RUPP Masters in Mathematics Program: Number Theory

 Problem Set March 2012Do at least 5 of the following 7 items.

1. Find integers x, y such that $34 x+19 y=7$.
2. Let p and q be distinct odd primes. Show that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.
3. Recall the definition of a Euclidean domain: An integral domain R is a Euclidean domain if there is a map $\lambda: R \backslash\{0\} \longrightarrow\{0,1,2, \ldots\}$ that satisfies the following property: for any $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that $a=b q+r$, where $r=0$ or $\lambda(r)<\lambda(b)$. Show that $\mathbb{Z}[i]$ is a Euclidean domain.
4. For each of the following, determine if Gaussian prime or not. If not, give its factorization as a product of Gaussian primes.
(a) 53
(b) 71
(c) 187
5. If d is a non-perfect square integer, $\mathbb{Q}(\sqrt{d})$ is defined to be the smallest field that contains both \mathbb{Q} and \sqrt{d}. Prove that $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$.
6. The norm function on $K=\mathbb{Q}(\sqrt{d})$ is defined by $N(a+b \sqrt{d})=a^{2}-d b^{2}$.

Prove that $\alpha \in \mathcal{O}_{K}$ is a unit if and only if $N(\alpha)= \pm 1$.
7. Prove that the units in $\mathbb{Z}[\omega]$ are $\pm 1, \pm \omega$ and $\pm \omega^{2}$. $\left(\omega:=e^{\frac{2 \pi i}{3}}\right)$

