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An introduction to Diophantine analysis
and transcendental number theory

A (real or complex) number is either rational (root of a non-zero
linear polynomial aX + b with rational coefficients), or algebraic irrational
(root of a non-linear polynomial with rational coefficients), or else
transcendental. For a number which is given by an analytic formula (limit
of a sequence, a series or a product, value of an integral or a function), it
is most often very hard to tell in which of the three above-mentioned
subsets it falls. The main tool to attack this question is to investigate its
approximation properties by rational or algebraic numbers.

We survey some of the main results related to these questions, old

as well as recent ones, we give some applications and we quote a few

open problems.
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Diophantine equations
• Example : Fermat’s equation xn + yn = zn

n is fixed, the unknowns are x, y and z in Z.
• More generally : fix a polynomial F in m variables and

consider the equation

F (x1, . . . , xm) = 0

where the unknown x1, . . . , xm are either rational integers
or rational numbers.

• Exponential Diophantine equations : when some
exponents are also unknown.
Pillai’s Conjecture (1945) : Let k be a positive integer.
The equation

xp − yq = k,

where the unknowns x, y, p and q take integer values, all
≥ 2, has only finitely many solutions (x, y, p, q).
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The Ramanujan–Nagell equation

• Ramanujan : the equation

x2 + 7 = 2n

has the solutions

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32
112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768

• Nagell (1948) : no further solution
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Historical survey

• Pierre de Fermat (1601 - 1665)

• Leonhard Euler (1707 - 1783)

• Joseph Louis Lagrange (1736 - 1813)

• XIXth Century : Hurwitz, Poincaré

• Mordell’s Conjecture : rational points

• Siegel’s Theorem (1929) : integral points

• Faltings’ Theorem(1983) : finiteness of rational points on
an algebraic curve of genus ≥ 2 over a number field.

• Andrew Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)
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History of rational approximation theory

• Diophantine approximation is the study of the
approximation of a real or complex number by rational or
algebraic numbers.

• It has its early sources in astronomy, with the study of
movement of the celestials bodies, and in the
computations of π.
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Diophantine approximation in the real life

Small divisors and dynamical systems (H. Poincaré)
Periods of Saturn orbits (Cassini divisions)
Stability of the solar system
Resonance in astronomy
Engrenages
Quasi-cristals
Acoustic of concert halls
Calendars : bissextile years
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Computation of π

• Rhind Papyrus : 25/34 = 3.1604 . . .

• Baudhāyana (Sulvasūtras) : 3, 088

• Suryaprajnapati (Jaina mathematician) :
√

10 = 3.162 . . .

• Archimedes : 3.1418

• Chan Hong Wang Fan, Liu Hui, Zu Chongzhi (Tsu
Ch’ung-Chih) : 355/113 = 3.1415929 . . .

• Aryabhat.̄ıya, Āryabhat.a I : 3, 1416 (suggests π '∈ Q)

• Bhāskara I : suggests a negative solution to the problem
of squaring the circle.

• Bhāskarācārya (Bhāskara II) : 3927/1250 = 3, 1416 . . .

• Madhava (1380–1420) : series, 11 exact decimals
3.14159265359 (Viète 1579 : 9 decimals only).
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Rational approximation to real numbers

• The set Q of rational numbers is dense in the set R of
real numbers : for any real number ξ and any ε > 0 there
exists p/q ∈ Q such that∣∣∣∣ξ − p

q

∣∣∣∣ < ε.

• Better estimate : for ξ ∈ R and q ≥ 1 consider the
nearest integer p to qξ. Then |qξ − p| ≤ 1/2, hence∣∣∣∣ξ − p

q

∣∣∣∣ <
1

2q
·
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Rational Diophantine approximation

• For computing a number with a sharp accuracy, one wishes
to get many decimals (or binary digits) with a small number of
operations (products, say).
• For Diophantine questions, the cost is measured by the
denominator q : one investigates how well ξ can be
approximated in terms of q.
• A rational number has a single good approximation, itself !
Indeed if ξ = a/b is a given rational number, then for any
p/q ∈ Q distinct from ξ, ∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c

q

where c = 1/b. Proof : |bq − ap| ≥ 1.
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Rational approximation to an irrational number

• On the opposite, a real irrational number ξ has very sharp
rational approximations : there exist infinitely many p/q
for which ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2
·

• Hence to prove that a real number is irrational, it suffices
to produce rational approximations p/q better than ε/q,
but in fact there exist much better approximations,
namely in 1/q2.

• So it should not be so difficult to prove that a given
number is irrational ?
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Open problems

• Is Euler’s constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · · + 1

n
− log n

)
= 0.5772157 . . .

irrational ?

• Is ζ(5) irrational ? (For ζ(3) : Apéry 1978).

ζ(s) =
∑
n≥1

1

ns

• Is e + π irrational ?
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Open problems (continued)
• Is Γ(1/5) irrational ?

Γ(z) = e−γzz−1
∞∏

n=1

(
1 +

z

n

)−1

ez/n.

Γ(s) =

∫ ∞

0

e−tts · dt

t
,

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

xa−1(1− x)b−1dx

•
π = Γ(1/2)2 =

∫ 1

0

x−1/2(1− x)−1/2dx.∫ 1

0

dx√
x− x3

=
1

2
B(1/4, 1/2) =

Γ(1/4)2

23/2π1/2∫ 1

0

dx√
1− x3

=
1

3
B(1/3, 1/2) =

Γ(1/3)3

24/331/2π
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Existence of rational approximations to a real
irrational number

Let ξ be a real number.

• From Dirichlet’s box principle one deduces that for each
Q > 1 there exists p/q ∈ Q with 1 ≤ q < Q such that∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qQ
·

• It follows that if ξ is irrational, then there are infinitely
many p/q ∈ Q satisfying∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2
·
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Construction of rational approximations

• Let x > 1 be a real number. Consider a rectangle with
sides 1 and x.

• Fill it as much as possible with squares of sides 1.

• A small rectangle remains.

• Fill the small rectangle with squares, as much as possible.

• Repeat the process.
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Construction of rational approximations :
reverse the process

• Let x > 1 be a real number.

• Start with the right number of smallest squares, but
ignore the remaining small rectangle. Say the small square
has sides 1.

• Put on top of these small squares the right number of
large squares.

• Continue up to having a rectangle with sides p and q
where p/q is a rational number very close to x.

• For instance starting with a single small square and
placing each time a single square we produce the
sequence of Fibonacci numbers F0 = 1, F1 = 1, F2 = 2,
F3 = 3, Fn+1 = Fn + Fn−1.
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The algorithm of continued fractions
Let x ∈ R.

• Write

x = [x] + {x} with [x] ∈ Z and 0 ≤ {x} < 1.

• If x is not an integer, then {x} '= 0 and we set
x1 = 1/{x}, so that

x = [x] +
1

x1
with [x] ∈ Z and x1 > 1.

• If x1 is not an integer, we set x2 = 1/{x1} :

x = [x] +
1

[x1] +
1

x2

with x2 > 1.
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Continued fraction expansion
Set a0 = [x] and ai = [xi] for i ≥ 1.

• Then :

x = [x] +
1

[x1] +
1

[x2] +
1
. . .

= a0 +
1

a1 +
1

a2 +
1
. . .

the algorithm stops after finitely many steps if and only if
x is rational.

• We use the notation

x = [a0 ; a1, a2, a3 . . . ]

• Remark : if ak ≥ 2, then
[a0 ; a1, a2, a3, . . . , ak] = [a0 ; a1, a2, a3, . . . , ak − 1, 1].
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Continued fractions and rational approximation

For
x = [a0; a1, a2, . . . , ak, . . .]

the sequence of rational numbers

pk/qk = [a0; a1, a2, . . . , ak] (k = 1, 2, . . .)

give rational approximations for x which are the best ones
when comparing the quality of the approximation and the size
of the denominator.
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Continued fractions : examples
• The developments

[1], [1; 1], [1; 1, 1], [1; 1, 1, 1], [1; 1, 1, 1, 1], [1; 1, 1, 1, 1, 1] . . .

are the quotients

F2/F1 F3/F2 F4/F3 F5/F4 F6/F5 F7/F6

‖ ‖ ‖ ‖ ‖ ‖ . . .
1 2 3/2 5/3 8/5 13/8

of consecutive Fibonacci numbers

(Fn)n≥0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

• The development [1; 1, 1, 1, 1 . . . ] is the continued fraction
expansion of the Golden Number

Φ =
1 +

√
5

2
= lim

n→∞
Fn+1

Fn
= 1, 6180339887499 . . .

which satisfies

Φ = 1 +
1
Φ
·
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Further examples
• The continued fraction expansion of the number√

2 = 1, 4142135623731 . . . is
√

2 = [1; 2, 2, 2, 2, 2, . . . ]

since √
2 = 1 +

1√
2 + 1

·
• The continued fraction expansion of

e = 2, 718281828459 . . . is (Euler)

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1 . . . ]

• The development of π = 3, 1415926535898 . . . starts with

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1 . . . ]
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Rational approximations to log2 3

• The logarithm in basis 2 of 3 :

log2 3 = (log 3)/ log 2 = 1, 58496250072 . . .

is the solution x of the equation 2x = 3

• Rational approximations a/b to log2 3 correspond to
powers of 2 which are close to powers of 3 :

log2 3 ) a/b, 2a ) 3b.

• The continued fraction expansion

log2 3 = [1; 1, 1, 2, 2, 3, 1, 5, . . . ]

produces numerical values which play an important role in
musical scales.
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Musical scales and Diophantine approximation

• An approximation to log2 3 = 1.5849625 . . . is :

[1; 1, 1, 2, 2] = 1 +
1

1 +
1

1 +
1

2 +
1

2

=
19

12
= 1, 5833 . . .

• 219 = 524 288 ) 312 = 531 441,
(3/2)12 = 129.74 . . . is close to 27 = 128.
Twelve fifths is a bit more than seven octaves

• Comma of Pythagoras : 312/219 = 1, 01364

1.36%
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Further remarkable approximations

• 53 = 125 ) 27 = 128 (5/4)3 = 1, 953 . . . ) 2
Three thirds (ratio 5/4) produce almost one octave.

• 210 = 1024 ) 103.
• Computers (kilo octets)
• Acoustic : multiplying the intensity of a sound by 10
means adding 10 decibels.
Multiplying the intensity by k, amounts to add d decibels
with 10d = k10.
Since 210 ) 103, doubling the intensity, is close to adding
3 decibels.
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Electric networks

• The resistance of a network in series

◦ R1−−→• R2−−→◦
is the sum R1 + R2.

• The resistance R of the parallel network

◦−−→•−−→•*R1

* R2

◦−−→•−−→•
satisfies

1

R
=

1

R1
+

1

R2
·
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Networks and continued fractions

The resistance U of the circuit

◦−−→• R−−→•*1/S

* 1/T

◦−−→• −−→•
is given by

U =
1

S +
1

R +
1

T
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Electric networks, continued fractions and
decomposition of a square into squares

• The resistance of the following network is given by a
continued fraction

[R0; S1, R1, S2, R2 . . . ]

for the circuit

◦ R0−−→• R1−−→• R2−−→• · · ·*1/S1

*1/S2

◦−−→•−−→•−−→• · · ·

Ri : resistances i series

1/Sj : resistances in parallele

• For instance when Ri = Sj = 1 we get the quotients of
consecutive Fibonacci numbers.

• Electric networks and continued fractions were use to find
the first solution to the problem of decomposing a
geometric integer square into distinct integer squares.
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Number Theory in Science and communication

M.R. Schroeder.
Number theory in science
and communication :
with applications in
cryptography, physics, digital
information, computing and
self similarity
Springer series in information
sciences 7 1986.
4th ed. (2006) 367 p.
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Quadratic numbers

• The continued fraction expansion of a real number is
ultimately periodic if and only if the number is a
quadratic number, that means root of a degree 2
polynomial with rational coefficients.

• A real number of the form
√

d with square-free d > 0 has
a continued fraction expansion of the form

[a0; a1, a2, . . . , ak, a1, a2, . . . , ak, a1, a2, . . . , ]

which we write for simplicity

[a0; a1, a2, . . . , ak].

• Hence
√

2 = [1; 2] and Φ = 1+
√

5
2 = [1; 1].
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Connexion with the equation x2 − dy2 = ±1

Let d be a square-free positive integer. Consider the
Diophantine equation

(1) x2 − dy2 = ±1

where the unknowns x, y are in Z.

• If (x, y) is a solution, then (x−√dy)(x +
√

dy) = 1,
hence x/y is a rational approximation of

√
d and this

approximation is sharper when x is larger.

• This is why a strategy for solving Pell’s equation (1) is
based on the continued fraction expansion of

√
d.
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The simplest example of Pell’s equation

A solution to Pell’s equation :

x2 − 2y2 = 1

is x = 3, y = 2, corresponding to the expansion

[1; 2] = 1 +
1

2
=

3

2
·

The number 3 + 2
√

2 is a unit of norm 1 in the quadratic
number field Q(

√
2).

The fundamental unit 1 +
√

2 has norm −1, it corresponds to
the fundamental solution x = 1, y = 1, of the equation
x2 − 2y2 = −1.

32 / 52



Problem of Brahmagupta (628)
• Brahmasphutasiddhanta : Solve in integers the equation

x2 − 92y2 = 1

• If (x, y) is a solution, then (x−√92y)(x +
√

92y) = 1,
hence x/y is a good approximation of√

92 = 9, 591663046625 . . ..
• The continued fraction expansion of

√
92 is

√
92 = [9; 1, 1, 2, 4, 2, 1, 1, 18]

reference : http ://wims.unice.fr/wims/

• According to the theory, a solution is obtained from

[9; 1, 1, 2, 4, 2, 1, 1] =
1151

120
.

• Indeed 11512 − 92 · 1202 = 1 324 801− 1 324 800 = 1.
33 / 52

Bhaskara II (12th Century)

• Lilavati

• (Bijaganita, 1150) x2 − 61y2 = 1

• x = 1 766 319 049, y = 226 153 980.
Cyclic method (Chakravala) of Brahmagupta.

• √61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

[7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] =
1 766 319 049
226 153 980

• [7; 1, 4, 3, 1, 2, 2, 1, 3, 5] =
29 718

3 805
• 29 7182 = 883 159 524, 61 · 38052 = 883 159 525

solution of x2 − 61y2 = −1.
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Narayana (14th Century)

• Narayana cows (Tom Johnson)

• x2 − 103y2 = 1
x = 227 528, y = 22 419.
227 5282 − 103 · 22 4192 = 51 768 990 784− 51 768 990 783 = 1.

• √103 = [10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

• [10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] =
227 528

22 419
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A reference on the History of Numbers

André Weil
Number theory. :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c :01004
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Riemannian varieties with negative curvature

• The study of the so-called Pell-Fermat Diophantine
equation yield the construction of Riemannian varieties
with negative curvature : arithmetic varieties.

• Nicolas Bergeron (Paris VI) : “Sur la topologie de certains
espaces provenant de constructions arithmétiques”
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Further connexions between Diophantine
approximation and Diophantine equations

• M. Bennett (1997) :
For any p/q ∈ Q, ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1

4 q2,5
·

• For any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ √x.

• Previous results : Thue, Siegel, Roth, Baker, Chudnovskii,
Easton, Rickert, Voutier,. . .
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Algebraic and transcendental numbers
• A complex number is algebraic if it is a root of a

non-zero polynomial with rational coefficients

a0 + a1α + a2α
2 + · · · + anα

n = 0

with a0, a1, . . . , an rational numbers, not all of which are
0.

• Examples
Rational numbers are algebraic : p/q ∈ Q is root of
qX − p.
The number

√
2 is algebraic, root of X2 − 2, and it is not

rational.
Also i, root of X2 + 1, is algebraic irrational.
Any root of unity is algebraic, root of some polynomial
Xn − 1.

• A number is transcendental if it is not algebraic.
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Ramanujan’s approximation for π

•
63

25

(
17 + 15

√
5

7 + 15
√

5

)
= 3.141 592 653 805 . . .

is a root of P (x) = 168 125 x2 − 792 225x + 829 521.

• The number

π = 3.141 592 653 589 . . .

is not root of a polynomial with integer coefficients.
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Rational approximation to algebraic numbers
Theorem (Liouville, 1844).
Let α be a real algebraic number. There exists κ > 0 such
that, for any rational number p/q distinct from α with q ≥ 2,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

qκ
·

Corollary.
Let ξ be a real number. Assume that for any κ > 0 there
exists a rational number p/q with q ≥ 2 such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qκ
·

Then ξ is transcendental.
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Liouville numbers
• Definition : A Liouville number is a real number such

that, for any κ > 0, there exists a rational number p/q
with q ≥ 2 satisfying

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qκ
·

• In dynamical systems theory, a Diophantine number (or a
number satisfying a Diophantine condition) is a real
number which is not Liouville : there exists κ ≥ 2 and
C > 0 such that ∣∣∣∣ξ − p

q

∣∣∣∣ ≥ C

qκ
·

• J.C. Yoccoz : Conjugaison différentiable des
difféomorphismes du cercle dont le nombre de rotation
vérifie une condition diophantienne. Ann. scient. Éc.
Norm. Sup. 4è série, t. 17 (1984), 333-359.
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Examples of transcendental numbers

• The number ∑
n≥0

2−n!

is transcendental (Liouville, 1844)

• The number e is transcendental (Hermite, 1873)

• The number π is transcendental (Lindemann, 1882)
Consequence : negative solution of the problem of
squaring the circle.

• Hermite–Lindemann Theorem. For algebraic α and β
with α '= 0, α '= 1, β '= 0, the numbers log α and eβ are
transcendental.

• Further examples : log 2, e
√

2 are transcendental.
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Hilbert’s seventh problem

• Seventh of Hilbert’s 23 problems (1900) : Prove the
transcendence of log α1/ log α2 and of αβ for algebraic α
and β.

• Examples : 2
√

2 and eπ = (−1)−i.
Recall αβ = exp(β log α).

• Solution by A.O. Gel’fond and Th. Schneider in 1934.
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Conseuquences of the Gel’fond–Schneider Theorem

Consequences : transcendence of

2
√

2, eπ = (eiπ)−i,
log 2

log 3

and of the Ramanujan number eπ
√

163 = a− 10−12b where

a = 262 537 412 640 768 744 ∈ Z, b = 0.7499274 · · ·
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Connexion with Diophantine approximation

• A.O. Gel’fond : lower bounds for |αβ
1 − α2|.

• Special case β ∈ Q : lower bounds for

|α−b1/b2
1 − α2|

• If α−b1/b2
1 ) α2 then αb1

1 ) α−b2
2 and αb1

1 αb2
2 ) 1.

• Lower bounds for |2p − 3q| and for∣∣∣∣log2 3− p

q

∣∣∣∣ .
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Gelfond-Baker’s method

• Gel’fond–Baker method : lower bounds for

|eβ0αβ1
1 · · ·αβn

n − 1|.
• Special case :

|eβ − α|
with algebraic α and β

• In particular when α and β are rational numbers, in
particular when they are rational integers :

|eb − a|
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Mahler’s problem (1967)

• For a and b positive integers,

|eb − a| > a−c?

• Stronger conjecture :

|eb − a| > b−c?

• K. Mahler (1953, 1967), M. Mignotte (1974),
F. Wielonsky (1997) :

|eb − a| > b−20b

• Joint work with Yu.V. Nesterenko (1996) for a and b
rational numbers, refinement by S. Khemira (2005).
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Exact rounding of the elementary functions

• Define H(p/q) = max{|p|, q). Then for a and b in Q
with b '= 0,

|eb − a| ≥ exp{−1, 3 · 105(log A)(log B)}
where A = max{H(a), A0}, B = max{H(b), 2}.

• Applications in theoretical computer science :
Muller, J-M. ; Tisserand, A. –
Towards exact rounding of the elementary functions.
Alefeld, Goetz (ed.) et al.,
Scientific computing and validated numerics.
Proceedings of the international symposium on scientific
computing, computer arithmetic and validated numerics
SCAN-95, Wuppertal, Germany, September 26-29, 1995.
Berlin : Akademie Verlag. Math. Res. 90, 59-71 (1996).
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Applications in theoretical computer science

Computer Arithmetic
—

Arénaire project
http ://www.ens-lyon.fr/LIP/Arenaire/

Validated scientific computing
Arithmetic. reliability, accuracy, and speed
Improvement of the available arithmetic on computers,
processors, dedicated or embedded chips
Getting more accurate results or getting them more quickly
Power consumption, reliability of numerical software.

50 / 52



Further applications of Diophantine Approximation

• Hua Loo Keng, Wang Yuan
Application of number theory to numerical analysis
Springer Verlag 1981

Equidistribution modulo 1, discrepancy, numerical
integration, interpolation, approximate solutions to
integral and differential equations.
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