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1. Diophantine Equations

Hilbert’s tenth problem:

Given a Diophantine equation with any number
of unknown quantities and with integral numeri-
cal coefficients: To devise a process according to
which it can be determined by a finite number of
operations whether the equation is solvable in ra-
tional integers.

Open problem:

To answer Hilbert’s tenth problem for the special case
of plane curve, which means to give an algorithm to
decide whether a given Diophantine equation

f(x, y) = 0

has a solution (in Z, and the same problem for Q).

Problem. Let f ∈ Z[X,Y ] be a polynomial such that
the equation f(x, y) = 0 has only finitely many so-
lutions (x, y) ∈ Z × Z. Give an upper bound for
max{|x|, |y|} when (x, y) is such a solution, in terms
of the degree of f and of the maximal absolute value
of the coefficients of f .
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Lettre adressée à l’Éditeur par Monsieur E. Catalan,
Répétiteur à l’école polytechnique de Paris 〉〉, published
in Crelle Journal (1844):

〈〈Je vous prie, Monsieur, de bien vouloir énoncer,

dans votre recueil, le théorème suivant, que je crois vrai,

bien que je n’aie pas encore réussi à le démontrer complè-

tement: d’autres seront peut-être plus heureux:

Deux nombres entiers consécutifs, autres que 8 et

9, ne peuvent être des puissances exactes; autrement dit:

l’équation xm − yn = 1, dans laquelle les inconnues sont

entières et positives, n’admet qu’une seule solution. 〉〉

Perfect powers: 1, 4, 8, 9, 16, 25, 27, 32, 36,
49, 64, 81, 100, 121, 125, 128, 144, 169, . . .

Conjecture (Catalan). The equation

xp − yq = 1,

where the unknowns x, y, p and q are integers all ≥ 2,
has only one solution (x, y, p, q) = (3, 2, 2, 3).

R. Tijdeman (1976): only finitely many solutions.

Conjecture (Pillai). Let k be a positive integer. The
equation

xp − yq = k,

where the unknowns x, y, p and q are integers all ≥ 2,
has only finitely many solutions (x, y, p, q).
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The Diophantine equation

xp + yq = zr

has 10 known solutions (x, y, z, p, q, r) in positive inte-
gers for which

1

p
+

1

q
+

1

r
< 1

and such that x, y, z are relatively prime:

1 + 23 = 32 25 + 72 = 34 73 + 132 = 29

27 + 173 = 712 35 + 114 = 1222

177 + 762713 = 210639282

14143 + 22134592 = 657

92623 + 153122832 = 1137

438 + 962223 = 300429072

338 + 15490342 = 156133.

R. Tijdeman and D. Zagier Conjecture : there is no
solution with the further restriction that each of p, q
and r is ≥ 3.
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Markoff Spectrum x2 + y2 + z2 = 3xyz

Sequence:

1, 2, 5, 13, 29, 34, 89, 169, 194,

233, 433, 610, 985, 1325, 1597, . . .

Conjecture. Fix a positive integer m for which the equa-
tion

m2 + m2
1 + m2

2 = 3mm1m2

has a solution in positive integers (m1,m2) with

0 < m1 ≤ m2 ≤ m.

Then such a pair (m1,m2) is unique.

True for m ≤ 10105.

Connection with Diophantine Approximation:

µm =
√

9m2 − 4/m :

Sequence:
√

5,
√

8,
√

221/5,
√

1517/13, . . .

lim sup
q→∞

∣∣q(qαm − p)
∣∣ =

m√
9m2 − 4

·
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2. Diophantine Approximation

abc Conjecture

(D.W. Masser and J. Œsterlé, 1987).

For a positive integer n, denote by

R(n) =
∏

p|n
p

the radical or squarefree part of n.

Conjecture (abc Conjecture). For each ε > 0 there
exists a positive number κ(ε) which has the following
property: if a, b and c are three positive rational inte-
gers which are relatively prime and satisfy a + b = c,
then

c < κ(ε)R(abc)1+ε.
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Triples (a, b, c) with 0 < a < b < c, a + b = c and
gcd(a, b) = 1.

− ◦ −

λ(a, b, c) =
log c

logR(abc)
·

(?) Finitely many (a, b, c) with λ(a, b, c) > 1 + ε.

Largest known value for λ (É. Reyssat):

2 + 310 · 109 = 235, λ = 1.629912 . . .

140 known values of λ(a, b, c) which are ≥ 1.4.

− ◦ −

%(a, b, c) =
log abc

logR(abc)
·

(?) Finitely many (a, b, c) with %(a, b, c) > 3 + ε.

Largest known value for % (A. Nitaj):

13 · 196 + 230 · 5 = 313 · 112 · 31, % = 4.41901 . . .

46 known triples (a, b, c) with 0 < a < b < c and
gcd(a, b) = 1 satisfying %(a, b, c) > 4.
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Conjecture (Erdős-Woods). There exists a positive in-
teger k such that, for m and n positive integers, the
conditions

R(m+ i) = R(n + i) (i = 0, . . . , k − 1)

imply m = n.

Remark: k ≥ 3:

R(75) = 15 = R(1215), R(76) = 2 · 19 = R(1216).

Also m = 2h − 2, n = 2hm, n + 1 = (m+ 1)2

R(m) = R(n) and R(m+ 1) = R(n + 1)

Arithmetic progressions (T.N. Shorey):
(?) Does there exist a positive integer k such that,

for any m, n, d and d′ positive integers satisfying
gcd(m, d) = gcd(n, d′) = 1, the conditions

R(m+ id) = R(n + id′) (i = 0, . . . , k − 1)

imply m = n and d = d′?

Remark: k ≥ 4:

R(2) = R(4) = R(8),

R(2 + 79) = R(4 + 23) = R(9),

R(2 + 2 · 79) = R(4 + 2 · 23) = R(10).



          

10

Theorem (Thue-Siegel-Roth). For any ε > 0 and any
irrational algebraic number α, there is a positive con-
stant C(α, ε) > 0 such that, for any rational number
p/q, ∣∣∣∣α−

p

q

∣∣∣∣ >
C(ε)

q2+ε
·

Consequence of abc (E. Bombieri, M. Langevin):

∣∣∣∣α−
p

q

∣∣∣∣ >
C(ε)

R(pq)qε
·

Main Open Problem: Effectivity

(?) Does there exist an algebraic number of degree
≥ 3 with bounded partial quotients?

(?) Does there exist one with unbounded partial quo-
tients?
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Let ψ(q) be a continuous positive real valued func-
tion. Assume that the function qψ(q) is nonincreasing.

Conjecture. Let θ be real algebraic number of degree
at least 3. Then inequality

∣∣∣∣θ −
p

q

∣∣∣∣ >
ψ(q)

q
·

has infinitely many solutions in integers p and q with
q > 0 if and only if the integral

∫ ∞

1

ψ(x)dx

diverges.

Schmidt’s Subspace Theorem
Consequence: finiteness of solutions of the equation

x1 + · · ·+ xn = 1

where the unknowns are integers (or S-integers) in a
number field and no proper subsum vanishes.

Open problem: effective version for n ≥ 3?
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Waring’s problem (1770):
“Every integer is a cube or the sum of

two, three, . . . nine cubes; every integer is
also the square of a square, or the sum of
up to nineteen such; and so forth. Similar
laws may be affirmed for the correspondingly
defined numbers of quantities of any like de-
gree.”

n = xk1 + · · ·+ xkg(k).

I(k) = 2k + [(3/2)k]− 2.

Easy to check g(k) ≥ I(k):

3k = 2kq + r with 0 < r < 2k, q = [(3/2)k]

N = 2kq − 1 = (q − 1)2k + (2k − 1)1k

I(k) = (q − 1) + (2k − 1)

Known: g(k) = I(k) for 2 ≤ k ≤ 471 600 000.

(?)

∥∥∥∥∥

(
3

2

)k∥∥∥∥∥ ≥ 2 ·
(

3

4

)k
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For k ≥ 2 let g(k) denote the smallest positive integer g such that
any integer is the sum of g elements of the form xk with x ≥ 0.

k = 2 3 4 5 6 7

g(k) = 4 9 19 37 73 143

J.L. Lagrange A. Wieferich
R. Balasubramanian
J-M. Deshouillers

F. Dress
J. Chen S.S. Pillai L.E. Dickson

1770 1909 1986 1964 1940 1936



          

14

3. Transcendence

Irrationality Problems:

Euler’s constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)

= 0.5772157 . . . ,

Catalan’s constant

G =
∑

n≥0

(−1)n

(2n + 1)2

=
π

4

∫ 1

0
2F1

(
1/2 , 1/2

1

∣∣∣t
)

dt√
4t

= 0.915965594 . . . ,

Γ(1/5) =

∫ ∞

0

e−tt−4/5dt = 4.59084371 . . .

e + π = 5.8598744 . . . , eγ = 1.781072 . . .

∑

n≥1

σk(n)

n!
(k = 1, 2) where σk(n) =

∑

d|n
dk
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Conjecture (Schanuel). Let x1, . . . , xn be Q-linearly
independent complex numbers. Then the transcen-
dence degree over Q of the field

Q
(
x1, . . . , xn, e

x1 , . . . , exn
)

is at least n.

Conjecture (Algebraic Independence of Logarithms
of Algebraic Numbers). Let λ1, . . . , λn be Q-linearly
independent complex numbers. Assume that the num-
bers eλ1 , . . . , eλn are algebraic. Then the numbers
λ1, . . . , λn are algebraically independent.

D. Roy: L =
{

logα ; α ∈ Q×
}

(?) For any algebraic subvariety V of Cn defined over
the field Q of algebraic numbers, the set V ∩ Ln
is the union of the sets E ∩ Ln, where E ranges
over the set of vector subspaces of Cn which are
contained in V .

Conjecture (Gel’fond-Schneider). Let β be an irra-
tional algebraic number of degree d and α a nonzero
algebraic number. Let logα be a nonzero logarithm of
α. Then the d numbers

logα, αβ , αβ
2

, . . . , αβ
d−1

are algebraically independent.
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Elimination Theory

Hilbert Nulstellensatz.

Conjecture (Blum, Cucker, Shub and Smale). Given
an absolute constant c and polynomials P1, . . . , Pm
with a total of N coefficients and no common complex
zeros, there is no program to find, in at most N c step,
the coefficients of polynomials Ai satisfying Bézout’s
relation

A1P1 + · · ·+ AmPm = 1.

Complexity in theoretical computer science and Dio-
phantine approximation (W.D. Brownawell)

∣∣∣∣x−
p

q

∣∣∣∣ > ψ(p/q).
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Polyzeta (or Multiple Zeta) Values

L. Euler, K. Nielsen, D. Zagier, A.B. Goncharov,
M. Kontsevich, M. Petitot, Minh Hoang Ngoc,
P. Cartier,. . .

ζ(s) =
∑

n1>···>nk≥1

n−s11 · · ·n−skk ,

s = (s1, . . . , sk) ∈ Zk with

s1 ≥ 2, s2 ≥ 1, . . . , sk ≥ 1.

Let Zp denote the Q-vector subspace spanned by
the real numbers ζ(s) with s1 + · · · + sk = p. Set
Z0 = Q and Z1 = {0}. The Q-subspace Z spanned by
all Zp, p ≥ 0, is a subalgebra of R

Conjecture (A.B. Goncharov). As a Q-algebra, Z is the
direct sum of Zp for p ≥ 0.

Conjecture (D. Zagier). For p ≥ 3 the dimension dp of
the Q-vector space Zp is given by

dp = dp−2 + dp−3

with d0 = 1, d1 = 0, d2 = 1.
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Conjecture. The numbers

π, ζ(3), ζ(5), . . . , ζ(2n + 1), . . .

are algebraically independent.

Known:

• (Euler– Lindemann) ζ(2n) is transcendental for
n ≥ 1.

• (Apéry, 1978) ζ(3) is irrational.

• (T. Rivoal, CRAS 2000; K. Ball & T. Rivoal, to
appear). The Q-vector space spanned by the n+1
numbers 1, ζ(3), ζ(5), . . . , ζ(2n+1) has dimension

≥ 1− ε
1 + log 2

log n

for n ≥ n0(ε).

For instance infinitely many of these numbers ζ(2n+1)
(n ≥ 1) are irrational.
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Gamma Function
Set

G(z) =
1√
2π

Γ(z).

For N > 0 and x ∈ C such that Nx 6≡ 0 (mod Z),

N−1∏

i=0

G

(
x +

i

N

)
= N (1/2)−NxG(Nx).

Then
G : (Q/Z) \ {0} → C×/Q×

is an odd distribution on (Q/Z) \ {0}:
N−1∏

i=0

G

(
x +

i

N

)
= G(Nx) for x ∈ (Q/Z) \ {0}

and
G(−x) = G(x)−1.

Conjecture (Rohrlich). G is the universal odd distri-
bution with values in groups where multiplication by 2
is invertible.

Conjecture. Three at least of the four numbers

π, Γ(1/5), Γ(2/5), eπ
√

5

are algebraically independent.
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Algebraic Independence and Modular Forms

P (q) = 1− 24
∞∑

n=1

nqn

1− qn
,

Q(q) = 1 + 240
∞∑

n=1

n3qn

1− qn
,

R(q) = 1− 504
∞∑

n=1

n5qn

1− qn ·

Conjecture (Nesterenko). Let τ ∈ C have positive
imaginary part. Assume that τ is not quadratic. Set
q = e2iπτ . Then 4 at least of the 5 numbers

Q
(
τ, q, P (q), Q(q), R(q)

)

are algebraically independent.
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Fibonacci Numbers

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1.

Special values
∞∑

n=1

1

FnFn+2
= 1

∞∑

n=0

1

F2n
=

7−
√

5

2
,

∞∑

n=1

(−1)n

FnFn+1
=

1−
√

5

2
,

∞∑

n=1

1

F2n−1 + 1
=

√
5

2
·

Each of the numbers
∞∑

n=0

1

Fn
,

∞∑

n=1

1

Fn + Fn+2
and

∑

n≥1

1

F1F2 · · ·Fn
is irrational (transcendental ?). The numbers
∞∑

n=0

1

F2n−1

,
∞∑

n=0

1

F 2
n

,
∞∑

n=0

(−1)n

F 2
n

,
∞∑

n=0

n

F2n

,

∞∑

n=0

1

F2n−1 + F2n+1
and

∞∑

n=0

1

F2n+1

are all transcendental
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Series of Rational Fractions

∞∑

n=1

1

n(n + 1)
= 1

while
∞∑

n=0

1

(2n + 1)(2n + 2)
= log 2,

∞∑

n=0

1

(n + 1)(2n + 1)(4n + 1)
=
π

3

∞∑

n=0

1

n2
=
π2

6
,

∞∑

n=0

1

n2 + 1
=

1

2
+
π

2
· e

π + e−π

eπ − e−π
,

∞∑

n=0

1

(6n + 1)(6n + 2)(6n + 3)(6n + 4)(6n + 5)(6n + 6)

=
1

4320
(192 log 2− 81 log 3− 7π

√
3)

are transcendental.
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4. Heights

Mahler’s measure of

f(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad

= a0

d∏

i=1

(X − αi)

is

M(f) = |a0|
d∏

i=1

max{1, |αi|}

= exp

(∫ 1

0

log |f(e2iπt)|dt
)
.

Lehmer (1933): Is-it true that for every positive ε there
exists an algebraic integer α for which

1 < M(α) < 1 + ε?

Smallest known value > 1 for M(α) is

α0 = 1.1762808 . . . ,

root of

X10 + X9 −X7 −X6 −X5 −X4 −X3 + X + 1.
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Logarithmic height

h(α) =
1

d
log M(α).

Conjecture (Lehmer’s Problem). There exists a pos-
itive absolute constant c such that, for any nonzero
algebraic number α of degree at most d which is not a
root of unity,

h(α) ≥ c

d
·

Conjecture (Amoroso-David). For each positive inte-
ger n ≥ 1 there exists a positive number c(n) having
the following property. Let α1, . . . , αn be multiplica-
tively independent algebraic numbers. Define

D = [Q(α1, . . . , αn) : Q].

Then
n∏

i=1

h(αi) ≥
c(n)

D
·
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Heights of Subvarieties

Bogomolov, height of small points, Philippon’s al-
ternative heights. Group varieties, height of translate
of algebraic subgroups.

Conjecture (Amoroso-David). For each integer n ≥ 1
there exists a positive constant c(n) such that, for any
algebraic subvariety V of Gnm which is defined over Q,
which is Q-irreducible, and which is not a union of
translates of algebraic subgroups by torsion points,

V̂ ≥ c(n) deg(V )(s−dimV−1)/(s−dimV ),

where s is the dimension of the smallest algebraic sub-
group of Gnm containing V .
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Mazur Density Problem

Topology of rational points. Connection with the ra-
tional version of Hilbert’s tenth problem.

Let K be a number field with a given real embed-
ding. Let V be a smooth variety over K. Denote by Z
the closure, for the real topology, of V (K) in V (R).

Question (Mazur). Assume that K = Q and that
V (Q) is Zariski dense; is Z a union of connected com-
ponents of V (R)?

Colliot-Thélène, Skorobogatov and Swinnerton-Dyer

(?) Let A be a simple abelian variety over Q. Assume
the Mordell-Weil group A(Q) has rank ≥ 1. Then
A(Q) ∩A(R)0 is dense in the neutral component
A(R)0 of A(R).

Conjecture. Let A be a simple abelian variety over Q,
expA : Rg → A(R)0 the exponential map of the Lie
group A(R)0 and Ω = Zω1 + · · ·+Zωg its kernel. Let
u = u1ω1 + · · ·+ ugωg ∈ Rg satisfy expA(u) ∈ A(Q).
Then 1, u1, . . . , ug are linearly independent over Q.


