number α. Since α is algebraic, there exists an irre-
ducible polynomial f ∈ Z[X] such that f(α) = 0. Let d be the degree of f . For
p/q ∈ Q the number qdf(p/q) is a non–zero rational integer, hence

|f(p/q)| ≥ 1
qd
·
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On the other hand, it is easily seen that there exists a constant c > 0, depending
only on α (and its irreducible polynomial f), such that

|f(p/q)| ≤ c(α)
∣∣∣∣α− p

q

∣∣∣∣ .
Therefore ∣∣∣∣α− p

q

∣∣∣∣ ≥ c′(α)
qd

with c′(α) = 1/c(α).
Let ξ be a real number such that, for any κ > 0, there exists a rational

number p/q with q ≥ 2 satisfying

0 <
∣∣∣∣ξ − p

q

∣∣∣∣ < 1
qκ
·

It follows from Liouville’s inequality that ξ is transcendental. Real numbers
satisfying this assumption are called Liouville’s numbers. The first examples
produced by Liouville in 1844 involved continued fractions [50], immediatly
after [51, 52] he considered fast convergent series.

We consider below (§ 3.3.1) extensions of Liouville’s result by Thue, Siegel,
Roth and Schmidt.

3.1.2 Continued fractions

Transcendental number theory is a generalization of the theory of irrational
numbers. Early methods to prove that given numbers are irrational involved
continued fractions. We refer to the papers by Brezinski [12, 13] for the history
of this very rich theory, which can be seen as the source of Padé Approximation
(§3.1.4), according to Hermite himself [38].

The proof by Lambert of the irrationality of the numbers er for r ∈ Q \ {0}
and π in 1767 [43] rests on the continued fraction expansions of the tangent
and hyperbolic tangent functions. Euler [23] studied similar continued fractions
expansion, and he initiated in [24] the question of the transcendence of 2

√
2,

which was to become the seventh problem of Hilbert in 1900 (see § 3.3.1).
In 1849 Hermite [37] wrote: 2

Tout ce que je puis, c’est de refaire ce qu’a déjà fait Lambert, seule-
ment d’une autre manière.

3.1.3 Hermite

During his course at the École Polytechnique in 1815, Fourier gave a simple
proof for the irrationality of e, which is now in many text books: the idea is to

2All I can do is to repeat what Lambert did, just in another way.
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truncate the Taylor expansion at the origin of the exponential function. In this
proof, the auxiliary function is the remainder

ez −
N∑
n=0

zn

n!
·

This proof has been revisited by Liouville in 1840 [49, 48] who succeeded to ex-
tend the argument and to prove that e2 is not a quadratic number. This result is
quoted by Hermite in his memoir [38]. Fourier’s argument produces rational ap-
proximations to the number e, which are sharp enough to prove the irrationality
e but not the transcendence. The denominators of these approximations are N !.
One idea of Hermite is to look for other rational approximations, and instead of
the auxiliary functions ez − A(z) for A ∈ Q[z], Hermite looks at more general
auxiliary functions R(z) = B(z)ez − A(z). He finds a polynomial B such that
the Taylor expansion at the origin of B(z)ez has a large gap: he calls A(z) the
polynomial part of the expansion before the gap, so that the auxiliary function
has a zero of high multiplicity at the origin. Hermite gives explicit formulae for
A and B, in particular these polynomials have integer coefficients (the question
is homogeneous, one may multiply by a denominator). Also he obtains upper
bounds for their coefficients. As an example, given r ∈ Q\{0} and ε > 0 one can
use this construction to show the existence of A, B and R with 0 < |R(r)| < ε.
Hence er 6∈ Q. This gives another proof of Lambert’s result on the irrationality
of er for r ∈ Q \ {0}, and this proof extends to the irrationality of π as well
[11, 64].

Hermite [38] goes much further, since he obtains the transcendence of e.
To achieve this goal, he considers simultaneous rational approximations to the
exponential function, in analogy with Diophantine approximation. The idea is
as follows. Let B0, B1, . . . , Bm be polynomials in Z[x]. For 1 ≤ k ≤ m, define

Rk(x) = B0(x)ekx −Bk(x).

Set bj = Bj(1), 0 ≤ j ≤ m and

R = a0 + a1R1(1) + · · ·+ amRm(1).

If 0 < |R| < 1, then a0 + a1e+ · · ·+ ame
m 6= 0. Hermite’s construction is more

general: he produces rational approximations to the functions 1, eα1x, . . . , eαmx,
when α1, . . . , αm are pairwise distinct complex numbers. Let n0, . . . , nm be
rational integers, all ≥ 0. Set N = n0 + · · ·+ nm. Hermite constructs explicitly
polynomials B0, B1, . . . , Bm with Bj of degree N − nj , such that each of the
functions

B0(z)eαkz −Bk(z), (1 ≤ k ≤ m)

has a zero at the origin of multiplicity at least N .
Such functions are now known as Padé approximations of the second kind

(or of type II).
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3.1.4 Padé approximation

H.E. Padé studied systematically the approximation of complex analytic func-
tions by rational functions.

There are two dual points of view, giving rise to the two types of Padé
Approximants [25].

Let f0, . . . , fm be complex functions which are analytic near the origin and
n0, . . . , nm be non–negative rational integers, all ≥ 0. Set N = n0 + · · ·+ nm.

Padé approximants of type II are polynomials B0, . . . , Bm with Bj having
degree ≤ N − nj , such that each of the functions

Bi(z)fj(z)−Bj(z)fi(z) (0 ≤ i < j ≤ m)

has a zero of multiplicity > N .
Padé approximants of the type I are polynomials P1, . . . , Pm with Pj of

degree ≤ nj such that the function

P1(z)f1(z) + · · ·+ Pm(z)fm(z)

has a zero at the origin of multiplicity at least N +m− 1.
These approximants were also studied by Ch. Hermite for the exponentials

functions in 1873 and 1893; later, in 1917, he gave further integral formulae for
the remainder. For transcendence purposes they have been used for the first time
in 1932 by K. Mahler [54, 55], who gave effective version of the transcendence
theorems by Hermite, Lindemann and Weierstraß.

In the theory of Diophantine approximation, there are transference theorems,
initially due to Khintchine (see for instance [15]). Similar transference properties
for Padé approximation have been considered by H. Jager [40, 41] and J. Coates
[17, 18, 19, 20, 21].

3.1.5 Hypergeometric methods

Explicit Padé approximations are known only for restricted classes of functions;
however, when they are available, they often produce very sharp Diophantine
estimates. Among the best candidates for having explicit Padé Approximations
are the hypergeometric functions. Thue [79] developed this idea in the early
20th Century, and was able to solve explicitly several classes of Diophantine
equations. There is a contrast between the measures of irrationality for instance
which can be obtained by hypergeometric methods and those produced by other
methods, like Baker’s method (§ 3.3.1): typically, hypergeometric methods pro-
duce constants with one or two digits (when the expected value is something
like 2), where Baker’s method produces a constant with several hundreds digits.
On the other hand, Baker’s method works in much more general situations, and
compared with the Thue–Siegel–Roth–Schmidt’s method (§ 3.3.1), it has the
great advantage of being explicit.

Among many contributors to this topic, we quote Thue, Baker, Chudnovskii,
Bennett, Voutier, Rhin, Viola, Rivoal. . . These works also involve sorts of aux-
iliary functions (integrals) depending on parameters which needs to be suitably
selected in order to produce sharp estimates.
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3.2 Interpolation methods

We discuss here another type of auxiliary function which occurred in works
related with a question of Weierstraß on the exceptional set of an entire function.
Recall that an entire function is a complex valued function which is analytic in
C.

3.2.1 Weierstraß question

The following question was raised by Weierstraß: Is–it true that a transcendental
entire function f takes usually transcendental values at algebraic arguments?

Denote by Q the field of algebraic numbers (algebraic closure of Q in C).
For an entire function f , we define the exceptional set Sf of f as the set of
algebraic numbers α such that f(α) is algebraic.:

Sf :=
{
α ∈ Q ; f(α) ∈ Q

}
.

For instance Hermite–Lindemann’s Theorem on the transcendence of logα and
eβ for α and β algebraic numbers is the fact that the exceptional set of the
function ez is {0}. Also the exceptional set of ez + e1+z is empty, by the
Theorem of Lindemann–Weierstrass. The exceptional set of functions like 2z or
eiπz is Q, as shown by the Theorem of Gel’fond and Schneider.

The exceptional set of a polynomial is Q if the polynomial has algebraic
coefficients, otherwise it is finite. Also any finite set of algebraic numbers is
the exceptional set of some polynomial: for s ≥ 1 the set {α1, . . . , αs} is the
exceptional set of he polynomial π(z − α1) · · · (z − αs) ∈ C[z] and also of the
transcendental entire function (z − α2) · · · (z − αs)ez−α1 .

The study of exceptional sets started in 1886 by a letter of Weierstrass to
Strauss, and later developed by Strauss, Stäckel, Faber – see [57]. Further
results are due to van der Poorten, Gramain, Surroca and others (see [36, 78]).

Among the results which were obtained, a typical one is the following: if E is
a countable subset of C and if F is a dense subset of C, there exist transcendental
entire functions f mapping E into F .

Also there are transcendental entire functions f such that Dkf(α) ∈ Q(α)
for all k ≥ 0 and all algebraic α.

The question of possible sets Sf has been solved in [39]: any set of algebraic
numbers is the exceptional set of some transcendental function. Also multiplicity
can be included, as follows: define the exceptional set with multiplicity of a
transcendental function f as the subset of (α, t) ∈ Q×N such that f (t)(α) ∈ Q.
Here f (t) stands for the t-th derivative of f .

Then any subset of Q × N is the exceptional set with multiplicities of some
transcendental function f .

More generally, the main result of [39] is the following:

Let E be a countable subset of C. For each pair (w, s) with w ∈ E,
and s ∈ Z≥0, let Fw,s be a dense subset of C. Then there exists a
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transcendental entire function f such that(
d

dz

)s
f(w) ∈ Fw,s

for all (w, s) ∈ E × Z≥0.

One may replace C by R: it means that one may take for the Fw,s dense
subsets of R, provided that one requires E to be a countable subset of R.

The proof is a construction of an interpolation series (see § 3.2.2) on a se-
quence where each w occurs infinitely often. The coefficients cm are selected
recursively in such a way that the resulting series f satisfies the required prop-
erties: the coefficients cm are selected sufficiently small (and nonzero), so that
the function f is entire and transcendental.

3.2.2 Integer valued entire functions

In 1914 Pólya initiated the study of integer valued entire functions; he proved
that 2z is the “smallest” entire transcendental function mapping the positive
integers to rational integers. The growth of an entire function f is measured by
the real valued function R 7→ |f |R, where

|f |R = sup
|z|=R

|f(z)|.

More precisely, if f(n) ∈ Z for all n ∈ Z≥0, then

lim sup
R→∞

2−R|f |R ≥ 1.

The method involves interpolation series: given an entire function f and a
sequence of complex numbers (αn)n≥0, define inductively a sequence (fn)n≥0 of
entire functions by f0 = f and, for n ≥ 0,

fn(z) = fn(αn+1) + (z − αn+1)fn+1(z).

Define, for k ≥ 0,

Pk(z) = (z − α1)(z − α2) · · · (z − αk).

One gets an expansion

f(z) = A(z) + Pn(z)fn(z),

where

A = a0 + a1P1 + · · ·+ an−1Pn−1 with an = fn(αn+1) (n ≥ 0).

For n → ∞, there are conditions for such an expansion to be convergent. See
for instance [34].
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There are analytic formulae for the coefficients an and the remainder fn as
follows. Let x, z, α1, . . . , αn be complex numbers with x 6∈ {z, α1, . . . , αn}.
Starting from the easy relation

1
x− z

=
1

x− α1
+
z − α1

x− α1
· 1
x− z

, (3.1)

one deduces by induction the next formula due to Hermite:

1
x− z

=
n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)
(x− α1)(x− α2) · · · (x− αn)

· 1
x− z

·

Let D be an open disc containing α1, . . . , αn, let C denote the circumference of
D, let D′ be an open disc containing the closure of D and let f be an analytic
function in D′. Define

aj =
1

2iπ

∫
C

f(x)dx
(x− α1)(x− α2) · · · (x− αj+1)

(0 ≤ j ≤ n− 1)

and

fn(z) =
1

2iπ

∫
C

f(x)dx
(x− α1)(x− α2) · · · (x− αn)(x− z)

·

By means of Cauchy’s residue Theorem, one deduces the so-called Newton in-
terpolation expansion: for any z ∈ D′,

f(z) =
n−1∑
j=0

aj(z − α1) · · · (z − αj) + (z − α1)(z − α2) · · · (z − αn)fn(z).

Pólya applies these formulae to prove that if f is an entire function which does
not grow too fast and satisfies f(n) ∈ Z for n ∈ Z≥0, then the coefficients an in
the expansion of f at the sequence (αn)n≥1 = {0, 1, 2, . . .} vanish for sufficiently
large n, hence f is a polynomial.

Further works on this topic, using a variety of methods, are due to G.H. Hardy,
G. Pólya, D. Sato, E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson, F. Gross,. . .
– and A.O. Gel’fond (see § 3.2.3).

3.2.3 Transcendence of eπ

Pólya’s study of the growth of transcendental entire functions taking integral
values at the positive rational integers was extended to the Gaussian integers by
A.O. Gel’fond in 1929. By means of Newton interpolation series at the points in
Z[i], he proved that an entire function f which is not a polynomial and satisfies
f(α) ∈ Z[i] for all α ∈ Z[i] satisfies

lim sup
R→∞

1
R2

log |f |R ≥ γ. (3.2)
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The example of the Weierstraß sigma function (which is the Hadamard
canonical product on Z[i]), shows that the constant γ cannot be larger than
π/2. In general for such problems, replacing integer values by zero values gives
some hint of what should be expected, at least for the order of growth (the ex-
ponent 2 of R2 in the left hand side of formula (3.2)), if not for the value of the
constant (the number γ in the righthand side of formula (3.2)) The initial value
reached by A.O. Gel’fond in 1929 was pretty small, namely γ = 10−45. It was im-
proved by several mathematicians including Fukasawa, Gruman, D.W. Masser,
until 1981 when F. Gramain [35] reached γ = π/(2e), which is best possible, as
shown by D.W. Masser one year earlier.

This work of Gel’fond’s [31] turns out to have fundamental consequences on
the development of transcendental number theory, due to its connexion with
the number eπ. Indeed, if the number

eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is rational, then the function eπz takes values in Q(i) when the argument z is in
Z[i]. By expanding the function eπz into an interpolation series at the Gaussian
integers, Gel’fond was able to prove the transcendence of eπ.

Further similar results where obtained just after, by means of variants of
Gel’fond’s argument (Kuzmin and others), but the next important step came
from Siegel’s introduction of further ideas in the theory (see § 3.3.1).

3.2.4 Lagrange interpolation

Newton’s interpolation (§ 3.2.2) of a function yields a series of polynomials,
namely linear combinations of products (z − α1) · · · (z − αn). Another type of
interpolation has been devised in [42] by R. Lagrange (1935,) who introduced
instead a series of rational fractions. Starting from the formula

1
x− z

=
α− β

(x− α)(x− β)
+
x− β
x− α

· z − α
z − β

· 1
x− z

in place of (3.1), iterating and integrating as in the proof of Newton’s interpo-
lation formula, one deduces an expansion

f(z) =
n−1∑
j=0

bj
(z − α1) · · · (z − αj)
(z − β1) · · · (z − βj)

+Rn(z).

This approach has been developed in 2006 [67] by T. Rivoal, who applies it to
the Hurwitz zeta function

ζ(s, z) =
∞∑
k=1

1
(k + z)s

(s ∈ C, <e(s) > 1, z ∈ C).

He expands ζ(2, z) as a Lagrange series in

z2(z − 1)2 · · · (z − n+ 1)2

(z + 1)2 · · · (z + n)2
·
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He shows that the coefficients of the expansion belong to Q+Qζ(3), and is able
to produce a new proof of Apéry’s Theorem on the irrationality of ζ(3).

Further, he gives a new proof of the irrationality of log 2 by expanding

∞∑
k=1

(−1)k

k + z
·

into a Lagrange interpolation series. Furthermore, he gives a new proof of the
irrationality of ζ(2) by expanding the function

∞∑
k=1

(
1
k
− 1
k + z

)
as a Hermite–Lagrange series in(

z(z − 1) · · · (z − n+ 1)
)2

(z + 1) · · · (z + n)
·

It is striking that these constructions yield exactly the same sequences of rational
approximations as the one produced by methods which look very much different
[27].

Further developments of the interpolation methods should be possible. For
instance Taylor series are the special case of Hermite’s formula with a single
point and multiplicities — they give rise to Padé approximants. Multiplicities
can also be introduced in R. Lagrange interpolation.

3.3 Auxiliary functions arising from the Dirichlet’s box
principle

3.3.1 Thue–Siegel lemma

The origin of the Thue–Siegel Lemma
The first improvement of Liouville’s inequality was reached by A. Thue in

1909 [79]. Instead of evaluating the values at p/q of a polynomial in a single
variable (viz. the irreducible polynomial of the given algebraic number α), he
considers two approximations p1/q1 and p2/q2 of α and evaluates at the point
(p1/q1, p2/q2) a polynomial P in two variables. This polynomial P ∈ Z[X,Y ] is
constructed (or rather is shown to exist) by means of Dirichlet’s box principle.
The required conditions are that P has zeroes of sufficiently large order at (0, 0)
and at (p1/q1, p2/q2). The order is weighted (index of P at a point).

One of the main difficulties that Thue had to overcome was to produce a
zero estimate, in order to find a non–zero value of some derivative.3

A crucial feature of Thue’s argument is that he needs to select a second
approximation p2/q2 depending on a first one p1/q1. Hence the method will

3As a matter of fact, Hermite also had some difficulty at this point of his proof [38], when
he needed to check that some determinant was not 0.
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not be effective unless a first very sharp approximation p1/q1 is required. In
general one reaches a sharp estimate for all p/q with at most one exception.
This approach has been worked out by J.W.S. Cassels, H. Davenport and oth-
ers to deduce upper bounds for the number of solutions of certain Diophantine
equations. However such statements are not effective, meaning that they do
not yield complete solutions of these equations. More recently E. Bombieri
has produced examples where a sufficiently sharp approximation exists for the
method to work in an effective way. Later he produced effective refinements to
Liouville’s inequality by extending the argument.

Further improvement of Thue’s method were obtained by C.L. Siegel in the
1920’s: he developed Thue’s idea and succeeded to improve his estimate. In
1929, Siegel [74], thanks to an improvement of his previous estimate, derived
his well known Theorem on integer points on curves.

The introduction of the fundamental memoir [74] of C.L. Siegel in 1929
stresses the importance of Thue’s idea involving the pigeonhole principle. In the
second part of this fundamental paper he extends the Lindemann–Weierstraß
theorem (on the algebraic independence of eβ1 , . . . , eβn when β1, . . . , βn are Q-
linearly independent algebraic numbers) from the usual exponential function to
a wide class of entire functions which he calls E-functions. He also introduces
the class of G-functions which has been extensively studied since 1929. See
also his monograph in 1949 [76], Shidlovskii’s book [73] for E–functions and
André’s book [2] for G–functions. Among interesting developments related to
G functions are the works of Th. Schneider, V.G. Sprindzuck and P. Dèbes
related to algebraic functions.

The work of Thue and Siegel on the rational approximation to algebraic
numbers was extended by many a mathematician including Schneider, Gel’fond,
Dyson, until K. F. Roth obtained in 1955 a result which is essentially optimal.
For his proof he introduces polynomials with many variables.

A powerful higher dimensional generalization of Thue–Siegel–Roth’s Theo-
rem, the Subspace Theorem, was obtained in 1970 by W.M. Schmidt [68, 8].
Again, the proof involves a construction of an auxiliary polynomial in several
variables, and one of the most difficult auxiliary result is a zero estimate (index
theorem).

Schmidt’s Subspace Theorem together with its variants (including effective
estimates for the exceptional subspaces as well as results involving several valu-
ations) have a large number of applications, to Diophantine approximation, to
transcendence and also to algebraic independence – se Bilu’s Bourbaki lecture
[6].
Siegel, Gel’fond, Schneider

In 1932, C.L. Siegel [75] obtained the first results on the transcendence of
elliptic integrals of the first kind, by means of a very ingenious argument which
involved an auxiliary function whose existence follows from the Dirichlet’s box
principle. This idea turned out to be crucial in the development of the theory.

The seventh of the 23 problems raised by D. Hilbert in 1900 is to prove
the transcendence of the numbers αβ for α and β algebraic (α 6= 0, α 6= 1,
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β 6∈ Q). In this statement, αβ stands for exp(β logα), where logα is any4

logarithm of α. The solution was achieved independently by A.O. Gel’fond [32]
and Th. Schneider [69] in 1934. Consequences, already quoted by Hilbert, are
the facts that 2

√
2 and eπ are transcendental.

The proofs of Gel’fond and Schneider are different, but both of them rest
on some auxiliary function which arises from Dirichlet’s box principle, following
Siegel’s contribution to the theory.

Let us argue by contradiction and assume that α, β and αβ are all algebraic,
with α 6= 0, α 6= 1, β 6∈ Q. Define K = Q(α, β, αβ). By assumption K is a
number field.

A.O. Gel’fond’s proof [32] rests on the fact that the two entire functions ez

and eβz are algebraically independent, they satisfy differential equations with
algebraic coefficients and they take simultaneously values in K for infinitely
many z, viz. z ∈ Z logα.

Th. Schneider’s proof [69] is different: he notices that the two entire functions
z and αz = ez logα are algebraically independent, they take simultaneously
values in K for infinitely many z, viz. z ∈ Z + Zβ. He makes no use of
differential equations, since the coefficient logα which occurs by derivating the
second function is not algebraic.

Schneider introduces a polynomial A(X,Y ) ∈ Z[X,Y ] in two variables and
considers the auxiliary function

F (z) = A(z, αz)

at the points m+nβ: these values γmn are in the number field K = Q(α, β, αβ).
Gel’fond also introduces also a polynomial A(X,Y ) ∈ Z[X,Y ] in two vari-

ables and considers the auxiliary function

F (z) = A(ez, eβz);

the values γmn at the points m logα of the derivatives F (n)(z) are again in the
number field K.

With these notations, the proofs are similar: the first step is the existence
of a non–zero polynomial A, of partial degrees bounded by L1 and L2, say,
such that the associated numbers γmn vanish for certain values of m and n,
say 0 ≤ m < M , 0 ≤ n < N . This amounts to show that a system of linear
homogeneous equations has a non trivial solution, and linear algebra suffices for
the existence. In this system of equations, the coefficients are algebraic numbers
in the number field K, the unknowns are the coefficients of the polynomial A,
and we are looking for rational integers. There are several options at this stage:
one may either require only coefficients in the ring of integers of K, in which
case the assumption L1L2 > MN suffices. An alternative is to require the
coefficients to be in Z, in which case one needs to assume L1L2 > MN [K : Q].

4The assumption α 6= 1 can be replaced by the weaker assumption logα 6= 0. That means
that one can take α = 1, provided that we select for logα a non–zero multiple of 2iπ The
result allowing α = 1 is not more general: it amounts to the same to take α = −1 and to
replace β by 2β.
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This approach is not quite sufficient for the next steps: one will need esti-
mates for the coefficients of A. This is where the Thue–Siegel’s Lemma occurs
into the picture: by assuming that the number of unknowns, namely L1L2, is
slightly larger than the number of equations, say twice as large, this lemma
produces a bound, for a non trivial solution of the homogeneous lineara system,
which is sharp enough for the rest of the proof.

The second step is an induction: one proves that γmn vanishes for further
values of (m,n). Since there are two parameters (m,n), there are several options
for this extrapolation, but anyway the idea is that if F has sufficiently many
zeroes, then F takes rather small values on some disc (Schwarz’Lemma), its
derivatives also (Cauchy’s inequalities). Further, an element of K which is
sufficiently small should vanish (by Liouville’s inequality, or a so-called size
inequality, or else the product formula – see [8]).

For the last step there are also several options: one may perform the induc-
tion with infinitely many steps and use an asymptotic zero estimate, or else stop
after a small number of steps and prove that some determinant does not vanish.
The second method is more difficult and this is the one Schneider succeeded to
complete, but his proof can be simplified by pursuing the induction forever.

There is a duality between the two methods. In Gel’fond ’s proof, replace L1

and L2 by S1 and S2, and replace M and N by T0 and T1; hence the numbers
which arise are (

d

dz

)t0 (
e(s1+s2β)z

)
z=t1 logα

while in Schneider’s proof replacing L1 and L2 by T1 and T2, and replacing M
and N by S0 and S1; the numbers which arise are(

zt0αt1z
)
z=s1+s2β

It is easily seen that they are the same, namely

(s1 + s2β)t0αt1s1(αβ)t1s2 .

See [89] and § 13.7 of [92].
Gel’fond–Schneider Theorem was extended in 1966 by A. Baker [3], who

proved the more general result that if logα1, . . . , logαn are Q–linearly inde-
pendent logarithms of algebraic numbers, then the numbers 1, logα1, . . . , logαn
are linearly independent over Q. The auxiliary function used by Baker may be
considered as a function of several variables or as a function of a single com-
plex variable, depending on the point of view (cf. [85]). The analytic estimate
(Schwarz lemma) involves a single variable, but the differential equations are
easier to see with several variables. See also § 3.3.1.

Indeed, assume that α1, . . . , αn, αn+1, β0, . . . , βn are algebraic numbers which
satisfy

β0 + β1 logα1 + βn logαn = logαn+1

for some speccified values of the logarithms of the αj . Then the n+ 2 functions
of n variables

z0, e
z1 , . . . , ezn , eβ0z0+β1z1+···+βnzn
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satisfy differential equations with algebraic coefficients and take algebraic values
at the integral multiples of the point

(1, logα1, . . . , logαn) ∈ Cn.

This situation is therefore an extension of the setup in Gel’fond’s solution of
Hilbert’s seventh problem, and Baker’s method can be viewed as an exten-
sion of Gel’fond’s method. The fact that all points are on a complex line
C(1, logα1, . . . , logαn) ⊂ Cn means that Baker’s method requires only tools
from the theory of one complex variable.

On the opposite, the corresponding extension of Schneider’s method requires
several variables: under the same assumptions, consider the functions

z0, z1, . . . , zn, e
z0αz11 · · ·αznn

and the points in the subgroup of Cn+1 generated by(
{0} × Zn

)
+ Z(β0, β1, . . . , βn).

Since Baker’s Theorem includes the transcendence of e, there is no hope to prove
it without introducing the differential equation of the exponential function - in
order to use the fact that the last function involves e and not another number in
the factor ez0 , we also take derivatives with respect to z0. For this method, we
refer to [92]. We stress also the fact that this approach requires zero estimates
on linear algebraic groups, which are discussed in the course by D. Roy.
Schneider–Lang Criterion

In 1949, [71] Th. Schneider produced a very general statement on algebraic
values of analytic functions which can be used as a princip for proofs of tran-
scendence. This statement includes a large number of previously know results
like the Hermite–Lindemann and Gel’fond–Schneider Theorems. It also con-
tains the so called Six exponentials Theorems [44, 92, 88, 92] (which was not
explicitly in the literature then). To a certain extent, such statements provide
partial answers to Weierstraß question (see § 3.2.1) that exceptional sets of
a transcendental function are not too large; here one puts restrictions on the
functions, while in Pólya’s work concerning integer valued entire functions, the
assumptions were mainly on the points and the values (the mere condition on
the functions were that they have finite order of growth).

A few years latter, in his book [72] on transcendental numbers, he gave
variants of this statement, which lose some generality but gain in simplicity.

Further simplifications were introduced by S. Lang in 1964 and the statement
which is reproduced in his book on transcendental numbers [44] is the so-called
Criterion of Schneider–Lang (see also the appendix of [45] as well as [85]).

Theorem 3.3. Let K be a number field and f1, . . . , fd be entire functions in C.
Assume that f1 and f2 are algebraically independent over K and of finite order
of growth5. Assume also that they satisfy differential equations: for 1 ≤ i ≤ d,

5This means that the supremum of [f(z)| on a disc of radius r does not grow faster than
the exponential of a polynomial in r.
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assume f ′i is a polynomial in f1, . . . , fd with coefficients in K. Then the set S
of w ∈ C such that all fi(w) are in K is finite6.

This statement includes the Hermite–Lindemann Theorem on the transcen-
dence of eα: take

K = Q(α, eα), f1(z) = z, f2(z) = ez, S = {mα ; m ∈ Z},

as well as the Gel’fond –Schneider Theorem on the transcendence of αβ following
Gel’fond’s method: take

K = Q(α, β, αβ), f1(z) = ez, f2(z) = eβz, S = {m logα ; m ∈ Z}.

This criterion does not include Schneider’s method (and therefore does not
include the Six Exponentials Theorem), but there are different criteria (not
involving differential equations) for that (see for instance [44, 85, 92]).

Here is the idea of the proof of the Schneider–Lang Criterion. We argue by
contradiction: assume f1 and f2 take simultaneously their values in the number
field K for different values w1, . . . , wS ∈ C. We want to show that there exists a
non–zero polynomial P ∈ Z[X1, X2] such that the function P (f1, f2) is the zero
function: this will contradict the assumption that f1 and f2 are algebraically
independent.

The first step is to show that there exists a non–zero polynomial P ∈
Z[X1, X2] such that F = P (f1, f2) has a zero of high multiplicity at each ws,
(1 ≤ s ≤ S): we consider the system of ST homogeneous linear equations(

d

dz

)t
F (ws) = 0 for 0 ≤ t < T, 1 ≤ s ≤ S,

where the unknowns are the coefficients of P . If we require that the partial
degrees of P are bounded by L1 and L2, the number of unknowns is L1L2.
Since we require that P has coefficients in K we need to introduce the degree
[K : Q] of the number field K. As soon L1L2 > TS[K : Q], there is a non–
trivial solution. Further, the Thue–Siegel Lemma produces an upper bound for
the coefficients of P .

The next step is an induction: the goal is to prove that F = 0. One already
knows (

d

dz

)t
F (ws) = 0 for 1 ≤ s ≤ S and 0 ≤ t < T.

By induction on T ′ ≥ T , one proves(
d

dz

)t
F (ws) = 0 for 1 ≤ s ≤ S and 0 ≤ t < T ′.

6For simplicity, we consider only entire functions; the results extends to meromorphic
functions, and this is important for applications, to elliptic functions for instance. To deal
with functions which are analytic in a disc only is also an interesting issue.
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At the end of the induction one deduces F = 0, which is the desired contradiction
with the algebraic independence of f1 and f2.

As we have seen earlier, such a sketch of proof is typical of the Gel’fond–
Schneider’s method.

The main analytic argument is Schwarz’ Lemma for functions of one variable,
which produces an upper bound for the modulus of an analytic function having
many zeroes. One also require Cauchy’s inequalities in order to bound the
modulus of the derivatives of the auxiliary function.

In this context, a well known open problem raised by Th. Schneider (this
is the second in the list of his 8 problems from his book [72]) is to prove the
transcendence of j(τ) where j is the modular function defined in the upper half
plane =m(z) > 0 and τ is an algebraic point in this upper half plane which is
not imaginary quadratic. Schneider himself proved the transcendence of j(τ),
but his proof is not direct, it rests on the use of elliptic functions (one may apply
the Schneider–Lang Criterion for meromorphic functions). So the question is to
prove the same result by using modular functions. In spite of recent progress
on transcendence and modular functions (see § 3.3.1), this problem is still open.
The difficulty lies in the analytic estimate and the absence of a suitable Schwarz’
Lemma - the best results on this topic are due to I.Wakabayashi [80, 81, 82, 83,
84].
Higher dimension: several variables

In 1941, Th. Schneider [70] obtained an outstanding result on the values of
Euler’s Gamma and Beta function: for any rational numbers a and b such that
a, b and a+ b are not integers, the number B(a, b) is transcendental. His proof
involves a generalization of Gel’fond’s method to several variables and yields
a general transcendence criterion for functions satisfying differential equations
with algebraic coefficients and taking algebraic values at the points of a large
Cartesian product, and he applies this criterion to the theta functions associated
with the Jacobian of the Fermat curves. His transcendence results apply more
generally to yield transcendence results on periods of abelian varieties.

After a suggestion of P. Cartier, S. Lang extended the classical results on
the transcendence of the values of the classical exponential function to the ex-
ponential function of commutative algebraic groups. During this process, he
generalized the one dimensional Schneider–Lang criterion to several variables.
In this higher dimensional criterion, the conclusion is that the set of exceptional
values in Cn cannot contain a large Cartesian product. This was the general-
ization to several variables of the fact that the exceptional set could not be too
large.

It is interesting from an historical point of view to notice that Bertrand and
Masser [5] succeeded in 1980 to deduce Baker’s Theorem form the Schneider–
Lang Criterion for functions of several variables with Cartesian products. They
could also prove the elliptic analog of Baker’s result and obtain the linear inde-
pendence, over the field of algebraic numbers, of elliptic logarithms of algebraic
points - at that time such a result was available only in the case of complex
multiplication (by previous work of D.W. Masser). See also [92].
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According to [44], Nagata suggested that the conclusion could be that this
exceptional set is contained in an algebraic hypersurface, the bound for the num-
ber of points being replaced by a bound for the degree of the hypersurface. This
program was completed successfully by E. Bombieri in 1970 [7]. The solution
involves different tools, including L2–estimates by L. Hörmander for functions
of several variables. One main difficulty that Bombieri had to overcome was
to generalize Schwarz Lemma to several variables, and his solution involves an
earlier work by him and S. Lang [9], where they use Lelong’s theory of the mass
of zeroes of analytic functions in a ball. Chapter 7 of [88] is devoted to this
question.

Similar auxiliary functions occur in the works on algebraic independence by
A.O. Gel’fond [33], G.V. Chudnovskii and others. A reference is [65].
Modular functions

The solution by the team of St Etienne [4] of the problems raised by Mahler
and Manin on the transcendence of the values of the modular function J(q) for
algebraic values of q in the unit disc7 involves an interesting auxiliary function:
the general scheme of proof is the one of Gel’fond and Schneider, but there are
only two points, 0 and q. The auxiliary function F is a polynomial in z and
J(z), the construction by means of the Thue–Siegel Lemma requires that F
vanishes at the point 0 with high multiplicity.

A similar construction was performed by Yu. V. Nesterenko in 1996 [63]
when he proved the algebraic independence of π, eπ and Γ(1/4): his main result
is that for any q in the open set 0 < |q| < 1, the transcendence degree of the
field

Q
(
q, P (q), Q(q), R(q)

)
is at least 3. Here, P , Q, R are the classical Ramanujan functions, which are
sometimes denoted as E2, E4 and E6 (Eisenstein series). The auxiliary function
F is a polynomial in these four functions q, E2(q), E4(q), E6(q).

3.3.2 Universal auxiliary functions

In Gel’fond–Schneider method, the auxiliary function is constructed by means of
the Thue–Siegel’s Lemma, and the requirement is that it has many zeroes (mul-
tiplicity are there in Gel’fond’s method, not in Schneider’s method). There is an
alternative construction which was initiated in a joint work with M. Mignotte in
1974 [62], in connexion with quantitative statements related with transcendence
criteria like the Schneider–Lang criterion. This approach turned out to be spe-
cially efficient in another context, namely in extending Schneider’s method to
several variables [86]. The idea is to require that the auxiliary function F has
small Taylor coefficients at the origin; it follows that its modulus on some discs
will be small, hence its values (included derivatives if one wishes) at points in
such a disc will also be small. From Liouville’s estimate one deduces that F has
a lot of zeroes, more than would be reached by the Dirichlet’s box principle. At
this stage there are several options; the easy case is when a sharp zero estimate

7The connexion between J(q) and j(τ) is j(τ) = J(e2iπτ ).
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is known: we immediately reach the conclusion without any further extrapola-
tion: in particular there is no need of Schwarz Lemmas in several variables. This
is what happend in [86] for exponential functions in several variables, the zero
estimate being due to D.W. Masser [58]. This result, dealing with products of
multiplicative groups (tori), can be extended to commutative algebraic groups
[87], thanks to the zero estimate of Masser and Wüstholz [59, 60].

This construction of universal auxiliary functions is developed in [89, 90].
In these paper a dual construction is also performed, where auxiliary analytic
functionals are constructed, and the duality is explained by means of the Fourier-
Borel transform (see § 13.7 of [92]). In the special case of exponential polyno-
mials, it reduces to the relation

Dσ
w

(
zτetz

)
(η) = Dτ

v

(
ζσesζ

)
(ξ)

(see [92]), which is a generalization in several variables of the formula(
d

dz

)σ (
zτetz

)
(η) =

(
d

dz

)τ
(zσesz) (ξ)

for t, s, ξ, η in C and σ, τ non–negative integers. This is how the Fourier–Borel
transform provides a duality between the methods of Schneider and Gel’fond.

3.3.3 Mahler’s Method

In 1929, K. Mahler [53] developed an original method to prove the transcen-
dence of values of functions satisfying certain types of functional equations.
This method was somehow forgotten, for instance it is not quoted in the 440
references of the survey paper [26] by N.I. Fel’dman, and A.B. Šidlovskĭı. After
the publication of the paper [56] by Mahler, several mathematicians extended
the method (see the Lecture Notes [66] by K. Nishioka for further references).
The construction of the auxiliary function is similar to what is done in Gel’fond–
Schneider’s method, with a main difference: in place of the Thue–Siegel Lemma,
only linear algebra is required. No estimate for the coefficients of the auxiliary
polynomial are needed for the rest of the proof. The numbers whose transcen-
dence is proved by this method are not Liouville numbers, but they are quite
well approximated by rational numbers.

3.4 Interpolation determinants

An interesting development of the saga of auxiliary functions took place in
1991, thanks to the introduction of interpolation determinants by M. Laurent.
Its origin goes back to earlier work on a question raised by Lehmer which we
first introduce.
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3.4.1 Lehmer’s Problem

Let θ be a non–zero algebraic integer of degree d. Mahler’s measure of θ is

M(θ) =
d∏
i=1

max(1, |θi|) = exp
(∫ 1

0

log |f(e2iπt|dt
)
,

where θ = θ1 and θ2, · · · , θd are the conjugates of θ and f the monic irreducible
polynomial of θ in Z[X].

From the definition one deduces M(θ) ≥ 1. According to a well-known and
easy result of Kronecker, M(θ) = 1 if and only if θ is a root of unity.

D.H. Lehmer [47] asked whether there is a constant c > 1 such that M(θ) < c
implies that θ is a root of unity.

Among many tools which have been introduced to answer this question,
we only quote some of them which are relevant for our concern. In 1977,
M. Mignotte [61] used ordinary Vandermonde determinants to study algebraic
numbers whose conjugates are close to the unit circle. In 1978, C.L. Stewart
[77] sharpend earlier results by Blanksby and Montgomery,. . . by introducing
an auxiliary function (whose existence follows from the Thue–Siegel’s Lemma)
and using an extrapolation similar to what is done in the Gel’fond–Schneider
method.

Refined estimates were obtained by E. Dobrowolski in 1979 [22] using Stew-
art’s approach together with congruences modulo p. He achieved the best un-
conditional result known so far in this direction (apart from some imprrovements
on the numerical value for c: There is a constant c such that, for θ a non–zero
algebraic integer of degree d,

M(θ) < 1 + c(log log d/ log d)3

implies that θ is a root of unity.
In 1982, D. Cantor and E.G. Straus [14] revisited this method of Stewart and

Dobrowolski by replacing the auxiliary function by a generalised Vandermonde
determinant. The sketch of proof is the following: in Dobrowolski’s proof, there
is a zero lemma which can be translated into a statement that some matrix
has a maximal rank; therefore some determinant is not zero. This determinant
is bounded from above by means of Hadamard’s inequality; the upper bound
depends on M(θ). Also this determinant is shown to be big, because it has
many factors of the form

∏
i,j |θ

p
i − θj |k, for many primes p. The lower bounds

makes use of a Lemma due to Dobrowolski: For θ not a root of unity,∏
i,j

|θpi − θj | ≥ p
d

for any prime p.
One may also prove the lower bound by means of a p–adic Schwarz Lemma:

a function (here merely a polynomial) with many zeroes has a small (p–adic)
absolute value. In this case the method is similar to the earlier one, with analytic

60



estimates on one side and arithmetic ones (Liouville type, or product formula)
on the other.

Dobrowolski’s result has been extended to several variables by F. Amoroso
and S. David in [1] – the higher dimensional version is much more involved.

3.4.2 Laurent’s interpolation determinants

In 1991, M. Laurent [46] discovered that one may get rid of the Dirichlet’s box
principle in Gel’fond–Schneider’s method by means of his interpolation determi-
nants. In the classical approach, there is a zero estimate (or vanishing estimate,
also called multiplicity estimate when derivatives are there) which shows that
some auxiliary function cannot have too many zeroes. This statement can be
converted into the non–vanishing of some determinant. Laurent works directly
with this determinant: a Liouville-type estimate produces a lower bound, the
remarkable fact is that analytic estimates like Schwarz Lemma produce sharp
upper bounds. Again the analytic estimate depend only in one variable (even
if the determinant is a value of a function with many variables, it suffices to
restrict this function to a complex line). Therefore this approach is specially
efficient when dealing with functions of several variables, where Schwarz Lemma
are lacking.

Interpolation determinants are easy to use when a sharp zero estimate is
available. If not, it is more tricky to prove the analytic estimate. However
it is possible to perform extrapolation with interpolation determinants: see
[91]. Also proving algebraic independence results by means of interpolation
determinants requires more work which we do not discuss here – see [65].

.

3.5 Bost slope inequalities, Arakelov’s Theory

Interpolation determinants require choices of bases. A further step is due to
J-B. Bost in 1994, [10] where bases are no more required: the method is more
intrinsic. This approach rests on Arakelov’s Theory, which is used to produce
slope inequalities. This new approach is specially interesting for results on
abelian varieties obtained by transcendence methods, the example developed
by Bost being the work of D. Masser and G. Wustholz on p eriods and isogenies
of abelian varieties over number fields. Further estimates related to Baker’s
method and measures of linear independence of logarithms of algebraic points
on abelian varieties have been achieved by E. Gaudron [28, 29, 30] using Bost
approach. For an introduction to Bost method, we refer to the Bourbaki lecture
by A. Chambert-Loir [16] in 2002.

.
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Sci. Paris 18 (1844), p. 910–911.

[52] — , “Sur des classes très étendues de quantités dont la valeur n’est ni
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Funktionalgleichungen.”, Math. Ann. 101 (1929), p. 342–366.

[54] — , “Zur Approximation der Exponentialfunktion und des Logarithmus.
I.”, J. für Math. 166 (1931), p. 118–136.

[55] — , “Zur Approximation der Exponentialfunktion und des Logarithmus.
II.”, J. für Math. 166 (1932), p. 137–150.

[56] — , “Remarks on a paper by W. Schwarz”, J. Number Theory 1 (1969),
p. 512–521.

[57] — , Lectures on transcendental numbers, Springer-Verlag, Berlin, 1976,
Lecture Notes in Mathematics, Vol. 546.

[58] D. W. Masser – “On polynomials and exponential polynomials in several
complex variables”, Invent. Math. 63 (1981), no. 1, p. 81–95.
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[61] M. Mignotte – “Entiers algébriques dont les conjugués sont proches du
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