Open Diophantine Problems

by

Michel WALDSCHMIDT

Content

§1. Diophantine Equations

§2. Diophantine Approximation
§3. Transcendence
§4. Heights

1. Diophantine Equations

Hilbert's tenth problem:
Given a Diophantine equation with any number of unknown quantities and with integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Open problem:

To answer Hilbert's tenth problem for the special case of plane curve, which means to give an algorithm to decide whether a given Diophantine equation

$$
f(x, y)=0
$$

has a solution (in \mathbb{Z}, and the same problem for \mathbb{Q}).

Problem. Let $f \in \mathbb{Z}[X, Y]$ be a polynomial such that the equation $f(x, y)=0$ has only finitely many solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. Give an upper bound for $\max \{|x|,|y|\}$ when (x, y) is such a solution, in terms of the degree of f and of the maximal absolute value of the coefficients of f.

Lettre adressée à l'Éditeur par Monsieur E. Catalan, Répétiteur à l'école polytechnique de Paris», published in Crelle Journal (1844):
«Je vous prie, Monsieur, de bien vouloir énoncer, dans votre recueil, le théorème suivant, que je crois vrai, bien que je n'aie pas encore réussi à le démontrer complètement: d'autres seront peut-être plus heureux:

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être des puissances exactes; autrement dit: l'équation $x^{m}-y^{n}=1$, dans laquelle les inconnues sont entières et positives, n'admet qu'une seule solution.»
Perfect powers: $\quad 1,4,8,9,16,25,27,32,36$,
$49,64,81,100,121,125,128,144,169, \ldots$
Conjecture (Catalan). The equation

$$
x^{p}-y^{q}=1,
$$

where the unknowns x, y, p and q are integers all ≥ 2, has only one solution $(x, y, p, q)=(3,2,2,3)$.
R. Tijdeman (1976): only finitely many solutions.

Conjecture (Pillai). Let k be a positive integer. The equation

$$
x^{p}-y^{q}=k,
$$

where the unknowns x, y, p and q are integers all ≥ 2, has only finitely many solutions (x, y, p, q).

The Diophantine equation

$$
x^{p}+y^{q}=z^{r}
$$

has 10 known solutions (x, y, z, p, q, r) in positive integers for which

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

and such that x, y, z are relatively prime:

$$
\begin{gathered}
1+2^{3}=3^{2} \quad 2^{5}+7^{2}=3^{4} \quad 7^{3}+13^{2}=2^{9} \\
2^{7}+17^{3}=71^{2} \quad 3^{5}+11^{4}=122^{2} \\
17^{7}+76271^{3}=21063928^{2} \\
1414^{3}+2213459^{2}=65^{7} \\
9262^{3}+15312283^{2}=113^{7} \\
43^{8}+96222^{3}=30042907^{2} \\
33^{8}+1549034^{2}=15613^{3}
\end{gathered}
$$

R. Tijdeman and D. Zagier Conjecture : there is no solution with the further restriction that each of p, q and r is ≥ 3.

$$
m^{2}+m_{1}^{2}+m_{2}^{2}=3 m m_{1} m_{2}
$$

$(1,1,1)$
$(2,1,1)$
$(5,1,2)$
$(29,5,2)$

$(433,29,5)$
(169, 29, 2)
$(194,13,5)$
$(34,13,1)$

Markoff Spectrum

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Sequence:

$$
\begin{aligned}
& 1,2,5,13,29,34,89,169,194, \\
& 233,433,610,985,1325,1597, \ldots
\end{aligned}
$$

Conjecture. Fix a positive integer m for which the equation

$$
m^{2}+m_{1}^{2}+m_{2}^{2}=3 m m_{1} m_{2}
$$

has a solution in positive integers $\left(m_{1}, m_{2}\right)$ with

$$
0<m_{1} \leq m_{2} \leq m
$$

Then such a pair $\left(m_{1}, m_{2}\right)$ is unique.
True for $m \leq 10^{105}$.
Connection with Diophantine Approximation:

$$
\mu_{m}=\sqrt{9 m^{2}-4} / m:
$$

Sequence:

$$
\begin{array}{r}
\sqrt{5}, \quad \sqrt{8}, \quad \sqrt{221} / 5, \quad \sqrt{1517} / 13, \ldots \\
\limsup _{q \rightarrow \infty}\left|q\left(q \alpha_{m}-p\right)\right|=\frac{m}{\sqrt{9 m^{2}-4}} .
\end{array}
$$

2. Diophantine Approximation

abc Conjecture
(D.W. Masser and J. Essterlé, 1987).

For a positive integer n, denote by

$$
R(n)=\prod_{p \mid n} p
$$

the radical or squarefree part of n.
Conjecture (abc Conjecture). For each $\epsilon>0$ there exists a positive number $\kappa(\epsilon)$ which has the following property: if a, b and c are three positive rational integers which are relatively prime and satisfy $a+b=c$, then

$$
c<\kappa(\epsilon) R(a b c)^{1+\epsilon}
$$

Triples (a, b, c) with $0<a<b<c, a+b=c$ and $\operatorname{gcd}(a, b)=1$.

$$
\lambda(a, b, c)=\frac{\log c}{\log R(a b c)}
$$

(?) Finitely many (a, b, c) with $\lambda(a, b, c)>1+\epsilon$. Largest known value for λ (É. Reyssat):

$$
2+3^{10} \cdot 109=23^{5}, \quad \lambda=1.629912 \ldots
$$

140 known values of $\lambda(a, b, c)$ which are ≥ 1.4.

$$
\varrho(a, b, c)=\frac{\log a b c}{\log R(a b c)}
$$

(?) Finitely many (a, b, c) with $\varrho(a, b, c)>3+\epsilon$. Largest known value for ϱ (A. Nitaj):
$13 \cdot 19^{6}+2^{30} \cdot 5=3^{13} \cdot 11^{2} \cdot 31, \quad \varrho=4.41901 \ldots$

46 known triples (a, b, c) with $0<a<b<c$ and $\operatorname{gcd}(a, b)=1$ satisfying $\varrho(a, b, c)>4$.

Conjecture (Erdős-Woods). There exists a positive integer k such that, for m and n positive integers, the conditions

$$
R(m+i)=R(n+i) \quad(i=0, \ldots, k-1)
$$

imply $m=n$.
Remark: $k \geq 3$:
$R(75)=15=R(1215), \quad R(76)=2 \cdot 19=R(1216)$.
Also $m=2^{h}-2, n=2^{h} m, n+1=(m+1)^{2}$

$$
R(m)=R(n) \quad \text { and } \quad R(m+1)=R(n+1)
$$

Arithmetic progressions (T.N. Shorey):
(?) Does there exist a positive integer k such that, for any m, n, d and d^{\prime} positive integers satisfying $\operatorname{gcd}(m, d)=\operatorname{gcd}\left(n, d^{\prime}\right)=1$, the conditions

$$
R(m+i d)=R\left(n+i d^{\prime}\right) \quad(i=0, \ldots, k-1)
$$

imply $m=n$ and $d=d^{\prime}$?
Remark: $k \geq 4$:

$$
\begin{aligned}
R(2) & =R(4)=R(8) \\
R(2+79) & =R(4+23)=R(9) \\
R(2+2 \cdot 79) & =R(4+2 \cdot 23)=R(10)
\end{aligned}
$$

Theorem (Thue-Siegel-Roth). For any $\epsilon>0$ and any irrational algebraic number α, there is a positive constant $C(\alpha, \epsilon)>0$ such that, for any rational number p / q,

$$
\left|\alpha-\frac{p}{q}\right|>\frac{C(\epsilon)}{q^{2+\epsilon}} .
$$

Consequence of $a b c$ (E. Bombieri, M. Langevin):

$$
\left|\alpha-\frac{p}{q}\right|>\frac{C(\epsilon)}{R(p q) q^{\epsilon}} .
$$

Main Open Problem: Effectivity
(?) Does there exist an algebraic number of degree ≥ 3 with bounded partial quotients?
(?) Does there exist one with unbounded partial quotients?

Let $\psi(q)$ be a continuous positive real valued function. Assume that the function $q \psi(q)$ is nonincreasing.

Conjecture. Let θ be real algebraic number of degree at least 3. Then inequality

$$
\left|\theta-\frac{p}{q}\right|>\frac{\psi(q)}{q}
$$

has infinitely many solutions in integers p and q with $q>0$ if and only if the integral

$$
\int_{1}^{\infty} \psi(x) d x
$$

diverges.

Schmidt's Subspace Theorem
Consequence: finiteness of solutions of the equation

$$
x_{1}+\cdots+x_{n}=1
$$

where the unknowns are integers (or S-integers) in a number field and no proper subsum vanishes.

Open problem: effective version for $n \geq 3$?

Waring's problem (1770):
"Every integer is a cube or the sum of two, three, ...nine cubes; every integer is also the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree."

$$
\begin{gathered}
n=x_{1}^{k}+\cdots+x_{g(k)}^{k} \\
I(k)=2^{k}+\left[(3 / 2)^{k}\right]-2 .
\end{gathered}
$$

Easy to check $g(k) \geq I(k)$:

$$
\begin{gathered}
3^{k}=2^{k} q+r \quad \text { with } \quad 0<r<2^{k}, \quad q=\left[(3 / 2)^{k}\right] \\
N=2^{k} q-1=(q-1) 2^{k}+\left(2^{k}-1\right) 1^{k} \\
I(k)=(q-1)+\left(2^{k}-1\right)
\end{gathered}
$$

Known: $g(k)=I(k)$ for $2 \leq k \leq 471600000$.
(?) $\quad\left\|\left(\frac{3}{2}\right)^{k}\right\| \geq 2 \cdot\left(\frac{3}{4}\right)^{k}$

For $k \geq 2$ let $g(k)$ denote the smallest positive integer g such that any integer is the sum of g elements of the form x^{k} with $x \geq 0$.

$k=2$	3	4	5	6	7
$g(k)=4$	9	19	37	73	143
J.L. Lagrange	A. Wieferich	R. Balasubramanian J-M. Deshouillers F. Dress	J. Cher	S.S. Pillai	L.E. Dickson
1770	1909	1986	1964	1940	1936

3. Transcendence

Irrationality Problems:

Euler's constant

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) \\
& =0.5772157 \ldots
\end{aligned}
$$

Catalan's constant

$$
\begin{aligned}
G & =\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)^{2}} \\
& =\frac{\pi}{4} \int_{0}^{1}{ }_{2} F_{1}\left(\left.\begin{array}{c}
1 / 2,1 / 2 \\
1
\end{array} \right\rvert\, t\right) \frac{d t}{\sqrt{4 t}} \\
& =0.915965594 \ldots,
\end{aligned}
$$

$$
\begin{gathered}
\Gamma(1 / 5)=\int_{0}^{\infty} e^{-t} t^{-4 / 5} d t=4.59084371 \ldots \\
e+\pi=5.8598744 \ldots, \quad e^{\gamma}=1.781072 \ldots \\
\sum_{n \geq 1} \frac{\sigma_{k}(n)}{n!} \quad(k=1,2) \quad \text { where } \quad \sigma_{k}(n)=\sum_{d \mid n} d^{k}
\end{gathered}
$$

Conjecture (Schanuel). Let x_{1}, \ldots, x_{n} be \mathbb{Q}-linearly independent complex numbers. Then the transcendence degree over \mathbb{Q} of the field

$$
\mathbb{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right)
$$

is at least n.
Conjecture (Algebraic Independence of Logarithms of Algebraic Numbers). Let $\lambda_{1}, \ldots, \lambda_{n}$ be \mathbb{Q}-linearly independent complex numbers. Assume that the numbers $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are algebraic. Then the numbers $\lambda_{1}, \ldots, \lambda_{n}$ are algebraically independent.
D. Roy: $\quad \mathcal{L}=\left\{\log \alpha ; \alpha \in \overline{\mathbb{Q}}^{\times}\right\}$
(?) For any algebraic subvariety V of \mathbb{C}^{n} defined over the field $\overline{\mathbb{Q}}$ of algebraic numbers, the set $V \cap \mathcal{L}^{n}$ is the union of the sets $E \cap \mathcal{L}^{n}$, where E ranges over the set of vector subspaces of \mathbb{C}^{n} which are contained in V.

Conjecture (Gel'fond-Schneider). Let β be an irrational algebraic number of degree d and α a nonzero algebraic number. Let $\log \alpha$ be a nonzero logarithm of α. Then the d numbers

$$
\log \alpha, \alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}
$$

are algebraically independent.

Elimination Theory

Hilbert Nulstellensatz.

Conjecture (Blum, Cucker, Shub and Smale). Given an absolute constant c and polynomials P_{1}, \ldots, P_{m} with a total of N coefficients and no common complex zeros, there is no program to find, in at most N^{c} step, the coefficients of polynomials A_{i} satisfying Bézout's relation

$$
A_{1} P_{1}+\cdots+A_{m} P_{m}=1
$$

Complexity in theoretical computer science and Diophantine approximation (W.D. Brownawell)

$$
\left|x-\frac{p}{q}\right|>\psi(p / q) .
$$

Polyzeta (or Multiple Zeta) Values

L. Euler, K. Nielsen, D. Zagier, A.B. Goncharov, M. Kontsevich, M. Petitot, Minh Hoang Ngoc, P. Cartier, . .

$$
\begin{gathered}
\zeta(\underline{s})=\sum_{n_{1}>\cdots>n_{k} \geq 1} n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}}, \\
\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{Z}^{k} \text { with } \\
s_{1} \geq 2, s_{2} \geq 1, \ldots, s_{k} \geq 1
\end{gathered}
$$

Let \mathfrak{Z}_{p} denote the \mathbb{Q}-vector subspace spanned by the real numbers $\zeta(\underline{s})$ with $s_{1}+\cdots+s_{k}=p$. Set $\mathfrak{Z}_{0}=\mathbb{Q}$ and $\mathfrak{Z}_{1}=\{0\}$. The \mathbb{Q}-subspace \mathfrak{Z} spanned by all $\mathfrak{Z}_{p}, p \geq 0$, is a subalgebra of \mathbb{R}

Conjecture (A.B. Goncharov). As a \mathbb{Q}-algebra, \mathfrak{Z} is the direct sum of \mathfrak{Z}_{p} for $p \geq 0$.

Conjecture (D. Zagier). For $p \geq 3$ the dimension d_{p} of the \mathbb{Q}-vector space \mathfrak{Z}_{p} is given by

$$
d_{p}=d_{p-2}+d_{p-3}
$$

with $d_{0}=1, d_{1}=0, d_{2}=1$.

Conjecture. The numbers

$$
\pi, \zeta(3), \zeta(5), \ldots, \zeta(2 n+1), \ldots
$$

are algebraically independent.
Known:

- (Euler- Lindemann) $\zeta(2 n)$ is transcendental for $n \geq 1$.
- (Apéry, 1978) $\zeta(3)$ is irrational.
- (T. Rivoal, CRAS 2000; K. Ball \& T. Rivoal, to appear). The \mathbb{Q}-vector space spanned by the $n+1$ numbers $1, \zeta(3), \zeta(5), \ldots, \zeta(2 n+1)$ has dimension

$$
\geq \frac{1-\epsilon}{1+\log 2} \log n
$$

for $n \geq n_{0}(\epsilon)$.
For instance infinitely many of these numbers $\zeta(2 n+1)$ ($n \geq 1$) are irrational.

Gamma Function

Set

$$
G(z)=\frac{1}{\sqrt{2 \pi}} \Gamma(z)
$$

For $N>0$ and $x \in \mathbb{C}$ such that $N x \not \equiv 0(\bmod \mathbb{Z})$,

$$
\prod_{i=0}^{N-1} G\left(x+\frac{i}{N}\right)=N^{(1 / 2)-N x} G(N x)
$$

Then

$$
\bar{G}:(\mathbb{Q} / \mathbb{Z}) \backslash\{0\} \rightarrow \mathbb{C}^{\times} / \overline{\mathbb{Q}}^{\times}
$$

is an odd distribution on $(\mathbb{Q} / \mathbb{Z}) \backslash\{0\}$:

$$
\prod_{i=0}^{N-1} \bar{G}\left(x+\frac{i}{N}\right)=\bar{G}(N x) \quad \text { for } \quad x \in(\mathbb{Q} / \mathbb{Z}) \backslash\{0\}
$$

and

$$
\bar{G}(-x)=\bar{G}(x)^{-1}
$$

Conjecture (Rohrlich). \bar{G} is the universal odd distribution with values in groups where multiplication by 2 is invertible.

Conjecture. Three at least of the four numbers

$$
\pi, \Gamma(1 / 5), \Gamma(2 / 5), e^{\pi \sqrt{5}}
$$

are algebraically independent.

Algebraic Independence and Modular Forms

$$
\begin{aligned}
& P(q)=1-24 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}} \\
& Q(q)=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}} \\
& R(q)=1-504 \sum_{n=1}^{\infty} \frac{n^{5} q^{n}}{1-q^{n}}
\end{aligned}
$$

Conjecture (Nesterenko). Let $\tau \in \mathbb{C}$ have positive imaginary part. Assume that τ is not quadratic. Set $q=e^{2 i \pi \tau}$. Then 4 at least of the 5 numbers

$$
\mathbb{Q}(\tau, q, P(q), Q(q), R(q))
$$

are algebraically independent.

Fibonacci Numbers

$$
F_{n+2}=F_{n+1}+F_{n}, \quad F_{0}=0, \quad F_{1}=1
$$

Special values

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+2}}=1 \\
\sum_{n=0}^{\infty} \frac{1}{F_{2^{n}}}=\frac{7-\sqrt{5}}{2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{n} F_{n+1}}=\frac{1-\sqrt{5}}{2} \\
\sum_{n=1}^{\infty} \frac{1}{F_{2 n-1}+1}=\frac{\sqrt{5}}{2}
\end{gathered}
$$

Each of the numbers

$$
\sum_{n=0}^{\infty} \frac{1}{F_{n}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{n}+F_{n+2}} \quad \text { and } \quad \sum_{n \geq 1} \frac{1}{F_{1} F_{2} \cdots F_{n}}
$$

is irrational (transcendental ?). The numbers

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{1}{F_{2 n-1}}, \quad \sum_{n=0}^{\infty} \frac{1}{F_{n}^{2}}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{F_{n}^{2}}, \quad \sum_{n=0}^{\infty} \frac{n}{F_{2 n}} \\
\sum_{n=0}^{\infty} \frac{1}{F_{2^{n}-1}+F_{2^{n}+1}}
\end{gathered} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{1}{F_{2^{n}+1}} .
$$

are all transcendental

Series of Rational Fractions

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

while

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)(2 n+2)}=\log 2, \\
\sum_{n=0}^{\infty} \frac{1}{(n+1)(2 n+1)(4 n+1)}=\frac{\pi}{3} \\
\sum_{n=0}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=\frac{1}{2}+\frac{\pi}{2} \cdot \frac{e^{\pi}+e^{-\pi}}{e^{\pi}-e^{-\pi}}, \\
\begin{array}{c}
\sum_{n=0}^{\infty} \frac{1}{(6 n+1)(6 n+2)(6 n+3)(6 n+4)(6 n+5)(6 n+6)} \\
=\frac{1}{4320}(192 \log 2-81 \log 3-7 \pi \sqrt{3})
\end{array}
\end{gathered}
$$

are transcendental.

4. Heights

Mahler's measure of

$$
\begin{aligned}
f(X) & =a_{0} X^{d}+a_{1} X^{d-1}+\cdots+a_{d-1} X+a_{d} \\
& =a_{0} \prod_{i=1}^{d}\left(X-\alpha_{i}\right)
\end{aligned}
$$

is

$$
\begin{aligned}
\mathrm{M}(f) & =\left|a_{0}\right| \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\} \\
& =\exp \left(\int_{0}^{1} \log \left|f\left(e^{2 i \pi t}\right)\right| d t\right)
\end{aligned}
$$

Lehmer (1933): Is-it true that for every positive ϵ there exists an algebraic integer α for which

$$
1<\mathrm{M}(\alpha)<1+\epsilon ?
$$

Smallest known value >1 for $\mathrm{M}(\alpha)$ is

$$
\alpha_{0}=1.1762808 \ldots,
$$

root of

$$
X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1
$$

Logarithmic height

$$
\mathrm{h}(\alpha)=\frac{1}{d} \log \mathrm{M}(\alpha) .
$$

Conjecture (Lehmer's Problem). There exists a positive absolute constant c such that, for any nonzero algebraic number α of degree at most d which is not a root of unity,

$$
\mathrm{h}(\alpha) \geq \frac{c}{d} .
$$

Conjecture (Amoroso-David). For each positive integer $n \geq 1$ there exists a positive number $c(n)$ having the following property. Let $\alpha_{1}, \ldots, \alpha_{n}$ be multiplicatively independent algebraic numbers. Define

$$
D=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right): \mathbb{Q}\right] .
$$

Then

$$
\prod_{i=1}^{n} \mathrm{~h}\left(\alpha_{i}\right) \geq \frac{c(n)}{D} .
$$

Heights of Subvarieties

Bogomolov, height of small points, Philippon's alternative heights. Group varieties, height of translate of algebraic subgroups.

Conjecture (Amoroso-David). For each integer $n \geq 1$ there exists a positive constant $c(n)$ such that, for any algebraic subvariety V of $\mathbb{G}_{\mathrm{m}}^{n}$ which is defined over \mathbb{Q}, which is \mathbb{Q}-irreducible, and which is not a union of translates of algebraic subgroups by torsion points,

$$
\hat{V} \geq c(n) \operatorname{deg}(V)^{(s-\operatorname{dim} V-1) /(s-\operatorname{dim} V)}
$$

where s is the dimension of the smallest algebraic subgroup of $\mathbb{G}_{\mathrm{m}}^{n}$ containing V.

Mazur Density Problem

Topology of rational points. Connection with the rational version of Hilbert's tenth problem.

Let K be a number field with a given real embedding. Let V be a smooth variety over K. Denote by Z the closure, for the real topology, of $V(K)$ in $V(\mathbb{R})$.

Question (Mazur). Assume that $K=\mathbb{Q}$ and that $V(\mathbb{Q})$ is Zariski dense; is Z a union of connected components of $V(\mathbb{R})$?

Colliot-Thélène, Skorobogatov and Swinnerton-Dyer
$(?)$ Let A be a simple abelian variety over \mathbb{Q}. Assume the Mordell-Weil group $A(\mathbb{Q})$ has rank ≥ 1. Then $A(\mathbb{Q}) \cap A(\mathbb{R})^{0}$ is dense in the neutral component $A(\mathbb{R})^{0}$ of $A(\mathbb{R})$.

Conjecture. Let A be a simple abelian variety over \mathbb{Q}, $\exp _{A}: \mathbb{R}^{g} \rightarrow A(\mathbb{R})^{0}$ the exponential map of the Lie group $A(\mathbb{R})^{0}$ and $\Omega=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{g}$ its kernel. Let $u=u_{1} \omega_{1}+\cdots+u_{g} \omega_{g} \in \mathbb{R}^{g}$ satisfy $\exp _{A}(u) \in A(\mathbb{Q})$.
Then $1, u_{1}, \ldots, u_{g}$ are linearly independent over \mathbb{Q}.

