Transcendental Numbers and Hopf Algebras

Michel Waldschmidt

Algebraic groups (commutative, linear, over $\overline{\mathbf{Q}}$)
Exponential polynomials
Transcendence of values of exponential polynomials
Hopf algebras (commutative, cocommutative, of finite type)
Algebra of multizeta values

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{aligned}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \quad & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}} \\
& \left(\beta_{1}, \ldots, \beta_{d_{0}}, \alpha_{1}, \ldots, \alpha_{d_{1}}\right)
\end{aligned}
$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{aligned}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \quad & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}
\end{aligned}
$$

$$
\begin{aligned}
\exp _{G}: T_{e}(G)=\mathbf{C}^{d} & \longrightarrow G(\mathbf{C})=\mathbf{C}^{d_{0}} \times\left(\mathbf{C}^{\times}\right)^{d_{1}} \\
\left(z_{1}, \ldots, z_{d}\right) & \longmapsto\left(z_{1}, \ldots, z_{d_{0}}, e^{z_{d_{0}+1}}, \ldots, e^{z_{d}}\right)
\end{aligned}
$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{array}{ll}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}
\end{array}
$$

$$
\exp _{G}: T_{e}(G)=\mathbf{C}^{d} \longrightarrow G(\mathbf{C})=\mathbf{C}^{d_{0}} \times\left(\mathbf{C}^{\times}\right)^{d_{1}}
$$

$$
\left(z_{1}, \ldots, z_{d}\right) \longmapsto\left(z_{1}, \ldots, z_{d_{0}}, e^{z_{d_{0}+1}}, \ldots, e^{z_{d}}\right)
$$

For α_{j} and β_{i} in $\overline{\mathbf{Q}}$,

$$
\exp _{G}\left(\beta_{1}, \ldots, \beta_{d_{0}}, \log \alpha_{1}, \ldots, \log \alpha_{d_{1}}\right) \in G(\overline{\mathbf{Q}})
$$

Baker's Theorem. If

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}=0
$$

with algebraic β_{i} and α_{j}, then

1. $\beta_{0}=0$
2. If $\left(\beta_{1}, \ldots, \beta_{n}\right) \neq(0, \ldots, 0)$, then $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are \mathbf{Q} linearly dependent.
3.If $\left(\log \alpha_{1}, \ldots, \log \alpha_{n}\right) \neq(0, \ldots, 0)$, then $\beta_{1}, \ldots, \beta_{n}$ are \mathbf{Q} linearly dependent.

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

2. Gel'fond-Schneider $\left(n=2, \beta_{0}=0\right)$: transcendence of

$$
2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}
$$

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

2. Gel'fond-Schneider $\left(n=2, \beta_{0}=0\right)$: transcendence of

$$
2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}
$$

3. Example with $n=2, \beta_{0} \neq 0$: transcendence of

$$
\int_{0}^{1} \frac{d x}{1+x^{3}}=\frac{1}{3} \log 2+\frac{\pi}{3 \sqrt{3}}
$$

Strong Six Exponentials Theorem. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, y_{3} are three complex numbers which are Q-linearly independent and if $\beta_{i j}$ are six algebraic numbers such that

$$
e^{x_{i} y_{j}-\beta_{i j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1,2, j=1,2,3
$$

then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2,3$.

Strong Six Exponentials Theorem. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, y_{3} are three complex numbers which are Q-linearly independent and if $\beta_{i j}$ are six algebraic numbers such that

$$
e^{x_{i} y_{j}-\beta_{i j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1,2, j=1,2,3
$$

then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2,3$.
Corollary 1 (Six Exponentials Theorem). One at least of the six numbers

$$
e^{x_{i} y_{j}} \quad(i=1,2, j=1,2,3)
$$

is transcendental.

Strong Four Exponentials Conjecture. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, are two complex numbers which are \mathbf{Q}-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$, are four algebraic numbers such that the four numbers

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$.

Strong Four Exponentials Conjecture. If x_{1}, x_{2} are Qlinearly independent, if y_{1}, y_{2}, are \mathbf{Q}-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$, are four algebraic numbers such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$.
Special case (Four Exponentials Conjecture). One at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.

Corollary 2 (Strong Five Exponentials Theorem). If x_{1}, x_{2} are \mathbf{Q}-linearly independent, if y_{1}, y_{2} are \mathbf{Q}-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$ and also $\gamma x_{2}=\alpha x_{1}$.

Corollary 2 (Strong Five Exponentials Theorem). If x_{1}, x_{2} are \mathbf{Q}-linearly independent, if y_{1}, y_{2} are \mathbf{Q}-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$ and also $\gamma x_{2}=\alpha x_{1}$.

Proof. Set $y_{3}=\gamma / x_{1}, \beta_{13}=\gamma, \beta_{23}=\alpha$, so that

$$
x_{1} y_{3}-\beta_{13}=0 \quad \text { and } \quad x_{2} y_{3}-\beta_{23}=\left(\gamma x_{2} / x_{1}\right)-\alpha .
$$

Corollary 2 (Strong Five Exponentials Theorem). If x_{1}, x_{2} are \mathbf{Q}-linearly independent, y_{1}, y_{2} are \mathbf{Q}-linearly independent and $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are algebraic numbers such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$.
Five Exponentials Theorem. If x_{1}, x_{2} are \mathbf{Q}-linearly independent, y_{1}, y_{2} are \mathbf{Q}-linearly independent and γ is a non zero algebraic number, then one at least of the five numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}, e^{\gamma x_{2} / x_{1}}
$$

is transcendental.

More general result (D. Roy). If x_{1}, x_{2} are $\overline{\mathbf{Q}}$-linearly

 independent and if y_{1}, y_{2}, y_{3} are $\overline{\mathbf{Q}}$-linearly independent, then one at least of the six numbers$$
x_{i} y_{j} \quad(i=1,2, j=1,2,3)
$$

is not of the form

$$
\beta_{i j}+\sum_{h=1}^{\ell} \beta_{i j h} \log \alpha_{h}
$$

Very Strong Four Exponentials Conjecture. If x_{1}, x_{2} are $\overline{\mathbf{Q}}-$ linearly independent and if y_{1}, y_{2}, are $\overline{\mathbf{Q}}$-linearly independent, then one at least of the four numbers

$$
x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}
$$

does not belong to the $\overline{\mathbf{Q}}$-vector space

$$
\left\{\beta_{0}+\sum_{h=1}^{\ell} \beta_{h} \log \alpha_{h} ; \alpha_{i} \text { and } \beta_{j} \text { algebraic }\right\}
$$

spanned by 1 and $\exp ^{-1}\left(\overline{\mathbf{Q}}^{\times}\right)$.

Values of exponential polynomials

Proof of Baker's Theorem. Assume

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

(B_{1}) (Gel'fond-Baker's Method)
Functions: $z_{0}, e^{z_{1}}, \ldots, e^{z_{n-1}}, e^{\beta_{0} z_{0}+\beta_{1} z_{1}+\cdots+\beta_{n-1} z_{n-1}}$
Points: $\mathbf{Z}\left(1, \log \alpha_{1}, \ldots, \log \alpha_{n-1}\right) \in \mathbf{C}^{n}$
Derivatives: $\partial / \partial z_{i},(0 \leq i \leq n-1)$.

Values of exponential polynomials

Proof of Baker's Theorem. Assume

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

(B_{1}) (Gel'fond-Baker's Method)
Functions: $z_{0}, e^{z_{1}}, \ldots, e^{z_{n-1}}, e^{\beta_{0} z_{0}+\beta_{1} z_{1}+\cdots+\beta_{n-1} z_{n-1}}$
Points: $\mathbf{Z}\left(1, \log \alpha_{1}, \ldots, \log \alpha_{n-1}\right) \in \mathbf{C}^{n}$
Derivatives: $\partial / \partial z_{i},(0 \leq i \leq n-1)$.

$$
n+1 \text { functions, } n \text { variables, } 1 \text { point, } n \text { derivatives }
$$

Another proof of Baker's Theorem. Assume again

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

$\left(B_{2}\right)$ (Generalization of Schneider's method)
Functions: $z_{0}, z_{1}, \ldots, z_{n-1}$,

$$
\begin{aligned}
e^{z_{0}} \alpha_{1}^{z_{1}} \cdots \alpha_{n-1}^{z_{n-1}} & = \\
& \exp \left\{z_{0}+z_{1} \log \alpha_{1}+\cdots+z_{n-1} \log \alpha_{n-1}\right\}
\end{aligned}
$$

Points: $\{0\} \times \mathbf{Z}^{n-1}+\mathbf{Z}\left(\beta_{0},, \ldots, \beta_{n-1}\right) \in \mathbf{C}^{n}$
Derivative: $\partial / \partial z_{0}$.

Another proof of Baker's Theorem. Assume again

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

$\left(B_{2}\right)$ (Generalization of Schneider's method)
Functions: $z_{0}, z_{1}, \ldots, z_{n-1}$,

$$
\begin{aligned}
e^{z_{0}} \alpha_{1}^{z_{1}} \cdots \alpha_{n-1}^{z_{n-1}}= & \\
& \exp \left\{z_{0}+z_{1} \log \alpha_{1}+\cdots+z_{n-1} \log \alpha_{n-1}\right\}
\end{aligned}
$$

Points: $\{0\} \times \mathbf{Z}^{n-1}+\mathbf{Z}\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \mathbf{C}^{n}$
Derivative: $\partial / \partial z_{0}$.

$$
n+1 \text { functions, } n \text { variables, } n \text { points, } 1 \text { derivative }
$$

Proof of the strong six exponentials Theorem
Assume x_{1}, \ldots, x_{a} are Q-linearly independent, y_{1}, \ldots, y_{b} are Q-linearly independent and $\beta_{i j}$ are algebraic numbers such that

$$
e^{x_{i} y_{j}-\beta_{i j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1, \ldots, a,, j=1, \ldots, b
$$

with $a b>a+b$.
Functions: $z_{i}, e^{x_{i}\left(z_{a+1}+z_{1}\right)-z_{i}} \quad(1 \leq i \leq a)$
Points: $\left(\beta_{1 j}, \ldots, \beta_{a j}, y_{j}-\beta_{1 j}\right) \in \mathbf{C}^{a+1} \quad(1 \leq j \leq b)$
Derivatives: $\partial / \partial z_{i}(2 \leq i \leq a)$ et $\partial / \partial z_{a+1}-\partial / \partial z_{1}$.

Proof of the strong six exponentials Theorem
Assume x_{1}, \ldots, x_{a} are \mathbf{Q}-linearly independent, y_{1}, \ldots, y_{b} are Q-linearly independent and $\beta_{i j}$ are algebraic numbers such that

$$
e^{x_{i} y_{j}-\beta_{i j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1, \ldots, a,, j=1, \ldots, b
$$

with $a b>a+b$.
Functions: $z_{i}, e^{x_{i}\left(z_{a+1}+z_{1}\right)-z_{i}} \quad(1 \leq i \leq a)$
Points: $\left(\beta_{1 j}, \ldots, \beta_{a j}, y_{j}-\beta_{1 j}\right) \in \mathbf{C}^{a+1} \quad(1 \leq j \leq b)$
Derivatives: $\partial / \partial z_{i}(2 \leq i \leq a)$ and $\partial / \partial z_{a+1}-\partial / \partial z_{1}$.
$2 a$ functions, $a+1$ variables, b points, a derivatives

Linear Subgroup Theorem

$G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}, \quad d=d_{0}+d_{1}$.
$W \subset T_{e}(G)$ a C-subspace which is rational over $\overline{\mathbf{Q}}$. Let ℓ_{0} be its dimension.
$Y \subset T_{e}(G)$ a finitely generated subgroup with $\Gamma=\exp (Y)$ contained in $G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}$. Let ℓ_{1} be the Z-rank of Γ.
$V \subset T_{e}(G)$ a C-subspace containing both W and Y. Let n be the dimension of V.

Hypothesis:

$$
n\left(\ell_{1}+d_{1}\right)<\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}
$$

$$
n\left(\ell_{1}+d_{1}\right)<\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}
$$

$d_{0}+d_{1}$ is the number of functions
d_{0} are linear
d_{1} are exponential
n is the number of variables
ℓ_{0} is the number of derivatives
ℓ_{1} is the number of points

	d_{0}	d_{1}	ℓ_{0}	ℓ_{1}	n
Baker B_{1}	1	n	n	1	n
Baker B_{2}	n	1	1	n	n
Six exponentials	a	a	a	b	$a+1$

	d_{0}	d_{1}	ℓ_{0}	ℓ_{1}	n
Baker B_{1}	1	n	n	1	n
Baker B_{2}	n	1	1	n	n
Six exponentials	a	a	a	b	$a+1$

Baker:

$$
\begin{gathered}
n\left(\ell_{1}+d_{1}\right)=n^{2}+n \\
\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}=n^{2}+n+1
\end{gathered}
$$

	d_{0}	d_{1}	ℓ_{0}	ℓ_{1}	n
Baker B_{1}	1	n	n	1	n
Baker B_{2}	n	1	1	n	n
Six exponentials	a	a	a	b	$a+1$

Baker:

$$
\begin{gathered}
n\left(\ell_{1}+d_{1}\right)=n^{2}+n \\
\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}=n^{2}+n+1
\end{gathered}
$$

Six exponentials: $a+b<a b$

$$
\begin{gathered}
n\left(\ell_{1}+d_{1}\right)=a^{2}+a b+a+b \\
\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}=a^{2}+2 a b
\end{gathered}
$$

duality:

$$
\begin{aligned}
&\left(d_{0}, d_{1}, \ell_{0}, \ell_{1}\right) \longleftrightarrow\left(\ell_{0}, \ell_{1}, d_{0}, d_{1}\right) \\
&\left(\frac{d}{d z}\right)^{s}\left(z^{t} e^{x z}\right)_{z=y}=\left(\frac{d}{d z}\right)^{t}\left(z^{s} e^{y z}\right)_{z=x}
\end{aligned}
$$

Fourier-Borel duality:

$$
\begin{gathered}
\left(d_{0}, d_{1}, \ell_{0}, \ell_{1}\right) \longleftrightarrow\left(\ell_{0}, \ell_{1}, d_{0}, d_{1}\right) \\
\left(\frac{d}{d z}\right)^{s}\left(z^{t} e^{x z}\right)_{z=y}=\left(\frac{d}{d z}\right)^{t}\left(z^{s} e^{y z}\right)_{z=x} \\
\mathrm{~L}_{s y}: f \longmapsto\left(\frac{d}{d z}\right)^{s} f(y) . \\
f_{\zeta}(z)=e^{z \zeta}, \quad \mathrm{~L}_{s y}\left(f_{\zeta}\right)=\zeta^{s} e^{y \zeta} . \\
\mathrm{L}_{s y}\left(z^{t} f_{\zeta}\right)=\left(\frac{d}{d \zeta}\right)^{t} \mathrm{~L}_{s y}\left(f_{\zeta}\right) .
\end{gathered}
$$

For $\underline{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbf{C}^{n}$, set

$$
D_{\underline{v}}=v_{1} \frac{\partial}{\partial z_{1}}+\cdots+v_{n} \frac{\partial}{\partial z_{n}} .
$$

Let $\underline{w}_{1}, \ldots, \underline{w}_{\ell_{0}}, \underline{u}_{1}, \ldots, \underline{u}_{d_{0}}, \underline{x}$ and \underline{y} in $\mathbf{C}^{n}, \underline{t} \in \mathbf{N}^{d_{0}}$ and $\underline{s} \in \mathbf{N}^{\ell_{0}}$. For $\underline{z} \in \mathbf{C}^{n}$, write

$$
(\mathbf{u} \underline{z})^{\underline{t}}=\left(\underline{u}_{1} \underline{z}\right)^{t_{1}} \cdots\left(\underline{u}_{d_{0}} \underline{z}\right)^{t_{d_{0}}} \quad \text { and } \quad D D_{\mathbf{w}}^{s}=D_{\underline{w}_{1}}^{s_{1}} \cdots D_{\underline{w}_{\ell_{0}}}^{s_{\ell_{0}}} .
$$

Then

$$
\left.D_{\underline{\mathbf{w}}}^{\underline{s}}\left((\mathbf{u} \underline{z})^{t} e^{\underline{x} \underline{z}}\right)\right|_{\underline{z}=\underline{y}}=\left.D_{\underline{\mathbf{u}}}^{\underline{t}}\left((\mathbf{w} \underline{z})^{s} e^{\underline{y} \underline{y}}\right)\right|_{\underline{z}=\underline{x}}
$$

Hopf Algebras (over $k=\mathbf{C}$ or $k=\overline{\mathbf{Q}}$)

Algebras
A k-algebra (A, m, η) is a k-vector space A with a product $m: A \otimes A \rightarrow A$ and a unit $\eta: k \longrightarrow A$ which are k-linear maps such that the following diagrams commute:

Coalgebras

A k-coalgebra (A, Δ, ϵ) is a k-vector space A with a coproduct $\Delta: A \rightarrow A \otimes A$ and a counit $\epsilon: A \longrightarrow k$ which are k-linear maps such that the following diagrams commute:

Bialgebras

A bialgebra $(A, m, \eta, \Delta, \epsilon)$ is a k-algebra (A, m, η) together with a coalgebra structure (A, Δ, ϵ) which is compatible: Δ and ϵ are algebra morphisms

$$
\Delta(x y)=\Delta(x) \Delta(y), \quad \epsilon(x y)=\epsilon(x) \epsilon(y)
$$

Hopf Algebras

A Hopf algebra $(H, m, \eta, \Delta, \epsilon, S)$ is a bialgebra $(H, m, \eta, \Delta, \epsilon)$ with an antipode $S: H \rightarrow H$ which is a k-linear map such that the following diagram commutes:

$$
\begin{array}{rrrrc}
H \otimes H & \stackrel{\Delta}{\rightleftarrows} & H & \xrightarrow{\Delta} & H \otimes H \\
\operatorname{Id} \otimes S \downarrow & & H \circ \epsilon \downarrow & & \downarrow S \otimes \mathrm{Id} \\
H \otimes H & \underset{m}{\longrightarrow} & H & \overleftarrow{m} & H \otimes H
\end{array}
$$

In a Hopf Algebra the primitive elements

$$
\Delta(x)=x \otimes 1+1 \otimes x
$$

satisfy $\epsilon(x)=0$ and $S(x)=-x$; they form a Lie algebra for the bracket

$$
[x, y]=x y-y x
$$

In a Hopf Algebra the primitive elements

$$
\Delta(x)=x \otimes 1+1 \otimes x
$$

satisfy $\epsilon(x)=0$ and $S(x)=-x$; they form a Lie algebra for the bracket

$$
[x, y]=x y-y x
$$

The group-like elements

$$
\Delta(x)=x \otimes x, \quad x \neq 0
$$

are invertible, they satisfy $\epsilon(x)=1, S(x)=x^{-1}$ and form a multiplicative group.

Example 1.

Let G be a finite multiplicative group, $k G$ the algebra of G over k which is a k vector-space with basis G. The mapping

$$
m: k G \otimes k G \rightarrow k G
$$

extends the product

$$
(x, y) \mapsto x y
$$

of G by linearity. The unit

$$
\eta: k \rightarrow k G
$$

maps 1 to 1_{G}.

Define a coproduct and a counit

$$
\Delta: k G \rightarrow k G \otimes k G \text { and } \epsilon: k G \rightarrow k
$$

by extending

$$
\Delta(x)=x \otimes x \quad \text { and } \quad \epsilon(x)=1 \text { for } x \in G
$$

by linearity. The antipode

$$
S: k G \rightarrow k G
$$

is defined by

$$
S(x)=x^{-1} \quad \text { for } \quad x \in G .
$$

Since $\Delta(x)=x \otimes x$ for $x \in G$ this Hopf algebra $k G$ is cocommutative.

It is a commutative algebra if and only if G is commutative.
The set of group like elements is G : one recovers G from $k G$.

Example 2.

Again let G be a finite multiplicative group. Consider the k algebra k^{G} of mappings $G \rightarrow k$, with basis $\delta_{g}(g \in G)$, where

$$
\delta_{g}\left(g^{\prime}\right)= \begin{cases}1 & \text { for } g^{\prime}=g \\ 0 & \text { for } g^{\prime} \neq g\end{cases}
$$

Define m by

$$
m\left(\delta_{g} \otimes \delta_{g^{\prime}}\right)=\delta_{g} \delta_{g^{\prime}}
$$

Hence m is commutative and $m\left(\delta_{g} \otimes \delta_{g}\right)=\delta_{g}$ for $g \in G$. The unit $\eta: k \rightarrow k^{G}$ maps 1 to $\sum_{g \in G} \delta_{g}$.

Define a coproduct $\Delta: k^{G} \rightarrow k^{G} \otimes k^{G}$ and a counit $\epsilon: k^{G} \rightarrow k$ by

$$
\Delta\left(\delta_{g}\right)=\sum_{g^{\prime} g^{\prime \prime}=g} \delta_{g^{\prime}} \otimes \delta_{g^{\prime \prime}} \quad \text { and } \quad \epsilon\left(\delta_{g}\right)=\delta_{g}\left(1_{G}\right)
$$

The coproduct Δ is cocommutative if and only if the group G is commutative.

Define an antipode S by

$$
S\left(\delta_{g}\right)=\delta_{g^{-1}}
$$

Remark. One may identify $k^{G} \otimes k^{G}$ and $k^{G \times G}$ with

$$
\delta_{g} \otimes \delta_{g^{\prime}}=\delta_{g, g^{\prime}}
$$

Duality of Hopf Algebras

The Hopf algebras $k G$ from example 1 and k^{G} from example 2 are dual from each other:

$$
\begin{array}{ccc}
k G \times k^{G} & \longrightarrow & k \\
\left(g_{1}, \delta_{g_{2}}\right) & \longmapsto & \delta_{g_{2}}\left(g_{1}\right)
\end{array}
$$

The basis G of $k G$ is dual to the basis $\left(\delta_{g}\right)_{g \in G}$ of k^{G}.

Example 3.

Let G be a topological compact group over C. Denote by $\mathfrak{R}(G)$ the set of continuous functions $f: G \rightarrow \mathbf{C}$ such that the translates $f_{t}: x \mapsto f(t x)$, for $t \in G$, span a finite dimensional vector space.

Define a coproduct Δ, a counit ϵ and an antipode S on $\mathfrak{R}(G)$ by

$$
\Delta f(x, y)=f(x y), \quad \epsilon(f)=f(1), \quad S f(x)=f\left(x^{-1}\right)
$$

for $x, y \in G$.
Hence $\mathfrak{R}(G)$ is a commutative Hopf algebra.

Example 4.

Let \mathfrak{g} be a Lie algebra, $\mathfrak{U}(\mathfrak{g})$ its universal envelopping algebra, namely $\mathfrak{T}(\mathfrak{g}) / \mathfrak{I}$ where $\mathfrak{T}(\mathfrak{g})$ is the tensor algebra of \mathfrak{g} and \mathfrak{I} the two sided ideal generated by $X Y-Y X-[X, Y]$.

Define a coproduct Δ, a counit ϵ and an antipode S on $\mathfrak{U}(\mathfrak{g})$ by

$$
\Delta(x)=x \otimes 1+1 \otimes x, \quad \epsilon(x)=0, \quad S(x)=-x
$$

for $x \in \mathfrak{g}$.
Hence $\mathfrak{U}(\mathfrak{g})$ is a cocommutative Hopf algebra.
The set of primitive elements is \mathfrak{g} : one recovers \mathfrak{g} from $\mathfrak{U}(\mathfrak{g})$.

Duality of Hopf Algebras (again)

Let G be a compact connected Lie group with Lie algebra \mathfrak{g}. Then the two Hopf algebras $\mathfrak{R}(G)$ and $\mathfrak{U}(\mathfrak{g})$ are dual from each other.

Abelian Hopf algebras of finite type

1.

$$
H=k[X], \quad \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X
$$

Abelian Hopf algebras of finite type

1.

$H=k[X], \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X$.

$$
k[X] \otimes k[X] \simeq k\left[T_{1}, T_{2}\right], \quad X \otimes 1 \mapsto T_{1}, \quad 1 \otimes X \mapsto T_{2}
$$

$$
\Delta P(X)=P\left(T_{1}+T_{2}\right), \quad \epsilon P(X)=P(0), \quad S P(X)=P(-X) .
$$

Abelian Hopf algebras of finite type

1.

$$
H=k[X], \quad \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X .
$$

$$
k[X] \otimes k[X] \simeq k\left[T_{1}, T_{2}\right], \quad X \otimes 1 \mapsto T_{1}, \quad 1 \otimes X \mapsto T_{2}
$$

$\Delta P(X)=P\left(T_{1}+T_{2}\right), \quad \epsilon P(X)=P(0), \quad S P(X)=P(-X)$.
$\mathbf{G}_{a}(K)=\operatorname{Hom}_{k}(k[X], K), \quad k\left[\mathbf{G}_{a}\right]=k[X]$
$k\left[\mathbf{G}_{a}\right]$ is an abelian Hopf algebra of finite type.

Abelian Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

Abelian Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

$$
H \otimes H \simeq k\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right], \quad Y \otimes 1 \mapsto T_{1}, \quad 1 \otimes Y \mapsto T_{2}
$$

$$
\Delta P(Y)=P\left(T_{1} T_{2}\right), \quad \epsilon P(Y)=P(1), \quad S P(Y)=P\left(Y^{-1}\right)
$$

Abelian Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

$$
H \otimes H \simeq k\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right], \quad Y \otimes 1 \mapsto T_{1}, \quad 1 \otimes Y \mapsto T_{2}
$$

$$
\Delta P(Y)=P\left(T_{1} T_{2}\right), \quad \epsilon P(Y)=P(1), \quad S P(Y)=P\left(Y^{-1}\right)
$$

$$
\mathbf{G}_{m}(K)=\operatorname{Hom}_{k}\left(k\left[Y, Y^{-1}\right], K\right), \quad k\left[\mathbf{G}_{m}\right]=k\left[Y, Y^{-1}\right]
$$

$k\left[\mathbf{G}_{m}\right]$ is an abelian Hopf algebra of finite type.

Abelian Hopf algebras of finite type

3.

$$
\begin{aligned}
H & =k\left[X_{1}, \ldots, X_{d_{0}}, Y_{1}, Y_{1}^{-1}, \ldots, Y_{d_{1}}, Y_{d_{1}}^{-1}\right] \\
& \simeq k[X]^{\otimes d_{0}} \otimes k\left[Y, Y^{-1}\right]^{\otimes d_{1}}
\end{aligned}
$$

Primitive elements: k-space $k X_{1}+\cdots+k X_{d_{0}}$, dimension d_{0}.

Group-like elements: multiplicative group $\left\langle Y_{1}, \ldots, Y_{d_{1}}\right\rangle$, rank d_{1}.

$$
\begin{aligned}
G=\mathbf{G}_{a}^{d_{0}} & \times \mathbf{G}_{a}^{d_{1}} \\
k[G]=H, \quad G(K) & =\operatorname{Hom}_{k}(H, K) .
\end{aligned}
$$

Abelian Hopf algebras of finite type

3.

$$
\begin{aligned}
H & =k\left[X_{1}, \ldots, X_{d_{0}}, Y_{1}, Y_{1}^{-1}, \ldots, Y_{d_{1}}, Y_{d_{1}}^{-1}\right] \\
& \simeq k[X]^{\otimes d_{0}} \otimes k\left[Y, Y^{-1}\right]^{\otimes d_{1}}
\end{aligned}
$$

The category of commutative linear algebraic groups over k $G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}$ is anti-equivalent to the category of Hopf algebras of finite type which are abelian (commutative and cocomutative)

$$
H=k[G] .
$$

The vector space of primitive elements has dimension d_{0} while the rank of the group-like elements is d_{1}.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is an abelian Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]$:

For a basis $\partial_{1}, \ldots, \partial_{\ell_{0}}$ of $W, \operatorname{Sym}(W) \simeq k\left[\partial_{1}, \ldots, \partial_{\ell_{0}}\right]$.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is an abelian Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]$.

If Γ is a torsion free finitely generated Z -module of rank ℓ_{1}, then the group algebra $k \Gamma$ is again an abelian Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{m}^{\ell_{1}}\right]$:

For a basis $\gamma_{1}, \ldots, \gamma_{\ell_{1}}$ of $\Gamma, k \Gamma \simeq k\left[\gamma_{1}, \gamma_{1}^{-1}, \ldots, \gamma_{\ell_{1}}, \gamma_{\ell_{1}}^{-1}\right]$.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is an abelian Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]$.

If Γ is a torsion free finitely generated Z -module of rank ℓ_{1}, then the group algebra $k \Gamma$ is again an abelian Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{m}^{\ell_{1}}\right]$.

The category of abelian Hopf algebras of finite type is equivalent to the category of pairs (W, Γ) where W is a k-vector space and
Γ is a finitely generated \mathbf{Z}-module:

$$
H=\operatorname{Sym}(W) \otimes k \Gamma
$$

Interpretation of the duality in terms of Hopf algebras

following Stéphane Fischler

Let \mathfrak{C}_{1} be the category with
objects: $\quad(G, W, \Gamma)$ where $G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}, W \subset T_{e}(G)$ is rational over $\overline{\mathbf{Q}}$ and $\Gamma \in G(\overline{\mathbf{Q}})$ is finitely generated
morphisms: $\quad f:\left(G_{1}, W_{1}, \Gamma_{1}\right) \rightarrow\left(G_{2}, W_{2}, \Gamma_{2}\right)$ where $f: G_{1} \rightarrow$ G_{2} is a morphism of algebraic groups such that $f\left(\Gamma_{1}\right) \subset \Gamma_{2}$ and f induces a morphism

$$
d f: T_{e}\left(G_{1}\right) \longrightarrow T_{e}\left(G_{2}\right)
$$

such that $d f\left(W_{1}\right) \subset W_{2}$.

Let H be an abelian Hopf algebra over $\overline{\mathbf{Q}}$ of finite type. Denote by d_{0} the dimension of the $\overline{\mathbf{Q}}$-vector space of primitive elements and by d_{1} the rank of the group of group-like elements.

Let H^{\prime} be another abelian Hopf algebra over $\overline{\mathbf{Q}}$ of finite type, ℓ_{0} the dimension of the space of primitive elements and ℓ_{1} the rank of the group-like elements.

Let $\langle\cdot\rangle: H \times H^{\prime} \longrightarrow \overline{\mathbf{Q}}$ be a bilinear product such that

$$
\left\langle x, y y^{\prime}\right\rangle=\left\langle\Delta x, y \otimes y^{\prime}\right\rangle \quad \text { and } \quad\left\langle x x^{\prime}, y\right\rangle=\left\langle x \otimes x^{\prime}, \Delta y\right\rangle .
$$

Let \mathfrak{C}_{2} be the category with
objects: $\left(H, H^{\prime},\langle\cdot\rangle\right)$ pair of Hopf algebras with a bilinear product as above.
morphisms: $\quad(f, g):\left(H_{1}, H_{1}^{\prime},\langle\cdot\rangle_{1}\right) \rightarrow\left(H_{2}, H_{2}^{\prime},\langle\cdot\rangle_{2}\right)$ where $f:$ $H_{1} \rightarrow H_{2}$ and $g: H_{2}^{\prime} \rightarrow H_{1}^{\prime}$ are Hopf algebras morphisms such that

$$
\left\langle x_{1}, g\left(x_{2}^{\prime}\right)\right\rangle_{1}=\left\langle f\left(x_{1}\right), x_{2}^{\prime}\right\rangle_{2}
$$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}. Consequence: interpolation lemmas are equivalent to zero estimates.

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent.

For $R \in \mathbf{C}[G], \partial_{1}, \ldots, \partial_{k} \in W$ and $\gamma \in \Gamma$, set

$$
\left\langle R, \gamma \otimes \partial_{1} \cdot \ldots \cdot \partial_{k}\right\rangle=\partial_{1} \cdot \ldots \cdot \partial_{k} R(\gamma)
$$

Conversely, for $H_{1}=\mathbf{C}[G]$ and $H_{2}=\operatorname{Sym}(W) \otimes k \Gamma$, consider

$$
\begin{array}{ccc}
\Gamma & \longrightarrow & G(\mathbf{C}) \\
\gamma & \longmapsto & (R \mapsto\langle R, \gamma\rangle)
\end{array}
$$

and

$$
\begin{array}{rcc}
W & \longrightarrow & T_{e}(G) \\
\partial & \longmapsto & (R \mapsto\langle R, \partial\rangle)
\end{array}
$$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)
- Extend to non abelian Hopf algebras (of finite type to start with)

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)
- Extend to non abelian Hopf algebras (of finite type to start with)
- (?) Transcendence results on non commutative algebraic groups

Algebra of multizeta values

Denote by \mathfrak{S} the set of sequences $\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbf{N}^{k}$ with $k \geq 1, s_{1} \geq 2, s_{i} \geq 1(2 \leq i \leq k)$.

The weight $|\underline{s}|$ of \underline{s} is $s_{1}+\cdots+s_{k}$, while k is the depth.
For $\underline{s} \in \mathfrak{S}$ set

$$
\zeta(\underline{s})=\sum_{n_{1}>\cdots>n_{k} \geq 1} n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}} .
$$

Depth 1: values of Riemann zeta function at positive integers (Euler).

Algebra of multizeta values

Denote by \mathfrak{S} the set of sequences $\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbf{N}^{k}$ with $k \geq 1, s_{1} \geq 2, s_{i} \geq 1(2 \leq i \leq k)$.

The weight $|\underline{s}|$ of \underline{s} is $s_{1}+\cdots+s_{k}$, while k is the depth.
For $\underline{s} \in \mathfrak{S}$ set

$$
\zeta(\underline{s})=\sum_{n_{1}>\cdots>n_{k} \geq 1} n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}} .
$$

Let \mathfrak{Z} denote the \mathbf{Q}-vector space spanned in \mathbf{C} by the numbers

$$
(2 i \pi)^{-|s|} \zeta(\underline{s}) \quad(\underline{s} \in \mathfrak{S})
$$

For \underline{s} and \underline{s}^{\prime} in \mathfrak{S}, the product $\zeta(\underline{s}) \zeta\left(\underline{s}^{\prime}\right)$ is in two ways a linear combination of numbers $\zeta\left(\underline{s}^{\prime \prime}\right)$.

The product of series is one way (quadratic relations arising from the series expansions) - for instance:

$$
\begin{gathered}
\zeta(s) \zeta\left(s^{\prime}\right)=\zeta\left(s, s^{\prime}\right)+\zeta\left(s^{\prime}, s\right)+\zeta\left(s+s^{\prime}\right) . \\
\sum_{n} \sum_{m}=\sum_{n>m}+\sum_{m>n}+\sum_{n=m}
\end{gathered}
$$

Hence \mathfrak{Z} is a Q-subalgebra of \mathbf{C} bifiltered by the weight and by the depth.

For a graded Lie algebra C • denote by $\mathfrak{U} C$ • its universal envelopping algebra and by

$$
\mathfrak{U} C_{\bullet}^{\vee}=\bigoplus_{n \geq 0}(\mathfrak{U} C)_{n}^{\vee}
$$

its graded dual, which is a commutative Hopf algebra.
Conjecture (Goncharov). There exists a free graded Lie algebra $C \bullet$ and an isomorphism of algebras

$$
\mathfrak{Z} \simeq \mathfrak{U} C^{\vee}
$$

filtered by the weight on the left and by the degree on the right.

Reference:

Goncharov A.B. - Multiple polylogarithms, cyclotomy and modular complexes. Math. Research Letter 5 (1998), 497516.

Let $X=\left\{x_{0}, x_{1}\right\}$ be an alphabet with two letters. Consider the free monoid (concatenation product)

$$
X^{*}=\left\{x_{\epsilon_{1}} \cdots x_{\epsilon_{k}} ; \epsilon_{i} \in\{0,1\},(1 \leq i \leq k), \quad k \geq 0\right\}
$$

on X (non commutative monomials $=$ words on the alphabet X) including the empty word e.

Let $X=\left\{x_{0}, x_{1}\right\}$ be an alphabet with two letters. Consider the free monoid (concatenation product)

$$
X^{*}=\left\{x_{\epsilon_{1}} \cdots x_{\epsilon_{k}} ; \epsilon_{i} \in\{0,1\},(1 \leq i \leq k), \quad k \geq 0\right\}
$$

on X (non commutative monomials $=$ words on the alphabet X) including the empty word e.

For $\underline{s} \in \mathfrak{S}$ set

$$
y_{\underline{s}}=x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1}
$$

Hence

$$
y_{s}=x_{0}^{s-1} x_{1}, \quad y_{\underline{s}}=y_{s_{1}} \cdots y_{s_{k}}
$$

Let $X=\left\{x_{0}, x_{1}\right\}$ be an alphabet with two letters. Consider the free monoid (concatenation product)

$$
X^{*}=\left\{x_{\epsilon_{1}} \cdots x_{\epsilon_{k}} ; \epsilon_{i} \in\{0,1\},(1 \leq i \leq k), \quad k \geq 0\right\}
$$

on X (non commutative monomials $=$ words on the alphabet X) including the empty word e.
For $\underline{s} \in \mathfrak{S}$ set

$$
y_{\underline{s}}=x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1}
$$

This is a one-to-one correspondance between \mathfrak{S} and the set $x_{0} X^{*} x_{1}$ of words which start with x_{0} and end with x_{1}.
The depth k is the number of x_{1}, the weight $|\underline{s}|$ is the number of letters.

For $\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathfrak{S}$ set $p=|\underline{s}|$ and define $\left(\epsilon_{1}, \ldots, \epsilon_{p}\right)$ in $\{0,1\}^{p}$ by

$$
y_{\underline{s}}=x_{\epsilon_{1}} \cdots x_{\epsilon_{p}} .
$$

Hence $\epsilon_{1}=0$ and $\epsilon_{p}=1$.

For $\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathfrak{S}$ set $p=|\underline{s}|$ and define $\left(\epsilon_{1}, \ldots, \epsilon_{p}\right)$ in $\{0,1\}^{p}$ by

$$
y_{\underline{s}}=x_{\epsilon_{1}} \cdots x_{\epsilon_{p}} .
$$

Let

$$
\omega_{0}(t)=\frac{d t}{t} \quad \text { and } \quad \omega_{1}(t)=\frac{d t}{1-t}
$$

Integral representation of multizeta values:

$$
\zeta(\underline{s})=\int_{1>t_{1}>\cdots>t_{p}>0} \omega_{\epsilon_{1}}\left(t_{1}\right) \cdots \omega_{\epsilon_{p}}\left(t_{p}\right)
$$

Examples:

$$
\begin{aligned}
& y_{3}=x_{0}^{2} x_{1}: \\
& \qquad \zeta(3)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}
\end{aligned}
$$

Examples:

$y_{3}=x_{0}^{2} x_{1}:$

$$
\zeta(3)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}
$$

$y_{21}=y_{2} y_{1}=x_{0} x_{1}^{2}:$

$$
\zeta(2,1)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}
$$

Examples:

$y_{3}=x_{0}^{2} x_{1}:$

$$
\zeta(3)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}
$$

$y_{21}=y_{2} y_{1}=x_{0} x_{1}^{2}$.

$$
\zeta(2,1)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{1-t_{3}}
$$

Remark. From $\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(1-t_{3}, 1-t_{2}, 1-t_{1}\right)$ one deduces

$$
\zeta(2,1)=\zeta(3)
$$

Quadratic relations arising from the integral representation

The product of two such integrals is a linear combination of similar integrals.

Indeed the integral

$$
\int_{\substack{1>t_{1}>\cdots>t_{p}>0 \\ 1>t_{1}^{\prime}>\cdots>t_{p^{\prime}}^{\prime}>0}} \omega_{\epsilon_{1}}\left(t_{1}\right) \cdots \omega_{\epsilon_{p}}\left(t_{p}\right) \omega_{\epsilon_{1}^{\prime}}\left(t_{1}^{\prime}\right) \cdots \omega_{\epsilon_{p^{\prime}}}\left(t_{p^{\prime}}^{\prime}\right)
$$

is the integral over

$$
1>u_{1}>\cdots>u_{p+p^{\prime}}>0
$$

of the shuffle of $\omega_{\epsilon_{1}} \cdots \omega_{\epsilon_{p}}$ with $\omega_{\epsilon_{1}^{\prime}} \cdots \omega_{\epsilon_{p^{\prime}}^{\prime}}$.

Example: From

$$
\left(x_{0} x_{1}\right) \amalg\left(x_{0} x_{1}\right)=2 x_{0} x_{1} x_{0} x_{1}+4 x_{0}^{2} x_{1}^{2}
$$

one deduces

$$
\zeta(2)^{2}=2 \zeta(2,2)+4 \zeta(3,1) .
$$

Example: From

$$
\left(x_{0} x_{1}\right) \amalg\left(x_{0} x_{1}\right)=2 x_{0} x_{1} x_{0} x_{1}+4 x_{0}^{2} x_{1}^{2}
$$

one deduces

$$
\zeta(2)^{2}=2 \zeta(2,2)+4 \zeta(3,1) .
$$

For $y_{\underline{s}} \in x_{0} X^{*} x_{1}$, set $\hat{\zeta}\left(y_{\underline{s}}\right)=\zeta(\underline{s})$.
This defines $\hat{\zeta}: x_{0} X^{*} x_{1} \rightarrow \mathbf{R}$.
Then for w and w^{\prime} in $x_{0} X^{*} x_{1}$ we have

$$
\hat{\zeta}(w) \hat{\zeta}\left(w^{\prime}\right)=\hat{\zeta}\left(w ш w^{\prime}\right)
$$

Let \mathfrak{H} be the free algebra $\overline{\mathbf{Q}}\langle X\rangle$ over X (non commutative polynomials in x_{0} and $x_{1}, \overline{\mathbf{Q}}$-vector space with basis X^{*}, concatenation product).

The subalgebra $\mathfrak{H}^{0}=\overline{\mathbf{Q}} e+x_{0} \mathfrak{H} x_{1}$ of \mathfrak{H} is also the free algebra $\overline{\mathbf{Q}}\langle Y\rangle$ over $Y=\left\{y_{2}, y_{3}, \ldots\right\}$.

The shuffle m endows both \mathfrak{H} and \mathfrak{H}^{0} with commutative algebra structures $\mathfrak{H}_{\text {II }}$ and $\mathfrak{H}_{\mathrm{II}}^{0}$: for x and y in X, u and v in X^{*},

$$
x u ш y v=x(u ш y v)+v(x u ш v)
$$

Extend $\hat{\zeta}$ as a $\overline{\mathbf{Q}}$-linear map $\mathfrak{H}^{0} \rightarrow \mathbf{R}$.
Then $\hat{\zeta}: \mathfrak{H}_{\text {III }}^{0} \rightarrow \mathbf{R}$ is a morphism of commutative algebras.

A non commutative but cocommutative Hopf algebra structure on \mathfrak{H} is given by the coproduct

$$
\Delta P=P\left(x_{0} \otimes 1+1 \otimes x_{0}, x_{1} \otimes 1+1 \otimes x_{1}\right)
$$

the counit $\epsilon(P)=\langle P \mid e\rangle$ and the antipode

$$
S\left(x_{1} \cdots x_{n}\right)=(-1)^{n} x_{n} \cdots x_{1}
$$

for $n \geq 1$ and x_{1}, \ldots, x_{n} in X.
Concatenation (or Decomposition) Hopf algebra:

$$
(\mathfrak{H}, \cdot, e, \Delta, \epsilon, S)
$$

Writing

$$
P=\sum_{u \in X^{*}}(P \mid u) u
$$

we have

$$
\Delta P=\sum_{u, v \in X^{*}}(P \mid u \varpi v) u \otimes v
$$

Friedrichs' Criterion. The set of primitive elements in \mathfrak{H} is the free Lie algebra $\operatorname{Lie}(X)$ on X.

Hence

$$
P \in \operatorname{Lie}(X) \Longleftrightarrow(P \mid u ш v)=0 \quad \text { for all } u, v \text { in } X^{*} \backslash\{e\} .
$$

Dual of the concaténation product: $\Phi: \mathfrak{H} \rightarrow \mathfrak{H} \otimes \mathfrak{H}$ defined by

$$
\langle\Phi(w) \mid u \otimes v\rangle=\langle u v \mid w\rangle .
$$

Hence

$$
\Phi(w)=\sum_{\substack{u, v \in X^{*} \\ u v=w}} u \otimes v
$$

Shuffle (or factorization) Hopf algebra:

$$
(\mathfrak{H}, ш, e, \Phi, \epsilon, S) .
$$

Commutative, not cocommutative.

Harmonic Algebra M. Hoffmann

The quasi-shuffle (or stuffle) product:

$$
\star: \mathfrak{H}^{0} \times \mathfrak{H}^{0} \rightarrow \mathfrak{H}^{0}
$$

with

$$
y_{s} u \star y_{t} v=y_{s}\left(u \star y_{t} v\right)+y_{t}\left(y_{s} u \star y_{t} v\right)+y_{s+t}(u \star v) .
$$

endows \mathfrak{H}^{0} with a commutative algebra structure \mathfrak{H}_{\star}^{0} and the quadratic relations arising from series expansions show that
$\hat{\zeta}: \mathfrak{H}_{\star}^{0} \rightarrow \mathbf{R}$ is a morphism of commutative algebras.

Cocommutative quasi-shuffle Hopf algebra $\overline{\mathbf{Q}}\langle Y\rangle$:

$$
\begin{aligned}
\Delta\left(y_{i}\right)=y_{i} & \otimes e+e \otimes y_{i}, \\
\epsilon(P) & =\langle P \mid e\rangle \\
S\left(y_{s_{1}} \cdots y_{s_{k}}\right) & =(-1)^{k} y_{s_{k}} \cdots y_{s_{1}}
\end{aligned}
$$

Remark. Combining both quadratic relations yields

$$
\hat{\zeta}\left(w ш w^{\prime}-w \star w^{\prime}\right)=0 \text { for } w \text { and } w^{\prime} \text { in } x_{0} X^{*} x_{1} .
$$

From

$$
y_{1} \amalg y_{2}=x_{1} ш x_{0} x_{1}=x_{1} x_{0} x_{1}+2 x_{0} x_{1}^{2}=y_{1} y_{2}+2 y_{2} y_{1}
$$

and

$$
y_{1} \star y_{2}=y_{1} y_{2}+y_{2} y_{1}+y_{3}
$$

one deduces

$$
y_{1} ш y_{2}-y_{1} \star y_{2}=y_{2} y_{1}-y_{3} .
$$

As we know $\zeta(2,1)=\zeta(3)$, hence $y_{1} ш y_{2}-y_{1} \star y_{2}$ lies in the kernel of $\hat{\zeta}$. But $y_{1} \notin x_{0} X^{*} x_{1}$.

Conjecture (Ihara-Kaneko). The kernel of $\hat{\zeta}$ as a Q-linear map $\mathfrak{H}^{0} \rightarrow \mathbf{R}$ is spanned by the regularized double shuffle relations.

Results on the formal algebra by J. Écalle.

