Exercices: hints, solutions, comments

Second course

1. Prove the two lemmas on entire functions p. 16.
2.

Lemma. An entire function f is periodic of period $\omega \neq 0$ if and only if there exists a function g analytic in \mathbb{C}^{\times}such that $f(z)=g\left(\mathrm{e}^{2 i \pi z / \omega}\right)$.

Solution. The map $z \mapsto \mathrm{e}^{i \pi z}$ is analytic and surjective. The condition $\mathrm{e}^{i \pi z}=\mathrm{e}^{i \pi z^{\prime}}$ implies $f(z)=f\left(z^{\prime}\right)$. Hence there exists a unique map $g: \mathbb{C}^{\times} \rightarrow \mathbb{C}$ such that $g\left(\mathrm{e}^{2 i \pi z}\right)=f(z)$.

Let $t \in \mathbb{C}^{\times}$and let $z \in \mathbb{C}$ be such that $t=\mathrm{e}^{2 i \pi z}$. Then $g(t)=f(z)$ and $g^{\prime}(t)=\frac{1}{2 \pi} f^{\prime}(z)$.
This proves the first lemma.
Lemma. If g is an analytic function in \mathbb{C}^{\times}and if the entire function $g\left(\mathrm{e}^{2 i \pi z / \omega}\right)$ has a type $<2(N+1) \pi /|\omega|$, then $t^{N} g(t)$ is a polynomial of degree $\leq 2 N$.

Therefore, if $g\left(\mathrm{e}^{2 i \pi z / \omega}\right)$ has a type $<2 \pi /|\omega|$, then g is constant.
Solution. Assume that the function $f(z)=g\left(\mathrm{e}^{2 i \pi z / \omega}\right)$ has a type $\tau<2(N+1) \pi /|\omega|$. Let $t \in \mathbb{C}^{\times}$. Write $t=|t| \mathrm{e}^{i \theta}$ with $|\theta| \leq \pi$. Set

$$
z=\frac{\omega}{2 i \pi}(\log |t|+i \theta)
$$

so that $t=\mathrm{e}^{2 i \pi z / \omega}$. For any $\epsilon_{1}>0$, we have

$$
|z| \leq\left(\frac{\omega}{2 \pi}+\epsilon_{1}\right)|\log | t| |
$$

for sufficiently large $|t|$ and also for sufficiently small $|t|$. We deduce

$$
\log |g(t)|=\log |f(z)| \leq\left(\tau+\epsilon_{2}\right)|z| \leq\left(\frac{\omega \tau}{2 \pi}+\epsilon_{3}\right)|\log | t| |
$$

Notice that

$$
\frac{\omega \tau}{2 \pi}<N+1
$$

Hence $|g|_{r} \leq e^{\alpha r}$ for sufficiently large r and also for sufficiently small $r>0$ with $\alpha<N+1$.
Write

$$
g(t)=\sum_{n \in \mathbb{Z}} b_{n} t^{n}
$$

From

$$
b_{n}=\frac{1}{2 \pi} \int_{|t|=r} g(t) \frac{\mathrm{d} t}{t^{n+1}}
$$

we deduce Cauchy's inequalities

$$
\left|b_{n}\right| r^{n} \leq \frac{1}{2 \pi}|g|_{r}
$$

For $n>N$, we use these inequalities with $r \rightarrow \infty$ while for $n<-N$, we use these inequalities with $r \rightarrow 0$. We deduce $b_{n}=0$ for $|n| \geq N+1$. Hence

$$
g(t)=\frac{1}{t^{N}} A(t)+B(t)
$$

where A and B are polynomials of degree $\leq N$.
2. Check $c_{n}^{\prime \prime}=c_{n-1}$ for $n \geq 1$ p. 22 .
2. The function

$$
F(z, t)=\frac{\mathrm{e}^{t z}-\mathrm{e}^{-t z}}{\mathrm{e}^{t}-\mathrm{e}^{-t}}=\sum_{n \geq 0} c_{n}(z) t^{2 n}
$$

satisfies

$$
\left(\frac{\partial}{\partial z}\right)^{2} F(z, t)=t^{2} F(z, t)
$$

Since

$$
\left(\frac{\partial}{\partial z}\right)^{2} F(z, t)=\sum_{n \geq 0} c_{n}^{\prime \prime}(z) t^{2 n}=c_{0}^{\prime \prime}(z)+c_{1}^{\prime \prime}(z) t^{2}+c_{2}^{\prime \prime}(z) t^{4}+\cdots
$$

and

$$
t^{2} F(z, t)=\sum_{n \geq 0} c_{n}(z) t^{2 n}=c_{0}(z) t^{2}+c_{1}(z) t^{4}+c_{2}(z) t^{6}+\cdots
$$

we deduce $c_{0}^{\prime \prime}(z)=0$ and $c_{n}^{\prime \prime}(z)=c_{n-1}(z)$ for $n \geq 1$.
As a matter of fact, $c_{0}(z)=\Lambda_{0}(z)=z, c_{n}(z)=\Lambda_{n}(z)$ for $n \geq 0$.
3. Let S be a positive integer and let $z \in \mathbb{C}$. Using Cauchy's residue Theorem, compute the integral (see p. 26)

$$
\frac{1}{2 \pi i} \int_{|t|=(2 S+1) \pi / 2} t^{-2 n-1} \frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)} \mathrm{d} t .
$$

3. The poles of the function

$$
t \mapsto \frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)}=\frac{\mathrm{e}^{t z}-\mathrm{e}^{-t z}}{\mathrm{e}^{t}-\mathrm{e}^{-t}}
$$

are the complex numbers t such that $\mathrm{e}^{2 t}=1$, namely $t \in i \pi \mathbb{Z}$.
The poles inside $|t| \leq(2 S+1) \pi / 2$ are the $i \pi s$ with $-S \leq s \leq S$.
The residue at $t=0$ of $t^{-2 n-1} \frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)}$ is the coefficient ot $t^{-2 n}$ in the Taylor expansion of $\frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)}$, hence it is $\Lambda_{n}(z)$.

Let s be an integer in the range $1 \leq s \leq S$. Write $t=i \pi s+\epsilon$. Then

$$
\mathrm{e}^{t}=(-1)^{s}(1+\epsilon+\cdots), \quad \mathrm{e}^{-t}=(-1)^{s}(1-\epsilon+\cdots,) \quad \mathrm{e}^{t}-\mathrm{e}^{-t}=(-1)^{s} 2 \epsilon+\cdots,
$$

and

$$
\mathrm{e}^{t z}=\mathrm{e}^{i \pi s z}, \quad \mathrm{e}^{-t z}=\mathrm{e}^{-i \pi s z}
$$

so that

$$
\frac{\mathrm{e}^{t z}-\mathrm{e}^{-t z}}{\mathrm{e}^{t}-\mathrm{e}^{-t}}=(-1)^{s} \frac{i \sin (\pi s)}{\epsilon}+\cdots
$$

Therefore the residue $t=i \pi s$ of $t^{-2 n-1} \frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)}$ is

$$
(-1)^{n+s}(\pi s)^{-2 n-1}
$$

For $-S \leq s \leq-1$, the residue at $i \pi s$ is the same.
This proves the formula p. 26 :

$$
\Lambda_{n}(z)=(-1)^{n} \frac{2}{\pi^{2 n+1}} \sum_{s=1}^{S} \frac{(-1)^{s}}{s^{2 n+1}} \sin (s \pi z)+\frac{1}{2 \pi i} \int_{|t|=(2 S+1) \pi / 2} t^{-2 n-1} \frac{\operatorname{sh}(t z)}{\operatorname{sh}(t)} \mathrm{d} t
$$

for $S=1,2, \ldots$ and $z \in \mathbb{C}$.
4. Prove the proposition p. 31:

Let f be an entire function. The two following conditions are equivalent.
(i) $f^{(2 k)}(0)=f^{(2 k)}(1)=0$ for all $k \geq 0$.
(ii) f is the sum of a series

$$
\sum_{n \geq 1} a_{n} \sin (n \pi z)
$$

which converges normally on any compact.
Prove also the following result :
Let f be an entire function. The two following conditions are equivalent.
(i) $f^{(2 k+1)}(0)=f^{(2 k)}(1)=0$ for all $k \geq 0$.
(ii) f is the sum of a series

$$
\sum_{n \geq 1} a_{n} \cos \left(\frac{(2 n+1) \pi}{2} z\right)
$$

which converges normally on any compact.
4.
(a) For $n \geq 1$, the function $z \mapsto \sin (n \pi z)$ satisfies (i). Hence (ii) implies (i).

Let us check that (i) implies $(i i)$. The conditions $f^{(2 k)}(0)=0$ for all $k \geq 0$ mean $f(-z)=$ $-f(z)$. The conditions $f^{(2 k)}(1)=0$ for all $k \geq 0$ mean $f(1+z)=-f(1-z)$. Hence $f^{(2 k)}(0)=$ $f^{(2 k)}(1)=0$ for all $k \geq 0$ imply $f(z+2)=f(z)$, which means that f is periodic of period 2 . Since f is an entire function, from the first lemma p. 16, there exists a function g analytic in \mathbb{C}^{\times} such that $f(z)=g\left(\mathrm{e}^{i \pi z}\right)$. Now the condition $f(z)=-f(-z)$ implies $g(1 / t)=-g(t)$. Let us write

$$
g(t)=\sum_{n \in \mathbb{Z}} b_{n} t^{n}
$$

The Laurent series on the right hand side converges normally on every compact in \mathbb{C}^{\times}. The condition $g(1 / t)=-g(t)$ implies $b_{-n}=-b_{n}$ for all $n \in \mathbb{Z}$, hence $b_{0}=0$ and

$$
g(t)=\sum_{n \geq 1} b_{n}\left(t^{n}-t^{-n}\right)
$$

which implies condition (ii) with $a_{n}=2 i b_{n}$.
(b) For $n \geq 1$, the function $z \mapsto \cos \left(\frac{(2 n+1) \pi}{2} z\right)$ satisfies (i). Hence (ii) implies (i).

Let us check that (i) implies $(i i)$. The conditions $f^{(2 k+1)}(0)=0$ for all $k \geq 0$ mean $f(-z)=$ $f(z)$. The conditions $f^{(2 k)}(1)=0$ for all $k \geq 0$ mean $f(1+z)=f(1-z)$. We deduce that f
is periodic of period 4 . Since f is an entire function, from the first lemma p. 16, there exists a function g analytic in \mathbb{C}^{\times}such that $f(z)=g\left(\mathrm{e}^{i \pi z / 2}\right)$. Now the condition $f(z)=f(-z)$ implies $g(1 / t)=g(t)$. We deduce in the same way as above

$$
g(t)=\sum_{n \geq 1} b_{n}\left(t^{n}+t^{-n}\right)
$$

which implies condition (ii).
5. Complete the three proofs of the Lemma p. 33.
5. Lemma. Let f be a polynomial satisfying

$$
f^{(2 n+1)}(0)=f^{(2 n)}(1)=0 \text { for all } n \geq 0 .
$$

Then $f=0$.
Let f be a polynomial satisfying

$$
f^{(2 n+1)}(0)=f^{(2 n)}(1)=0 \text { for all } n \geq 0 .
$$

- First proof By induction on the degree of the polynomial f.

If f has degree ≤ 1, say $f(z)=a_{0} z+a_{1}$, the conditions $f^{\prime}(0)=f(1)=0$ imply $a_{0}=a_{1}=0$, hence $f=0$.

If f has degree $\leq n$ with $n \geq 2$ and satisfies the hypotheses, then $f^{\prime \prime}$ also satisfies the hypotheses and has degree $<n$, hence by induction $f^{\prime \prime}=0$ and therefore f has degree ≤ 1. The result follows.

- Second proof The assumption $f^{(2 n+1)}(0)=0$ for all $n \geq 0$ means that f is an even function : $f(-z)=f(z)$. The assumption $f^{(2 n)}(1)=0$ for all $n \geq 0$ means that $f(1-z)$ is an odd function : $f(1-z)=-f(1+z)$. We deduce $f(z+2)=f(1+z+1)=-f(1-z-1)=-f(-z)=-f(z)$, hence $f(z+4)=f(z)$; it follows that the polynomial f is periodic, and therefore it is a constant. Since $f(1)=0$, we conclude $f=0$.
- Third proof Write

$$
f(z)=a_{0}+a_{2} z^{2}+a_{4} z^{4}+a_{6} z^{6}+a_{8} z^{6}+\cdots+a_{2 n} z^{2 n}+\cdots
$$

(finite sum). We have $f(1)=f^{\prime \prime}(1)=f^{(\text {iv })}(1)=\cdots=0$:

$$
\begin{array}{cccccc}
a_{0} & +a_{2} & +a_{4} & +a_{6} & +\cdots & +a_{2 n} \\
& 2 a_{2} & +12 a_{4} & +30 a_{5} & +\cdots & +2 n(2 n-1) a_{2 n} \\
& 24 a_{4} & +360 a_{6} & +\cdots & +\cdots=0 \\
& +\cdots \frac{(2 n)!}{(2 n-4)!} a_{2 n} & +\cdots=0
\end{array}
$$

The matrix of this system is triangular with maximal rank.
6. Let $\left(M_{n}(z)\right)_{n \geq 0}$ and $\left(\widetilde{M}_{n}(z)\right)_{n \geq 0}$ be two sequences of polynomials such that any polynomial $f \in \mathbb{C}[z]$ has a finite expansion

$$
f(z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}(1) M_{n}(z)+f^{(2 n+1)}(0) \widetilde{M}_{n}(z)\right)
$$

with only finitely many nonzero terms in the series (see p. 34). Check

$$
\widetilde{M}_{n}(z)=-M_{n+1}^{\prime}(1-z)
$$

for $n \geq 0$.
Hint: Consider $f^{\prime}(1-z)$.
6. Define $\widetilde{f}(z)=f^{\prime}(1-z)$. Write

$$
f(z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}(1) M_{n}(z)+f^{(2 n+1)}(0) \widetilde{M}_{n}(z)\right) .
$$

Then

$$
f^{\prime}(z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}(1) M_{n}^{\prime}(z)+f^{(2 n+1)}(0) \widetilde{M}_{n}^{\prime}(z)\right)
$$

and

$$
\widetilde{f}(z)=f^{\prime}(1-z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}(1) M_{n}^{\prime}(1-z)+f^{(2 n+1)}(0) \widetilde{M}_{n}^{\prime}(1-z)\right)
$$

The coefficient of $f^{(2 n+2)}(1)$ is $M_{n+1}^{\prime}(1-z)$.
However we also have

$$
\widetilde{f}(z)=\sum_{n=0}^{\infty}\left(\widetilde{f}^{(2 n)}(1) M_{n}(z)+\widetilde{f}^{(2 n+1)}(0) \widetilde{M}_{n}(z)\right) .
$$

Since $\widetilde{f}^{(2 n)}(1)=-f^{(2 n+1)}(0)$ and $\widetilde{f}^{(2 n+1)}(0)=-f^{(2 n+2)}(1)$, this yields

$$
\widetilde{f}(z)=\sum_{n=0}^{\infty}\left(-f^{(2 n+1)}(0) M_{n}(z)-f^{(2 n+2)}(1) \widetilde{M}_{n}(z)\right)
$$

The coefficient of $f^{(2 n+2)}(1)$ is $-\widetilde{M}_{n}(z)$.
From the unicity of the expansion we conclude

$$
-\widetilde{M}_{n}(z)=M_{n+1}^{\prime}(1-z)
$$

for $n \geq 0\left(\right.$ and $\left.M_{0}^{\prime}=0\right)$.
7. Let S be a positive integer and let $z \in \mathbb{C}$. Using Cauchy's residue Theorem, compute the integral (see p. 39)

$$
\frac{1}{2 \pi i} \int_{|t|=S \pi} t^{-2 n-1} \frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)} \mathrm{d} t .
$$

7. The poles of the function

$$
t \mapsto \frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)}=\frac{\mathrm{e}^{t z}+\mathrm{e}^{-t z}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}
$$

are the complex numbers t such that $\mathrm{e}^{2 t}=-1$, namely $t=\left(s+\frac{1}{2}\right) i \pi, s \in \mathbb{Z}$.
The poles inside $|t| \leq S \pi$ are the numbers $\left(s+\frac{1}{2}\right) i \pi$ and $\left(-s-\frac{1}{2}\right) i \pi$ with $0 \leq s \leq S$.
The residue at $t=0$ of $t^{-2 n-1} \frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)}$ is the coefficient ot $t^{-2 n}$ in the Taylor expansion of $\frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)}$, hence it is $M_{n}(z)$.

Let s be an integer in the range $0 \leq s \leq S$. Write $t=\left(s+\frac{1}{2}\right) i \pi+\epsilon$. Then

$$
\mathrm{e}^{t}=(-1)^{s} \mathrm{e}^{i \pi / 2} e^{\epsilon}=(-1)^{s} i(1+\epsilon+\cdots), \quad \mathrm{e}^{-t}=(-1)^{s} \mathrm{e}^{-i \pi / 2} e^{\epsilon}=-(-1)^{s} i(-1)^{s}(1-\epsilon+\cdots,)
$$

$$
\mathrm{e}^{t}+\mathrm{e}^{-t}=(-1)^{s} 2 i \epsilon+\cdots
$$

and

$$
\mathrm{e}^{t z}+\mathrm{e}^{-t z}=2 \cos \left(\frac{2 s+1}{2} \pi z\right)+\cdots
$$

Therefore, for $s \geq 0$, the residue $t=\left(s+\frac{1}{2}\right) i \pi$ of $t^{-2 n-1} \frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)}$ is

$$
(-1)^{n+s}\left(s+\frac{1}{2}\right)^{-2 n-1} \pi^{-2 n-1} \cos \left(\frac{2 s+1}{2} \pi z\right)
$$

For $0 \leq s \leq S$, the residue at $\left(-s-\frac{1}{2}\right) i \pi$ is the same.
This proves the formula p. 39 :

$$
M_{n}(z)=(-1)^{n} \frac{2^{2 n+2}}{\pi^{2 n+1}} \sum_{s=0}^{S-1} \frac{(-1)^{s}}{(2 s+1)^{2 n+1}} \cos \left(\frac{(2 s+1) \pi}{2} z\right)+\frac{1}{2 \pi i} \int_{|t|=S \pi} t^{-2 n-1} \frac{\operatorname{ch}(t z)}{\operatorname{ch}(t)} \mathrm{d} t
$$

for $S=1,2, \ldots$ and $z \in \mathbb{C}$.
8. Give examples of complete, redundant and indeterminate systems in Whittaker classification p. 43.
8.

- Complementary sequences (each integer belongs to one and only one of the two sets) are complete. For instance the set of two sequences

$$
(1,3,5, \ldots, 2 n+1, \ldots), \quad(0,2,4, \ldots, 2 n, \ldots)
$$

is complete (Whittaker).

- The set of two sequences

$$
(0,2,4 \ldots, 2 n, \ldots), \quad(0,2,4 \ldots, 2 n, \ldots)
$$

is complete (Lidstone).

- The set of two sequences

$$
(1,3,5, \ldots, 2 n+1, \ldots), \quad(1,3,5, \ldots, 2 n+1, \ldots)
$$

is indeterminate (more than one solution to the interpolation problem). If one adds 0 to one set,

$$
(0,1,3,5, \ldots, 2 n+1, \ldots), \quad(1,3,5, \ldots, 2 n+1, \ldots)
$$

one gets a complete set.

- Given any sequence $\left(q_{0}, q_{1}, q_{2}, \ldots\right)$, the set of two sequences

$$
(0,1,2, \ldots, n, \ldots), \quad\left(q_{0}, q_{1}, q_{2}, \ldots\right)
$$

is redundant (no solution to the interpolation problem).

- The set of two sequences

$$
(0,2,4,6,8, \ldots, 2 n, \ldots), \quad(0,1,3,5, \ldots, 2 n+1, \ldots)
$$

is redundant (no solution to the interpolation problem).

- According to Whittaker, 1933, a pair of sequences $\left(p_{0}, p_{1}, p_{2}, \ldots\right),\left(q_{0}, q_{1}, q_{2}, \ldots\right)$ is complete if and only if the sequence $(D(1), D(2), D(3), \ldots)$, defined by

$$
D(m) \text { is the number of } p \text { and } q \text { which are }<m
$$

satisfies

$$
D(m) \geq m \text { for all } m \geq 1 \text { and } D(m)=m \text { for infinitely many } m
$$

Given a complete pair of sequences, if we remove some elements, we get an indeterminate pair. Given an indeterminate pair of sequences, it is possible to add some elements and get a complete pair.

Références

[Whittaker, 1933] Whittaker, J. M. (1933). On Lidstone's series and two-point expansions of analytic functions. Proc. Lond. Math. Soc. (2), 36 :451-469.
https://doi.org/10.1112/plms/s2-36.1.451

