"NumberTheory \& Discrete Mathematics"
 International Conference in honour of Srinivasa Ramanujan Centre for Advanced Study in Mathematics Panjab University, Chandigarh
 (October 2/6, 2000.)

Multiple Zeta Values

and

Euler-Zagier Numbers

by

Michel WALDSCHMIDT

http://www.math.jussieu.fr/~miw/articles/ps/MZV.ps

1. Introduction

For s_{1}, \ldots, s_{k} in \mathbb{Z} with $s_{1} \geq 2$,

$$
\zeta\left(s_{1}, \ldots, s_{k}\right)=\sum_{n_{1}>\cdots>n_{k} \geq 1} n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}}
$$

$k=1$ integer values of Riemann zeta function $\zeta(s)$.
Euler: $\zeta(s) \pi^{-s} \in \mathbb{Q}$ for s even ≥ 2.
Fact: No known other algebraic relations between values of Riemann zeta function at positive integers.

Expected: there is no further relation :
Are the numbers

$$
\pi, \zeta(3), \zeta(5), \ldots, \zeta(2 n+1), \ldots
$$

algebraically independent?
Means:

$$
\text { For } n \geq 0 \text { and } P \in \mathbb{Q}\left[X_{0}, X_{1}, \ldots, X_{n}\right] \backslash\{0\}
$$

$$
P(\pi, \zeta(3), \zeta(5), \ldots, \zeta(2 n+1)) \neq 0 ?
$$

F. Lindemann (1882): π is transcendental.
R. Apéry (1978): $\zeta(3)$ is irrational.
T. Rivoal (2000): infinitely many irrational numbers among $\zeta(3), \zeta(5), \ldots, \zeta(2 n+1), \ldots$

Theorem (T. Rivoal). Let $\epsilon>0$. For any sufficiently large n, the \mathbb{Q}-vector space spanned by the n numbers

$$
\zeta(3), \zeta(5), \ldots, \zeta(2 n+1)
$$

has dimension

$$
\geq \frac{1-\epsilon}{1+\log 2} \cdot \log n
$$

The proof also yields:
There exists on odd integer j with $5 \leq j \leq 169$ such that the three numbers

$$
1, \zeta(3), \zeta(j)
$$

are linearly independent over \mathbb{Q}.

2. Sketch of Proof of Rivoal's Theorem

Goal: Given a sufficiently large odd integer a, construct a sequence of linear forms in $(a+1) / 2$ variables, with integer coefficients, such that the numbers

$$
\ell_{n}=p_{0 n}+\sum_{i=1}^{(a-1) / 2} p_{i n} \zeta(2 i+1)
$$

satisfy, for $n \rightarrow \infty$,

$$
\left|\ell_{n}\right|=\alpha^{-n+o(n)}
$$

and

$$
\left|p_{i n}\right| \leq \beta^{n+o(n)}
$$

with

$$
\alpha \simeq a^{2 a} \quad \text { and } \quad \beta \simeq(2 e)^{2 a} .
$$

It will follow that the $(a+1) / 2$ numbers

$$
1, \zeta(3), \zeta(5), \ldots, \zeta(a)
$$

span a \mathbb{Q}-vector space of dimension at least

$$
1+\frac{\log \alpha}{\log \beta} \simeq \frac{\log a}{1+\log 2}
$$

(Nesterenko's Criterion). \square

Explicit construction of the linear forms

Previous works of R. Apéry, F. Beukers, E. Nikishin, K. Ball, D. Vasilyev,...

Pochammer symbol: $(m)_{0}=1$ and, for $k \geq 1$,

$$
(m)_{k}=m(m+1) \ldots(m+k-1)
$$

Set $r=\left[a(\log a)^{-2}\right]$. Define

$$
\begin{gathered}
d_{m}=\text { l.c.m. of }\{1,2, \ldots, m\}, \\
R_{n}(t)=n!^{a-2 r} \frac{(t-r n+1)_{r n}(t+n+2)_{r n}}{(t+1)_{n+1}^{a}}, \\
S_{n}=\sum_{k=0}^{\infty} R_{n}(k), \quad \ell_{n}=d_{2 n}^{a} S_{2 n} .
\end{gathered}
$$

Write the partial fraction expansion

$$
R_{n}(t)=\sum_{i=1}^{a} \sum_{j=0}^{n} \frac{c_{i j n}}{(t+j+1)^{i}}
$$

with

$$
c_{i j n}=\frac{1}{(a-i)!}\left(\frac{d}{d t}\right)^{a-i}\left(R_{n}(t)(t+j+1)^{a}\right)_{\mid t=-j-1} .
$$

Set $p_{i n}=d_{2 n} q_{i, 2 n}$ where

$$
q_{0, n}=-\sum_{i=1}^{a} \sum_{j=1}^{n} c_{i j n} \sum_{k=0}^{j-1} \frac{1}{(k+1)^{i}}
$$

and

$$
q_{i n}=\sum_{j=0}^{n} c_{i j n} \quad(1 \leq i \leq a)
$$

Estimate for $\left|p_{i n}\right|$:

$$
c_{i j n}=\frac{1}{2 \pi i} \int_{|t+j+1|=1 / 2} R_{n}(t)(t+j+1)^{i-1} d t
$$

Estimate for $\left|\ell_{n}\right|$:

$$
\begin{gathered}
S_{n}=\frac{((2 r+1) n+1)!}{n!^{2 r+1}} \cdot I_{n} \\
I_{n}=\int_{[0,1]^{a+1}} F(\underline{x}) \cdot \frac{d x_{1} d x_{2} \ldots d x_{a+1}}{\left(1-x_{1} x_{2} \cdots x_{a+1}\right)^{2}}, \\
F\left(x_{1}, x_{2}, \ldots, x_{a+1}\right)=\left(\frac{\prod_{i=1}^{a+1} x_{i}^{r}\left(1-x_{i}\right)}{\left(1-x_{1} x_{2} \cdots x_{a+1}\right)^{2 r+1}}\right)^{n} .
\end{gathered}
$$

3. Shuffle Product for Series

Reflexion Formula:

$$
\begin{aligned}
\zeta(s) \zeta\left(s^{\prime}\right)= & \sum_{n \geq 1} n^{-s} \cdot \sum_{n^{\prime} \geq 1}\left(n^{\prime}\right)^{-s^{\prime}} \\
= & \sum_{n>n^{\prime} \geq 1} n^{-s}\left(n^{\prime}\right)^{-s^{\prime}}+\sum_{n^{\prime}>n \geq 1} n^{-s}\left(n^{\prime}\right)^{-s^{\prime}} \\
& \quad+\sum_{n \geq 1} n^{-s-s^{\prime}} \\
= & \zeta\left(s, s^{\prime}\right)+\zeta\left(s^{\prime}, s\right)+\zeta\left(s+s^{\prime}\right)
\end{aligned}
$$

Example:

$$
\zeta(s)^{2}=2 \zeta(s, s)+\zeta(2 s)
$$

For $s=2: \quad \zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$,

$$
\zeta(2,2)=\sum_{m>n \geq 1}(m n)^{-2}=\frac{\pi^{4}}{120}
$$

Other example:

$$
\zeta(2) \zeta(3)=\zeta(2,3)+\zeta(3,2)+\zeta(5) .
$$

Shuffle relations arising from the series representation.

$$
\zeta(\underline{s}) \zeta\left(\underline{s}^{\prime}\right)=\sum_{\underline{\sigma}} \zeta(\underline{\sigma})
$$

where $\underline{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{h}\right)$ ranges over the tuples obtained as follows:

$$
\begin{aligned}
& \begin{array}{c}
\underline{s} \rightarrow \\
\underline{s}^{\prime} \rightarrow
\end{array}\left(\begin{array}{ccccc}
s_{1} & 0 & s_{2} & \cdots & s_{k} \\
0 & s_{1}^{\prime} & s_{2}^{\prime} & \cdots & 0
\end{array}\right) \\
& \underline{\sigma}=\left(\begin{array}{ccccc}
s_{1} & s_{1}^{\prime} & s_{2}+s_{2}^{\prime} & \cdots & s_{k}
\end{array}\right)
\end{aligned}
$$

Hence $\max \left\{k, k^{\prime}\right\} \leq h \leq k+k^{\prime}$.
Example: $k=k^{\prime}=1, \underline{s}=s, \underline{s}^{\prime}=s^{\prime}$, then
$\left.\begin{array}{cccc}s \rightarrow & (s & 0\end{array}\right) \quad\left(\begin{array}{cc}0 & s) \\ s^{\prime} \rightarrow & (0 \\ s\end{array}\right) \quad\left(s^{\prime} \begin{array}{l}0\end{array}\right) \quad s$
so that

$$
\left\{\underline{\sigma}_{1}, \underline{\sigma}_{2}, \underline{\sigma}_{3}\right\}=\left\{\left(s, s^{\prime}\right),\left(s^{\prime}, s\right), s+s^{\prime}\right\}
$$

Other Description:

Alphabet with two letters $X=\left\{x_{0}, x_{1}\right\}$.
Words:

$$
X^{*}=\left\{x_{0}^{a_{1}} x_{1}^{b_{1}} \cdots x_{0}^{a_{h}} x_{1}^{b_{h}}\right\}
$$

Non-commutative polynomials: $\mathbb{Q}\langle X\rangle$.
For $s \geq 1$ set $y_{s}=x_{0}^{s-1} x_{1}$.
For $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{i} \geq 1$, set

$$
\begin{aligned}
x_{\underline{s}} & =y_{s_{1}} \cdots y_{s_{k}} \\
& =x_{0}^{s_{1}-1} x_{1} x_{0}^{s_{2}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1} .
\end{aligned}
$$

The number k of factors x_{1} is the depth of the word $x_{\underline{s}}$ and of the tuple \underline{s}.
The number $p=s_{1}+\cdots+s_{k}$ of letters is the weight. The set of such $x_{\underline{s}}$'s is $X^{*} x_{1}$ togeether with the null word e (corresponds to \emptyset with $k=0$).

Convergent words: $x_{0} X^{*} x_{1} \bigcup\{e\}$.
Set $\zeta(w)=\zeta(\underline{s})$ for $w=x_{\underline{s}}$ with $\zeta(\emptyset)=\zeta(e)=1$.

Convergent polynomials: $\mathbb{Q}\langle X\rangle_{\text {conv }} \subset \mathbb{Q}\langle X\rangle$. Extend ζ by linearity to $\mathbb{Q}\langle X\rangle_{\text {conv }}$.

Law $*$ on $\mathbb{Q}\langle X\rangle_{\text {conv }}$:

$$
e * w=w \quad \text { for } \quad w \in X^{*} x_{1}
$$

and, for $s \geq 1$ and $t \geq 1, w$ and w^{\prime} in $X^{*} x_{1}$,

$$
\begin{aligned}
& \left(y_{s} w\right) *\left(y_{t} w^{\prime}\right)= \\
& \quad y_{s}\left(w * y_{t} w^{\prime}\right)+y_{t}\left(y_{s} w * w^{\prime}\right)+y_{s+t}\left(w * w^{\prime}\right)
\end{aligned}
$$

Then

$$
x_{\underline{s}} * x_{\underline{s}^{\prime}}=\sum_{\underline{\sigma}} x_{\underline{\sigma}} .
$$

Proposition. For w and w^{\prime} in $x_{0} X^{*} x_{1}$,

$$
\zeta(w) \zeta\left(w^{\prime}\right)=\zeta\left(w * w^{\prime}\right)
$$

Connection with quasi-symmetric functions

Commutative infinite alphabet: $\underline{t}=\left\{t_{1}, t_{2}, \ldots\right\}$
Formal power series: $\mathbb{Q}[[\underline{t}]]$.
To $w=x_{\underline{s}} \in X^{*} x_{1}$ associate

$$
F_{w}(\underline{t})=\sum_{n_{1}>\cdots>n_{k} \geq 1} t_{n_{1}}^{s_{1}} \cdots t_{n_{k}}^{s_{k}}
$$

Then for w and w^{\prime} in $X^{*} x_{1}$ we have

$$
F_{w}(\underline{t}) F_{w^{\prime}}(\underline{t})=F_{w * w^{\prime}}(\underline{t})
$$

For $w \in x_{0} X^{*} x_{1}, \zeta(w)$ is the value of $F_{w}(\underline{t})$ with $t_{n}=1 / n, \quad(n \geq 1)$.

4. Shuffle Product for Integrals

Let $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{i} \geq 1$; set $p=s_{1}+\cdots+s_{k}$. Define $\epsilon_{i} \in\{0,1\}$ for $1 \leq i \leq p$ by

$$
x_{\underline{s}}=x_{\epsilon_{1}} \cdots x_{\epsilon_{p}} .
$$

For instance for $\underline{s}=(2,3)$ with $p=5$:

$$
x_{(2,3)}=x_{0} x_{1} x_{0}^{2} x_{1}, \quad\left(\epsilon_{1}, \ldots, \epsilon_{5}\right)=(0,1,0,0,1)
$$

Define differential forms:

$$
\omega_{0}(t)=\frac{d t}{t} \quad \text { et } \quad \omega_{1}(t)=\frac{d t}{1-t}
$$

Let Δ_{p} be the simplex in \mathbb{R}^{p} :

$$
\Delta_{p}=\left\{\underline{t} \in \mathbb{R}^{p} ; 1>t_{1}>\cdots>t_{p}>0\right\} .
$$

Proposition. For $s_{1} \geq 2$,

$$
\zeta(\underline{s})=\int_{\Delta_{p}} \omega_{\epsilon_{1}}\left(t_{1}\right) \cdots \omega_{\epsilon_{p}}\left(t_{p}\right)
$$

Example:

$$
\zeta(2,3)=\int_{\Delta_{5}} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d t_{3}}{t_{3}} \cdot \frac{d t_{4}}{t_{4}} \cdot \frac{d t_{5}}{1-t_{5}} .
$$

Proof. Expand $1 /(1-t)=\sum_{s \geq 0} t^{s}$. \square

Shuffle on X^{*} :

$$
e \sqcup w=w \sqcup e=w
$$

and, for i and j in $\{0,1\}, u$ and v in X^{*},

$$
\left(x_{i} u\right) \sqcup\left(x_{j} v\right)=x_{i}\left(u \sqcup x_{j} v\right)+x_{j}\left(x_{i} u \sqcup v\right)
$$

Example. Computation of $y_{2} \sqcup y_{3}=x_{0} x_{1} \amalg x_{0}^{2} x_{1}$: get $x_{0} x_{1} x_{0}^{2} x_{1}$ once, $x_{0}^{2} x_{1} x_{0} x_{1}$ three times and $x_{0}^{3} x_{1}^{2}$ six times. Hence

$$
y_{2} \amalg y_{3}=y_{2} y_{3}+3 y_{3} y_{2}+6 y_{4} y_{1}
$$

Corollary.

$$
\zeta(w) \zeta\left(w^{\prime}\right)=\zeta\left(w \sqcup w^{\prime}\right)
$$

for w and w^{\prime} in $x_{0} X^{*} x_{1}$.
Proof. The Cartesian product $\Delta_{p} \times \Delta_{p^{\prime}}$ is the union of $\left(p+p^{\prime}\right)!/ p!p^{\prime}!$ simplices. \square

Example. From

$$
y_{2} \sqcup y_{3}=y_{2} y_{3}+3 y_{3} y_{2}+6 y_{4} y_{1}
$$

we deduce

$$
\zeta(2) \zeta(3)=\zeta(2,3)+3 \zeta(3,2)+6 \zeta(4,1)
$$

On the other hand the shuffle relation for series gives

$$
\zeta(2) \zeta(3)=\zeta(2,3)+\zeta(3,2)+\zeta(5)
$$

hence

$$
\zeta(5)=2 \zeta(3,2)+6 \zeta(4,1)
$$

There are further relations.
Example:

$$
x_{1} \sqcup x_{0} x_{1}=x_{1} x_{0} x_{1}+2 x_{0} x_{1}^{2}
$$

and

$$
x_{1} * x_{0} x_{1}=x_{1} x_{0} x_{1}+x_{0} x_{1}^{2}+x_{0}^{2} x_{1}
$$

hence

$$
x_{1} \amalg x_{0} x_{1}-x_{1} * x_{0} x_{1}=x_{0} x_{1}^{2}-x_{0}^{2} x_{1}
$$

Fact:

$$
\zeta\left(x_{0} x_{1}^{2}\right)=\zeta\left(x_{0}^{2} x_{1}\right) .
$$

Euler:

$$
\zeta(2,1)=\zeta(3)
$$

Proposition. For w and w^{\prime} in $x_{0} X^{*} x_{1}$,

$$
\begin{aligned}
& \zeta(w) \zeta\left(w^{\prime}\right)=\zeta\left(w * w^{\prime}\right) \\
& \zeta(w) \zeta\left(w^{\prime}\right)=\zeta\left(w \sqcup w^{\prime}\right)
\end{aligned}
$$

and

$$
\zeta\left(x_{1} \sqcup w-x_{1} * w\right)=0 .
$$

5. Symbolic Multizeta

Define $\operatorname{Ze}(\underline{s})$ for each $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$, with $k \geq 0$ and $s_{i} \geq 1$. Next define $\operatorname{Ze}(w)$ for w in $X^{*} x_{1}$ by $\mathrm{Ze}\left(x_{\underline{s}}\right)=\mathrm{Ze}(\underline{s})$. Convergent symbols: $\mathrm{Ze}(\underline{s})$ with $s_{1} \geq 2$ or $k=0$; these are the $\operatorname{Ze}(w)$ with w in $x_{0} X^{*} x_{1}$ together with $\mathrm{Ze}(e)=\operatorname{Ze}(\emptyset)$.

Algebra of Convergent MZV:

$\mathrm{MZV}_{\text {conv }}$ is the commutative algebra over \mathbb{Q} generated by the convergent symbols $\mathrm{Ze}(\underline{s})$ with the relations

$$
\begin{aligned}
\operatorname{Ze}(w) \operatorname{Ze}\left(w^{\prime}\right) & =\operatorname{Ze}\left(w * w^{\prime}\right) \\
\operatorname{Ze}(w) \operatorname{Ze}\left(w^{\prime}\right) & =\operatorname{Ze}\left(w \amalg w^{\prime}\right)
\end{aligned}
$$

and

$$
\operatorname{Ze}\left(x_{1} \sqcup w-x_{1} * w\right)=0
$$

for w and w^{\prime} in $x_{0} X^{*} x_{1}$.

Main Diophantine Conjecture. The specialization morphism from $\mathrm{MZV}_{\text {conv }}$ into \mathbb{C} which maps $\mathrm{Ze}(\underline{s})$ onto $\zeta(\underline{s})$ is injective.

Algebras MZV* and $\mathrm{MZV}^{\mathrm{W}}$: generators $\mathrm{Ze}(\underline{s})$ with $\underline{s}=\left(s_{1}, \ldots, s_{k}\right), k \geq 0, s_{j} \geq 1$, and $*$ (resp. ш) defined by

$$
\operatorname{Ze}(w) * \operatorname{Ze}\left(w^{\prime}\right)=\operatorname{Ze}\left(w * w^{\prime}\right)
$$

resp.

$$
\mathrm{Ze}(w) \amalg \mathrm{Ze}\left(w^{\prime}\right)=\mathrm{Ze}\left(w \amalg w^{\prime}\right)
$$

for $w \in X^{*} x_{1}$.

Remark.

$$
x_{1} * x_{1}=2 x_{1}^{2}+x_{0} x_{1} \quad \text { and } \quad x_{1} \sqcup x_{1}=2 x_{1}^{2}
$$

hence

$$
\operatorname{Ze}\left(x_{1}\right) * \operatorname{Ze}\left(x_{1}\right)=2 \operatorname{Ze}\left(x_{1}^{2}\right)+\operatorname{Ze}\left(x_{0} x_{1}\right)
$$

while

$$
\operatorname{Ze}\left(x_{1}\right) \sqcup \operatorname{Ze}\left(x_{1}\right)=2 \mathrm{Ze}\left(x_{1}^{2}\right)
$$

and $\zeta\left(x_{0} x_{1}\right)=\zeta(2) \neq 0$.

Conjecture of

Zagier, Drinfeld, Kontsevich and Goncharov.

For $p \geq 2$ let d_{p} denote the dimension of the \mathbb{Z} module in $\mathrm{MZV}_{\text {conv }}$ spanned by the 2^{p-2} elements $\mathrm{Ze}(\underline{s})$ for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ of length p and $s_{1} \geq 2$.

Conjecture. We have

$$
d_{1}=0, \quad d_{2}=d_{3}=d_{4}=1
$$

and

$$
d_{p}=d_{p-2}+d_{p-3} \quad \text { for } \quad p \geq 4
$$

For each $p \geq 1$, define \mathcal{Z}_{p} as the \mathbb{Q}-vector space spanned by the $\mathrm{Ze}(\underline{s})$ with \underline{s} convergent of weight p; set $\mathcal{Z}_{0}=\mathbb{Q}$. Then the sum of $\mathcal{Z}_{p}(p \geq 0)$ is direct, and the conjecture means

$$
\sum_{p \geq 0} q^{p} \operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{p}=\frac{1}{1-q^{2}-q^{3}}
$$

Remark: $d_{p} \rightarrow \infty$ by Rivoal's result.

6. Further Results

Écalle: for weight ≤ 10, independent generators are

$$
\begin{gathered}
\mathrm{Ze}(2), \operatorname{Ze}(3), \operatorname{Ze}(5), \mathrm{Ze}(7), \mathrm{Ze}(9), \\
\mathrm{Ze}(6,2), \mathrm{Ze}(8,2)
\end{gathered}
$$

Polylogarithms
Classical: for $s \geq 1$ and $|z|<1$,

$$
\operatorname{Li}_{s}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{s}}
$$

Higher dimension: for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{i} \geq 1$,

$$
\operatorname{Li}_{\underline{s}}(z)=\sum_{n_{1}>\cdots>n_{k} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

Then

$$
\operatorname{Li}_{u ш v}(z)=\operatorname{Li}_{u}(z) \operatorname{Li}_{v}(z)
$$

If $s_{1} \geq 2$, then $\operatorname{Li}_{\underline{s}}(1)=\zeta(\underline{s})$.
Work of Petitot (Lille): the functions Li_{w}, with w in X^{*}, are linearly independent over \mathbb{C}.

7. Related Topics

Further connections with:
Combinatoric (theory of quasisymmetric functions, Radford's Theorem and Lyndon words)

Lie and Hopf algebras
Resurgent series (Écalle's theory)
Mixed Tate motives on SpecZ (Goncharov's work)
Monodromy of differential equations
Fundamental group of the projective line minus three points and Belyi's Theorem

Absolute Galois group of \mathbb{Q}
Group of Grothendieck-Teichmüller
Knots theory and Vassiliev invariants
K-theory
Feynman diagrams and quantum field theory
Quasi-triangular quasi-Hopf algebras
Drinfeld's associator Φ_{KZ} (connexion of KnizhnikZamolodchikov).

