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Abstract

Dynamical systems were studied by Henri Poincaré and Carl Ludwig Siegel,
who developed the theory of celestial mechanics. The behavior of a holo-
morphic dynamical system near a fixed point depends on a Diophantine con-
dition, already introduced by Joseph Liouville in 1844 when he constructed
the first examples of transcendental numbers. One of the deepest results in
Diophantine approximation is the Subspace Theorem of Wolfgang Schmidt.
We give an application related with linear recurrence sequences and expo-
nential polynomials, involving a dynamical system on a finite dimensional
vector space.
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1 Iteration of a map

Consider a set X and map f : X → X. We denote by f2 the composition
map f ◦ f : X → X. More generally, we define inductively fn : X → X by
fn = fn−1 ◦ f for n ≥ 1, with f0 being the identity. The orbit of a point
x ∈ X is the set

{x, f(x), f2(x), . . . } ⊂ X.

A fixed point is an element x ∈ X such that f(x) = x. Hence, a fixed point
is a point x, the orbit of which has only the element x.

A periodic point is an element x ∈ X for which there exists n ≥ 1 with
fn(x) = x. The smallest such n is the length of the period of x, and all such
n are the multiples of the period length. The orbit

{x, f(x), . . . , fn−1(x)}

has n elements. For instance, a fixed point is a periodic point of period
length 1.

2 Endomorphisms of a vector space

Take for X a finite dimensional vector space V over a field K and for f :
V → V a linear map. A fixed point of f is nothing else than an eigenvector
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with eigenvalue 1. A periodic point of f is an element x ∈ V such that there
exists n ≥ 1 with fn(x) = x, hence, f has an eigenvalue λ with λn = 1 (λ is
a root of unity).

If V has dimension d and if we choose a basis of V , then to f is associated
a d × d matrix A with coefficients in K. Then, for n ≥ 1, fn is the linear
map associated with the matrix An. To compute An, we write the matrix
A as a conjugate to either a diagonal or a Jordan matrix

A = P−1DP,

where P is a regular d× d matrix. Then, for n ≥ 0,

An = P−1DnP.

If D is a diagonal matrix with diagonal (λ1, . . . , λd), then Dn is a diagonal
matrix with diagonal (λn1 , . . . , λ

n
d ), so that

An = P−1

λ
n
1 · · · 0
...

. . .
...

0 · · · λnd

P.

Two examples are given in the Appendix.

In general, the matrix A can be written A = P−1DP with diagonal blocs

D =

D1 · · · 0
...

. . .
...

0 · · · Dk


where, for i = 1, . . . , k, Di is a di × di Jordan matrix

Di =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · λi


with d1 + · · · + dk = d (the diagonal case is the case d1 = · · · = dk = 1,
k = d). Then, for n ≥ 1,

Dn =

D
n
1 0

. . .

0 Dn
k
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with

Dn
i =



λni nλn−1i

(
n
2

)
λn−2i · · ·

(
n

di−2
)
λn−di−2i

(
n

di−1
)
λn−di−1i

0 λni nλn−1i · · ·
(

n
di−3

)
λn−di−3i

(
n

di−2
)
λn−di−2i

...
...

. . .
...

...

0 0 0 · · · nλn−1i

(
n
2

)
λn−2i

0 0 0 · · · λni nλn−1i

0 0 0 · · · 0 λni


.

3 Holomorphic dynamic

Our second and main example of a dynamical system is with an open set V
in C and an analytic (=holomorphic) map f : V → V. The main goal will
be to investigate the behavior of f near a fixed point z0 ∈ V. So we assume
f(z0) = z0. The local behavior of the dynamics defined by f depends on the
derivative f ′(z0) of f at the fixed point:
• If f ′(z0) = 0, then z0 is a super–attracting point.
• If 0 < |f ′(z0)| < 1, then z0 is an attracting point.
• If |f ′(z0)| > 1, then z0 is a repelling point.
• If |f ′(z0)| = 1, then z0 is an indifferent point.
When |f ′(z0)| = 1, the point z0 is a rationally indifferent point or a

parabolic point if f ′(z0) is a root of unity and is an irrationally indifferent
point if f ′(z0) is not a root of unity ([2], § 6.1, [10] §2.2).

We wish to mimic the situation of an endomorphism of a vector space:
in place of a regular matrix P , we introduce a local change of coordinates
h. Let D be the open unit disc in C and g : D → D an analytic map with
g(0) = 0. We say that f and g are conjugate if there exists an analytic map
h : V → D such that h(z0) = 0, h′(z0) 6= 0 and h ◦ f = g ◦ h:

z0 ∈ V
f−−−→ V 3 z0 f(z0) = z0

h

y y h

0 ∈ D −−−→
g

D 3 0 g(0) = 0

Assume f : V → V and g : D → D are conjugate: h ◦ f = g ◦ h. Then we
have

h ◦ f2 = h ◦ f ◦ f = g ◦ h ◦ f = g ◦ g ◦ h = g2 ◦ h

and by induction h ◦ fn = gn ◦ h for all n ≥ 0.
An important special case is when g is a homothety: g(z) = λz.
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Lemma 3.1. Assume f : V → V is conjugate to the homothety g(z) = λz.
Then
(a) λ = f ′(z0).
(b) Il λ is not a root of unity, then there exists a unique h : D → D with
h′(z0) = 1 and h ◦ f = g ◦ h.

Hence, in this case, f is conjugate to its linear part z → z0+(z−z0)f ′(z0).
One says that f is linearizable.

Proof. For part (a), take the derivative of h ◦ f = g ◦ h at z0:

h′(z0)f
′(z0) = λh′(z0)

and use h′(z0) 6= 0.
For part (b), the unicity when z0 is not a rationally indifferent point,

follows by induction from the equality between the Taylor expansions of
h ◦ f and g ◦ h at z = z0.

Define λ = f ′(z0). The following result is due to G. Kœnigs and H. Poin-
caré (1884) — see for instance, [2], § 6.3, [10] Th. 2.2, [13] §1, [14] § 6. Several
proofs are given in [2], § 6.3.

Theorem 3.2 (Kœnigs–Poincaré). Assume λ 6= 0 and |λ| 6= 1. Then f is
linearizable.

When λ = 0, f has a zero of multiplicity n ≥ 2 at z0 and is conjugate to
z 7→ zn (A. Böttcher) - see [14] Th. 6.7.

Assume now |λ| = 1. Write λ = e2iπθ. The real number θ is the rotation
number of f at z0. It was conjectured in 1912 by E. Kasner that f is always
linearizable, meaning that f is conjugate to the rotation z 7→ e2iπθz. In
1917, G.A. Pfeiffer produced a counterexample. In 1927, H. Cremer proved
that in the generic case, f is not linearizable. In 1942, C.L. Siegel proved
that if θ satisfies a Diophantine condition (see §4), then f is linearizable. In
1965, A.D. Brjuno relaxed Siegel’s assumption. In 1988, J.C. Yoccoz showed
that if θ does not satisfies Brjuno’s condition, then the dynamic associated
with

f(z) = λz + z2

has infinitely many periodic points in any neighborhood of 0, hence, is not
linearizable. See [10] §2.2, [13] §3 and [14] §8.
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4 Diophantine condition

Siegel’s Diophantine condition on the rotation number θ is that no good ratio-
nal approximation p/q of θ can have a small denominator q. The same con-
dition was introduced earlier by Liouville, who proved in 1844 that Siegel’s
Diophantine condition is satisfied if θ is an algebraic number.

Recall that a complex number α is algebraic if there exists a nonzero
polynomial f ∈ Z[X] such that f(α) = 0. The smallest degree of such
a polynomial is the degree of the algebraic number α. For instance,

√
2,

i =
√
−1, 3

√
2, e2iπa/b (for a and b integers, b > 0) are algebraic numbers.

There exist quintic polynomials X5+aX+b with a and b in Z having Galois
group the symmetric group S5 or the alternating group A5 which are not
solvable, their roots are algebraic numbers but cannot be expressed using
radicals.

A number which is not algebraic is transcendental. The existence of
transcendental numbers was not known before 1844, when Liouville pro-
duced the first examples, like

ξ =
∑
n≥0

1

10n!
·

The idea of Liouville is to prove a Diophantine property of algebraic num-
bers, namely that rational numbers with small denominators do not produce
sharp approximations. Hence, a real number with too good rational approx-
imations cannot be algebraic. For instance, with the above number ξ and
q = 10N !,

p =

N∑
n=0

10N !−n!, 0 < ξ − p

q
<

2

10(N+1)!
=

2

qN+1
·

Theorem 4.1 (Liouville’s inequality, 1844). Let α be an algebraic number
of degree d ≥ 2. There exists c(α) > 0 such that, for any p/q ∈ Q with
q > 0, ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd
·

A real number θ satisfies a Diophantine condition if there exists a con-
stant κ > 0 such that ∣∣∣∣θ − p

q

∣∣∣∣ > 1

qκ

for all p/q ∈ Q with q > 1.
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An irrational real number is a Liouville number if it does not satisfy a
Diophantine condition.

In dynamical systems, a property is satisfied for a generic rotation num-
ber θ if it is true for all real numbers in a countable intersection of dense
open sets — these sets are called Gδ sets by Baire, who calls meager the
complement of a Gδ set. According to Baire’s Theorem, a Gδ set is dense
in R.

The set of numbers which do not satisfy a Diophantine condition is a
generic set. However, for Lebesgue measure, the set of Liouville numbers
(i.e. the set of numbers which do not satisfy a Diophantine condition) has
measure zero.

In terms of continued fraction (see [10] §2.2, [13] §4), the Diophantine
condition (of Liouville and Siegel) can be written

sup
n≥1

log qn+1

log qn
<∞,

while the condition of Brjuno is∑
n≥1

log qn+1

qn
<∞.

If a number θ satisfies the Diophantine condition, then it satisfies Brjuno’s
condition. However, there are (transcendental) numbers which do not satisfy
the Diophantine condition, but satisfy Brjuno’s condition.

5 Schmidt’s Subspace Theorem

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d of q in the
denominator of the right hand side was replaced by κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• any κ > 2

√
d by C.L. Siegel in 1921,

• any κ >
√

2d by F.J. Dyson and A.O. Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.

Theorem 5.1 (Thue–Siegel–Roth Theorem). For any real algebraic number
α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.
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An equivalent statement is:

For any real algebraic number α and for any ε > 0, the set of
p/q ∈ Q such that

q|qα− p| < q−ε

is finite.

The conclusion can be phrased:

For any real algebraic number α and for any ε > 0, the set of
(p, q) ∈ Z2 such that

q|qα− p| < q−ε

is contained in the union of finitely many lines in Z2.

A powerful generalization has been achieved in 1970 by W.M. Schmidt.
Here is a special case of his Subspace Theorem [5, 6, 9, 12, 17, 24, 25].

Theorem 5.2 (Schmidt’s Subspace Theorem). Let m ≥ 2 be an integer and
L0, . . . , Lm−1 be m independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set{

x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · ·Lm−1(x)| ≤ |x|−ε
}

is contained in the union of finitely many proper subspaces of Qm.

Example: For m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1, we recover
Roth’s Theorem.

6 Generalized S–unit equation

The proof of Schmidt’s Subspace Theorem has an arithmetic nature; the fact
that the linear forms have algebraic coefficients is crucial. The conclusion
does not hold without this assumption.

However, there are specializations arguments1 ([16] §4, [18] §2, [19] §9)
which enable one to deduce consequences without any arithmetic assump-
tion: these corollaries are valid for fields of zero characteristic in general.

1As pointed out to me by Umberto Zannier, there are also independent (and easier)
arguments based on derivations which give Theorem 6.1 in the ”transcendental case”
(reducing it to the algebraic case or proving it completely, depending on the assumptions).
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An example is the so–called Theorem of the generalized S–unit equation,
achieved in the 1980’s by J.H. Evertse, A.J. van der Poorten and H.P. Schlick-
ewei. It relies on a generalization of Schmidt’s Subspace Theorem which
rests on works by Schmidt, Schlickewei and others, involving p–adic num-
bers [6, 12, 24].

Theorem 6.1 (Evertse, van der Poorten, Schlickewei). Let K be a field of
characteristic zero, let G be a finitely generated multiplicative subgroup of
the multiplicative group K× = K \ {0} and let n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un take their values in G, for which no non-
trivial subsum ∑

i∈I
ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.

7 Linear recurrence sequences and exponentials
polynomials

Let K be a field of zero characteristic. A sequence (un)n≥0 of elements of K
is a linear recurrence sequence if there exist an integer d ≥ 1 and elements
a0, a1, . . . , ad−1 of K with a0 6= 0 such that, for n ≥ 0,

un+d = ad−1un+d−1 + · · ·+ a1un+1 + a0un. (7.1)

In matrix notation, (7.1) can be written Un+1 = AUn, with

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0 a1 a2 · · · ad−1

 and Un =


un
un+1

...
un+d−2
un+d−1

 .

Hence Un = AnU0 for all n ≥ 0. Such a sequence (un)n≥0 is determined
by the coefficients a0, a1, . . . , ad−1 and by the initial values u0, u1, . . . , ud−1.
Given a = (a0, a1, . . . , ad−1) ∈ Kd, the set of sequences (un)n≥0 of elements
of K satisfying (7.1) is a K vector space Va of dimension d. A basis of Va is
obtained by taking for (u0, u1, . . . , ud−1) the elements of a basis of Kd.
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Let
det(XId −A) = Xd − ad−1Xd−1 − · · · − a1X − a0

be the characteristic polynomial of A. Denote by α1, . . . , αk its distinct roots
and by s1, . . . , sk their multiplicities, so that

Xd − ad−1Xd−1 − · · · − a1X − a0 =
k∏
i=1

(X − αi)si .

Computing An as mentioned in §2, one deduces that there exist polynomials
A1, . . . , Ak with Ai of degree < si such that

un =

k∑
i=1

Ai(n)αni . (7.2)

In other terms, the d sequences (njαni )n≥0, 0 ≤ j < di, 1 ≤ i ≤ k consti-
tute a basis for Va. Equation (7.2) shows that a linear recurrence sequence
is given by an exponential polynomial. Conversely, a sequence given by an
exponential polynomial (7.2) is a linear recurrence sequence. Another char-
acterization is that (un)n≥0 is a linear recurrence sequence if and only if the
generating series

u0 + u1z + · · ·+ unz
n + · · ·

is the Taylor series of a rational fraction A(z)/B(z), where the degree of the
denominator B is larger than the degree of the numerator A. Dropping this
condition on the degrees amounts to asking that there exists n0 ≥ 0 such
that the sequence (un−n0)n≥0 is a linear recurrence sequence.

Theorem 6.1 on the generalized S–unit equation, applied to the mul-
tiplicative subgroup of K× generated by α1, . . . , αk, yields the following
theorem — see [7, 11, 15, 19, 20, 23, 27]:

Theorem 7.3 (Skolem–Mahler–Lech). Given a linear recurrence sequence
(un)n≥0, the set of indices n ≥ 0 such that un = 0 is a finite union of
arithmetic progressions.

An arithmetic progression is a set of positive integers of the form

{n0, n0 + r, n0 + 2r, . . . }.

Here, we allow r = 0, which means that we consider a single point as an
arithmetic progression of ratio 0.

The original proofs of Theorem 7.3 did not use the arguments involved in
the proof of Theorem 6.1, but were more elementary. T.A. Skolem treated
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the case K = Q of in 1934, and K. Mahler the case K = Q, the algebraic
closure of Q, in 1935. The general case was settled by C. Lech in 1953, who
also pointed out that such a result may not hold if the characteristic of K is
positive: he gave as an example the sequence un = (1+x)n−xn−1, a third-
order linear recurrence over the field of rational functions in one variable
over the field Fp with p elements, where un = 0 for n ∈ {1, p, p2, p3, . . . }. A
substitute is provided by a result of Harm Derksen (2007), who proved that
the zero set in characteristic p is a p–automatic sequence; see [1].

A generalization of Theorem 7.3 has been achieved by Jason P. Bell,
Stanley Burris and Karen Yeats [4] who prove that the same conclusion as
in the Skolem–Mahler–Lech Theorem holds if the sequence (un)n≥0 satisfies
a polynomial-linear recurrence relation

un =
d∑
i=1

P (n)un−i

where d is a positive integer and P1, . . . , Pd are polynomials with coeffi-
cient in the field K of zero characteristic, provided that Pd(x) is a nonzero
constant. There are also analogues of Theorem 7.3 for algebraic maps on va-
rieties [3]. A version of the Skolem–Mahler–Lech Theorem for any algebraic
group is Thm. 4.25, p. 175 of [27].

One main open problem related with Theorem 7.3 is that it is not ef-
fective: explicit upper bounds for the number of arithmetic progressions,
depending only on the order d of the linear recurrence sequence, are known
[18, 19, 25, 26, 27], but no upper bound for the arithmetic progressions
themselves is known. A related open problem raised by T.A. Skolem and C.
Pisot (see [22, 23]) is:

Given an integer linear recurrence sequence, is the truth of the
statement “xn 6= 0 for all n” decidable in finite time?

We conclude this survey with a simple application of Theorem 7.3 to a
dynamical system. Let V be a finite dimensional vector space over a field
of zero characteristic, H a hyperplane of V , f : V → V an endomorphism
(linear map) and x an element in V .

Corollary 7.4. If there exist infinitely many n ≥ 1 such that fn(x) ∈ H,
then there is an infinite arithmetic progression of integers n for which it is
so.

Proof. Choose a basis of V . The endomorphism f is given by a square
d× d matrix A, where d is the dimension of V . Consider the characteristic
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polynomial of A, say

Xd − ad−1Xd−1 − · · · − a1X − a0.

By the Theorem of Cayley–Hamilton, we have

Ad = ad−1A
d−1 + · · ·+ a1A+ a0Id,

where Id is the identity d× d matrix. Hence, for n ≥ 0,

An+d = ad−1A
n+d−1 + · · ·+ a1A

n+1 + a0A
n.

It follows that each entry a
(n)
ij , 1 ≤ i, j ≤ d, satisfies a linear recurrence

sequence, the same for all i, j.
Let b1x1 + · · · + bdxd = 0 be an equation of the hyperplane H in the

selected basis of V . Let tb denote the 1× d (row) matrix (b1, . . . , bd) (trans-
pose of a column matrix b). Using the notation v for the d × 1 (column)
matrix given by the coordinates of an element v in V , the condition v ∈ H
can be written tb v = 0.

Let x be an element in V and x the column matrix given by its coordi-
nates. The condition fn(x) ∈ H can now be written

tbAnx = 0.

Denote by un the entry of the 1× 1 matrix tbAnx. Then there exists n0 ≥ 0
such that the sequence (un−n0)n≥0 is a linear recurrence sequence (with
n0 = 0 if the matrix A is regular), hence, the Skolem–Mahler–Lech Theorem
7.3 applies.

As pointed out to me by Pietro Corvaja, in Corollary 7.4, one may
replace H by a hypersurface, and more generally an algebraic subvariety.

Exponential Diophantine equations involving linear recurrence sequences
also occur in the work of P. Corvaja [8] on linear algebraic groups, where
he investigates semi–groups of matrices, with rational entries and rational
eigenvalues.

Appendix: two examples

In this appendix, we explain how to use the previous theory for computing
An1 and An2 , when

A1 =

(
1 0
−1 2

)
and A2 =

(
0 1
1 1

)
.
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The matrix A1 has trace 3, determinant 2 and characteristic polynomial
X2 − 3X + 2, hence the associated linear recurrence is

un+2 = 3un+1 − 2un.

From

An+2
1 = 3An+1

1 − 2An1 with A0
1 =

(
1 0
0 1

)
, A1 =

(
1 0
−1 2

)
,

one easily deduces by induction, for n ≥ 0

An1 =

(
1 0

1− 2n 2n

)
.

This result also can be obtained by diagonalizing A1 as follows. Since

X2 − 3X + 2 = (X − 1)(X − 2),

the two eigenvalues of A1 are 1 and 2 with eigenvectors (1, 1) and (0, 1)
respectively, so that

A1 = P−1DP

with

P =

(
1 0
−1 1

)
, D =

(
1 0
0 2

)
, P−1 =

(
1 0
1 1

)
.

Hence

An1 = P−1DnP =

(
1 0
1 1

)(
1 0
0 2n

)(
1 0
−1 1

)
=

(
1 0

1− 2n 2n

)
.

Consider now the matrix A2. The trace is 1, the determinant is −1, the
characteristic polynomial is X2 −X − 1, the linear recurrence is

un+2 = un+1 + un.

From

An+2
2 = An+1

2 +An2 with A0
2 =

(
1 0
0 1

)
, A2 =

(
0 1
1 1

)
,

it follows by induction that for n ≥ 0,

An2 =

(
Fn−1 Fn
Fn Fn+1

)
,
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where (Fn)n≥0 is the linear recurrence sequence Fn+2 = Fn+1 +Fn given by
the initial conditions F0 = 0, F1 = 1. This is the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . . ;

see reference
http://www.research.att.com/∼njas/sequences/A000045

in the On-Line Encyclopedia of Integer Sequences of Neil J. A. Sloane.
The characteristic polynomial of A2 splits as

X2 −X − 1 = (X − φ)(X + φ−1),

where φ is the Golden Ratio:

φ =
1 +
√

5

2
= 1.618033 . . . , φ−1 =

−1 +
√

5

2

and
φ− φ−1 = 1, φ+ φ−1 =

√
5.

The eigenvalues of A2 are φ and −φ−1 with eigenvectors (1, φ) and (1,−φ−1).
Hence

A2 = P−1DP

with

P =
−1√

5

(
−φ−1 −1
−φ 1

)
, D =

(
φ 0
0 −φ−1

)
, P−1 =

(
1 1
φ −φ−1

)
.

From

An2 = P−1DnP

=
−1√

5

(
1 1
φ −φ−1

)(
φn 0
0 (−φ)−n

)(
−φ−1 −1
−φ 1

)
=

(
Fn−1 Fn
Fn Fn+1

)
we deduce the so–called De Moivre–Euler–Binet formula

Fn =
1√
5

(
φn − (−φ)−n

)
,

proved by A. De Moivre in 1730, L. Euler in 1765 and P.M. Binet in 1843.
It follows that for n ≥ 0, Fn is the nearest integer to φn/

√
5. Further,

F0 + F1z + F2z
2 + · · ·+ Fnz

n + · · · = z

1− z − z2
·
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