"Hilbert's problems today"
(April 6, 2001)

Open Diophantine Problems

by

Michel WALDSCHMIDT

Content

- §1. Diophantine Equations
- §2. Diophantine Approximation
- §3. Transcendence
- §4. Heights

http://www.math.jussieu.fr/~miw/articles/ps/odp.ps

1. Diophantine Equations

Hilbert's tenth problem:

Given a Diophantine equation with any number of unknown quantities and with integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Open problem:

To answer Hilbert's tenth problem for the special case of plane curve, which means to give an algorithm to decide whether a given Diophantine equation

$$f(x,y)=0$$

has a solution (in \mathbb{Z} , and the same problem for \mathbb{Q}).

Problem. Let $f \in \mathbb{Z}[X,Y]$ be a polynomial such that the equation f(x,y) = 0 has only finitely many solutions $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. Give an upper bound for $\max\{|x|,|y|\}$ when (x,y) is such a solution, in terms of the degree of f and of the maximal absolute value of the coefficients of f.

Lettre adressée à l'Éditeur par Monsieur E. Catalan, Répétiteur à l'école polytechnique de Paris», published in Crelle Journal (1844):

«Je vous prie, Monsieur, de bien vouloir énoncer, dans votre recueil, le théorème suivant, que je crois vrai, bien que je n'aie pas encore réussi à le démontrer complètement: d'autres seront peut-être plus heureux:

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être des puissances exactes; autrement dit: l'équation $x^m - y^n = 1$, dans laquelle les inconnues sont entières et positives, n'admet qu'une seule solution. »

Perfect powers: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, ...

Conjecture (Catalan). The equation

$$x^p - y^q = 1,$$

where the unknowns x, y, p and q are integers all ≥ 2 , has only one solution (x, y, p, q) = (3, 2, 2, 3).

R. Tijdeman (1976): only finitely many solutions.

Conjecture (Pillai). Let k be a positive integer. The equation

$$x^p - y^q = k,$$

where the unknowns x, y, p and q are integers all ≥ 2 , has only finitely many solutions (x, y, p, q).

The Diophantine equation

$$x^p + y^q = z^r$$

has 10 known solutions (x, y, z, p, q, r) in positive integers for which

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$$

and such that x, y, z are relatively prime:

$$1+2^3 = 3^2$$
 $2^5 + 7^2 = 3^4$ $7^3 + 13^2 = 2^9$ $2^7 + 17^3 = 71^2$ $3^5 + 11^4 = 122^2$ $17^7 + 76271^3 = 21063928^2$ $1414^3 + 2213459^2 = 65^7$ $9262^3 + 15312283^2 = 113^7$ $43^8 + 96222^3 = 30042907^2$ $33^8 + 1549034^2 = 15613^3$.

R. Tijdeman and D. Zagier Conjecture : there is no solution with the further restriction that each of p, q and r is ≥ 3 .

Markoff Spectrum
$$x^2 + y^2 + z^2 = 3xyz$$

Sequence:

1, 2, 5, 13, 29, 34, 89, 169, 194,

233, 433, 610, 985, 1325, 1597, ...

Conjecture. Fix a positive integer m for which the equation

$$m^2 + m_1^2 + m_2^2 = 3mm_1m_2$$

has a solution in positive integers (m_1, m_2) with

$$0 < m_1 \le m_2 \le m$$
.

Then such a pair (m_1, m_2) is unique.

True for $m \leq 10^{105}$.

Connection with Diophantine Approximation:

$$\mu_m = \sqrt{9m^2 - 4}/m$$
 :

Sequence:

$$\sqrt{5}$$
, $\sqrt{8}$, $\sqrt{221}/5$, $\sqrt{1517}/13$,...

$$\limsup_{q \to \infty} |q(q\alpha_m - p)| = \frac{m}{\sqrt{9m^2 - 4}}.$$

2. Diophantine Approximation

$$abc$$
 Conjecture

(D.W. Masser and J. Œsterlé, 1987).

For a positive integer n, denote by

$$R(n) = \prod_{p|n} p$$

the radical or squarefree part of n.

Conjecture (abc Conjecture). For each $\epsilon > 0$ there exists a positive number $\kappa(\epsilon)$ which has the following property: if a, b and c are three positive rational integers which are relatively prime and satisfy a + b = c, then

$$c < \kappa(\epsilon)R(abc)^{1+\epsilon}$$
.

Triples (a,b,c) with 0 < a < b < c, a+b=c and $\gcd(a,b)=1$.

$$-\circ -$$

$$\lambda(a, b, c) = \frac{\log c}{\log R(abc)}.$$

(?) Finitely many (a, b, c) with $\lambda(a, b, c) > 1 + \epsilon$. Largest known value for λ (É. Reyssat):

$$2 + 3^{10} \cdot 109 = 23^5, \qquad \lambda = 1.629912...$$

140 known values of $\lambda(a, b, c)$ which are ≥ 1.4 .

$$\varrho(a,b,c) = \frac{\log abc}{\log R(abc)}.$$

(?) Finitely many (a, b, c) with $\varrho(a, b, c) > 3 + \epsilon$. Largest known value for ϱ (A. Nitaj):

$$13 \cdot 19^6 + 2^{30} \cdot 5 = 3^{13} \cdot 11^2 \cdot 31, \qquad \varrho = 4.41901...$$

46 known triples (a, b, c) with 0 < a < b < c and gcd(a, b) = 1 satisfying $\varrho(a, b, c) > 4$.

Conjecture (Erdős-Woods). There exists a positive integer k such that, for m and n positive integers, the conditions

$$R(m+i) = R(n+i) \quad (i = 0, ..., k-1)$$

imply m = n.

Remark: $k \geq 3$:

$$R(75) = 15 = R(1215), \quad R(76) = 2 \cdot 19 = R(1216).$$

Also
$$m = 2^h - 2$$
, $n = 2^h m$, $n + 1 = (m + 1)^2$

$$R(m) = R(n)$$
 and $R(m+1) = R(n+1)$

Arithmetic progressions (T.N. Shorey):

(?) Does there exist a positive integer k such that, for any m, n, d and d' positive integers satisfying gcd(m,d) = gcd(n,d') = 1, the conditions

$$R(m+id) = R(n+id') \quad (i = 0, ..., k-1)$$

imply m = n and d = d'?

Remark: $k \ge 4$:

$$R(2) = R(4) = R(8),$$

 $R(2+79) = R(4+23) = R(9),$
 $R(2+2\cdot 79) = R(4+2\cdot 23) = R(10).$

Theorem (Thue-Siegel-Roth). For any $\epsilon > 0$ and any irrational algebraic number α , there is a positive constant $C(\alpha, \epsilon) > 0$ such that, for any rational number p/q,

 $\left|\alpha - \frac{p}{q}\right| > \frac{C(\epsilon)}{q^{2+\epsilon}}$

Consequence of abc (E. Bombieri, M. Langevin):

$$\left|\alpha - \frac{p}{q}\right| > \frac{C(\epsilon)}{R(pq)q^{\epsilon}}$$

Main Open Problem: Effectivity

- (?) Does there exist an algebraic number of degree≥ 3 with bounded partial quotients?
- (?) Does there exist one with unbounded partial quotients?

Let $\psi(q)$ be a continuous positive real valued function. Assume that the function $q\psi(q)$ is nonincreasing.

Conjecture. Let θ be real algebraic number of degree at least 3. Then inequality

$$\left|\theta - \frac{p}{q}\right| > \frac{\psi(q)}{q}$$
.

has infinitely many solutions in integers p and q with q>0 if and only if the integral

$$\int_{1}^{\infty} \psi(x) dx$$

diverges.

Schmidt's Subspace Theorem Consequence: finiteness of solutions of the equation

$$x_1 + \cdots + x_n = 1$$

where the unknowns are integers (or S-integers) in a number field and no proper subsum vanishes.

Open problem: effective version for $n \ge 3$?

Waring's problem (1770):

"Every integer is a cube or the sum of two, three, ... nine cubes; every integer is also the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree."

$$n = x_1^k + \dots + x_{g(k)}^k.$$

$$I(k) = 2^k + [(3/2)^k] - 2.$$

Easy to check $g(k) \ge I(k)$:

$$3^k = 2^k q + r$$
 with $0 < r < 2^k$, $q = [(3/2)^k]$ $N = 2^k q - 1 = (q - 1)2^k + (2^k - 1)1^k$ $I(k) = (q - 1) + (2^k - 1)$

Known: g(k) = I(k) for $2 \le k \le 471$ 600 000.

$$\left\| \left(\frac{3}{2} \right)^k \right\| \ge 2 \cdot \left(\frac{3}{4} \right)^k$$

For $k \geq 2$ let g(k) denote the smallest positive integer g such that any integer is the sum of g elements of the form x^k with $x \geq 0$.

k = 2	3	4	5	6	7
g(k) = 4	9	19	37	73	143
J.L. Lagrange	A. Wieferich	R. Balasubramanian J-M. Deshouillers F. Dress		S.S. Pillai	L.E. Dickson
1770	1909	1986	1964	1940	1936

3. Transcendence

Irrationality Problems:

Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log n \right)$$
$$= 0.5772157\dots,$$

Catalan's constant

$$G = \sum_{n\geq 0} \frac{(-1)^n}{(2n+1)^2}$$

$$= \frac{\pi}{4} \int_0^1 {}_2F_1 \left(\begin{array}{c} 1/2 \\ 1 \end{array} \right) \frac{1}{\sqrt{4t}} dt$$

$$= 0.915965594 \dots,$$

$$\Gamma(1/5) = \int_0^\infty e^{-t} t^{-4/5} dt = 4.59084371...$$

$$e + \pi = 5.8598744..., \qquad e^{\gamma} = 1.781072...$$

$$\sum_{n\geq 1}rac{\sigma_k(n)}{n!}$$
 $(k=1,2)$ where $\sigma_k(n)=\sum_{d\mid n}d^k$

Conjecture (Schanuel). Let x_1, \ldots, x_n be \mathbb{Q} -linearly independent complex numbers. Then the transcendence degree over \mathbb{Q} of the field

$$\mathbb{Q}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n})$$

is at least n.

Conjecture (Algebraic Independence of Logarithms of Algebraic Numbers). Let $\lambda_1, \ldots, \lambda_n$ be \mathbb{Q} -linearly independent complex numbers. Assume that the numbers $e^{\lambda_1}, \ldots, e^{\lambda_n}$ are algebraic. Then the numbers $\lambda_1, \ldots, \lambda_n$ are algebraically independent.

D. Roy:
$$\mathcal{L} = \{ \log \alpha ; \alpha \in \overline{\mathbb{Q}}^{\times} \}$$

(?) For any algebraic subvariety V of \mathbb{C}^n defined over the field $\overline{\mathbb{Q}}$ of algebraic numbers, the set $V \cap \mathcal{L}^n$ is the union of the sets $E \cap \mathcal{L}^n$, where E ranges over the set of vector subspaces of \mathbb{C}^n which are contained in V.

Conjecture (Gel'fond-Schneider). Let β be an irrational algebraic number of degree d and α a nonzero algebraic number. Let $\log \alpha$ be a nonzero logarithm of α . Then the d numbers

$$\log \alpha, \ \alpha^{\beta}, \ \alpha^{\beta^2}, \dots, \alpha^{\beta^{d-1}}$$

are algebraically independent.

Elimination Theory

Hilbert Nulstellensatz.

Conjecture (Blum, Cucker, Shub and Smale). Given an absolute constant c and polynomials P_1, \ldots, P_m with a total of N coefficients and no common complex zeros, there is no program to find, in at most N^c step, the coefficients of polynomials A_i satisfying Bézout's relation

$$A_1P_1+\cdots+A_mP_m=1.$$

Complexity in theoretical computer science and Diophantine approximation (W.D. Brownawell)

$$\left|x-\frac{p}{q}\right|>\psi(p/q).$$

Polyzeta (or Multiple Zeta) Values

L. Euler, K. Nielsen, D. Zagier, A.B. Goncharov, M. Kontsevich, M. Petitot, Minh Hoang Ngoc, P. Cartier, . . .

$$\zeta(\underline{s}) = \sum_{n_1 > \dots > n_k > 1} n_1^{-s_1} \cdots n_k^{-s_k},$$

 $\underline{s} = (s_1, \dots, s_k) \in \mathbb{Z}^k$ with

$$s_1 \ge 2, \ s_2 \ge 1, \dots, s_k \ge 1.$$

Let \mathfrak{Z}_p denote the \mathbb{Q} -vector subspace spanned by the real numbers $\zeta(\underline{s})$ with $s_1+\cdots+s_k=p$. Set $\mathfrak{Z}_0=\mathbb{Q}$ and $\mathfrak{Z}_1=\{0\}$. The \mathbb{Q} -subspace \mathfrak{Z} spanned by all \mathfrak{Z}_p , $p\geq 0$, is a subalgebra of \mathbb{R}

Conjecture (A.B. Goncharov). As a \mathbb{Q} -algebra, \mathfrak{Z} is the direct sum of \mathfrak{Z}_p for $p \geq 0$.

Conjecture (D. Zagier). For $p \geq 3$ the dimension d_p of the \mathbb{Q} -vector space \mathfrak{Z}_p is given by

$$d_p = d_{p-2} + d_{p-3}$$

with $d_0 = 1$, $d_1 = 0$, $d_2 = 1$.

Conjecture. The numbers

$$\pi, \ \zeta(3), \zeta(5), \ldots, \zeta(2n+1), \ldots$$

are algebraically independent.

Known:

- (Euler– Lindemann) $\zeta(2n)$ is transcendental for n > 1.
- (Apéry, 1978) $\zeta(3)$ is irrational.
- (T. Rivoal, CRAS 2000; K. Ball & T. Rivoal, to appear). The \mathbb{Q} -vector space spanned by the n+1 numbers $1, \zeta(3), \zeta(5), \ldots, \zeta(2n+1)$ has dimension

$$\geq \frac{1-\epsilon}{1+\log 2}\log n$$

for
$$n \geq n_0(\epsilon)$$
.

For instance infinitely many of these numbers $\zeta(2n+1)$ $(n \ge 1)$ are irrational.

Gamma Function

Set

$$G(z) = \frac{1}{\sqrt{2\pi}} \Gamma(z).$$

For N>0 and $x\in\mathbb{C}$ such that $Nx\not\equiv 0\pmod{\mathbb{Z}}$,

$$\prod_{i=0}^{N-1} G\left(x + \frac{i}{N}\right) = N^{(1/2)-Nx}G(Nx).$$

Then

$$\overline{G}: (\mathbb{Q}/\mathbb{Z}) \setminus \{0\} \to \mathbb{C}^{\times}/\overline{\mathbb{Q}}^{\times}$$

is an odd *distribution* on $(\mathbb{Q}/\mathbb{Z}) \setminus \{0\}$:

$$\prod_{i=0}^{N-1} \overline{G}\left(x + \frac{i}{N}\right) = \overline{G}(Nx) \quad \text{for} \quad x \in (\mathbb{Q}/\mathbb{Z}) \setminus \{0\}$$

and

$$\overline{G}(-x) = \overline{G}(x)^{-1}.$$

Conjecture (Rohrlich). \overline{G} is the universal odd distribution with values in groups where multiplication by 2 is invertible.

Conjecture. Three at least of the four numbers

$$\pi$$
, $\Gamma(1/5)$, $\Gamma(2/5)$, $e^{\pi\sqrt{5}}$

are algebraically independent.

Algebraic Independence and Modular Forms

$$P(q) = 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1 - q^n},$$
 $Q(q) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3q^n}{1 - q^n},$
 $R(q) = 1 - 504 \sum_{n=1}^{\infty} \frac{n^5q^n}{1 - q^n}.$

Conjecture (Nesterenko). Let $\tau \in \mathbb{C}$ have positive imaginary part. Assume that τ is not quadratic. Set $q = e^{2i\pi\tau}$. Then 4 at least of the 5 numbers

$$\mathbb{Q}(\tau, q, P(q), Q(q), R(q))$$

are algebraically independent.

Fibonacci Numbers

$$F_{n+2} = F_{n+1} + F_n, \qquad F_0 = 0, \quad F_1 = 1.$$

Special values

$$\sum_{n=1}^{\infty} \frac{1}{F_n F_{n+2}} = 1$$

$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7 - \sqrt{5}}{2}, \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{F_n F_{n+1}} = \frac{1 - \sqrt{5}}{2},$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n-1} + 1} = \frac{\sqrt{5}}{2}.$$

Each of the numbers

$$\sum_{n=0}^{\infty} \frac{1}{F_n}, \quad \sum_{n=1}^{\infty} \frac{1}{F_n + F_{n+2}} \quad \text{and} \quad \sum_{n \geq 1} \frac{1}{F_1 F_2 \cdots F_n}$$

is irrational (transcendental?). The numbers

$$\sum_{n=0}^{\infty} \frac{1}{F_{2n-1}}, \quad \sum_{n=0}^{\infty} \frac{1}{F_n^2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{F_n^2}, \quad \sum_{n=0}^{\infty} \frac{n}{F_{2n}}, \\ \sum_{n=0}^{\infty} \frac{1}{F_{2n-1} + F_{2n+1}} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{1}{F_{2n+1}}$$

are all transcendental

Series of Rational Fractions

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

while

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+2)} = \log 2,$$

$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)(4n+1)} = \frac{\pi}{3}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1}{2} + \frac{\pi}{2} \cdot \frac{e^{\pi} + e^{-\pi}}{e^{\pi} - e^{-\pi}},$$

$$\sum_{n=0}^{\infty} \frac{1}{(6n+1)(6n+2)(6n+3)(6n+4)(6n+5)(6n+6)}$$

$$= \frac{1}{4320} (192 \log 2 - 81 \log 3 - 7\pi\sqrt{3})$$

are transcendental.

4. Heights

Mahler's measure of

$$f(X) = a_0 X^d + a_1 X^{d-1} + \dots + a_{d-1} X + a_d$$
$$= a_0 \prod_{i=1}^d (X - \alpha_i)$$

is

$$\begin{split} \mathsf{M}(f) &= |a_0| \prod_{i=1}^d \max\{1, |\alpha_i|\} \\ &= \exp\left(\int_0^1 \log|f(e^{2i\pi t})|dt\right). \end{split}$$

Lehmer (1933): Is-it true that for every positive ϵ there exists an algebraic integer α for which

$$1 < \mathsf{M}(\alpha) < 1 + \epsilon?$$

Smallest known value > 1 for $M(\alpha)$ is

$$\alpha_0 = 1.1762808...,$$

root of

$$X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1.$$

Logarithmic height

$$h(\alpha) = \frac{1}{d} \log M(\alpha).$$

Conjecture (Lehmer's Problem). There exists a positive absolute constant c such that, for any nonzero algebraic number α of degree at most d which is not a root of unity,

$$h(\alpha) \ge \frac{c}{d} \cdot$$

Conjecture (Amoroso-David). For each positive integer $n \geq 1$ there exists a positive number c(n) having the following property. Let $\alpha_1, \ldots, \alpha_n$ be multiplicatively independent algebraic numbers. Define

$$D = [\mathbb{Q}(\alpha_1, \dots, \alpha_n) : \mathbb{Q}].$$

Then

$$\prod_{i=1}^n \mathsf{h}(\alpha_i) \ge \frac{c(n)}{D}.$$

Heights of Subvarieties

Bogomolov, height of small points, Philippon's alternative heights. Group varieties, height of translate of algebraic subgroups.

Conjecture (Amoroso-David). For each integer $n \geq 1$ there exists a positive constant c(n) such that, for any algebraic subvariety V of $\mathbb{G}_{\mathrm{m}}^n$ which is defined over \mathbb{Q} , which is \mathbb{Q} -irreducible, and which is not a union of translates of algebraic subgroups by torsion points,

$$\hat{V} \ge c(n) \deg(V)^{(s-\dim V - 1)/(s-\dim V)},$$

where s is the dimension of the smallest algebraic subgroup of $\mathbb{G}_{\mathrm{m}}^n$ containing V.

Mazur Density Problem

Topology of rational points. Connection with the rational version of Hilbert's tenth problem.

Let K be a number field with a given real embedding. Let V be a smooth variety over K. Denote by Z the closure, for the real topology, of V(K) in $V(\mathbb{R})$.

Question (Mazur). Assume that $K = \mathbb{Q}$ and that $V(\mathbb{Q})$ is Zariski dense; is Z a union of connected components of $V(\mathbb{R})$?

Colliot-Thélène, Skorobogatov and Swinnerton-Dyer

(?) Let A be a simple abelian variety over \mathbb{Q} . Assume the Mordell-Weil group $A(\mathbb{Q})$ has rank ≥ 1 . Then $A(\mathbb{Q}) \cap A(\mathbb{R})^0$ is dense in the neutral component $A(\mathbb{R})^0$ of $A(\mathbb{R})$.

Conjecture. Let A be a simple abelian variety over \mathbb{Q} , $\exp_A: \mathbb{R}^g \to A(\mathbb{R})^0$ the exponential map of the Lie group $A(\mathbb{R})^0$ and $\Omega = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_g$ its kernel. Let $u = u_1\omega_1 + \cdots + u_g\omega_g \in \mathbb{R}^g$ satisfy $\exp_A(u) \in A(\mathbb{Q})$. Then $1, u_1, \ldots, u_g$ are linearly independent over \mathbb{Q} .