RUPP Master in Mathematics Algebra and Geometry Tests Michel Waldschmidt

April 21, 2015

1. Let G be an additive group. Recall that G is abelian. Let $S = \{x_1, \ldots, x_m\}$ be a finite subset of G. Show that the subgroup of G generated by S is

 $\{a_1x_1+\cdots+a_mx_m \mid a_1,\ldots,a_m \in \mathbf{Z}\}.$

2. Let G be an abelian multiplicative group. Let $S = \{y_1, \ldots, y_m\}$ be a finite subset of G. What is the subgroup of G generated by S?

April 22, 2015

Let n be an integer, $n \ge 2$. Give a necessary and sufficient condition on n for the ring $\mathbf{Z}/n\mathbf{Z}$ to be a field. Prove the result.

April 24, 2015

1. Let $n \ge 2$ be an integer. Denote by $\varphi(n)$ the number of integers a in the range $1 \le a \le n$ such that gcd(a, n) = 1. Prove that

 $a^{\varphi(n)} \equiv 1 \mod n$ for all a in **Z** with gcd(a, n) = 1.

2. Let \mathbf{F} be a finite field with q elements. Prove

$$x^{q-1} = 1$$
 for all $x \in \mathbf{F}^{\times}$.

Deduce

$$x^q = x$$
 for all $x \in \mathbf{F}$.

April 25, 2015

Let **F** be a field, V a **F**-vector space and f, g two endomorphisms of V.

1. Prove that ker $f \subset \ker(f \circ g)$.

2. Prove that ker $f = \text{ker}(f \circ g)$ if and only if $\text{im} f \cap \text{ker} g = \{0\}$.

April 28, 2015

Let **F** be a field, f the endomorphism of \mathbf{F}^3 which maps $(a_1, a_2, a_3) \in \mathbf{F}^3$ to $(a_1 - a_2, a_2 - a_3, a_3 - a_1)$. Give a basis for ker f and for $\inf f$.

April 30, 2015

Show that the two linear forms $f_1(x, y) = x + y$ and $f_2(x, y) = x - y$ give a basis of the dual $(\mathbf{R}^2)^* = \mathcal{L}_{\mathbf{R}}(\mathbf{R}^2, \mathbf{R})$ of the **R**-vector space \mathbf{R}^2 .

Give the dual basis.

May 7, 2015

 Set

 $\mathcal{H} = \{ (x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 1 \}.$

Prove that \mathcal{H} is an affine subspace of the affine space \mathbb{R}^4 . What is the underlying vector subspace H of the vector space \mathbb{R}^4 ? Give a frame of \mathcal{H} .

http://webusers.imj-prg.fr/~michel.waldschmidt/enseignement.html

4, Place Jussieu Bureau 15–25 417 Tél. : [33] (0)
1 44 27 54 41 http://www.imj-prg.fr/~michel.waldschmidt/ Secr. : [33] (0)1 44 27 38 08 Fax : [33] (0)1 44 27 63 25 michel.waldschmidt@imj-prg.fr