

- Don Zagier (March 16, 2005, BNF/SMF)
"Ramanujan to Hardy, from the first to the last
letter..."
http ://smf.emath.fr/VieSociete/Rencontres/BNF/2005/
- Mock theta functions
- S. Zwegers - < Mock ϑ-functions and real analytic modular forms. », in Berndt, Bruce C. (ed.) et al. q-series with applications to combinatorics, number theory, and physics. Proceedings of a conference, University of Illinois, Urbana-Champaign, IL, USA, October 26-28, 2000. Providence, RI : American Mathematical Society (AMS). Contemp. Math. 291, ミ دac 269-277. 2001.
- A perfect power is an integer of the form a^{b} where $a \geq 1$ and $b>1$ are positive integers.
- Squares:
$1,4,9,16,25,36,49,64,81,100,121,144,169,196 \ldots$
- Cubes
$1,8,27,64,125,216,343,512,729,1000,1331 \ldots$
- Fifth powers :

1, 32, 243, 1024, 3125, 7776, 16807, $32768 \ldots$

Perfect powers

The sequence of perfect powers starts with :
$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$, $128,144,169,196,216,225,243,256,289,324,343$, $361,400,441,484,512,529,576,625,676,729,784 \ldots$
-
-
-
-
-
Two conjectures

- Catalan's Conjecture : In the sequence of perfect powers, 8,9 is the only example of consecutive integers.
- Pillai's Conjecture : In the sequence of perfect powers, the difference between two consecutive terms tends to infinity.
- Alternatively : Let k be a positive integer. The
equation

$$
x^{p}-y^{q}=k,
$$

where the unknowns x, y, p and q take integer values all ≥ 2, has only finitely many solutions (x, y, p, q).

- P. Mihăilescu, 2002. Catalan was right : the equation
$x^{p}-y^{q}=1$ where the unknowns x, y, p and q take integer values, all ≥ 2, has only one solution
$(x, y, p, q)=(3,2,2,3)$
Previous partial results : J.W.S. Cassels, R. Tijdeman, M. Mignotte. .
- Higher values of k : nothing known
- Pillai's conjecture as a consequence of the $a b c$ conjecture :

$$
\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}
$$

with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q} .
$$

Examples

- When a, b and c are three positive relatively prime integers satisfying $a+b=c$, define

$$
\lambda(a, b, c)=\frac{\log c}{\log R(a b c)}
$$

- Here are the two largest known values for $\lambda(a b c)$ (there are 140 known values of $\lambda(a, b, c)$ which are $\geq 1.4)$

	$a+b=c$	$\lambda(a, b, c)$	authors
1	$2+3^{10} \cdot 109=23^{5}$	$1.629912 \ldots$	É. Reyssat
2	$11^{2}+3^{2} 5^{6} 7^{3}=2^{21} \cdot 23$	$1.625991 \ldots$	B.M. Weger

Further examples

- When a, b and c are three positive relatively prime integers satisfying $a+b=c$, define

$$
\varrho(a, b, c)=\frac{\log (a b c)}{\log R(a b c)}
$$

- Here are the two largest known values for $\varrho(a b c)$, found by A. Nitaj. There are 46 known triples (a, b, c) with $0<a<b<c, a+b=c$ and $\operatorname{gcd}(a, b)=1$ satisfying
$\varrho(a, b, c)>4$.

	$a+b=c$	$\varrho(a, b, c)$
1	$13 \cdot 19^{6}+2^{30} \cdot 5=3^{13} \cdot 11^{2} \cdot 31$	$4.41901 \ldots$
2	$2^{5} \cdot 11^{2} \cdot 19^{9}+5^{15} \cdot 37^{2} \cdot 47=3^{7} \cdot 7^{11} \cdot 743$	$4.26801 \ldots$

Generalized Fermat's equation
The equation $x^{p}+y^{q}=z^{r}$ in positive integers
(x, y, z, p, q, r) for which

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1,
$$

and such that x, y, z relatively prime, has the following 10 solutions (F. Beukers, D. Zagier)
$1+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4}, \quad 7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2}$, $3^{5}+11^{4}=122^{2}, \quad 17^{7}+76271^{3}=21063928^{2}$, $1414^{3}+2213459^{2}=65^{7}, \quad 9262^{3}+15312283^{2}=113^{7}$
$43^{8}+96222^{3}=30042907^{2}, \quad 33^{8}+1549034^{2}=15613^{3}$.

- Beal's Conjecture (R. Tijdeman and D. Zagier). The equation $x^{p}+y^{q}=z^{r}$ has no solution in positive integers (x, y, z, p, q, r) with each of p, q and r at least 3 and x, y, z relatively prime.
- Mauldin, R. D. - A generalization of Fermat's last theorem : the Beal conjecture and prize problem. Notices Amer. Math. Soc. $44 \mathrm{~N}^{\circ} 11$ (1997), 1436-1437.
- Generalized Fermat-Catalan equation. Modular method: Wiles. .

Powers with identical digits

- Y. Bugeaud and M. Mignotte (1999) : solution of a
conjecture due to Inkeri.
There is no perfect power with identical digits in its decimal expansion.
Diophantine equation

$$
c \cdot \frac{10^{k}-1}{9}=a^{b}
$$

with $1 \leq c \leq 9, a \geq 2, b \geq 2$.

- $(2 \leq c \leq 9$: K. Inkeri, 1972).

Perfect powers in the Fibonacci sequence

- Fibonacci sequence :

$$
1,1,2,3,5,8,13,21,34,55,89,144 \ldots
$$

where $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}(n \geq 3)$.

- Theorem (Bugeaud, Mignotte, Siksek ; 2004). The only perfect powers in the sequence of Fibonacci numbers are 1, 8 and 144
- Diophantine equation $F_{n}=a^{b}$, with $n \geq 1, a \geq 2$, $b \geq 2$.
- T.N. Shorey and F. Luca (2004) : the product of 2 or more consecutive Fibonacci numbers, other than $F_{1} F_{2}$, is never a perfect power.
- D. Hilbert (1900) - Problem : to give an algorithm in order to decide whether a diophantine equation has an integer solution or not
J. Robinson (1952)
- J. Robinson, M. Davis, H. Putnam (1961)
- Yu. Matijasevic (1970)
- The relation $b=F_{a}$ between two integers a and b is a diophantine relation with exponential growth.
- XIXth Century : Hurwitz, Poincaré
- Mordell's Conjecture : rational points
- Siegel's Theorem (1929) : integral points
- Faltings' Theorem(1983) : finiteness of rational points on an algebraic curve of genus ≥ 2 over a number field.
- G. Rémond (2000) : explicit upper bound for the number of solutions.
- Nagell (1948) : no further solution
- Apéry (1960) : for $D>0, D \neq 7$, the equation
$x^{2}+D=2^{n}$ has at most 2 solutions.
- Examples with 2 solutions :

$$
D=23: \quad 3^{2}+23=32, \quad 45^{2}+23=2^{11}=2048
$$

$$
D=2^{\ell+1}-1, \ell \geq 3: \quad\left(2^{\ell}-1\right)^{2}+2^{\ell+1}-1=2^{2 \ell}
$$

- Beukers (1980) : at most one solution otherwise.
- M. Bennett (1995) : considers the case $D<0$.
$\frac{63}{25}\left(\frac{17+15 \sqrt{5}}{7+15 \sqrt{5}}\right)=3.141592653 \quad 805 \ldots$
is a root of $P(x)=168125 x^{2}-792225 x+829521$
- The number

$$
\pi=3.141592653589 \ldots
$$

is transcendental.

Uniform rational approximation to a real number
Let $\xi \in \mathbf{R} \backslash \mathbf{Q}$.

- Dirichlet's box principle : for any real number $X \geq 1$, there exists $\left(x_{0}, x_{1}\right) \in \mathbf{Z}^{2}$ satisfying

$$
0<x_{0} \leq X \quad \text { and } \quad\left|x_{0} \xi-x_{1}\right| \leq \varphi(X)
$$

where $\varphi(X)=X^{-1}$.

- there is no $\xi \in \mathbf{R}$ for which the exponent -1 can be lowered.
Gel'fond's transcendence criterion in 1948
Refinements by H. Davenport and W.M. Schmidt in 1970.

Asymptotic rational approximation to a real number

- Liouville 1844 : there exists $\xi \in \mathbf{R}$ such that for any $m>0$ the system

$$
0<x_{0} \leq X, \quad\left|x_{0} \xi-x_{1}\right| \leq \varphi(X)
$$

has infinitely many solutions with $\varphi(X)=X^{-m}$.
approximation of algebraically dependent quantities.

Simultaneous approximation of ξ and ξ^{2}

$$
\text { Let } \xi \in \mathbf{R} \backslash \mathbf{Q} .
$$

- Dirichlet's box principle : for any real number $X \geq 1$, there exists $\left(x_{0}, x_{1}, x_{2}\right) \in \mathbf{Z}^{3}$ satisfying
(*) $0<x_{0} \leq X, \quad\left|x_{0} \xi-x_{1}\right| \leq \varphi(X), \quad\left|x_{0} \xi^{2}-x_{2}\right| \leq \varphi(X)$ where $\varphi(X)=1 /[\sqrt{X}]$.
- If ξ is algebraic of degree 2 , the same is true with $\varphi(X)=c / X$ and $c=c(\xi)>0$.
- Metrical result : For $\lambda>1 / 2$, the set E_{λ} of ξ which are not quadratic over \mathbf{Q} and for which (*) have a solution for any sufficiently large value of X with $\varphi(X)=X^{-\lambda}$ has Lebesgue measure zero.

Simultaneous approximation of a number and its square

- Consequence of Schmidt's subspace Theorem : For $\lambda>1 / 2$, the set E_{λ} contains no algebraic number.
- H. Davenport and W.M. Schmidt (1969) The set E_{λ} is empty for $\lambda>\Phi=(-1+\sqrt{5}) / 2=0.618$.
- D. Roy (2003) : Examples of transcendental numbers ξ for which the inequalities $(*)$ have a solution for all sufficiently large values of X with $\varphi(X)=c X^{-\Phi}$
- Start with $f_{1}=b$ and $f_{2}=a$ and define (concatenation) : $f_{n}=f_{n-1} f_{n-2}$
- Hence $f_{3}=a b \quad f_{4}=a b a \quad f_{5}=a b a a$
$f_{6}=a b a a b a b a \quad f_{7}=a b a a b a b a a b a a b$
$f_{8}=$ abaababaabaababaababa ..
- The Fibonacci word
$w=$ abaababaabaababaababaabaababaabaab..
is the fixed point of the morphism $b \mapsto a, a \mapsto a b$.

Diophantine geometry

- Absolute logarithmic height : for a rational number a / b with $\operatorname{gcd}(a, b)=1$ and $b>0$,

$$
h(a / b)=\log \max \{|a|, b\} .
$$

- Lehmer's problem - lower bound for the height of a nontorsion point.
Generalization to elliptic curves, abelian varieties,
commutative algebraic groups.
- Small points : Zariski closure of the set of points of sufficiently small height on a variety, Bogomolov's conjecture.
- Mazur's Conjecture (1992) : density of rational points on algebraic varieties.
- J-L. Colliot-Thélène, A.N. Skorobogatov and
P. Swinnerton-Dyer (1997) Counterexample in the general case.
- The special case of abelian varieties reduces to a conjecture from transcendental number theory on which partial results are available.

Complexity of the expansion of a real number
Let again $x=\sum_{k \geq 1} a_{k} g^{-k}$ denote the g-ary expansion of $x \in(0,1)$.

- Complexity function : for each integer $n \geq 1, p(n)$ is the number of words of length n which occur in the sequence $\left(a_{1}, a_{2}, \ldots\right)$
- A periodic sequence has a bounded complexity.
- The complexity function p of an unbounded sequence satisfies $p(1)>1$ and $p(n+1)>p(n)$ for all $n \geq 1$, hence $p(n) \geq n+1$ for all $n \geq 1$.
- A Sturmian sequence is a sequence with minimal
complexity function : $p(n)=n+1$ for all $n \geq 1$
- Example : the sequence of letters of the Fibonacci word is Sturmian
- B. Adamczewski, Y. Bugeaud, F. Luca (2004) : The complexity function p of a real irrational algebraic number x satisfies

$$
\liminf _{n \rightarrow \infty} \frac{p(n)}{n}=+\infty
$$

- Example : A number whose sequence of digits is Sturmian is transcendental (S. Ferenczi, C. Mauduit 1997).
-

Schmidt's subspace Theorem

- W.M. Schmidt (1970) : For $m \geq 2$ let L_{1}, \ldots, L_{m} be independent linear forms in m variables with algebraic coefficients. Let $\epsilon>0$. Then the set

$$
\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbf{Z}^{m} ;\left|L_{1}(\mathbf{x}) \cdots L_{m}(\mathbf{x})\right| \leq|\mathbf{x}|^{-\epsilon}\right\}
$$

is contained in the union of finitely many proper subspaces of Q^{m}.

- Example : $m=2, L_{1}\left(x_{1}, x_{2}\right)=x_{1}, L_{2}\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$. Roth's Theorem : for any real algebraic irrational number α, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-2-\epsilon}$ is finite.
http ://www.math.jussieu.fr/~miw/

