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Abstract

Let
∏d
i=1(X−αiY ) ∈ C[X,Y ] be a binary form and let ε1, . . . , εd be nonzero

complex numbers. We consider the family of binary forms
∏d
i=1(X−αiεai Y ),

a ∈ Z, which we write as
Xd − U1(a)Xd−1Y + · · ·+ (−1)d−1Ud−1(a)XY d−1 + (−1)dUd(a)Y d.

In this paper we study these sequences
(
Uh(a)

)
a∈Z which turn out to be

linear recurrence sequences.

Résumé

Soit
∏d
i=1(X − αiY ) une forme binaire de C[X,Y ] et soit ε1, . . . , εd des

nombres complexes non nuls. Nous considérons la famille des formes binaires∏d
i=1(X − αiεai Y ), a ∈ Z, que nous écrivons sous la forme

Xd − U1(a)Xd−1Y + · · ·+ (−1)d−1Ud−1(a)XY d−1 + (−1)dUd(a)Y d.
Le but de cet article est d’étudier ces suites

(
Uh(a)

)
a∈Z qui s’avèrent être

des suites récurrentes linéaires.
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1 Introduction

Let us consider a binary form F0(X,Y ) ∈ C[X,Y ] which satisfies F0(1, 0) =
1. We write it as

F0(X,Y ) = Xd + a1X
d−1Y + · · ·+ adY

d =
d∏
i=1

(X − αiY ).

Let ε1, . . . , εd be d nonzero complex numbers not necessarily distinct. Twist-
ing F0 by the powers εa1, . . . , ε

a
d (a ∈ Z), we obtain the family of binary forms

Fa(X,Y ) =

d∏
i=1

(X − αiεai Y ), (1)

which we write as

Fa(X,Y ) = Xd−U1(a)Xd−1Y+· · ·+(−1)d−1Ud−1(a)XY d−1+(−1)dUd(a)Y d.
(2)

Therefore
Uh(0) = (−1)hah (1 ≤ h ≤ d).

In [6] and [7], we consider some families of diophantine equations

Fa(x, y) = m

obtained in the same way from a given irreducible form F (X,Y ) with co-
efficients in Z, when ε1, . . . , εd are algebraic units and when the algebraic
numbers α1ε1, . . . , αdεd are Galois conjugates with d ≥ 3. The results in [7]
are effective, the results in [6] are more general but not effective. The next
result follows from Theorem 3.3 of [6].

Theorem 1. Let K be a number field of degree d ≥ 3, S a finite
set of places of K containing the places at infinity. Denote by OS the
ring of S–integers of K and by O×S the group of S–units of K. Assume
α1, . . . , αd, ε1, . . . , εd belong to K×. Then there are only finitely many (x, y, a)
in OS ×OS × Z satisfying

Fa(x, y) ∈ O×S , xy 6= 0 and Card{α1ε
a
1, . . . , αdε

a
d} ≥ 3.

Section 2 is an introduction to linear recurrence sequences. In Section 3
we observe that in the general case each of the sequences

(
Uh(a)

)
a∈Z coming

from the coefficients of the relation (2) is a linear recurrence sequence.
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2 Linear recurrence sequences

Let us recall some well known facts about linear recurrence sequences; (see
for instance [10], Chapter C of [11], and also [1], [2], [4], [5], [9]). Then we
apply these results to the families of binary forms given in (1) and (2).

2.1 Generalities

Let K be a field of characteristic 0. The sequences
(
u(a)

)
a∈Z, with values in

K and indexed by Z, form a vector space KZ over K. Let c = (c1, . . . , cd) ∈
Kd with cd 6= 0. The sequences, satisfying the linear recurrence relation of
order d given by

u(a+ d) = c1u(a+ d− 1) + · · ·+ cdu(a), (3)

form a K–vector subspace Ec of KZ of dimension d, a natural canonical basis
being given by the d sequences u0, . . . , ud−1 defined by the initial conditions

uj(a) = δja (0 ≤ j, a ≤ d− 1),

δja being the Kronecker symbol

δja =

{
1 if j = a,

0 if j 6= a.

For u ∈ Ec, we have

u = u(0)u0 + u(1)u1 + · · ·+ u(d− 1)ud−1.

By definition, the characteristic polynomial of the linear recurrence relation
(3) is

P (T ) = T d − c1T
d−1 − · · · − cd−1T − cd ∈ K[T ],

where P (0) = −cd 6= 0.

A sequence u ∈ KZ satisfies a linear recurrence relation of order ≤ d if
and only if the sequences(

u(a+ j)
)
a∈Z (j = 0, 1, 2, . . . )

generate a vector space over K of dimension ≤ d. Remark that a linear
recurrence relation of order d may be viewed as a linear recurrence relation
of order d + s for any s ≥ 1. The dimension d0 of this vector space is the
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minimal order of the linear recurrence relation satisfied by u. The linear
recurrence relation of order d0 satisfied by u is unique; the characteristic
polynomial of this relation generates an ideal of K[T ] and the characteristic
polynomials of these linear recurrence relations satisfied by u are the monic
polynomials of this ideal.

2.2 Decomposed characteristic polynomial

As a preliminary step, let us assume that the polynomial P (T ) of degree d
splits completely in K[T ] as a product of linear factors:

P (T ) =
∏̀
j=1

(T − γj)tj

with tj ≥ 1, t1 + · · · + t` = d and with nonvanishing pairwise distinct ele-
ments γ1, . . . , γ`. Let us prove that a basis of Ec is given by the d sequences(

aiγaj
)
a∈Z (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1).

Firstly, we will show that these d sequences belong to the vector space Ec

(this part was omitted in [5]). Next, we will prove that they form a linearly
independent subset of Ec.

By hypothesis, for 1 ≤ j ≤ ` and 0 ≤ i ≤ tj−1, the derivative of order
i of the polynomial P (T ) is vanishing at the point γj . Let us recall that the
characteristic of K is 0. Instead of using the operator d/dT , we will use the
operator Td/dT which has the property(

T
d

dT

)i
T h = hiT h

for i ≥ 0 and h ≥ 0; we stipulate that hi = 1 for i = h = 0. For a ∈ Z,
1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1, the equation(

T
d

dT

)i
(T aP )(γj) = 0

can be written as

(a+ d)iγa+d
j =

d∑
k=1

(a+ d− k)ickγ
a+d−k
j (a ∈ Z),
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with the convention that for k = a+ d, the term (a+ d− k)i takes the value
1 for i = 0 and the value 0 for i ≥ 1. Therefore the sequence

(
aiγaj

)
a∈Z

belongs to the vector space Ec for 1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1.
Remark. In the literature, there are at least two further classical proofs

of this fact. One is to write the linear recurrence relation in a matrix form

U(a+ 1) = CU(a)

with

U(a) =


u(a)

u(a+ 1)
...

u(a+ d− 1)

 , C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
cd cd−1 cd−2 · · · c1

 .

The determinant of IdT −C (the characteristic polynomial of C) is nothing
but P (T ). To obtain the result, one writes the matrix C in its Jordan normal
form.

The other method consists in introducing the formal power series

U(z) =
∑
a≥0

u(a)za.

One has (
1−

d∑
i=1

ciz
i

)
U(z) =

d−1∑
j=0

(
u(j)−

j∑
i=1

ciu(j − i)

)
zj .

Hence U(z) is a rational fraction, with denominator

1−
d∑
i=1

ciz
i = zdP (1/z) =

∏̀
j=1

(1− γjz)tj ,

while the numerator is of degree < d. This rational fraction can be rewritten
using a partial fraction decomposition:

U(z) =
∑̀
j=1

tj−1∑
i=0

qij
(1− γjz)i+1

·
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For 1 ≤ j ≤ `, one develops (1−γjz)−i−1 as a power series expansion to get

1

(1− γjz)i+1
=

1

i!γij

(
d

dz

)i 1

1− γjz
=
∑
a≥0

(a+ 1)(a+ 2) · · · (a+ i)

i!
γaj z

a.

This allows to write u(a) as a linear combination of the elements γaj with
coefficients being polynomials of degree < tj evaluated at a.

Proving the linear independence of the set of the d sequences(
aiγaj

)
a∈Z, with 1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1,

boils down to showing that the determinant of the matrix

A =



1 γ1 γ2
1 . . . γk1 . . . γd−1

1

0 1 2γ1 . . . kγk−1
1 . . . (d− 1)γd−2

1...
...

...
. . .

...
. . .

...

0 0 0 . . .
(

k
t1−1

)
γk−t1+1

1 . . .
(
d−1
t1−1

)
γd−t11

1 γ2 γ2
2 . . . γk2 . . . γd−1

2

0 1 2γ2 . . . kγk−1
2 . . . (d− 1)γd−2

2...
...

...
. . .

...
. . .

...
0 0 0 . . .

(
k

t2−1

)
γk−t2+1

2 . . .
(
d−1
t2−1

)
γd−t22

...
...

...
...

...
...

...

1 γ` γ2
` . . . γk` . . . γd−1

`

0 1 2γ` . . . kγk−1
` . . . (d− 1)γd−2

`
...

...
...

. . .
...

. . .
...

0 0 0 . . .
(

k
t`−1

)
γk−t`+1
` . . .

(
d−1
t`−1

)
γd−t``



(4)

is different from 0. Note that

(
r

k

)
= 0 for r < k. Let us define sj to be

sj = t1 + · · ·+ tj−1 for 1 ≤ j ≤ ` with s1 = 0.

For 1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1, 0 ≤ k ≤ d − 1, the (sj + i, k) entry of the
matrix A is

1

i!

(
d

dT

)i
T k

∣∣∣∣∣
T=γj

=

(
k

i

)
γk−ij .

6



As a matter of fact, A is best described as being made of ` vertical blocks
A1, A2, . . . , A` where for 1 ≤ j ≤ `, Aj is the tj × d matrix

Aj =



1 γj γ2
j · · · γ

tj−1
j γ

tj
j · · · γd−1

j

0 1
(

2
1

)
γj . . .

(tj−1
1

)
γ
tj−2
j

(tj
1

)
γ
tj−1
j . . .

(
d−1

1

)
γd−2
j

0 0 1 . . .
(tj−1

2

)
γ
tj−3
j

(tj
2

)
γ
tj−2
j . . .

(
d−1

2

)
γd−3
j

...
...

...
. . .

...
...

. . .
...

0 0 0 . . . 1
( tj
tj−1

)
γj · · ·

(
d−1
tj−1

)
γ
d−tj
j


.

(5)
Denote by C0, . . . , Cd−1 the d columns of A. Let b0, . . . , bd−1 be complex

numbers such that
b0C0 + · · ·+ bd−1Cd−1 = 0.

The left side of this equality is an element of Kd, the d components of which
are all 0, and these d relations mean that the polynomial

b0 + b1T + · · ·+ bd−1T
d−1

vanishes at the point γj with multiplicity at least tj for 1 ≤ j ≤ `. Since
t1 + · · ·+ t` = d, we deduce that b0 = · · · = bd−1 = 0.

The determinant of A was calculated in [5]:

detA =
∏

1≤i<j≤`
(γj − γi)titj .

2.3 Interpolation.

The matrix A is associated with the linear system of d equations in d un-
knowns which amounts to finding a polynomial f ∈ K[z] of degree < d for
which the d numbers

dif

dzi
(γj), (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1)

take prescribed values. Sharp estimates related with this linear system are
provided by Lemma 3.1 of [8].

Before stating and proving the next proposition, we introduce the fol-
lowing notation.
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Let g ∈ K(z), let z0 ∈ K and let t ≥ 1. Assume z0 is not a pole of g. We
set

Tg,z0,t(z) =
t−1∑
i=0

dig

dzi
(z0)

(z − z0)i

i!
·

In other words, Tg,z0,t is the unique polynomial in K[z] of degree < t such
that there exists r(z) ∈ K(z) having no pole at z0 with

g(z) = Tg,z0,t(z) + (z − z0)tr(z).

Notice that if g is a polynomial of degree < t, then g = Tg,z0,t for any z0 ∈ K.

Proposition 1. Let γj (1 ≤ j ≤ `) be distinct elements in K, tj (1 ≤
j ≤ `) be positive integers, ηij (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1) be elements in K.
Set d = t1 + · · · + t`. There exists a unique polynomial f ∈ K[z] of degree
< d satisfying

dif

dzi
(γj) = ηij , (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1). (6)

For j = 1, . . . , `, define

hj(z) =
∏

1≤k≤`
k 6=j

(
z − γk
γj − γk

)tk
and pj(z) =

tj−1∑
i=0

ηij
(z − γj)i

i!
·

Then the solution f of the interpolation problem (6) is given by

f =
∑̀
j=1

hjT pj
hj
,γj ,tj

. (7)

Proof. The conditions (6) can be written

Tf,γk,tk = pk for k = 1, . . . , `.

The unicity is clear: the difference between two solutions is a polynomial of
degree < d which vanishes at d points (including multiplicity), hence is the
zero polynomial.

Since hj(γj) = 1, the quantity qj = T pj
hj
,γj ,tj

is well defined and is a

polynomial of degree < tj . Since hj is a polynomial of degree d − tj , the
polynomial f in (7), namely

f = h1q1 + · · ·+ h`q`,
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is a polynomial of degree < d. Let us prove that this polynomial f verifies
the equalities in (6). For 1 ≤ k 6= j ≤ ` and 0 ≤ i ≤ tk − 1, we have

dihj
dzi

(γk) = 0,

and therefore also
di(hjqj)

dzi
(γk) = 0.

Hence, for the function f given by (7) and for 1 ≤ k ≤ `, 0 ≤ i ≤ tk − 1, we
have

dif

dzi
(γk) =

di(hkqk)

dzi
(γk).

In other words, for 1 ≤ k ≤ `, we have

Tf,γk,tk = Thkqk,γk,tk .

By definition of T , the function qk −
pk
hk

has a zero of multiplicity ≥ tk at

γk, hence the same is true for the function hkqk − pk. Therefore, for any
k ∈ {1, . . . , `}, we have

Thkqk,γk,tk = pk,

whereupon, Tf,γk,tk = pk. This completes the proof.

The Lagrange–Hermite interpolation formula [3] deals with this question
when K = C and when the values ηij are of the form

ηij =
diF

dzi
(γj) (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1)

for a function F which is analytic in a domain containing the points γ1, . . . , γ`.

Proposition 2. Let D be a domain in C, F an analytic function in D,
γ1, . . . , γ` distinct points in D and Γ a simple curve inside which the points
γ1, . . . , γ` are located. Then the unique polynomial f ∈ C[z] of degree < d
satisfying

dif

dzi
(γj) =

diF

dzi
(γj), (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1)

is given, for z inside Γ, by

f(z) = F (z) +
1

2iπ

∫
Γ

Φ(ζ)dζ
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with

Φ(ζ) =
F (ζ)

z − ζ
∏̀
j=1

(
z − γj
ζ − γj

)tj
.

Proof. The residue at ζ = z of Φ(ζ) is −F (z). Under the assumptions of
Proposition 2 and with the notations of Proposition 1, we have

pj = TF,γj ,tj .

It remains to show that for 1 ≤ j ≤ `, the residue at ζ = γj of Φ(ζ) is

hj(z)T pj
hj
,γj ,tj

(z).

We first notice that for m ∈ Z and t ∈ Z with t ≥ 0, the residue at ζ = 0 of

ζm
(
z

ζ

)t 1

z − ζ

is zm for m ≤ t− 1 and z 6= 0, and is 0 otherwise, namely for z = 0 as well
as for m ≥ t. Therefore, when ϕ(ζ) is analytic at ζ = γ, the residue at ζ = γ
of

ϕ(ζ)

(
z − γ
ζ − γ

)t 1

z − ζ
is Tϕ,γ,t(z). Since

Φ(ζ) =
F (ζ)

z − ζ

(
z − γj
ζ − γj

)tj hj(z)
hj(ζ)

,

and since hj(γj) 6= 0, the residue at ζ = γj of Φ(ζ) is

hj(z)T F
hj
,γj ,tj

(z).

Finally, we notice that when ϕ1 and ϕ2 are analytic at γ, then Tϕ1ϕ2,γ,t =
Tϕ̃1ϕ2,γ,t with ϕ̃1 = Tϕ1,γ,t. This final remark with γ = γj , t = tj , ϕ1 = F ,
ϕ̃1 = pj , ϕ2 = 1/hj completes the proof.

There are other formulae for the solution to the interpolation problem
(6). For instance, writing tj times each γj , one gets a sequence z1, . . . , zd,
and the so–called Newton’s divided differences interpolation polynomials give
formulae for the coefficients c0, . . . , cd−1 in

f(z) = c0+c1(z−z1)+c2(z−z1)(z−z2)+· · ·+cd−1(z−z1)(z−z2) · · · (z−zd−1).
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2.4 Polynomial combinations of powers.

From the preceding sections, we deduce that the linear recurrence sequences
over an algebraically closed field of characteristic 0 are in bijection with the
linear combinations of the powers γaj (1 ≤ j ≤ `) with polynomial coefficients
of the form

u(a) =
∑̀
j=1

tj−1∑
i=0

vija
iγaj (a ∈ Z). (8)

The piece of data c = (c1, . . . , cd) ∈ Kd is equivalent to being given ` distinct
nonzero complex numbers γ1, . . . , γ` and ` positive integers t1, . . . , t` together
with the property that

T d − c1T
d−1 − · · · − cd−1T − cd =

∏̀
j=1

(T − γj)tj

with d = t1 + · · ·+ t`.

A change of basis for Kd, involving the transition matrix(
aiγaj

)
0≤a≤d−1

1≤j≤`,0≤i≤tj−1

,

allows to switch from the initial conditions u(a) for 0 ≤ a ≤ d − 1 to the d
coefficients vij of (8).

Since
1

1− γjz
=
∑
a≥0

(γjz)
a

and (
z

d

dz

)i
(γjz)

a = ai(γjz)
a,

the generating function of the sequence
(
u(a)

)
a∈Z given by (8) is

U(z) =
∑
a≥0

u(a)za =
∑̀
j=1

tj−1∑
i=0

vij

(
z

d

dz

)i( 1

1− γjz

)
,

which is a rational fraction with denominator
∏̀
j=1

(1− γjz)tj , as expected.
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2.5 The ring of linear recurrence sequences.

A sum and a product of two polynomial combinations of powers is still a
polynomial combination of powers. If U1 and U2 are two linear recurrence
sequences of characteristic polynomials P1 and P2 respectively, then U1 +U2

satisfies the linear recurrence, the characteristic polynomial of which is

P1P2

gcd(P1, P2)
·

Consequently, the union of all vector spaces Ec, with c running through the
set of d–tuples (c1, . . . , cd) ∈ Kd subject to cd 6= 0, and d running through
the set of integers ≥ 1, is still a vector subspace of KZ.

Moreover, if the characteristic polynomials of the two linear recurrence
sequences U1 and U2 are respectively

P1(T ) =
∏̀
j=1

(T − γj)tj and P2(T ) =
`′∏
k=1

(T − γ′k)t
′
k ,

then U1U2 satisfies the linear recurrence, the characteristic polynomial of
which is ∏̀

j=1

`′∏
k=1

(T − γjγ′k)tj+t′k−1.

As a consequence, the linear recurrence sequences form a ring.

2.6 Non homogeneous linear recurrence sequences

Let us suppose now that a factorisation of the characteristic polynomial
P (T ) of a linear recurrence relation is of the form P = QR, with R com-
pletely decomposed in K[T ]. Let us write

P (T ) = T d−
d∑
i=1

ciT
d−i, Q(T ) = Tm−

m∑
i=1

biT
m−i, R(T ) =

∏̀
j=1

(T−γj)tj .

Hence d = m + t1 + · · · + t`. Then the elements of Ec are the sequences(
u(a))a∈Z for which there exist d−m elements

λij (1 ≤ j ≤ `, 0 ≤ i ≤ tj − 1)
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in K such that

u(a+m) = b1u(a+m− 1) + · · ·+ bmu(a) +
∑̀
j=1

tj−1∑
i=0

λija
iγaj . (9)

In order to define an element
(
u(a)

)
a∈Z of Ec by using the homogenous

recurrence relation in (3), we have to give d initial values, for instance
u(0), . . . , u(d− 1). In order to define this sequence by using the non homoge-
neous recurrence relation (9), it is sufficient to have m initial conditions, say
u(0), . . . , u(m− 1), but we also have to know the elements λij for 1 ≤ j ≤ `
and 0 ≤ i ≤ tj − 1 (which altogether are d conditions, as is required in a
vector space of dimension d).

Consider the transition matrix associated to the change of basis, allowing
to switch from the initial conditions

u(a) for 0 ≤ a ≤ d− 1

to the initial conditions

u(a) for 0 ≤ a ≤ m− 1 and λij for 1 ≤ j ≤ ` and 0 ≤ i ≤ tj − 1.

It is a matrix which has only a diagonal of two blocks,

(
Im 0
0 A

)
with A =

A1
...
A`

 .

The first block Im is the m ×m identity matrix. The second block A is a
generalized Vandermonde matrix similar to the matrix in (4) made of the
blocks A1, . . . , A` described in (5).

A particular case is the trivial one when P = Q, m = d and R = 1.
Another one is when P = R, Q = 1 and m = 0, which corresponds to the
case studied in Section 2.2.

Example. Let us consider

P (T ) = (T − γ)2, Q(T ) = R(T ) = T − γ.

There are three ways of defining an element
(
u(a)

)
a∈Z of the vector space

Ec when c = (2,−1). The first one is to mention that the sequence satisfies
the binary linear recurrence relation

u(a+ 2) = 2u(a+ 1)− u(a) (a ∈ Z)
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and give two initial values, for, say u(0) and u(1). The second one is to
write

u(a) = (λ1 + λ2a)γa (a ∈ Z)

and give the values of λ1 and λ2. The third one is in-between the previous
ones; one writes that the sequence satisfies

u(a+ 1) = γu(a) + λγa (a ∈ Z)

while providing an initial value, for, say u(0), and the value of λ.

2.7 Exponential polynomials

The sequence of derivatives of an exponential polynomial evaluated at one
point satisfies a linear recurrence relation. This allows us to deduce the
following well known result (Ch. I, §7 of [12]).

Lemma 1. Let a1(z), . . . , a`(z) be nonzero polynomials of C[z] of de-
grees smaller than t1, . . . , t` respectively. Let γ1, . . . , γ` be distinct complex
numbers. Let us suppose that the function

F (z) = a1(z)eγ1z + · · ·+ a`(z)e
γ`z

is not identically 0. Then its vanishing order at a point z0 is smaller than
or equal to t1 + · · ·+ t` − 1.

Proof. Define d = t1 + · · ·+ t`. We give two proofs of Lemma 1. A short one
by induction on d is as follows. For d = 1 we have ` = 1 and F has no zero.
Assume ` ≥ 2. Without loss of generality we may assume γ1 = 0. If F has a
zero of multiplicity ≥ T0 at z0, then F (z)− a1(z) has a zero of multiplicity
≥ T0 − t1 at z0. The result follows.

Our second proof relates Lemma 1 with linear recurrence sequences. We
now assume γ1, . . . , γ` all nonzero, as we may without loss of generality.
Write the Taylor expansion of F (z + z0) at z = 0:

F (z + z0) =
∑
a≥0

u(a)

a!
za.

Let us show that the sequence (u(0), u(1), . . . , u(a), . . . ) satisfies a linear
recurrence relation of order ≤ d. Define aij ∈ C by

aj(z + z0)eγjz0 =

tj−1∑
i=0

aijz
i (1 ≤ j ≤ `),
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so that

F (z + z0) =
∑̀
j=1

tj−1∑
i=0

aijz
ieγjz.

Since γj 6= 0 for j = 1, . . . , `,

u(a) =
∑̀
j=1

tj−1∑
i=0

aija(a− 1) · · · (a− i+ 1)γa−ij

has the same form as in (8). Therefore the sequence
(
u(a)

)
a∈Z satisfies a

linear recurrence relation of order ≤ d. It follows that the conditions

u(0) = · · · = u(d− 1) = 0

imply u(a) = 0 for any a ≥ 0.

We can state this lemma in the following way: When the complex num-
bers γj are distinct, the determinant∣∣∣∣( d

dz

)a (
zieγjz

)
z=0

∣∣∣∣ 0≤i≤tj−1, 1≤j≤`

0≤a≤d−1

is different from 0. This is no surprise that we come across the determinant
of the matrix (4).

3 Families of binary forms

The equations (1) and (2) give, for 1 ≤ h ≤ d and a ∈ Z,

Uh(a) =
∑

1≤i1<···<ih≤d
αi1 · · ·αih(εi1 · · · εih)a. (10)

For example, for a ∈ Z,

U1(a) =

d∑
i=1

αiε
a
i , Ud(a) =

d∏
i=1

αiε
a
i .

The relations (10) show that for 1 ≤ h ≤ d, the sequence
(
Uh(a)

)
a∈Z is

a linear combination of the sequences(
(εi1 · · · εih)a

)
a∈Z, (1 ≤ i1 < · · · < ih ≤ d).
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For 1 ≤ h ≤ d, consider the set

Eh = {εi1 · · · εih | 1 ≤ i1 < · · · < ih ≤ d}

and note mh its cardinality. The elements of Eh are values of monomials in
m1 variables of degree h. The map from Eh to Ed−h defined by

η 7→ ε1 · · · εdη−1

is a bijection and we have

mh = md−h ≤ min

{(
d

h

)
,

(
m1 + h− 1

h

)
,

(
m1 + d− h− 1

d− h

)}
.

The sequence
(
Uh(a)

)
a∈Z satisfies the linear recurrence relation of order

mh with the characteristic polynomial∏
η∈Eh

(T − η).

This polynomial is also written as∏
η∈Ed−h

(T − ε1 · · · εdη−1),

which is matching (10) via

Uh(a) = Ud(a)
∑

1≤j1<···<jd−h≤d
(αj1 · · ·αjd−h

)−1(εj1 · · · εjd−h
)−a.

For example, the sequence
(
Ud−1(a)

)
a∈Z satisfies the linear recurrence rela-

tion of order d, the characteristic polynomial of which is

d∏
i=1

(T − ε1 · · · εdε−1
i ) = (T − ε2 · · · εd)(T − ε1ε3 · · · εd) · · · (T − ε1 · · · εd−1).

The case ε1 = . . . = εd is trivial: we have

Uh(a) = εa1Uh(0) = (−1)hahε
a
1,

and each of the sequences
(
Uh(a)

)
a∈Z satisfies

Uh(a+ 1) = ε1Uh(a).
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Let us consider the example

ε1 = . . . = ε` = ε, ε`+1 = . . . = εd = η,

with ε and η being two distinct complex numbers. We have

E1 = {ε, η}, Ed−1 = {ε`−1ηd−`, ε`ηd−`−1}

and

E2 = {ε2, εη, η2}, Ed−2 = {ε`−2ηd−`, ε`−1ηd−`−1, ε`ηd−`−2}.

The sequence
(
U1(a)

)
a∈Z satisfies the binary recurrence relation, the char-

acteristic polynomial of which is

(T − ε)(T − η);

the sequence
(
Ud−1(a)

)
a∈Z satisfies the binary recurrence relation, the char-

acteristic polynomial of which is

(T − ε`−1ηd−`)(T − ε`ηd−`−1),

while the sequence
(
U2(a)

)
a∈Z satisfies the ternary recurrence relation, the

characteristic polynomial of which is

(T − ε2)(T − η2)(T − εη).

In particular, if one writes

(T − ε2)(T − η2) = T 2 −AT −B,

then there exists a constant C ∈ C such that, for any a ∈ Z, one has

U2(a+ 2) = AU2(a+ 1) +BU2(a) + C(εη)a.

Finally, the sequence
(
Ud−2(a)

)
a∈Z satisfies the ternary recurrence relation,

the characteristic polynomial of which is

(T − ε`−2ηd−`)(T − ε`−1ηd−`−1)(T − ε`ηd−`−2).
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Québec (Québec)
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