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Abstract

Seshadri’s constant is related to a conjecture due to Nagata.
Another conjecture, also due to Nagata and solved by
Bombieri in 1970, is related with algebraic values of
meromorphic functions. The main argument of Bombieri’s
proof leads to a Schwarz Lemma in several variables, the proof
of which gives rise to another invariant associated with
symbolic powers of the ideal of functions vanishing on a finite
set of points. This invariant is an asymptotic measure of the
least degree of a polynomial in several variables with given
order of vanishing on a finite set of points. Recent works on
the resurgence of ideals of points and the containment
problem compare powers and symbolic powers of ideals.
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The starting point of Seshadri constant theory

The paper that started the whole theory :

C.S. Seshadri, Annals of Mathematics, Vol. 95 (May 1972) 511–556



Seshadri’s ampleness criterion



Definition of the Seshadri constants

Definition (Demailly, 1990)
Let X be a projective nonsingular variety and L a nef (or
pseudo-ample) line bundle over X. Given a point x ∈ X, one
defines the Seshadri constant ε(L, x) of L at x to be

ε(L, x) = inf
all alg. curvesC3x

L · C
multx(C)

.

This is a very interesting numerical invariant that measures in a
deep manner the “local positivity” of the line bundle L at point x.

Equivalent definition (already observed in Seshadri’s
paper !)
Let π : X̃ → X be the blow-up of X at x ∈ X, and E the
exceptional divisor in X̃. Then, for L ∈ Pic(X) assumed to be nef,
one has

ε(L, x) = sup{γ ≥ 0 / π∗L− γE is nef on X̃}.



Reformulation of Seshadri’s ampleness criterion

Reformulation of Seshadri’s ampleness criterion
A nef line bundle L ∈ Pic(X) is ample if and only if one has
ε(L) := infx∈X ε(L, x) > 0.
A direct consequence of the fact (π∗L− γE)n = Ln − γn ≥ 0 is
that

ε(L, x) ≤ (Ln)1/n, ∀x ∈ X.

A curve C is said to be submaximal if
L · C

multx(C)
< (Ln)1/n.

A large part of the investigations on Seshadri constants, especially
in the case of surfaces, rests upon the study of submaximal curves.

Remark. In [D, 1990], over K = C, the Seshadri constant is related
to more analytic invariants. For instance, if L is ample, it can be
shown that ε(L, x) is the supremum of γ ≥ 0 for which L possesses
a singular Hermitian metric h with ΘL,h ≥ 0, that is smooth on
X r {x} with a logarithmic pole of Lelong number γ at x.



Relation to the Nagata conjecture

The concept of Seshadri constant is already highly non trivial on
rational surfaces. For instance, the famous Nagata conjecture, has
attracted lot of work by Hirschowitz, Harbourne, Biran, Bauer,
Szemberg, Dumnicki and others. It can be reformulated :

Nagata conjecture (1959), reformulated
Let x1, . . . , xp be p very general points in P2, p ≥ 9. Then the
multipoint Seshadri constant of O(1) on P2 satisfies

ε(O(1), x1, . . . , xp) =
1
√
p

.

A simple counting argument implies that ε(O(1), x1, . . . , xp) ≤ 1√
p ,

and the main difficulty is to find good configurations of points to
get lower bounds. In case p = q2 is a perfect square, a square grid
works, hence equality. For 4 < p < 9, one is in the Del Pezzo case,
and the equality turns out to be strict.



Schneider – Lang Theorem (1949, 1966)

Theodor Schneider
(1911 – 1988)

Serge Lang
(1927 – 2005)

Let f1, . . . , fm be meromorphic functions in C. Assume f1 and f2
are algebraically independent and of finite order. Let K be a
number field. Assume f ′j belongs to K[f1, . . . , fm] for
j = 1, . . . ,m. Then the set

S = {w ∈ C | w not pole of fj , fj(w) ∈ K (j = 1, . . . ,m)}

is finite.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lang.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lang.html


Hermite – Lindemann Theorem (1882)

Charles Hermite

(1822 – 1901)

Carl Louis Ferdinand von Lindemann

(1852 – 1939)

Corollary. If w is a nonzero complex number, one at least of
the two numbers w, ew is transcendental.

Consequence : transcendence of e, π, logα, eβ, for algebraic
α and β assuming α 6= 0, logα 6= 0, β 6= 0.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hermite.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lindemann.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hermite.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lindemann.html


Gel’fond – Schneider Theorem (1934)

Aleksandr Osipovich Gelfond

(1906 – 1968)

Theodor Schneider

(1911 – 1988)

Corollary (Hilbert’s seventh problem). If β is an irrational
algebraic number and w a nonzero complex number, one at
least of the two numbers ew, eβw is transcendental.

Consequence : transcendence of eπ, 2
√
2, αβ, logα1/ logα2,

for algebraic α, α1, α2 and β assuming α 6= 0, logα 6= 0,
β 6∈ Q, logα1/ logα2 6∈ Q.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Gelfond.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Gelfond.html
 http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html


Proofs of the corollaries

Hermite - Lindemann. Let K = Q(w, ew). The two
functions f1(z) = z, f2(z) = ez are algebraically independent,
of finite order, and satisfy the differential equations f ′1 = 1,
f ′2 = f2. The set S contains {`w | ` ∈ Z}. Since w 6= 0, this
set is infinite ; it follows that K is not a number field. �

Gel’fond - Schneider. Let K = Q(β, ew, eβw). The two
functions f1(z) = ez, f2(z) = eβz are algebraically
independent, of finite order, and satisfy the differential
equations f ′1 = f1, f ′2 = βf2. The set S contains
{`w | ` ∈ Z}. Since w 6= 0, this set is infinite ; it follows that
K is not a number field. �



Schneider’s Theorems on elliptic functions (1937)

Corollary (Schneider). Let ℘ be an elliptic function of
Weierstrass with algebraic invariants g2, g3. Let w be a
complex number, not pole of ℘. Then one at least of the two
numbers w, ℘(w) is transcendental.

Proof. Let K = Q(g2, w, ℘(w), ℘′(w)). The two functions
f1(z) = z, f2(z) = ℘(z) are algebraically independent, of finite
order. Set f3(z) = ℘′(z). From ℘′2 = 4℘3 − g2℘− g3 one
deduces

f ′1 = 1, f ′2 = f3, f ′3 = 6f 2
2 − (g2/2).

The set S contains

{`w | ` ∈ Z, `w not pole of ℘}

which is infinite. Hence K is not a number field. �



The transcendence machinery

The prototype of transcendence methods is Hermite’s proof of
the transcendence of e.

The proof of the Schneider – Lang Theorem follows the
following scheme :

Step 1 Construct an auxiliary function f with many zeroes.

Step 2 Find a point z0 where f(z0) 6= 0.

Step 3 Give a lower bound for |f(z0)| using arithmetic
arguments.

Step 4 Give an upper bound for |f(z0)| using analytic
arguments.

We are interested here mainly (but not only) with the last part
(step 4) which is of analytic nature.



Schwarz Lemma in one variable

Hermann Amandus Schwarz

(1843 – 1921)

Let f be an analytic function
in a disc |z| ≤ R of C, with
at least N zeroes in a disc
|z| ≤ r with r < R. Then

|f |r ≤
(

3r

R

)N
|f |R.

We use the notation

|f |r = sup
|z|=r
|f(z)|.

When R > 3r, this improves the maximum modulus bound
|f |r ≤ |f |R.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schwarz.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schwarz.html


Schwarz Lemma in one variable : proof
Let a1, . . . , aN be zeroes of f in the disc |z| ≤ r, counted with
multiplicities. The function

g(z) = f(z)
N∏
j=1

(z − aj)−1

is analytic in the disc |z| ≤ R. Using the maximum modulus
principle, from r ≤ R we deduce |g|r ≤ |g|R. Now we have

|f |r ≤ (2r)N |g|r and |g|R ≤ (R− r)−N |f |R.

Finally, assuming (wlog) R > 3r,

2r

R− r
≤ 3r

R
·

�



Schneider – Lang Theorem in several variables :

cartesian products (1941, 1966)

Let f1, . . . , fm be meromorphic functions in Cn with
m ≥ n+ 1. Assume f1, . . . , fn+1 are algebraically independent
of finite order. Let K be a number field. Assume (∂/∂zi)fj
belongs to K[f1, . . . , fm] for j = 1, . . . ,m and i = 1, . . . , n. If
e1, . . . , en is a basis of Cn, then the set

S = {w ∈ Cn | w not pole of fj, fj(w) ∈ K (j = 1, . . . ,m)}

does not contain a cartesian product

{s1e1 + · · ·+ snen | (s1, . . . , sn) ∈ S1 × · · · × Sn}

where each Si is infinite.



Schneider’s Theorem on Euler’s Beta function

Leonhard Euler

(1707 – 1783)

Let a, b be rational numbers,
not integers. Then the
number

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

is transcendental.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html

Further results by Th. Schneider and S. Lang on abelian
functions and algebraic groups.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html


Schwarz lemma in several variables : cartesian

products (grids)

Let f be an analytic function in a ball |z| ≤ R of Cn. Assume
f vanishes with multiplicity at least t on a set S1 × · · · × Sn
where each Si is contained in a disc |z| ≤ r with r < R and
has at least s elements.
Then

|f |r ≤
(

3r

R

)st
|f |R.



Cartesian products

Schwarz Lemma for Cartesian products can be proved by
induction.

§4.3 of M.W.. Diophantine Approximation on Linear Algebraic

Groups. Grund. Math. Wiss. 326 Springer-Verlag (2000).

Another proof, based on integral formulae, yields a weaker
result : for R > 3r,

|f |r ≤
(
R− 3r

2r

)n(
3r

R

)st
|f |R.

The conclusion follows from a homogeneity argument : replace
f by fN (and t by Nt) and let N →∞.

Chap. 7 of M.W.. Nombres transcendants et groupes algébriques.

Astérisque, 69–70 (1979).



Nagata’s suggestion (1966)

Masayoshi Nagata

(1927 – 2008)

In the conclusion of the
Schneider – Lang Theorem,
replace the fact that S does
not contain a cartesian
product S1 × · · · × Sn where
each Si is infinite by the fact
that S is contained in an
algebraic hypersurface.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Nagata.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Nagata.html


Bombieri’s Theorem (1970)
Let f1, . . . , fm be meromorphic functions in Cn with
m ≥ n+ 1. Assume f1, . . . , fn+1 are algebraically independent
and of finite order. Let K be a number field. Assume (∂/∂zi)fj
belongs to K[f1, . . . , fm] for j = 1, . . . ,m and i = 1, . . . , n.

Enrico Bombieri

Then the set

S ={w ∈ Cn |
w not pole of fj,

fj(w) ∈ K (j = 1, . . . ,m)}

is contained in an algebraic
hypersurface.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bombieri.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bombieri.html


Bombieri – Lang (1970)

Let f be an analytic function in a ball |z| ≤ R of Cn. Assume
f vanishes at N points zi (counting multiplicities) in a ball
|z| ≤ r with r < R. Assume min

zi 6=zk
|zi − zk| ≥ δ.

Then

|f |r ≤
(

3r

R

)M
|f |R

with

M = N

(
δ

6r

)2n−2

.

E. Bombieri. Algebraic values of meromorphic maps. Invent. Math.
10 (1970), 267–287.
E. Bombieri and S. Lang. Analytic subgroups of group varieties.
Invent. Math. 11 (1970), 1–14.



Lelong number

E. Bombieri. Algebraic values of meromorphic maps. Invent. Math.
10 (1970), 267–287.
E. Bombieri and S. Lang. Analytic subgroups of group varieties.
Invent. Math. 11 (1970), 1–14.

Pierre Lelong
(1912 – 2011)

P. Lelong. Intégration sur un
ensemble analytique complexe,
Bulletin S.M.F. 85 (1957),
239–262,

https://fr.wikipedia.org/wiki/Pierre_Lelong

https://fr.wikipedia.org/wiki/Pierre_Lelong


L2- estimates of Hörmander

Lars Hörmander

(1931 – 2012)

Existence theorems for the ∂
operator.
E. Bombieri. Let ϕ be a
plurisubharmonic function in
Cn and z0 ∈ Cn be such that
e−ϕ is integrable near z0.
Then there exists a nonzero
entire function F such that

∫
Cn

|F (z)|2e−ϕ(z)(1 + |z|2)−3ndλ(z) <∞.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.html


Towards a Schwarz lemma in several variables

Let S be a finite subset of Cn and t a positive integer. Let M
be a positive number with the following property.
There exists a real number r such that for R > r, if f is an
analytic function in the ball |z| ≤ R of Cn which vanishes with
multiplicity at least t at each point of S, then

|f |r ≤
(
c(n)r

R

)M
|f |R,

where c(n) depends only on the dimension n.

Question: what is the largest possible value for M ?

Answer: use the property for f a nonzero polynomial
vanishing on S with multiplicity t. We deduce that f has
degree at least M .



Degree of hypersurfaces

Let S be a finite set of Cn and t a positive integer.

Denote by ωt(S) the smallest degree of a polynomial vanishing
at each point of S with multiplicity ≥ t.

M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16ème année, 1975/76 ; Lecture
Notes in Math., 578 (1977), 274–292.
M.W. Nombres transcendants et groupes algébriques. Astérisque,
69–70. Société Mathématique de France, Paris, 1979.



Schwarz lemma in several variables

Let S be a finite set of Cn and t a positive integer. There
exists a real number r such that for R > r, if f is an analytic
function in the ball |z| ≤ R of Cn which vanishes with
multiplicity at least t at each point of S, then

|f |r ≤
(
enr

R

)ωt(S)

|f |R.

This is a refined asymptotic version due to Jean-Charles
Moreau.

The exponent ωt(S) cannot be improved : take for f a
non–zero polynomial of degree ωt(S).



ωt(S) : examples

For n = 1 we have ωt(S) = t|S| :∏
s∈S

(z − s)t.

More generally, for a Cartesian product (grid)
S = S1 × · · · × Sn in Kn,

ωt(S) = t min
1≤i≤n

|Si|.

Proof by induction.



Generic S ⊂ C2 with |S| = 3

S = {(0, 0), (0, 1), (1, 0)}.

P1(X, Y ) = XY

P2(X, Y ) = XY (X + Y − 1)

ω1(S) = 2, ω2(S) = 3.

With

P2m−1 = XmY m(X + Y − 1)m−1, P2m = XmY m(X + Y − 1)m,

we deduce

ω2m−1(S) = 3m− 1, ω2m(S) = 3m.



Complete intersections of hyperplanes

Let H1, . . . , HN be N hyperplanes in general position in Cn

with N ≥ n and S the set of
(
N
n

)
intersection points of any n

of them. Then, for t ≥ 1,

ωnt(S) = Nt.

n = 2, N = 5, |S| = 10.



Dirichlet’s box principle

Johann Peter Gustav Lejeune

Dirichlet

(1805 – 1859)

Given a finite subset S of Cn

and a positive integer t, if D
is a positive integer such that

|S|
(
t+ n− 1

n

)
<

(
D + n

n

)
,

then

ωt(S) ≤ D.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Dirichlet.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Dirichlet.html


Properties of ωt(S)

Consequence of Dirichlet’s box principle :

ωt(S) ≤ (t+ n− 1)|S|1/n.

Subadditivity :

ωt1+t2(S) ≤ ωt1(S) + ωt2(S).

Therefore lim supt→∞ ωt(S)/t exists and is ≤ ωt(S)/t for all
t ≥ 1.



An asymptotic invariant
Theorem. The sequence(

1

t
ωt(S)

)
t≥1

has a limit Ω(S) as t→∞, and

1

n
ω1(S)− 2 ≤ Ω(S) ≤ ω1(S).

Further, for all t ≥ 1 we have

Ω(S) ≤ ωt(S)

t
·

Remark : Ω(S) ≤ |S|1/n.

M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16è année, 1975/76 ; Lecture Notes
in Math., 578 (1977), 274–292.



Improvement of L2 estimate by Henri Skoda
Let ϕ be a plurisubharmonic function in Cn and z0 ∈ Cn be
such that e−ϕ is integrable near z0. For any ε > 0 there exists
a nonzero entire function F such that∫

Cn

|F (z)|2e−ϕ(z)(1 + |z|2)−n−εdλ(z) <∞.

Corollary :
1

n
ω1(S) ≤ Ω(S) ≤ ω1(S).

H. Skoda. Estimations L2 pour
l’opérateur ∂ et applications
arithmétiques. Springer Lecture
Notes in Math., 578 (1977),
314–323.

https://en.wikipedia.org/wiki/Henri_Skoda

Henri Skoda

https://en.wikipedia.org/wiki/Henri_Skoda


Comparing ωt1(S) and ωt2(S)
Idea: Let P be a polynomial of degree ωt1(S) vanishing on S
with multiplicity ≥ t1. If the function P t2/t1 were an entire
function, it would be a polynomial of degree t2

t1
ωt1(S)

vanishing on S with multiplicity ≥ t2, which would yield
ωt2(S) ≤ t2

t1
ωt1(S).

However P t2/t1 is usually not an entire function but
ϕ = t2

t1
logP is a plurisubharmonic function. By the

L2–estimates of Hörmander – Bombieri – Skoda, eϕ is well
approximated by a nonzero entire function. This function is a
polynomial vanishing on S with multiplicity ≥ t2.

Theorem. For all t ≥ 1,

ωt
t+ n− 1

≤ Ω(S) ≤ ωt
t
·

M.W. Nombres transcendants et groupes algébriques. Astérisque,
69–70 . Société Mathématique de France, Paris, 1979.



Hilbert’s 14th problem

David Hilbert

(1862 – 1943)

Let k be a field and K a
subfield of k(X1, . . . , Xn)
containing k. Is the k–algebra

K ∩ k[X1, . . . , Xn]

finitely generated ?

Oscar Zariski (1954) : true for n = 1 and n = 2.
Counterexample by Masayoshi Nagata in 1959.

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html

http://www.clarku.edu/~djoyce/hilbert/

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html
http://www.clarku.edu/~djoyce/hilbert/


Hilbert’s 14th problem : restricted case

Masayoshi Nagata

(1927 – 2008)

Original 14th problem :
Let G be a subgroup of the
full linear group of the
polynomial ring in
indeterminate X1, . . . , Xn

over a field k, and let o be the
set of elements of
k[X1, . . . , Xn] which are
invariant under G. Is o finitely
generated ?

M. Nagata. On the 14-th Problem of Hilbert. Amer. J. Math 81
(1959), 766–772.
http://www.jstor.org/stable/2372927

http://www.jstor.org/stable/2372927


Fundamental Lemma of Nagata

Given 16 independent generic points of the projective plane
over a prime field and a positive integer t, there is no curve of
degree 4t which goes through each pi with multiplicity at least
t.

In other words for |S| = 16 generic in C2, we have ωt(S) > 4t.

Reference: M. Nagata. On the fourteenth problem of Hilbert.
Proc. Internat. Congress Math. 1958, Cambridge University Press,
pp. 459–462.
http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0459.0462.ocr.pdf

http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0459.0462.ocr.pdf


Nagata’ contribution

Masayoshi Nagata

(1927 – 2008)

Proposition. Let p1, . . . , pr
be independent generic points
of the projective plane over
the prime field. Let C be a
curve of degree d passing
through the pi’s with
multiplicities ≥ mi. Then

m1 + · · ·+mr < d
√
r

for r = s2, s ≥ 4.

It is not known if r > 9 is sufficient to ensure the inequality of
the Proposition.
M. Nagata. Lectures on the fourteenth problem of Hilbert. Tata
Institute of Fundamental Research Lectures on Mathematics 31,
(1965), Bombay.
http://www.math.tifr.res.in/~publ/ln/tifr31.pdf

http://www.math.tifr.res.in/~publ/ln/tifr31.pdf


Reformulation of Nagata’s Conjecture
By considering

∑
σ Cσ where σ runs over the cyclic

permutations of {1, . . . , r}, it is sufficient to consider the case
m1 = · · · = mr.

Conjecture. Let S be a finite generic subset of the projective
plane over the prime field with |S| ≥ 10. Then

ωt(S) > t
√
|S|.

Nagata :
• True for |S| a square.
• False for |S| ≤ 9.

Harbourne, Brian. On Nagata’s conjecture, Journal of Algebra
236 2 (2001), 692–702.
https://doi.org/10.1006/jabr.2000.8515

https://doi.org/10.1006/jabr.2000.8515


|S| ≤ 9 in C2

Nagata : generic S in C2 with |S| ≤ 9 have
ωt(S)

t
≤
√
|S|.

|S| = 1 2 3 4 5 6 7 8 9

ω1(S) = 1 1 2 2 2 3 3 3 3

t = 1 1 2 1 1 5 8 17 1

ωt(S) = 1 1 3 2 2 12 21 48 3

ωt(S)

t
= 1 1

3

2
2 2

12

5

21

8

48

17
3

√
|S| = 1

√
2
√

3 2
√

5
√

6
√

7
√

8 3



|S| = 1 or 2 in C2

|S| = 1 : S = {(0, 0)}, Pt(X, Y ) = X t,
ωt(S) = t, Ω(S) = 1.

|S| = 2 : S = {(0, 0), (1, 0)}, Pt(X, Y ) = Y t,
ωt(S) = t, Ω(S) = 1.



Generic S with |S| = 3 in C2

Given a set S of 3 points in C2, not on a straight line, we have

ωt(S) =


3t+ 1

2
for t odd,

3t

2
for t even,

hence

Ω(S) = lim
n→∞

ωt(S)

t
=

3

2
·

Since ω1(S) = 2 and n = 2, this is an example with

ω1(S)

n
< Ω(S) < ω1(S).



Generic S ⊂ C2 with |S| = 4
For a generic S in C2 with |S| = 4, we have ωt(S) = 2t, hence
Ω(S) = 2.

Easy for a Cartesian product (square grid) S1 × S2 with
|S1| = |S2| = 2, also true for a generic S with |S| = 4.

More generally, for the same reason, when S is a Cartesian
product S1 × S2 with |S1| = |S2| = m, we have ωt(S) = mt
and Ω(S) = m =

√
|S|. The inequality Ω(S) ≥

√
|S| for a

generic S with |S| a square follows (Chudnovsky).



Generic S ⊂ C2 with |S| = 5

Since 5 points in C2 lie on a conic, for a generic S with
|S| = 5 we have ωt(S) = 2t and Ω(S) = 2.

Remark. A polynomial in 2 variables of degree d has

(d+ 1)(d+ 2)

2

coefficients. Hence for 2|S| < (d+ 1)(d+ 2) we have
ω1(S) ≤ d.

For |S| = 1, 2 we have ω1(S) = 1,
for |S| = 3, 4, 5 we have ω1(S) ≤ 2,
for |S| = 6, 7, 8, 9 we have ω1(S) ≤ 3.



Generic S ⊂ C2 with |S| = 6 (Nagata)

Given 6 generic points
s1, . . . , s6 in C2, consider 6
conics C1, . . . , C6 where Si
passes through the 5 points sj
for j 6= i. This produces a
polynomial of degree 12 with
multiplicity ≥ 5 at each si.
Hence ω5(S) ≤ 12.

In fact ω5t(S) = 12t,
Ω(S) = 12/5.



Generic S ⊂ C2 with |S| = 7 (Nagata)

Given 7 points in C2, there is a cubic passing through these 7
points with a double point at one of them.

Number of coefficients of a cubic polynomial : 10.

Number of conditions : 6 for the simple zeros, 3 for the double
zero.

This gives a polynomial of degree 7× 3 = 21 with the 7
assigned zeroes of multiplicities 8.

In fact ω8t(S) = 21t, Ω(S) = 21/8.



Generic S ⊂ C2 with |S| = 8 (Nagata)

Given 8 points in C2, there is a sextic with a double point at 7
of them and a triple point at 1 of them.

Number of coefficients of a sextic polynomial :
(6 + 1)(6 + 2)/2 = 28.

Number of conditions : 3× 7 = 21 for the double zeros, 6 for
the triple zero.

This gives a polynomial of degree 8× 6 = 48 with the 8
assigned zeroes of multiplicities 2× 8 + 1 = 17.

In fact ω17t(S) = 48t, Ω(S) = 48/17.



G.V. Chudnovsky

Gregory Chudnovsky

Conjecture :

ω1 + n− 1

n
≤ ωt

t
·

G.V. Chudnovsky. Singular
points on complex
hypersurfaces and
multidimensional Schwarz
Lemma. M.-J. Bertin (Ed.),
Séminaire de Théorie des
Nombres Delange-Pisot-
Poitou, Paris, 1979–80, Prog.
Math., vol. 12, Birkhäuser.

True for n = 2 (J-P. Demailly).

https://fr.wikipedia.org/wiki/David_et_Gregory_Chudnovsky

https://fr.wikipedia.org/wiki/David_et_Gregory_Chudnovsky


Chudnovsky : n = 2, |S| = 2, 3, 4, 5



Chudnovsky : n = 2, |S| = 5, 6



Chudnovsky : n = 2, |S| = 6, 7



Chudnovsky : n = 2, |S| = 8



Chudnovsky : n = 2, |S| = 9



n = 2, |S| = 6, t = 5, ωt = 12, Ω = 12/5 generic



n = 2, |S| = 8, t = 2, ωt = 5, Ω = 5/2



n = 2, |S| = 8, t = 3, ωt = 8, Ω = 8/3



n = 2, |S| = 10, t = 6, ωt = 17, Ω = 17/6
Three sides : multiplicity 3.
Three concurrent lines : multiplicity 2.



Hélène Esnault and Eckart Viehweg

Hélène Esnault Eckart Viehweg

(1948 - 2010)

H. Esnault and E. Viehweg Sur une minoration du degré
d’hypersurfaces s’annulant en certains points. Math. Ann. 263
(1983), 75 – 86

Methods of projective geometry : for n ≥ 2,

Ω(S) ≥ ωt + 1

t+ n− 1
·



Jean-Pierre Demailly

Jean-Pierre Demailly

Using an appropriate
generalization of the
Poisson–Jensen formula,
proves a new variant of the
Schwarz lemma in Cn.

Consequence :

Ω(S) ≥
ω1(S)

(
ω1(S) + 1

)
· · ·
(
ω1(S) + n− 1

)
n!ω1(S)n−1

Corollary : For n = 1 or 2,

Ω(S) ≥ ω1(S) + n− 1

n
·



Demailly’s Conjecture

Recall the Conjecture of Chudnovsky and the Theorem of
Esnault and Viehweg :

Ω(S) ≥ ω1 + n− 1

n
, Ω(S) ≥ ωt + 1

t+ n− 1
·

Conjecture of Demailly :

Ω(S) ≥ ωt(S) + n− 1

t+ n− 1
·

J–P. Demailly. Formules de Jensen en plusieurs variables et
applications arithmétiques. Bull. Soc. Math. France 110 (1982),
75–102.

https://de.wikipedia.org/wiki/Jean-Pierre_Demailly

https://de.wikipedia.org/wiki/Jean-Pierre_Demailly


Conjecture of André Hirschowitz

André Hirschowitz

Denote by ωt(n,m) the
maximum of ωt(S) over all
finite sets S in Cn with m
elements.
Conjecture : ωt(n,m) is as
large as possible.

For every n ≥ 1 there is an integer c(n) such that, for every
m ≥ c(n) and, for all t, ωt(n,m) is the smallest integer d such
that (

d+ n

n

)
> m

(
t+ n− 1

n

)
·

True for t = 2 and n = 2 and 3, and for t = 3 and n = 2.
A. Hirschowitz. La méthode d’Horace pour l’interpolation à
plusieurs variables. Manuscripta Math. 50 (1985), 337–388.



Abdelhak Azhari

Abdelhak Azhari

A. Azhari. Démonstration
analytique d’un lemme de
multiplicités. C. R. Acad. Sci.
Paris Sér. I Math. 303 (1986),
no. 7, 269–272.

A. Azhari. Sur la conjecture de Chudnovsky – Demailly et les
singularités des hypersurfaces algébriques. Ann. Inst. Fourier 40
(1990), no. 1, 103–116.
http://www.numdam.org/item?id=AIF_1990__40_1_103_0

http://www.numdam.org/item?id=AIF_1990__40_1_103_0


Connection with C.S. Seshadri constant

Conjeevaram Srirangachari Seshadri

(1932-2020)

For a generic set S of s points
in Pn, Seshadri’s constant
ε(S) is related to Ω(S) by

ε(S)n−1 =
Ω(S)

s
·

Duality between the cone of effective curves and the cone of
ample divisors.



C.S. Seshadri’s criterion
Let X be a smooth projective variety and L a line bundle on
X. Then L is ample if and only if there exists a positive
number ε such that for all points x on X and all irreducible
curves C passing through x one has

L · C ≤ ε multxC.

Robin Hartshorne

R. Hartshorne. Ample
subvarieties of algebraic
varieties. Springer Lecture Notes
in Math., vol. 156, Springer
(1970).



C.S. Seshadri constant at a point
Let X be a smooth projective variety and L a nef line bundle
on X. For a fixed point x ∈ X the real number

ε(X,L;x) := inf
L · C

multxC

is the Seshadri constant of L at x.
The infimum is over all irreducible curves passing through x.

Jean–Pierre Demailly

J.-P. Demailly. Singular
Hermitian metrics on positive
line bundles. Complex algebraic
varieties (Bayreuth, 1990),
Lecture Notes Math. 1507,
Springer-Verlag, (1992) 87–104.



Seshadri’s constant and Nagata’s Conjecture

Beata Maria Strycharz-Szemberg Tomasz Szemberg

Beata Strycharz-Szemberg & Tomasz Szemberg. Remarks on
the Nagata conjecture, Serdica Mathematical Journal 30 2-3
(2004), 405– 430.
http://www.math.bas.bg/serdica/2004/2004-405-430.pdf

http://www.math.bas.bg/serdica/2004/2004-405-430.pdf


The Nagata – Biran Conjecture

Masayoshi Nagata

(1927 – 2008)

Paul Biran

Let X be a smooth algebraic surface and L an ample line
bundle on X of degree d. For sufficiently large r, the Seshadri
constant of a generic set Z = {p1, . . . , pr} ⊂ X satisfies

ε(X,L;Z) =
d√
r
·



Zero estimates

Recall step 2 of the transcendence machinery :

Step 2 Find a point z0 where f(z0) 6= 0.

Context : zero estimates, multiplicity estimates, interpolation
estimates on an algebraic group.

Results of C Hermite, C.L. Siegel, Th. Schneider, K. Mahler,
A.O. Gel’fond, R. Tijdeman, W.D. Brownawell, D.W. Masser,
G. Wüstholz, P. Philippon, J-C. Moreau, D. Roy,
M. Nakamaye, N. Rattazzi, S. Fischler. . .



Michael Nakamaye and Nicolas Ratazzi

Michael Nakamaye Nicolas Ratazzi

M. Nakamaye and N. Ratazzi. Lemmes de multiplicités et
constante de Seshadri. Math. Z. 259, No. 4, 915-933 (2008).

http://www.math.unm.edu/research/faculty_hp.php?d_id=96

http://www.math.u-psud.fr/~ratazzi/

http://www.math.unm.edu/research/faculty_hp.php?d_id=96
http://www.math.u-psud.fr/~ratazzi/


Stéphane Fischler and Michael Nakamaye

Stéphane Fischler Michael Nakamaye

S. Fischler and M. Nakamaye. Seshadri constants and
interpolation on commutative algebraic groups. Ann. Inst.
Fourier 64, No. 3, 1269-1289 (2014).

http://www.math.u-psud.fr/~fischler/

http://www.math.unm.edu/research/faculty_hp.php?d_id=96

http://www.math.u-psud.fr/~fischler/
http://www.math.unm.edu/research/faculty_hp.php?d_id=96


S. David, M. Nakamaye, P. Philippon

Bornes uniformes pour le nombre de points rationnels de
certaines courbes, Diophantine geometry, 143–164, CRM
Series, 4, Ed. Norm., Pisa, 2007.

http://www.math.unm.edu/~nakamaye/Pisa.pdf

http://www.math.unm.edu/~nakamaye/Pisa.pdf


S. David, M. Nakamaye, P. Philippon

Au Professeur C. S. Seshadri à l’occasion de son 75ème
anniversaire.

Nous commençons par une étude indépendante des jets des
sections de fibrés amples sur une surface lisse, puis sur le carré
d’une courbe elliptique, utile pour le Théorème 4.2. Ceci nous
permet en particulier d’introduire dans le présent contexte les
constantes de Seshadri, dont l’utilisation en géométrie
diophantienne nous semble devoir être positivement stimulée.

http://www.math.unm.edu/~nakamaye/Pisa.pdf

http://www.math.unm.edu/~nakamaye/Pisa.pdf


Homogeneous ideals of R = K[X0, . . . , Xn]

Let K be a field of zero characteristic.
For p = (α0 : · · · : αn) ∈ Pn(K), denote by I(p) the
homogeneous ideal generated by the polynomials αiXj − αjXi

(0 ≤ i, j ≤ n) in the polynomial ring R = K[X0, . . . , Xn].

For S = {p1, . . . , ps} ⊂ Pn(K), set

I(S) = I(p1) ∩ · · · ∩ I(ps).

This is the ideal of forms vanishing on S. The least degree of a
polynomial in I(S) is ω1(S).



Initial degree

Generally, when J is a nonzero homogeneous ideal of R, define
ω(J) as the least degree of a polynomial in J .

Since J is homogeneous,

J =
⊕
m≥0

Jm

we have
ω(J) = min{m ≥ 0 | Jm 6= 0}

and ω(J) is also called the initial degree of J .

Since J1J2 is generated by the products P1P2 with Pi ∈ Ji, it
is plain that ω(J1J2) = ω(J1) + ω(J2), hence

ω(J t) = tω(J).



Symbolic powers

For t ≥ 1, define the symbolic power I(t)(S) by

I(t)(S) = I(p1)
t ∩ · · · ∩ I(ps)

t.

This is the ideal of forms vanishing on S with multiplicities
≥ t. Hence

ω(I(t)(S)) = ωt(S).

We have I(S)t ⊂ I(pi)
t for all i, hence

I(S)t ⊂
s⋂
i=1

I(pi)
t = I(t)(S).

From I(S)t ⊂ I(t)(S) we deduce ωt(S) ≤ tω1(S).



Symbolic powers

For a homogeneous ideal J in the ring R = K[X0, . . . , Xn]
and m ≥ 1, define the symbolic power J (m) as follows. Write
primary decompositions of J and Jm as

J =
⋂
i

Qi, Jm =
⋂
j

Q′j,

where Qi is homogeneous and Pi primary, Q′j is homogeneous
and P′j primary. We set

J (m) =
⋂
j

Q′j

where the intersection is over the j with P′j contained in some
Pi.



Symbolic powers

Notice that Jm ⊂ J (m).

Example of a fat points ideal. For J = ∩jI(pj)
mj ,

J (m) =
⋂
j

I(pj)
mmj .



The containment problem

Find all m, t with
J (m) ⊂ J t.

Brian Harbourne. Asymptotic invariants of ideals of points. (2009).
Special Session on Geometry, Syzygies and Computations
Organized by Professors S. Kwak and J. Weyman KMS-AMS joint
meeting, December 16–20, 2009.
Slides.
www.math.unl.edu/~bharbourne1/KSSNoPauseRev.pdf

www.math.unl.edu/~bharbourne1/KSSNoPauseRev.pdf


Ω(J) for a homogeneous ideal J

Cristiano Bocci Brian Harbourne

For a homogeneous ideal J of K[X0, . . . , Xn], and t ≥ 1,
define ωt(J) = ω(J (t)). Then

Ω(J) = lim
t→∞

ωt(J)

t
exists and satisfies

Ω(J) ≤ ωt(J)

t
for all t ≥ 1.



Alternate proof of Ω(S) ≥ ω1(S)

n
(2001, 2002)

Theorem (Ein-Lazarfeld-Smith, Hochster-Huneke). Let
J be a homogeneous ideal in K[X0, . . . , Xn] and t ≥ 1. Then

J (tn) ⊂ J t.

Consequence : From I(S)t ⊃ I(S)(tn) we deduce

tω1(S) ≤ ωtn(S)

and
ω1(S)

n
≤ ωtn(S)

tn
→ Ω(S) as t→∞.



J (tn) ⊂ J t by L. Ein, R. Lazarfeld and K.E. Smith

The proof by Lawrence Ein, Robert Lazarfeld and Karen E.
Smith uses multiplier ideals.

L. Ein, R. Lazarfeld and K.E. Smith. Uniform behavior of symbolic
powers of ideals. Invent. Math. 144 (2001), 241–252.



J (tn) ⊂ J t

R. Lazarfeld. Positivity in
algebraic geometry I – II.
Ergeb. Math. 48–49,
Springer, Berlin (2004).



J (tn) ⊂ J t by M. Hochster and C. Huneke

The proof by Melvin Hochster and Craig Huneke uses
Frobenius powers and tight closure.

Melvin Hochster Craig Huneke

M. Hochster and C. Huneke. Comparison of symbolic and ordinary
powers of ideals. Invent. Math. 147 (2002), 349–369.



Briançon-Skoda Theorem

Melvin Hochster Craig Huneke

For an m–generated ideal a in the ring of germs of analytic
functions at 0 ∈ Cn, the ν–th power of its integral closure is
contained in a, where ν = min{m,n}.
M. Hochster and C. Huneke. Tight closure, invariant theory, and
the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990),
31–116.



The resurgence of Bocci and Harbourne

Define
%(J) = sup

{m
r
| J (m) 6⊂ Jr

}
.

Hence, if
m

r
> %(J), then J (m) ⊂ Jr.

By L. Ein, R. Lazarfeld and K.E. Smith, %(J) ≤ n.

C. Bocci and B. Harbourne. Comparing powers and symbolic
powers of ideals. J. Algebraic Geom. 19 (2010), no. 3, 399–417.

C. Bocci and B. Harbourne. The resurgence of ideals of points and
the containment problem. Proc. Amer. Math. Soc. 138 (2010), no.
4, 1175–1190



The resurgence of Bocci and Harbourne

Denote by reg(J) the Castelnuovo– Mumford regularity of J .

Theorem (Bocci, Harbourne). We have

ω(J)

Ω(J)
≤ %(J) ≤ reg(J)

Ω(J)
·

Further, if ω(J) = reg(J), then

J (m) ⊂ J t ⇐⇒ tω(J) ≤ ω(J (m)).



Optimality

Following Bocci and Harbourne, we have

sup
|S|<∞

ω1(S)

Ω(S)
= n.



Conjecture of Cristiano Bocci and Brian Harbourne

Let S be a finite subset of P2. Define %(S) = %(J) for
J = I(S).

Conjecture.

%(S) ≤ 2
ω1(S)

ω1(S) + 1
·

This conjecture implies Chudnovsky’s conjecture : from

ω1(S)

Ω(S)
≤ %(S) ≤ 2

ω1(S)

ω1(S) + 1

one deduces
ω1(S) + 1

2
≤ Ω(S).



The containment problem (continued)
Let M be the homogeneous ideal (X0, . . . , Xn) in R.

Fact. In characteristic zero, the ideal J = I(S) satisfies
J (2) ⊂MJ .

Proof. Let P ∈ J (2). Hence ∂
∂Xi

P ∈ J . Use Euler’s formula

(degP )P =
n∑
i=0

Xi
∂

∂Xi

P.

Question. For which m, t, j do we have J (m) ⊂MjJ t ?

Remark. Since MjJ t ⊂ J t, the condition J (m) ⊂MjJ t

implies J (m) ⊂ J t.
B. Harbourne and C. Huneke. Are symbolic powers highly evolved ?
J. Ramanujan Math. Soc. 28A (2013), 247–266.
arxiv:1103.5809.

arxiv:1103.5809


Conjecture of Brian Harbourne and Craig Huneke

Chudnovsky’s result

ω1 + n− 1

n
≤ ωt

t
·

for n = 2 follows from

J (2t) ⊂MtJ t

for any homogeneous ideal of points J = I(S) in
K[X0, X1, X2].

Generalization for n ≥ 2.



Conjecture of Brian Harbourne and Craig Huneke

Let J = ∩jI(pj)
mj be a fat points ideal in R.

Conjecture (Harbourne and Huneke). For all t > 0,

J (tn) ⊂Mt(n−1)J t.



Evolutions

Andrew Wiles Richard Taylor Matthias Flach

Evolutions are certain kinds of ring homomorphisms that arose
in proving Fermat’s last Theorem (A. Wiles, R. Taylor,
M. Flach).

An important step in the proof was to show that in certain
cases only trivial evolutions occurred.



Evolutions

D. Eisenbud and B. Mazur showed the question of triviality
could be translated into a statement involving symbolic
powers. They then made the following conjecture in
characteristic 0 :

Conjecture (Eisenbud–Mazur) Let P ⊂ C[[x1, . . . , xd]] be
a prime ideal. Let M = (x1, . . . , xd). Then P(2) ⊂MP.



Evolutions

Heuristically, the main conjecture of Harbourne and Huneke
can be thought of as a generalization of the conjecture of
Eisenbud and Mazur.

B. Harbourne and C. Huneke. Are symbolic powers highly evolved ?
J. Ramanujan Math. Soc. 28, (2011)
arxiv:1103.5809.

arxiv:1103.5809


Brian Harbourne

Brian Harbourne, Sandra Di
Rocco, Tomasz Szemberg,

Thomas Bauer

Oberwolfach
Linear Series on Algebraic
Varieties : 2010-10-03 –
2010-10-09

M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska.
Linear subspaces, symbolic powers and Nagata type conjectures.
Adv. Math. 252 (2014), 471–491.

https://owpdb.mfo.de/detail?photo_id=13201

https://owpdb.mfo.de/detail?photo_id=13201


Marcin Dumnicki

Chudnovsky’s conjecture

Ω(S) ≥ ω1(S) + n− 1

n
holds

for generic finite subsets in P3.

M. Dumnicki. Symbolic powers of ideal of generic points in P3.
J. Pure Applied Algebra 216 (2012), 1410–1417.



Thomas Bauer and Thomasz Szemberg

Th. Bauer and T. Szemberg. The effect of points fattening in
dimension three. Recent advances in Algebraic Geometry. A
volume in honor of Rob Lazasfeld’s 60th Birthday LMS,
Cambridge University Press 2015.



Further references

M. Baczyńska, M. Dumnicki, A. Habura, G. Malara,
P. Pokora, T. Szemberg, J. Szpond and H. Tutaj-Gasińska.
Points fattening on P1 × P1 and symbolic powers of
bi–homogeneous ideals. J. Pure Applied Algebra 218 (2014),
1555–1562.

C. Bocci, S.M. Cooper and B. Harbourne. Containment results
for ideals of various configurations of points in PN . J. Pure
Applied Algebra 218 (2014), 65–75.



Further references

Giuliana Fatabbi, Brian Harbourne, Anna Lorenzini,
Inclics, galaxies, star configurations and Waldschmidt
constants (2013)

Cristiano Bocci, Susan Cooper, Elena Guardo,
The Waldschmidt constant for squarefree monomial ideals
(2015)

Marcin Dumnicki, Lucja Farnik, Halszka Tutaj-Gasinska,
Asymptotic Hilbert Polynomial and a bound for Waldschmidt
constants (2015)
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