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Abstract

Schanuel’s conjecture asserts that for linearly independent
complex numbers x

1

, ..., x

n

, there are at least n algebraically
independent numbers among the 2n numbers

x

1

, . . . , x

n

, exp(x
1

), . . . , exp(x
n

).

This simple statement has many remarkable consequences ; we
will explain some of them. We will also present the state of the
art on this topic.

Note : We write exp z for ez.
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Numbers : rational, algebraic, transcendental

Goal : given a mathematical constant, decide whether it is a
rational, an irrational algebraic number, or else a
transcendental number.

Rational integers : Z = {0,±1,±2,±3, . . .}.

Rational numbers :

Q = {p/q | p 2 Z, q 2 Z, q > 0, gcd(p, q) = 1}.

Algebraic numbers : roots of polynomials with rational
coe�cients, like p/q (root of qX � p), or

p
2 (root of

X

2 � 2), or i (root of X2 + 1), or e2i⇡/163 (root of X163 � 1).

Transcendental number : a complex number which is not
algebraic.
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Partition of the set of complex numbers
Rational

Algebraic irrational
Transcendental

The di�culty of the problem lies in the fact that the constants
arising from analysis are most often given as limits of
sequences, sums of series, integrals, infinite products. . .
We are mainly interested here with numbers related with the
exponential function, like

e, ⇡, log 2, e

p
2

, e

⇡

, 2
p
2

. . .

Recall that for complex numbers a and b with a 6= 0,

a

b = exp{b log a}
when a choice for log a has been selected.
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Known and unknown results

We know the transcendence of numbers like

e, ⇡, log 2, e

p
2

, e

⇡

, 2
p
2

. . .

For each of the following numbers

e+ ⇡, e⇡, ⇡

e

, e

e

, e

e

2
, . . . , e

e

e
, . . . , ⇡

⇡

, ⇡

⇡

2
, . . . ⇡

⇡

⇡
. . .

log ⇡, log(log 2), ⇡ log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

we expect that it is a transcendental number, but we do not
know even whether it is an irrational number.
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Linear independence over Q

Given complex numbers, we may ask whether they are linearly
independent over Q.

For instance given a number x, the linear independence of 1, x
over Q is equivalent to the irrationality of x.

As an example, the numbers

log 2, log 3, log 5, . . . log p, . . .

are linearly independent over Q : for b
i

2 Z,

b

1

log p
1

+ · · ·+ b

n

log p
n

= 0 =) b

1

= · · · = b

n

= 0.

p

b1
1

· · · pbn
n

= 1 =) b

1

= · · · = b

n

= 0.

6 / 68

Linear independence over Q

The set of algebraic numbers is a subfield of C (sums and
products of algebraic numbers are algebraic).

Given complex numbers, we may ask whether they are linearly
independent over the field Q of algebraic numbers.

For instance, given a number x, the linear independence of
1, x over Q is equivalent to the transcendence of x.

It has been proved by A. Baker in 1968 that the numbers

1, log 2, log 3, log 5, . . . log p, . . .

are linearly independent over Q : for �
i

2 Q,

�

0

+ �

1

log p
1

+ · · ·+ �

n

log p
n

= 0 =) �

0

= · · · = �

n

= 0.
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Algebraic independence

Given complex numbers x
1

, . . . , x

n

, we may ask whether they
are algebraically independent over Q : this means that there is
no nonzero polynomial P 2 Q[x

1

, . . . , x

n

] such that
P (x

1

, . . . , x

n

) = 0.

One can prove that this is equivalent to saying that x
1

, . . . , x

n

are algebraically independent over Q : if a nonzero polynomial
Q 2 Q[x

1

, . . . , x

n

] satisfies Q(x
1

, . . . , x

n

) = 0, then by taking
for P the product of the “conjugates” of Q over Q one gets a
nonzero polynomial P 2 Q[x

1

, . . . , x

n

] such that
P (x

1

, . . . , x

n

) = 0.

If x
1

, . . . , x

n

are algebraically independent, each of these
numbers is transcendental.
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Transcendence degree

The transcendence degree of a subfield K of C is the maximal
number of elements in K which are algebraically independent
over Q (or over Q, this is the same).

Given numbers t
1

, . . . , t

m

, the maximal number of algebraic
elements in the set {t

1

, . . . , t

m

} is the same as the
transcendence degree of the field Q(t

1

, . . . , t

m

).

The transcendence degree of the field Q(t
1

, . . . , t

m

) is m if
and only if t

1

, . . . , t

m

are algebraically independent.

For m = 1, the transcendence degree of the field Q(x) is 0 if
x is algebraic, 1 if x is transcendental.
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Charles Hermite and Ferdinand Lindemann

Charles Hermite
(1822 – 1901)

1873 :
Transcendence of e
e = 2.718 281 . . .

Ferdinand von Lindemann
(1852 – 1939)

1882 :
Transcendence of ⇡
⇡ = 3.141 592 . . .
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Hermite–Lindemann Theorem

Charles Hermite
(1822 – 1901)

Ferdinand von Lindemann
(1852 – 1939)

For any non-zero complex number z, one at least of the two
numbers z and e

z is transcendental.

Corollaries : Transcendence of log↵ and of e� for ↵ and �

non-zero algebraic complex numbers, provided log↵ 6= 0.
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Lindemann–Weierstraß Theorem (1885)

Let �
1

, . . . , �

n

be algebraic numbers which are linearly
independent over Q. Then the numbers e�1

, . . . , e

�n are
algebraically independent over Q.

Ferdinand von Lindemann
(1852 – 1939)

Karl Weierstrass
(1815 - 1897)
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Corollary of the Lindemann–Weierstraß Theorem

If �
1

, . . . , �

n

are algebraic, then the numbers e�1
, . . . , e

�n are
algebraically independent if and only if �

1

, . . . , �

n

are linearly
independent over Q.

Indeed, if �
1

, . . . , �

n

are linearly dependent over Q, say
a

1

�

1

+ · · ·+ a

n

�

n

= 0 with a

i

2 Z, then the polynomial

Y

ai>0

X

ai
i

�
Y

ai<0

X

|ai|
i

vanishes at the point (e�1
, . . . , e

�n).
The deep part of the Lindemann–Weierstraß Theorem is the
converse.
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Hilbert’s problems

August 8, 1900

David Hilbert
(1862 - 1943)

Second International Congress
of Mathematicians, Paris 1900

Twin primes

Goldbach’s Conjecture

Riemann Hypothesis

Transcendence of e⇡

and 2
p
2
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A.O. Gel’fond and Th. Schneider

Solution of Hilbert’s seventh Problem (1934) : Transcendence
of ↵� and (log↵

1

)/(log↵
2

) for ↵, �, ↵
1

and ↵

2

algebraic.

A.O. Gel’fond
(1906 - 1968)

Th. Schneider
(1911 - 1988)
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Transcendence of ↵� and log↵1/ log↵2 : examples
The following numbers are transcendental :

2
p
2 = 2.665 144 1 . . .

log 2

log 3
= 0.630 929 . . .

e

⇡ = 23.140 692 . . . (e⇡ = (�1)�i)

e

⇡

p
163 = 262 537 412 640 768 743. 999 999 999 999 25 . . .
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A.O. Gel’fond CRAS 1934
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Statement by Gel’fond (1934)

Let P (x
1

, x

2

, . . . , x

n

, y

1

, . . . , y

m

) be a polynomial with rational
integer coe�cients and ↵

1

,↵

2

, . . . ,↵

n

, �

1

, �

2

, . . . , �

m

algebraic
numbers, �

i

6= 0, 1.
The equality

P (e↵1
, e

↵2
, . . . , e

↵n
, ln �

1

, ln �
2

, . . . , ln �
m

) = 0

is impossible ; the numbers ↵
1

,↵

2

, . . . ,↵

n

, as well as the
numbers ln �

1

, ln �
2

, . . . , ln �
m

are linearly independent in the
rational numbers field.

18 / 68

Statement by Gel’fond (1934)

This theorem includes as special cases, the theorems of
Hermite and Lindemann, the complete solution of Hilbert’s
problem, the transcendence of numbers e!1e

!2 (where !

1

and
!

2

are algebraic numbers), the theorem on the relative
transcendence of the numbers e and ⇡.
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Second statement by A.O. Gel’fond

The numbers

e

!1e
!2e

...
!n�1e

!n

and ↵

↵

↵...↵m
3

2
1

,

where !

1

6= 0,!
2

, . . . ,!

n

and ↵

1

6= 0, 1, ↵
2

6= 0, 1, ↵
3

6= 0,
. . . ,↵

m

are algebraic numbers, are transcendental numbers,
and among numbers of this form there is no nontrivial
algebraic relations with rational integer coe�cients.

The proof of this result and a few other results on
transcendental numbers will be given in another journal.

Remark by Mathilde Herblot : the condition on ↵2 should be that it is

irrational.
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Schanuel’s Conjecture

If x
1

, . . . , x

n

are Q–linearly independent complex numbers,
then n at least of the 2n numbers x

1

, . . . , x

n

, ex1
, . . . , e

xn are
algebraically independent.

Equivalently :
If x

1

, . . . , x

n

are Q-linearly independent complex numbers, then

tr degQQ
�
x

1

, . . . , x

n

, e

x1
, . . . , e

xn
�
� n.
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Origin of Schanuel’s Conjecture

Course given by Serge Lang
(1927–2005) at Columbia in
the 60’s

S. Lang – Introduction to transcendental numbers,
Addison-Wesley 1966.
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Formal analogs

W.D. Brownawell
(was a student of Schanuel)

J. Ax’s Theorem (1968) :
Version of Schanuel’s
Conjecture for power series
over C
(and R. Coleman for power
series over Q)
Work by W.D. Brownawell
and K. Kubota on the elliptic
analog of Ax’s Theorem.
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Dale Brownawell and Stephen Schanuel
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Methods from logic

Ehud Hrushovski Boris Zilber Jonathan Kirby

“predimension” function (E. Hrushovski)

B. Zilber : “pseudoexponentiation”

Aussi : A. Macintyre, D.E. Marker, G. Terzo, A.J. Wilkie,
D. Bertrand. . .
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Daniel Bertrand

Daniel Bertrand,

Schanuel’s conjecture for
non-isoconstant elliptic curves
over function fields.

Model theory with
applications to algebra and
analysis. Vol. 1, 41–62,
London Math. Soc. Lecture
Note Ser., 349, Cambridge
Univ. Press, Cambridge, 2008.
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Lindemann–Weierstraß Theorem (1885)
According to the Lindemann–Weierstraß Theorem, Schanuel’s
Conjecture is true for algebraic x

1

, . . . , x

n

: in this case the
transcendence degree of the field Q

�
x

1

, . . . , x

n

, e

x1
, . . . , e

xn
�

is n.

Ferdinand von Lindemann
(1852 – 1939)

Karl Weierstrass
(1815 - 1897)
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Transcendence degree  n

If we select ex1
, . . . , e

xs to be algebraic (this means that the
x

i

’s are logarithms of algebraic numbers) x
s+1

, . . . , x

n

also to
be algebraic, then the transcendence degree of the field

Q(x
1

, . . . , x

n

, e

x1
, . . . , e

xn)

is the same as the transcendence degree of the field

Q(x
1

, . . . , x

s

, e

xs+1
, . . . , e

xn)

hence is  n.
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Baire and Lebesgue
René Baire Henri Léon Lebesgue
1874 – 1932 1875 – 1941

The set of tuples (x
1

, . . . , x

n

) in Cn such that the 2n numbers
x

1

, . . . , x

n

, e

x1
, . . . , e

xn are algebraically independent
• is a G

�

set (countable intersection of dense open sets) in
Baire’s classification (a generic set for dynamical systems)
• and has full Lebesgue measure.

True for any transcendental function in place of the exponential

function.
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Mathematical genealogy

René Baire (1899)
|

Arnaud Denjoy (1909)
|

Charles Pisot (1938)
|

Yvette Amice (1965)
|

Jean Fresnel (1967)
|

Michel Waldschmidt (1972)

http://genealogy.math.ndsu.nodak.edu

30 / 68

Joint work with Senthil Kumar and Thangadurai

Given two integers m and n with 1  m  n, there exist
uncountably many tuples (x

1

, . . . , x

n

) in Rn such that
x

1

, . . . , x

n

and e

x1
, . . . , e

xn are all Liouville numbers and the
transcendence degree of the field

Q(x
1

, . . . , x

n

, e

x1
, . . . , e

xn)

is n+m.
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m = 0?

1  m  n :

tr degQQ(x
1

, . . . , x

n

, e

x1
, . . . , e

xn) = n+m.

We do not know whether there are Liouville numbers x such
that ex is also a Liouville number and the two numbers x and
e

x are algebraically dependent.
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Schanuel’s Conjecture for n = 1

For n = 1, Schanuel’s Conjecture is the Hermite–Lindemann
Theorem :

If x is a non–zero complex numbers, then one at
least of the two numbers x, ex is transcendental.

Equivalently, if x is a non–zero algebraic number, then e

x is a
transcendental number.
Another equivalent statement is that if ↵ is a non–zero
algebraic number and log↵ any non–zero logarithm of ↵, then
log↵ is a transcendental number.
Consequence : transcendence of numbers like

e, ⇡, log 2, e

p
2

.

Proof: take

x = 1, i⇡, log 2,
p
2.
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Schanuel’s Conjecture for n = 2

For n = 2, Schanuel’s Conjecture is not yet known :

? If x
1

, x

2

are Q–linearly independent complex
numbers, then among the 4 numbers x

1

, x

2

, ex1
, e

x2 ,
at least two are algebraically independent.

A few consequences (open problems) :
With x

1

= 1, x
2

= i⇡ : algebraic independence of e and ⇡.
With x

1

= 1, x
2

= e : algebraic independence of e and e

e.
With x

1

= log 2, x
2

= (log 2)2 : algebraic independence of
log 2 and 2log 2.
With x

1

= log 2, x
2

= log 3 : algebraic independence of log 2
and log 3.
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Alan Baker 1968

Transcendence of numbers
like :

�

1

log↵
1

+ · · ·+ �

n

log↵
n

or
e

�0
↵

�1
1

· · ·↵�1
1

for algebraic ↵

i

and �

j

.

Example (Siegel) :

Z
1

0

dx

1 + x

3

=
1

3

✓
log 2 +

⇡p
3

◆
= 0.835 648 . . .

is transcendental.
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Baker’s linear independence Theorem

Let �
1

, . . . ,�

n

be Q–linearly independent logarithms of
algebraic numbers. Then the numbers 1,�

1

, . . . ,�

n

are linearly
independent over the field Q of algebraic numbers.

Schanuel’s Conjecture deals with algebraic independence (over
Q or Q), Baker’s Theorem deals with linear independence.
Baker’s Theorem is a special case of Schanuel’s Conjecture.
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Serre’s reformulation of Baker’s Theorem

Denote by L the set of complex numbers � for which e

� is
algebraic (set of logarithms of algebraic numbers). Hence L is
a Q-vector subspace of C.

J-P. Serre
(Bourbaki seminar) :
the injection of L into C
extends to a Q–linear map
◆ : Q+ L⌦Q Q ! C, and
Baker’s Theorem means that
◆ is an injective map.
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Algebraic independence

Towards Schanuel’s Conjecture :

Ch. Hermite, F. Lindemann, C.L. Siegel, A.O. Gel’fond,
Th. Schneider, A. Baker, S. Lang, W.D. Brownawell,
D.W. Masser, D. Bertrand, G.V. Chudnovsky, P. Philippon,
G. Wüstholz, Yu.V. Nesterenko, D. Roy. . .
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Algebraic independence : A.O. Gel’fond 1948

The two numbers 2
3p
2 and

2
3p
4 are algebraically

independent.

More generally, if ↵ is an algebraic number, ↵ 6= 0, ↵ 6= 1 and
if � is an algebraic number of degree d � 3, then two at least
of the numbers

↵

�

, ↵

�

2
, . . . ,↵

�

d�1

are algebraically independent.
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Algebraic independence

G.V. Chudnovsky (1978)

The numbers ⇡ and
�(1/4) = 3.625 609 908 2 . . .
are algebraically independent.

Also ⇡ and �(1/3) = 2.678 938 534 7 . . . are algebraically
independent.
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On the number e⇡

Yu.V.Nesterenko (1996)
Algebraic independence of
�(1/4), ⇡ and e

⇡.
Also : Algebraic
independence of
�(1/3), ⇡ and e

⇡

p
3.

Corollary : The numbers ⇡ = 3.141 592 653 5 . . . and
e

⇡ = 23.140 692 632 7 . . . are algebraically independent.

The proof uses modular functions.
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On the number e⇡

Open problem : e⇡ is not a Liouville number :
����e

⇡ � p

q

���� >
1

q



·

Algebraic independence of ⇡ and e

⇡ : Nesterenko

Chudnosvki : algebraic independence of ⇡ and �(1/4)

Nesterenko : Algebraic independence of ⇡, �(1/4) and e

⇡

Open problem : algebraic independence of ⇡ and e.

Expected : e, ⇡ and e

⇡ are algebraic independent.
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Easy consequence of Schanuel’s Conjecture

According to Schanuel’s Conjecture, the following numbers are
algebraically independent :

e+ ⇡, e⇡, ⇡

e

, e

e

, e

e

2
, . . . , e

e

e
, . . . , ⇡

⇡

, ⇡

⇡

2
, . . . ⇡

⇡

⇡
. . .

log ⇡, log(log 2), ⇡ log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

Proof : Use Schanuel’s Conjecture several times.
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Conjecture of algebraic independence of logarithms
of algebraic numbers

The most important special case of Schanuel’s Conjecture is :

Conjecture. Let �
1

, . . . ,�

n

be Q-linearly independent
complex numbers. Assume that the numbers e�1

, . . . , e

�n are
algebraic. Then the numbers �

1

, . . . ,�

n

are algebraically
independent over Q.

Not yet known that the transcendence degree is � 2.
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Reformulation by D. Roy
Instead of taking logarithms of algebraic numbers and looking
for the algebraic independence relations, D. Roy fixes a
polynomial and looks at the points, with coordinates
logarithms of algebraic numbers, on the corresponding
hypersurface.

Recall that L is the set of complex numbers � for which e

� is
algebraic (logarithms of algebraic numbers).

The Conjecture on (homogeneous) algebraic independence of
logarithms of algebraic numbers is equivalent to :

Conjecture (Roy). For any algebraic subvariety V of Cn

defined over the field Q of algebraic numbers, the set V \ Ln

is the union of the sets E \ Ln, where E ranges over the set
of vector subspaces of Cn which are contained in V .
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Points with coordinates logarithms of algebraic
numbers

Damien Roy : Grassmanian varieties.

Stéphane Fischler : orbit of an a�ne algebraic group G over Q
related to a linear representation of G on a vector space with a
Q–structure.
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Quadratic relations among logarithms of algebraic
numbers

One does not know yet how to prove that there is no
nontrivial quadratic relations among logarithms of algebraic
numbers, like

(log↵
1

)(log↵
2

) = log �.

Example: Assume e

⇡

2
= � is algebraic. Then

(�i⇡)(i⇡) = log �.

• Open problem : is the number e⇡
2
transcendental ?
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e

⇡

2
, e and ⇡ (1972)

W.D. Brownawell
(was a student of Schanuel)

One at least of the two
following statements is true :
• the number e⇡

2
is

transcendental
• the two numbers e and ⇡

are algebraically independent.

Schanuel’s Conjecture implies that both statements are true !
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Homogeneous quadratic relations among
logarithms of algebraic numbers

Any homogeneous quadratic relation among logarithms of
algebraic numbers

(log↵
1

)(log↵
4

) = (log↵
2

)(log↵
3

)

should be trivial.

Example of a trivial relation : (log 2)(log 9) = (log 4)(log 3).

The Four Exponentials Conjecture can be stated as : any
quadratic relation (log↵

1

)(log↵
4

) = (log↵
2

)(log↵
3

) among
logarithms of algebraic numbers is trivial : either
log↵

1

/ log↵
2

is rational, or log↵
1

/ log↵
3

is rational.
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S. Ramanujan,
C.L. Siegel, S. Lang, K. Ramachandra

Ramanujan : Highly composite numbers.

Alaoglu and Erdős (1944), Siegel.
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Four exponentials conjecture (special case)
Let t be a positive real number. Assume 2t and 3t are both
integers. Prove that t is an integer.

Set n = 2t. Then t = (log n)/(log 2) and

3t = e

t log 3 = e

(logn)(log 3)/(log 2) = n

(log 3)/(log 2)

.

Equivalently :
If n is a positive integer such that

n

(log 3)/(log 2)

is an integer, then n is a power of 2 :

2k(log 3)/(log 2) = 3k.
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Further consequences of Schanuel’s Conjecture

Ram Murty Kumar Murty N. Saradha

Purusottam Rath, Ram Murty, Sanoli Gun
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The Rohrlich–Lang Conjecture

The Rohrlich–Lang Conjecture implies that for any q > 1, the
transcendence degree of the field generated by numbers

⇡, �(a/q) 1  a  q, (a, q) = 1

is 1 + '(q)/2.
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Variant of the Rohrlich–Lang Conjecture

Conjecture of S. Gun, R. Murty, P. Rath (2009) : for any
q > 1, the numbers

log�(a/q) 1  a  q, (a, q) = 1

are linearly independent over the field Q of algebraic numbers.

A consequence is that for any q > 1, there is at most one
primitive odd character � modulo q for which

L

0(1,�) = 0.
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Peter Bundschuh (1979)
.

For p/q 2 Q with
0 < |p/q| < 1, the sum of the
series

1X

n=2

⇣(n)(p/q)n

is a transcendental number.

For p/q 2 Q \ Z,
�0

�

✓
p

q

◆
+ �

is transcendental
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Peter Bundschuh (1979)
(P. Bundschuh) : As a consequence of Nesterenko’s Theorem,
the number

1X

n=0

1

n

2 + 1
=

1

2
+

⇡

2
· e

⇡ + e

�⇡

e

⇡ � e

�⇡

= 2.076 674 047 4 . . .

is transcendental, while
1X

n=0

1

n

2 � 1
=

3

4

(telescoping series).
Hence the number

1X

n=2

1

n

s � 1

is transcendental over Q for s = 4. The transcendence of this
number for even integers s � 4 would follow as a consequence
of Schanuel’s Conjecture.
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P
n�1A(n)/B(n)

Arithmetic nature of X

n�1

A(n)

B(n)

where
A/B 2 Q(X).

In case B has distinct zeroes, by decomposing A/B in simple
fractions one gets linear combinations of logarithms of
algebraic numbers (Baker’s method).
The example A(X)/B(X) = 1/X3 shows that the general
case is hard :

⇣(3) =
X

n�1

1

n

3

·
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S.D. Adhikari, N. Saradha, T.N. Shorey and
R. Tijdeman (2001),
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Catalan’s Constant

Catalan’s constant is
X

n�1

(�1)n

(2n+ 1)2

= 0.915 965 . . .

Is it an irrational number ?

Eugène Catalan
(1814 - 1894)
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S. Gun, R. Murty, P. Rath

Assuming Schanuel’s Conjecture, one at least of the two next
statements is true :
(i) The two numbers ⇡ and G are algebraically independent.
(ii) The number �

2

(1/4)/�
2

(3/4) is transcendental.
The multiple Gamma function of Barnes is defined by �

0

(z) = 1/z,
�
1

(z) = �(z),

�
n+1

(z + 1) =
�
n+1

(z)

�
n

(z)
,

with �
n

(1) = 1.
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Damien Roy

Strategy suggested by D. Roy
in 1999, Journées
Arithmétiques, Roma :
Conjecture equivalent to
Schanuel’s Conjecture.

61 / 68

Roy’s approach to Schanuel’s Conjecture (1999)
Let D denote the derivation

D =
@

@X

0

+X

1

@

@X

1

over the ring C[X
0

, X

1

]. The height of a polynomial
P 2 C[X

0

, X

1

] is defined as the maximum of the absolute
values of its coe�cients.
Let k be a positive integer, y

1

, . . . , y

k

complex numbers which
are linearly independent over Q, ↵

1

, . . . ,↵

k

non-zero complex
numbers and s

0

, s

1

, t

0

, t

1

, u positive real numbers satisfying

max{1, t
0

, 2t
1

} < min{s
0

, 2s
1

}

and

max{s
0

, s

1

+ t

1

} < u <

1

2
(1 + t

0

+ t

1

).
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Roy’s Conjecture

Assume that, for any su�ciently large positive integer N ,
there exists a non-zero polynomial P

N

2 Z[X
0

, X

1

] with
partial degree  N

t0 in X

0

, partial degree  N

t1 in X

1

and
height  e

N which satisfies

�����
�
Dk

P

N

�⇣ kX

j=1

m

j

y

j

,

kY

j=1

↵

mj

j

⌘�����  exp(�N

u)

for any non-negative integers k, m
1

, . . . ,m

k

with k  N

s0 and
max{m

1

, . . . ,m

k

}  N

s1 . Then

tr degQ(y
1

, . . . , y

k

,↵

1

, . . . ,↵

k

) � k.
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Equivalence between Schanuel and Roy

Let (y,↵) 2 C⇥C⇥, and let s
0

, s

1

, t

0

, t

1

, u be positive real
numbers satisfying the inequalities of Roy’s Conjecture. Then
the following conditions are equivalent :
(a) The number ↵e�y is a root of unity.

(b) For any su�ciently large positive integer N , there exists a
nonzero polynomial Q

N

2 Z[X
0

, X

1

] with partial degree
 N

t0 in X

0

, partial degree  N

t1 in X

1

and height
H(Q

N

)  e

N such that

��(@k

Q

N

)(my,↵

m)
��  exp(�N

u)

for any k,m 2 N with k  N

s0 and m  N

s1 .
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Recent progress by D. Roy

G
a

, G
m

, G
a

⇥G
m

.

Small value estimates for the additive group. Int. J. Number
Theory 6 (2010), 919–956.

Small value estimates for the multiplicative group. Acta Arith.
135 (2008), 357–393.

A small value estimate for G
a

⇥G
m

. Mathematika 59 (2013),
333–363
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Recent developments
Roy’s Conjecture deals with polynomials vanishing on some
subsets of C⇥C⇥ with multiplicity along the space
associated with the derivation @/@X + Y @/@Y .
D. Roy conjecture depends on parameters s

0

, s

1

, t

0

, t

1

, u in a
certain range. D. Roy proved that if his conjecture is true for
one choice of values of these parameters in the given range,
then Schanuel’s Conjecture is true, and that conversely, if
Schanuel’s Conjecture is true, then his conjecture is true for all
choices of parameters in the same range.

Nguyen Ngoc Ai Van
extended the range of these
parameters.
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Ubiquity of Schanuel’s Conjecture

Other contexts : p–adic numbers, Leopoldt’s Conjecture on
the p–adic rank of the units of an algebraic number field
Non-vanishing of Regulators
Non–degenerescence of heights
Conjecture of B. Mazur on rational points
Diophantine approximation on tori

Dipendra Prasad Gopal Prasad
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May 6, 2014: Colloquium De Giorgi

Schanuel’s Conjecture:
algebraic independence

of transcendental numbers

Michel Waldschmidt

Institut de Mathématiques de Jussieu — Paris VI
http://www.math.jussieu.fr/⇠miw/
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