Do at least 5 of the following 7 items.

- 1. Find integers x, y such that 34x + 19y = 7.
- 2. Let p and q be distinct odd primes. Show that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.
- 3. Recall the definition of a Euclidean domain: An integral domain R is a Euclidean domain if there is a map $\lambda : R \setminus \{0\} \longrightarrow \{0, 1, 2, ...\}$ that satisfies the following property: for any $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that a = bq + r, where r = 0 or $\lambda(r) < \lambda(b)$. Show that $\mathbb{Z}[i]$ is a Euclidean domain.
- 4. For each of the following, determine if Gaussian prime or not. If not, give its factorization as a product of Gaussian primes.
 - (a) 53
 - (b) 71
 - (c) 187
- 5. If d is a non-perfect square integer, $\mathbb{Q}(\sqrt{d})$ is defined to be the smallest field that contains both \mathbb{Q} and \sqrt{d} . Prove that $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}.$
- 6. The norm function on $K = \mathbb{Q}(\sqrt{d})$ is defined by $N(a + b\sqrt{d}) = a^2 db^2$. Prove that $\alpha \in \mathcal{O}_K$ is a unit if and only if $N(\alpha) = \pm 1$.
- 7. Prove that the units in $\mathbb{Z}[\omega]$ are ± 1 , $\pm \omega$ and $\pm \omega^2$. $(\omega := e^{\frac{2\pi i}{3}})$