The 11th International Conference on Mathematics and Mathematics Education in Developing Countries

The unity of mathematics：

Examples from transcendental number theory

Michel Waldschmidt

Professeur Émérite，Sorbonne Université， Institut de Mathématiques de Jussieu，Paris
http：／／www．imj－prg．fr／～michel．waldschmidt／

Five points in the plane lie on a conic

Equation of a conic ：

$$
a_{0}+a_{1} x+a_{2} y+a_{3} x^{2}+a_{4} x y+a_{5} y^{2}=0 .
$$

Six coefficients，five linear homogeneous equations in the six variables ：there is a non trivial solution．
https：／／home．adelphi．edu／～stemkoski／EulerCramer／article06．html Five Points Determine a Conic Section，
Wolfram interactive demonstration
http：／／demonstrations．wolfram．com／FivePointsDetermineAConicSection／

Many different topics from mathematics are related with transcendental number theory，including Diophantine Approximation，Dynamical Systems，Algebraic Theory of Numbers，Geometry，Diophantine Geometry，Geometry of Numbers，Complex Analysis（one or several variables），
Commutative Algebra，Arithmetic Complexity of
Polynomials，Topology，Logic ：model theory．
We select some of them to illustrate the Unity of Mathematics，namely
Geometry，Complex Analysis，Projective geometry，
Commutative Algebra，Topology，Arithmetic Complexity of Polynomials．

Nine points lie on a cubic

Equation of a cubic ：
$a_{0}+a_{1} x+a_{2} y+a_{3} x^{2}+a_{4} x y+a_{5} y^{2}+a_{6} x^{3}+a_{7} x^{2} y+a_{8} x y^{2}+a_{9} y^{3}=0$.

Ten coefficients，nine linear homogeneous equations in the ten variables ：there is a non trivial solution
（May not be unique ：two cubics intersect in 9 points）．

Three points lie on a cubic with multiplicity ≥ 2

Multiplicity ≥ 2 :

$$
f(x, y)=\frac{\partial}{\partial x} f(x, y)=\frac{\partial}{\partial y} f(x, y)=0 .
$$

For the existence of a cubic polynomial having multiplicity ≥ 2 at three given points in the plane, we get nine linear homogeneous equations in the ten variables; hence there is a non trivial solution.

Explicit solution : Three lines repeated twice!

Four points on a quartic with multiplicity 2

Four points in the plane lie on a quartic with multiplicity 2 .
$\{(0,0),(0,1),(1,0),(1,1)\}$
$x y(x-1)(y-1)=0$

$$
\begin{aligned}
f(x, y) & =x y(x-1)(y-1) \\
\frac{\partial}{\partial x} f(x, y) & =y(y-1)(2 x-1) \\
\frac{\partial}{\partial y} f(x, y) & =x(x-1)(2 y-1)
\end{aligned}
$$

Three points on a cubic with multiplicity 2

$$
f(x, y)=x y(x+y-1)=x^{2} y+x y^{2}-x y,
$$

$$
\frac{\partial}{\partial x} f(x, y)=y(2 x+y-1), \quad \frac{\partial}{\partial y} f(x, y)=x(x+2 y-1) .
$$

Singularities of hypersurfaces

Zeroes of a polynomial : hypersurface.
Zero of a polynomial with multiplicity : singularity of the hypersurface.

Let n and t be two positive integers and S a finite subset of \mathbb{C}^{n}. Denote by $\omega_{t}(S)$ the least degree of a nonzero polynomial in n variables vanishing on S with multiplicity at least t.

One variable

In case $n=1$, given a finite subset S of \mathbb{C} and a positive integer t, the unique monic polynomial in $\mathbb{C}[z]$ of least degree vanishing at each point of S with multiplicity $\geq t$ is

$$
\prod_{s \in S}(z-s)^{t}
$$

It has degree $t|S|$; hence, when $n=1$,

$$
\omega_{t}(S)=t|S|
$$

$n=2$

Consider a finite subset S of \mathbb{C}^{2}. If S is contained in a line, then $\omega_{t}(S)=t$ for all t; hence in this case $\omega_{t}(S)$ does not depend on $|S|$.

The simplest example of a set which is not contained in a line is given by three points like

$$
S=\{(0,0),(0,1),(1,0)\}
$$

The polynomial $z_{1} z_{2}$ vanishes on S, it has degree 2 , hence $\omega_{1}(S)=2$.
There is no polynomial of degree 2 having a zero at each point of S with multiplicity 2 , but there is one of degree 3 , namely

$$
z_{1} z_{2}\left(z_{1}+z_{2}-1\right)
$$

Cartesian products

More generally, for a Cartesian product $S=S_{1} \times \cdots \times S_{n}$ in \mathbb{C}^{n},

$$
\omega_{t}(S)=t \min _{1 \leq i \leq n}\left|S_{i}\right|
$$

Proof by induction.
$\operatorname{Fix}\left(s_{1}, \ldots, s_{n-1}\right) \in S_{1} \times \cdots \times S_{n-1}$, consider $f\left(s_{1}, \ldots, s_{n-1}, X\right) \in \mathbb{C}[X]$.
$S \subset \mathbb{C}^{2}$ with $|S|=3$

$$
\begin{aligned}
& S=\{(0,0),(0,1),(1,0)\} \\
& P_{1}\left(z_{1}, z_{2}\right)=z_{1} z_{2} \\
& P_{2}\left(z_{1}, z_{2}\right)=z_{1} z_{2}\left(z_{1}+z_{2}-1\right) \\
& \omega_{1}(S)=2, \quad \omega_{2}(S)=3
\end{aligned}
$$

With

$$
P_{2 m-1}=z_{1}^{m} z_{2}^{m}\left(z_{1}+z_{2}-1\right)^{m-1}, P_{2 m}=z_{1}^{m} z_{2}^{m}\left(z_{1}+z_{2}-1\right)^{m}
$$

we deduce

$$
\omega_{2 m-1}(S)=3 m-1, \quad \omega_{2 m}(S)=3 m
$$

Linear homogeneous equations : $n=2, t=1$
A polynomial in 2 variables of degree D has

$$
\frac{(D+1)(D+2)}{2}
$$

coefficients. Hence for $S \subset \mathbb{C}^{2}$ with $2|S|<(D+1)(D+2)$, we have $\omega_{1}(S) \leq D$.

For $|S|=1,2$ we have $\omega_{1}(S)=1$ (two points on a line),
for $|S|=3,4,5$ we have $\omega_{1}(S) \leq 2$ (five points on a conic),
for $|S|=6,7,8,9$ we have $\omega_{1}(S) \leq 3$ (nine points on a cubic).
For $S \subset \mathbb{C}^{2}$,

$$
\omega_{1}(S) \leq 2|S|^{1 / 2}
$$

Linear homogeneous equations

The number of n-tuples $\left(\tau_{1}, \ldots, \tau_{n}\right)$ of non negative integers with $\tau_{1}+\cdots+\tau_{n}<t$ is

$$
\binom{t+n-1}{n}
$$

Hence the conditions

$$
\left(\frac{\partial}{\partial z_{1}}\right)^{\tau_{1}} \cdots\left(\frac{\partial}{\partial z_{n}}\right)^{\tau_{n}} P(s)=0
$$

for $s \in S$ and $\tau_{1}+\cdots+\tau_{n}<t$ amount to $\binom{t+n-1}{n}|S|$ linear conditions in the $\binom{D+n}{n}$ coefficients of P.

Linear homogeneous equations : $t=1$
A polynomial in n variables of degree D has

$$
\binom{D+n}{n}
$$

coefficients. Hence for $S \subset \mathbb{C}^{n}$, if

$$
|S|<\binom{D+n}{n}
$$

then

$$
\omega_{1}(S) \leq D
$$

In particular, for $S \subset \mathbb{C}^{n}$,

$$
\omega_{1}(S) \leq n|S|^{1 / n}
$$

Upper bound for $\omega_{t}(S)$

Given a finite subset S of \mathbb{C}^{n} and a positive integer t, if D is a positive integer such that

$$
|S|\binom{t+n-1}{n}<\binom{D+n}{n}
$$

then

$$
\omega_{t}(S) \leq D
$$

Consequence :

$$
\omega_{t}(S) \leq(t+n-1)|S|^{1 / n}
$$

Subadditivity of $\omega_{t}(S)$

$$
\omega_{t_{1}+t_{2}}(S) \leq \omega_{t_{1}}(S)+\omega_{t_{2}}(S)
$$

Proof : if P_{1} has degree $\omega_{t_{1}}(S)$ and vanishes on S with multiplicity $\geq t_{1}$, if P_{2} has degree $\omega_{t_{2}}(S)$ and vanishes on S with multiplicity $\geq t_{2}$, then the product $P_{1} P_{2}$ has degree $\omega_{t_{1}}(S)+\omega_{t_{2}}(S)$ and vanishes on S with multiplicity $\geq t_{1}+t_{2}$.

Therefore $\omega_{t}(S) \leq t \omega_{1}(S)$, and consequently
$\lim \sup _{t \rightarrow \infty} \omega_{t}(S) / t$ exists and is $\leq \omega_{t}(S) / t$ for all $t \geq 1$.
L^{2} - estimates of Hörmander - Bombieri
 1931-2012

Existence theorems for the $\bar{\partial}$ operator.
Let φ be a plurisubharmonic function in \mathbb{C}^{n} and $\mathrm{z}_{0} \in \mathbb{C}^{n}$ be such that $e^{-\varphi}$ is integrable near \mathbf{z}_{0}. Then there exists a nonzero entire function F such that

$$
\int_{\mathbb{C}^{n}}|F(\mathbf{z})|^{2} e^{-\varphi(\mathbf{z})}\left(1+|\mathbf{z}|^{2}\right)^{-3 n} \mathrm{~d} \lambda(\mathbf{z})<\infty
$$

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hormander.htmla

An asymptotic invariant

Theorem. The sequence

$$
\left(\frac{1}{t} \omega_{t}(S)\right)_{t \geq 1}
$$

has a limit $\Omega(S)$ as $t \rightarrow \infty$, and

$$
\frac{1}{n} \omega_{1}(S)-2 \leq \Omega(S) \leq \omega_{1}(S)
$$

Further, for all $t \geq 1$ we have

$$
\Omega(S) \leq \frac{\omega_{t}(S)}{t}
$$

Remark: $\Omega(S) \leq|S|^{1 / n}$ by the above upper bound $\omega_{t}(S) \leq(t+n-1)|S|^{1 / n}$.
M.W. Propriétés arithmétiques de fonctions de plusieurs variables
(II). Sém. P. Lelong (Analyse), 16è année, 1975/76; Lecture Notes
in Math., 578 (1977), 274-292.

Improvement of L^{2} estimate by Henri Skoda Let φ be a plurisubharmonic function in \mathbb{C}^{n} and $\mathrm{z}_{0} \in \mathbb{C}^{n}$ be such that $e^{-\varphi}$ is integrable near \mathbf{z}_{0}. For any $\epsilon>0$ there exists a nonzero entire function F such that

$$
\int_{\mathbb{C}^{n}}|F(\mathbf{z})|^{2} e^{-\varphi(\mathbf{z})}\left(1+|\mathbf{z}|^{2}\right)^{-n-\epsilon} \mathrm{d} \lambda(\mathbf{z})<\infty
$$

Corollary :

$$
\frac{1}{n} \omega_{1}(S) \leq \Omega(S) \leq \omega_{1}(S)
$$

H. Skoda. Estimations L ${ }^{2}$ pour l'opérateur $\bar{\partial}$ et applications arithmétiques. Springer Lecture Notes in Math., 578 (1977), 314-323.
https://en.wikipedia.org/wiki/Henri_Skoda

Comparing $\omega_{t_{1}}(S)$ and $\omega_{t_{2}}(S)$

Idea: Let P be a polynomial of degree $\omega_{t_{1}}(S)$ vanishing on S with multiplicity $\geq t_{1}$. If the function $P^{t_{2} / t_{1}}$ were an entire function, it would be a polynomial of degree $\frac{t_{2}}{t_{1}} \omega_{t_{1}}(S)$ vanishing on S with multiplicity $\geq t_{2}$, which would yield $\omega_{t_{2}}(S) \leq \frac{t_{2}}{t_{1}} \omega_{t_{1}}(S)$.
$P^{t_{2} / t_{1}}$ is usually not an entire function but $\varphi=\frac{t_{2}}{t_{1}} \log P$ is a plurisubharmonic function. By the L^{2}-estimates of Hörmander - Bombieri - Skoda, e^{φ} is well approximated by a nonzero entire function. This function is a polynomial vanishing on S with multiplicity $\geq t_{2}$, of degree $\leq \frac{t_{2}+n-1}{t_{1}} \omega_{t_{1}}(S)$.
Hence

$$
\omega_{t_{2}}(S) \leq \frac{t_{2}+n-1}{t_{1}} \omega_{t_{1}}(S) .
$$

$|S|=1$ or 2 in \mathbb{C}^{2}

$$
\begin{aligned}
& |S|=1: S=\{(0,0)\}, P_{t}(X, Y)=X^{t}, \\
& \omega_{t}(S)=t, \Omega(S)=1 .
\end{aligned}
$$

$|S|=2: S=\{(0,0),(1,0)\}, P_{t}(X, Y)=Y^{t}$, $\omega_{t}(S)=t, \Omega(S)=1$.

The asymptotic invariant $\Omega(S)$
From

$$
\omega_{t_{2}}(S) \leq \frac{t_{2}+n-1}{t_{1}} \omega_{t_{1}}(S)
$$

one deduces :
Theorem. For all $t \geq 1$,

$$
\frac{\omega_{t}(S)}{t+n-1} \leq \Omega(S) \leq \frac{\omega_{t}(S)}{t}
$$

M.W. Nombres transcendants et groupes algébriques. Astérisque,

69-70 . Société Mathématique de France, Paris, 1979.

Generic subset in \mathbb{C}^{n}

Given two positive integers n and N, a subset S of \mathbb{C}^{n} with N elements is generic if, for any $t \geq 1$,

$$
\omega_{t}(S) \geq \omega_{t}\left(S^{\prime}\right)
$$

for all subsets S^{\prime} of \mathbb{C}^{n} with N elements.

Almost all subsets of \mathbb{C}^{n} (for Lebesgue's measure) are generic.
The points $\left(s_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq N}$ in $\mathbb{C}^{n N}$ associated to the coordinates $\left(s_{i j}\right)_{1 \leq i \leq n}, 1 \leq j \leq N$, of the points \mathbf{s}_{j} of the non-generic sets, belong to the union of countably many hypersurfaces of $\mathbb{C}^{n N}$.

Generic S with $|S|=3$ in \mathbb{C}^{2}
Given a set S of 3 points in \mathbb{C}^{2} ，not on a straight line，we have

$$
\omega_{t}(S)= \begin{cases}\frac{3 t+1}{2} & \text { for } t \text { odd } \\ \frac{3 t}{2} & \text { for } t \text { even }\end{cases}
$$

hence

$$
\Omega(S)=\lim _{t \rightarrow \infty} \frac{\omega_{t}(S)}{t}=\frac{3}{2}
$$

Since $\omega_{1}(S)=2$ and $n=2$ ，this is an example with

$$
\frac{\omega_{1}(S)}{n}<\Omega(S)<\omega_{1}(S)
$$

Generic $S \subset \mathbb{C}^{2}$ with $|S|=5$

Five points in \mathbb{C}^{2} lie on a conic．
For a generic S with $|S|=5$ we have $\omega_{t}(S)=2 t$ and $\Omega(S)=\omega_{1}(S)=2$ ．

https：／／www．geogebra．org／

Generic $S \subset \mathbb{C}^{2}$ with $|S|=4$
For a generic S in \mathbb{C}^{2} with $|S|=4$ ，we have $\omega_{t}(S)=2 t$ ，hence $\Omega(S)=\omega_{1}(S)=2$.
Easy for a Cartesian product $S_{1} \times S_{2}$ with $\left|S_{1}\right|=\left|S_{2}\right|=2$ ， also true for a generic S with $|S|=4$ ．

More generally，when S is a Cartesian product $S_{1} \times S_{2}$ with
$\left|S_{1}\right|=\left|S_{2}\right|=m$ ，we have $\omega_{t}(S)=m t$ and
$\Omega(S)=m=\sqrt{|S|}$ ．The inequality $\Omega(S) \geq \sqrt{|S|}$ for a generic S with $|S|$ a square follows（Chudnovsky）．

Generic $S \subset \mathbb{C}^{2}$ with $|S|=6$（Nagata）

$\omega_{1}(S)=3, \Omega(S)=12 / 5$.

Given 6 generic points s_{1}, \ldots, s_{6} in \mathbb{C}^{2} ，consider 6 conics C_{1}, \ldots, C_{6} where S_{i} passes through the 5 points s_{j} for $j \neq i$ ．This produces a polynomial of degree 12 with multiplicity ≥ 5 at each s_{i} ． Hence $\omega_{5}(S) \leq 12$ ．

For S generic with 6 points， $\omega_{5 t}(S)=12 t, \Omega(S)=12 / 5$.

Generic $S \subset \mathbb{C}^{2}$ with $|S|=7$ (Nagata)

Given 7 points in \mathbb{C}^{2}, there is a cubic passing through these 7 points with a double point at one of them.

Number of coefficients of a cubic polynomial : 10 .
Number of conditions: 6 for the simple zeros, 3 for the double zero.

We get 7 cubic polynomials, their product has degree
$7 \times 3=21$ and has the 7 assigned zeroes with multiplicities 8 .
For S generic with 7 points, $\omega_{8 t}(S)=21 t, \Omega(S)=21 / 8$.

$$
\omega_{1}(S)=3, \quad \Omega(S)=\frac{21}{8} .
$$

$n=2,|S|=8, t=2, \omega_{t}=5, \Omega=5 / 2$
Not generic

$|s|=8$
$\begin{aligned} a(s) & =3 \\ \Omega_{0}(s) & =5 / 2\end{aligned}$
$\Omega_{0}(s)=5 / 2$

Generic $S \subset \mathbb{C}^{2}$ with $|S|=8$ (Nagata)

Given 8 points in \mathbb{C}^{2}, there is a sextic with a double point at 7 of them and a triple point at 1 of them.

Number of coefficients of a sextic polynomial
$(6+1)(6+2) / 2=28$
Number of conditions: $3 \times 7=21$ for the double zeros, 6 for the triple zero.

This gives a polynomial of degree $8 \times 6=48$ with the 8 assigned zeroes of multiplicities $2 \times 7+3=17$.

For S generic with 8 points, $\omega_{17 t}(S)=48 t, \Omega(S)=47 / 17$.

Not generic

4 conics
$\mathrm{n}(\mathrm{s})=3$
$0(\mathrm{~s})=8 / 3$ $a_{0}(s)=8 / 3$
$a_{0}(s)=8 / 3$

32 / 80
$|s|=8$

$n=2,|S|=10, t=6, \omega_{t}=17, \Omega=17 / 6$
Three sides: multiplicity 3 .
Three concurrent lines: multiplicity 2.

$\left|s_{e}\right|=10$

$$
\begin{aligned}
\Omega\left(\mathrm{s}_{\mathrm{c}}\right) & =4 \\
\Omega_{0}\left(\mathrm{~s}_{\mathrm{c}}\right) & =17 / 6 \\
\hat{\Omega}_{0}\left(\mathrm{~s}_{\mathrm{c}}\right) & =5 / 2
\end{aligned}
$$

$33 / 80$

Complete intersections of hyperplanes

Let H_{1}, \ldots, H_{N} be N hyperplanes in general position in \mathbb{C}^{n} with $N \geq n$ and S the set of $\binom{N}{n}$ intersection points of any n of them. Then,

$$
\omega_{n t}(S)=N t \text { for } t \geq 1 \text { and } \Omega(S)=\frac{N}{n}
$$

$$
n=2, N=5,|S|=10 .
$$

$|S| \leq 9$ in \mathbb{C}^{2}
Nagata : generic S in \mathbb{C}^{2} with $|S| \leq 9$ have $\frac{\omega_{t}(S)}{t} \leq \sqrt{|S|}$.
$\left.\begin{array}{rl}|S| & = \\ 1 & 2 \\ 3 & 3 \\ 4 & 4 \\ \hline\end{array}\right)$

Hilbert's 14th problem

David Hilbert 1862-1943

Let k be a field and K a subfield of $k\left(X_{1}, \ldots, X_{n}\right)$ containing k. Is the k-algebra

$$
K \cap k\left[X_{1}, \ldots, X_{n}\right]
$$

finitely generated?

Oscar Zariski (1954) : true for $n=1$ and $n=2$.
Counterexample by Masayoshi Nagata in 1959.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html http://www.clarku.edu/~djoyce/hilbert/

Masayoshi Nagata 1927－2008

Original 14th problem ： Let G be a subgroup of the full linear group of the polynomial ring in indeterminate X_{1}, \ldots, X_{n} over a field k ，and let \mathfrak{o} be the set of elements of
$k\left[X_{1}, \ldots, X_{n}\right]$ which are invariant under G ．Is o finitely generated？

M．Nagata．On the 14－th Problem of Hilbert．Amer．J．Math 81 （1959），766－772．
http：／／www．jstor．org／stable／2372927

Nagata＇contribution

Masayoshi Nagata 1927－2008

Proposition．Let p_{1}, \ldots, p_{r} be independent generic points of the projective plane over the prime field．Let C be a curve of degree d passing through the p_{i}＇s with multiplicities $\geq m_{i}$ ．Then

$$
m_{1}+\cdots+m_{r}<d \sqrt{r}
$$

$$
\text { for } r=s^{2}, s \geq 4 \text {. }
$$

It is not known if $r>9$ ，is sufficient to ensure the inequality of the Proposition．
M．Nagata．Lectures on the fourteenth problem of Hilbert．Tata Institute of Fundamental Research Lectures on Mathematics 31， （1965），Bombay．
http：／／www．math．tifr．res．in／～publ／ln／tifr31．pdf

Fundamental Lemma of Nagata

Given 16 independent generic points of the projective plane over a prime field and a positive integer t ，there is no curve of degree $4 t$ which goes through each p_{i} with multiplicity at least t ．

In other words for $|S|=16$ generic in \mathbb{C}^{2} ，we have $\omega_{t}(S)>4 t$ ．

M．Nagata．On the fourteenth problem of Hilbert．Proc．Internat． Congress Math．1958，Cambridge University Press，pp．459－462． http：／／www．mathunion．org／ICM／ICM1958／Main／icm1958．0459．0462．ocr．pdf

Reformulation of Nagata＇s Conjecture

By considering $\sum_{\sigma} C_{\sigma}$ where σ runs over the cyclic permutations of $\{1, \ldots, r\}$ ，it is sufficient to consider the case $m_{1}=\cdots=m_{r}$ ．
Conjecture．Let S be a finite generic subset of the projective plane over the prime field with $|S| \geq 10$ ．Then

$$
\omega_{t}(S)>t \sqrt{|S|} .
$$

Nagata ：
－True for $|S|$ a square．
－False for $|S| \leq 9$ ．
－Unknown otherwise（ $|S| \geq 10$ not a square）．

Schwarz Lemma in one variable

Hermann Amandus Schwarz

$$
1843-1921
$$

Let f be an analytic function in a disc $|z| \leq R$ of \mathbb{C} ，with at least M zeroes（counting multiplicities）in a disc $|z| \leq r$ with $r<R$ ．Then

$$
|f|_{r} \leq\left(\frac{3 r}{R}\right)^{M}|f|_{R} .
$$

We use the notation

$$
|f|_{r}=\sup _{|z|=r}|f(z)| .
$$

When $R>3 r$ ，this improves the maximum modulus bound

$|f|_{r} \leq|f|_{R}$ ．

http：／／www－history．mcs．st－andrews．ac．uk／history／Mathematicians／Schwarz．htin／ 80

Schwarz lemma in several variables

Let S be a finite set of \mathbb{C}^{n} and t a positive integer．There exists a real number r such that for $R>r$ ，if f is an analytic function in the ball $|z| \leq R$ of \mathbb{C}^{n} which vanishes with multiplicity at least t at each point of S ，then

$$
|f|_{r} \leq\left(\frac{e^{n} r}{R}\right)^{\omega_{t}(S)}|f|_{R} .
$$

This is a refined asymptotic version due to Jean－Charles Moreau．

The exponent $\omega_{t}(S)$ cannot be improved ：take for f a non－zero polynomial of degree $\omega_{t}(S), r>0$ fixed and $R \rightarrow \infty$ ．

Schwarz Lemma in one variable：proof

Let a_{1}, \ldots, a_{M} be zeroes of f in the disc $|z| \leq r$ ，counted with multiplicities．The function

$$
g(z)=f(z) \prod_{j=1}^{M}\left(z-a_{j}\right)^{-1}
$$

is analytic in the disc $|z| \leq R$ ．Using the maximum modulus principle，from $r \leq R$ we deduce $|g|_{r} \leq|g|_{R}$ ．Now we have

$$
|f|_{r} \leq(2 r)^{M}|g|_{r} \quad \text { and } \quad|g|_{R} \leq(R-r)^{-M}|f|_{R} .
$$

Finally，assuming（wlog）$R>3 r$ ，

$$
\frac{2 r}{R-r} \leq \frac{3 r}{R} .
$$

Works in 1980 － 1990

Methods of projective geometry，commutative algebra， complex analysis（Poisson－Jensen formula）．

Works in 2001 - 2002

Ein, Lazarfeld and Smith use multiplier ideals.

Melvin Hochster

Craig Huneke

Hochster and Huneke use Frobenius powers and tight closure.

Mathematisches Forschungsinstitut Oberwolfach

October 2010 : Linear series on algebraic varieties.
February 2015 : Ideals of Linear Subspaces, Their Symbolic
Powers and Waring Problem.

Cristiano Bocci, Susan Cooper, Elena Guardo, Brian
Harbourne, Mike Janssen, Uwe Nagel, Alexandra Seceleanu,
Adam Van Tuyl, Thanh Vu.
The Waldschmidt constant for squarefree monomial ideals. J. Algebraic Combinatorics (2016) 44 875-904.

Works in 2010 -

Marcin Dumnici

Giuliana Fatabbi

Connection with transcendental number theory

Transcendence in several variables:

Theodor Schneider 1911-1988

Let a, b be rational numbers, not integers. Then the number

$$
\mathrm{B}(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is transcendental.

The proof uses abelian functions and Schwarz Lemma for Cartesian products.

Schneider-Lang Theorem

One variable, or several variables for Cartesian products :

Theodor Schneider 1911-1988

Serge Lang 1927-2005

Several variables, algebraic hypersurfaces (Nagata's conjecture) :

Enrico Bombieri

Gel'fond-Schneider Theorem (special case)

Corollary of the Schneider - Lang Theorem :

$$
\frac{\log 2}{\log 3} \text { is transcendental. }
$$

A.O. Gel'fond 1906-1968

Th. Schneider 1911-1988

Multiplicative version

Given two positive real numbers α_{1} and α_{2}, the subgroup

$$
\left\{\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \mid\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}\right\}
$$

of the multiplicative group \mathbb{R}_{+}^{\times}is dense if and only if α and β are multiplicatively independent : for $\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}$,

$$
\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}}=1 \Longleftrightarrow\left(a_{1}, a_{2}\right)=(0,0)
$$

Proof : use $\exp : \mathbb{R} \rightarrow \mathbb{R}_{+}^{\times}$.
For instance the subgroup of \mathbb{R}_{+}^{\times}

$$
\left\{2^{a_{1}} 3^{a_{2}} \mid\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}\right\}
$$

generated by 2 and 3 is dense in \mathbb{R}_{+}^{\times}.

Dimension 2

Additive subgroups of \mathbb{R}^{2} :
A subgroup

$$
\mathbb{Z}^{2}+\mathbb{Z}(x, y)=\left\{\left(a_{1}+a_{0} x, a_{2}+a_{0} y\right) \mid\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{Z}^{3}\right\}
$$

of \mathbb{R}^{2} is dense if and only if $1, x, y$ are \mathbb{Q}-linearly independent.
Multiplicative subgroups of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$:
Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be three elements in $\left(\mathbb{R}_{+}^{\times}\right)^{2}$, say

$$
\gamma_{j}=\left(\alpha_{j}, \beta_{j}\right) \quad(j=1,2,3) .
$$

The subgroup of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ generated by $\gamma_{1}, \gamma_{2}, \gamma_{3}$ is

$$
\left\{\left(\alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}}, \beta_{1}^{a_{1}} \beta_{2}^{a_{2}} \beta_{3}^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\} .
$$

Multiplicative subgroups of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$

Exemple : $\gamma_{1}=(2,1), \gamma_{2}=(1,2), \gamma_{3}=(12,18)$.
The subgroup Γ of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ generated by $\gamma_{1}, \gamma_{2}, \gamma_{3}$ is

$$
\Gamma=\left\{\left(2^{a_{1}} 12^{a_{3}}, 2^{a_{2}} 18^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\} .
$$

We have

$$
x=2+\frac{\log 3}{\log 2}, y=1+2 \frac{\log 3}{\log 2}
$$

with $3-2 x+y=0$, hence Γ is not dense.
Exemple : $\gamma_{1}=(2,1), \gamma_{2}=(1,2), \gamma_{3}=(3,5)$:

$$
\Gamma=\left\{\left(2^{a_{1}} 3^{a_{3}}, 2^{a_{2}} 5^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\}
$$

The three numbers

$$
1, \quad \frac{\log 3}{\log 2}, \quad \frac{\log 5}{\log 2}
$$

are linearly independent over \mathbb{Q}, hence Γ is dense.

Multiplicative subgroups of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$

For instance the subgroup of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ generated by $\left(\alpha_{1}, 1\right)$,
$\left(1, \beta_{2}\right),\left(\alpha_{3}, \beta_{3}\right)$. is

$$
\Gamma=\left\{\left(\alpha_{1}^{a_{1}} \alpha_{3}^{a_{3}}, \beta_{2}^{a_{2}} \beta_{3}^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\}
$$

When is-it dense?
Use $\exp : \mathbb{R}^{2} \rightarrow\left(\mathbb{R}_{+}^{\times}\right)^{2}$. Write

$$
\left(\log \alpha_{3}, \log \beta_{3}\right)=x\left(\log \alpha_{1}, 0\right)+y\left(0, \log \beta_{2}\right)
$$

with

$$
x=\frac{\log \alpha_{3}}{\log \alpha_{1}}, \quad y=\frac{\log \beta_{3}}{\log \beta_{2}}
$$

Then Γ is dense in $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ if and only if $1, x, y$ are \mathbb{Q}-linearly independent.

Multiplicative subgroups of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$

Exemple : $\gamma_{1}=(2,1), \gamma_{2}=(1,3), \gamma_{3}=(2,3)$. The subgroup
Γ of $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ generated by $\gamma_{1}, \gamma_{2}, \gamma_{3}$ has rank $2\left(\gamma_{3}=\gamma_{1} \gamma_{2}\right)$, it is not dense.

Exemple : $\gamma_{1}=(2,1), \gamma_{2}=(1,3), \gamma_{3}=(3,2)$. The three numbers

$$
1, \quad \frac{\log 3}{\log 2}, \quad \frac{\log 2}{\log 3}
$$

are linearly independent over \mathbb{Q}, because $(\log 2) /(\log 3)$ is not quadratic (it is transcendental by Gel'fond-Schneider).
Exemple : $\gamma_{1}=(2,1), \gamma_{2}=(1,3), \gamma_{3}=(5,2)$.
Is

$$
\left\{\left(2^{a_{1}} 5^{a_{3}}, 3^{a_{2}} 2^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\}
$$

dense in $\left(\mathbb{R}_{+}^{\times}\right)^{2}$?

Geogebra

$$
\begin{gathered}
\left\{\gamma_{1}^{a_{1}} \gamma_{2}^{a_{2}} \gamma_{3}^{a_{3}} \mid-N \leq a_{i} \leq N(i=1,2,3)\right\} \cap\{1 / 2 \leq x, y \leq 3 / 2\} \\
\gamma_{1}=(2,1), \quad \gamma_{2}=(1,3)
\end{gathered}
$$

$$
\gamma_{3}=(2,3)
$$

(Not dense)
$\gamma_{3}=(3,2)$
(Dense)
$\gamma_{3}=(5,2)$
(?)
$\gamma_{1}=(2,1), \gamma_{2}=(1,3), \gamma_{3}=(5,2)$

The subgroup

$$
\left\{\left(2^{a_{1}} 5^{a_{3}}, 3^{a_{2}} 2^{a_{3}}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}\right\}
$$

is dense in $\left(\mathbb{R}_{+}^{\times}\right)^{2}$ if and only if

$$
(\log 2)(\log 3),(\log 3)(\log 5),(\log 2)^{2}
$$

are linearly independent over \mathbb{Q}.

Applications to Hasse principle

Damien Roy

Question of J-J. Sansuc, answer by D. Roy :
Given a number field k, the smallest positive integer m for which there exists a finitely generated subgroup of rank m of k^{\times}having a dense image in $\left(k \otimes_{\mathbb{Q}} \mathbb{R}\right)^{\times}$under the canonical embedding is the number of archimedean places of k plus one.

Damien Roy. Simultaneous approximation in number fields. Invent. math. 109 (1992), 547-556.

Density of rational points on abelian varieties

Mazur's question : given a simple abelian variety over \mathbb{Q} with positive rank, is $A(\mathbb{Q})$ dense in the connected component of 0 in $A(\mathbb{R})$?

Barry Mazur
Partial answer: yes if the rank of $A(\mathbb{Q})$ is $\geq g^{2}-g+1$ where g is the dimension of A.
M.W. Densité des points rationnels sur un groupe algébrique.

Experimental Mathematics. 3 №4 (1994), 329-352.

Conjecture AIL

Conjecture of algebraic independence of logarithms of algebraic numbers:
If $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are \mathbb{Q}-linearly independent logarithms of algebraic numbers, then they are algebraically independent.

It is not known whether there are two algebraically independent logarithms of algebraic numbers.

Schanuel's Conjecture

If x_{1}, \ldots, x_{n} are \mathbb{Q}-linearly independent complex numbers, then at least n of the $2 n$ numbers x_{1}, \ldots, x_{n}, $e^{x_{1}}, \ldots, e^{x_{n}}$ are algebraically independent.
Stephen Schanuel

Special case where $e^{x_{i}}=\alpha_{i}$ are algebraic: Conjecture AIL

Towards Schanuel's Conjecture

We want to investigate the numbers $x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}$.

We can consider the functions $z, e^{x_{1} z}, \ldots, e^{x_{n} z}$ and their values (with derivatives) at the points in \mathbb{Z}.

We can also consider the functions z, e^{z}, and their values (with derivatives) at the points in $\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{n}$.

These two approaches are dual (Borel transform).

In the first case, we do not have enough points. In the second case, we do not have enough functions.

Towards Schanuel＇s Conjecture

We can get some results by considering functions $e^{x_{1} z}, \cdots, e^{x_{d} z}$ and their values at points in $\mathbb{Z} y_{1}+\cdots+\mathbb{Z} y_{\ell}$ ． Assume that the numbers $\alpha_{i j}=e^{x_{i} y_{j}}$ are algebraic．
The matrix $\left(\log \alpha_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq e}}$ is of the form $\left(x_{i} y_{j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}$ with x_{i} and y_{j} in \mathbb{C} ．

Matrices of logarithms of algebraic numbers

Consider a $d \times \ell$ matrix $\left(\log \alpha_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}$ of rank r ．Write $\log \alpha_{i j}=\mathbf{x}_{i} \mathbf{y}_{j}$ with $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{\ell}$ in \mathbb{C}^{r} ．The d exponential functions in r variables $\mathbf{z}=\left(z_{1}, \ldots, z_{r}\right)$

$$
e^{\mathbf{x}_{i} z}, \quad 1 \leq i \leq d
$$

take algebraic values at $\mathbf{y}_{1}, \ldots, \mathbf{y}_{\ell}$ ，hence at any point in $\mathbb{Z} \mathbf{y}_{1}+\cdots+\mathbb{Z} \mathbf{y}_{\ell} \subset \mathbb{C}^{\mathrm{r}}$ ．

Under suitable assumptions on the x＇s and y＇s，one proves

$$
\ell d \leq r(\ell+d)
$$

Rank of matrices

A matrix $\left(u_{i j}\right)_{1 \leq i \leq d}$ with coefficients in a field \mathbb{K} has rank ≤ 1 if and only if there exists x_{1}, \ldots, x_{d} and y_{1}, \ldots, y_{ℓ} in \mathbb{K} such that $u_{i j}=x_{i} y_{j}(1 \leq i \leq d, 1 \leq j \leq \ell)$ ．

A matrix $\left(u_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}$ with coefficients in a field \mathbb{K} has rank $\leq r$
if and only if there exists $\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}$ and $\mathbf{y}_{1}, \ldots, \mathrm{y}_{\ell}$ in \mathbb{K}^{r} such that $u_{i j}=\mathbf{x}_{i} \mathbf{y}_{j}(1 \leq i \leq d, 1 \leq j \leq \ell)$ ，with the standard scalar product in \mathbb{K}^{r} ：

$$
\begin{gathered}
\mathbf{x}=\left(\xi_{1}, \ldots, \xi_{r}\right), \quad \mathbf{y}=\left(\eta_{1}, \ldots, \eta_{r}\right), \\
\mathbf{x y}=\xi_{1} \eta_{1}+\cdots+\xi_{r} \eta_{r} .
\end{gathered}
$$

Matrices of logarithms of algebraic numbers

$$
r \geq \frac{\ell d}{\ell+d}
$$

For $\ell=d$ ，the conclusion is $r \geq d / 2$ ，which is half the conjecture on the rank of matrices with entries logarithms of algebraic numbers ：

$$
r \geq \frac{1}{2} r_{\mathrm{conj}}(M)
$$

M．W．Transcendance et exponentielles en plusieurs variables． Inventiones Mathematicae 63 （1981）N ${ }^{\circ} 1,97-127$.

M．W．Diophantine Approximation on Linear Algebraic Groups． Grundlehren der Mathematischen Wissenschaften 326.
Springer－Verlag，Berlin－Heidelberg， 2000.

The conjectural rank $r_{\text {conj }}(M)$
Let M be a $d \times \ell$ matrix with coefficients $\log \alpha_{i j}$ logarithms of algebraic numbers. Let $\lambda_{1}, \ldots, \lambda_{s}$ be a basis of the \mathbb{Q}-space spanned by the $\log \alpha_{i j}$. Write

$$
\log \alpha_{i j}=\sum_{k=1}^{s} a_{i j k} \lambda_{k} \quad 1 \leq i \leq d, 1 \leq j \leq \ell
$$

We denote by $r_{\text {conj }}(M)$ the rank of the matrix

$$
\left(\sum_{k=1}^{s} a_{i j k} X_{k}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}
$$

viewed as a matrix with entries in the field $\mathbb{C}\left(X_{1}, \ldots, X_{s}\right)$.

Equivalence between the two conjectures

D. Roy : Conjecture AIL and Conjecture RM are equivalent!

Proposition (D. Roy) : any polynomial in n variables X_{1}, \ldots, X_{n} over a field \mathbb{K} is the determinant of a square matrix with entries in
$\mathbb{K}+\mathbb{K} X_{1}+\cdots+\mathbb{K} X_{n}$.

Damien Roy
D. Roy. Matrices dont les coefficients sont des formes linéaires. Séminaire de théorie des nombres Paris 1987-88, 273-281. Prog. Math.81, Birkhäuser, 1990.

Two conjectures

Algebraic independence of logarithms of algebraic numbers: Conjecture AIL: \mathbb{Q}-linearly independent logarithms of algebraic numbers are algebraically independent.

Rank of matrices with entries logarithms of algebraic numbers: Conjecture RM : the rank r of M is $r_{\text {conj }}(M)$.

Clearly, Conjecture AIL implies Conjecture RM.

For Conjecture AIL, we do not know whether there are two algebraically independent logarithms of algebraic numbers.

For Conjecture RM, we know half of it : $r \geq \frac{1}{2} r_{\text {conj }}(M)$.

Arithmetic Complexity, Theoretical Computer Science

Chap. 13 : Projections of Determinant to Permanent in
Xi Chen, Neeraj Kayal and Avi Wigderson.
Partial Derivatives in Arithmetic Complexity (and beyond)
Foundations and Trends in Theoretical Computer Science Vol. 6 1-2, (2010), 1-138
http://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf

Thanks to Anurag Pandey and Vijay M. Patankar.

Determinantal complexity of a polynomial

Given a polynomial f in n variables X_{1}, \cdots, X_{n} with coefficients in a field \mathbb{K} of characteristic 0 , the determinantal complexity $\mathrm{dc}(f)$ of f is the smallest m such that there exists a $m \times m$ matrix with entries affine forms

$$
a_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n}
$$

such that the determinant of A is f.

Geometric complexity theory

L.G.Valiant.

The complexity of computing
the permanent.
Theoretical Computer
Science,
8 2, (1979), 189 - 201.

Leslie G. Valiant

2010 Turing Award

VNP vs VP.

Permanent of a matrix

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\operatorname{perm}\left(\begin{array}{cc}
a & -b \\
c & d
\end{array}\right)
$$

George Pólya 1887-1985

George Pólya asked, in 1913 : Given a square matrix A, is there a way to set the signs of the entries so that the resulting matrix A^{\prime} satisfies

$$
\operatorname{det}(A)=\operatorname{perm}\left(A^{\prime}\right) ?
$$

Determinantal complexity of the permanent

Let perm m_{n} be the permanent of the matrix $\left(X_{i j}\right)_{1 \leq i, j \leq n}$ in n^{2} variables over a field of zero characteristic.
G. Szegő (1913) : dc $\left(\operatorname{perm}_{n}\right) \geq n+1$.

Joachim von zur Gathen (1987) : $\operatorname{dc}\left(\right.$ perm $\left._{n}\right) \geq \sqrt{8 / 7} n$.
Babai and Seress, J.Y. Cai, R. Meshulam (1989)
$\mathrm{dc}\left(\operatorname{perm}_{n}\right) \geq \sqrt{2} n$.
T. Mignon and N. Ressayre (2004) : dc $\left(\operatorname{perm}_{n}\right) \geq \frac{n^{2}}{2}$.

Nicolas Ressayre

An auxiliary lemma

The determinant of a product AB of a $d \times \ell$ matrix A by a $\ell \times d$ matrix B is the determinant of the $(d+\ell) \times(d+\ell)$ matrix written as blocks

$$
\left(\begin{array}{cc}
I_{\ell} & \mathrm{B} \\
-\mathrm{A} & 0
\end{array}\right)
$$

Proof.
Proof.
Multiply on the left the matrix $\left(\begin{array}{cc}I_{\ell} & B \\ -A & 0\end{array}\right)$ by the matrix $\left(\begin{array}{cc}\mathrm{I}_{\ell} & 0 \\ \mathrm{~A} & \mathrm{I}_{d}\end{array}\right)$. This will not change the determinant, and the product is $\left(\begin{array}{cc}I_{\ell} & B \\ 0 & A B\end{array}\right)$, the determinant of which is $\operatorname{det}(A B)$.

Proof by D. Roy of $\mathrm{dc}(f)<\infty$

Here is a proof that any quadratic polynomial
$f \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ is the determinant of a matrix with entries in $\mathbb{K}+\mathbb{K} z_{1}+\cdots+\mathbb{K} z_{n}$.
Write f as $L_{0}+L_{1} z_{1}+\cdots+L_{n} z_{n}$ where each L_{i} is a polynomial of degree ≤ 1, which means that each L_{i} lies in $\mathbb{K}+\mathbb{K} z_{1}+\cdots+\mathbb{K} z_{n}$.
Then f is the determinant of the $(n+2) \times(n+2)$ matrix

$$
\left(\begin{array}{cccc}
& & & 1 \\
& & & z_{1} \\
& \mathrm{I}_{n+1} & & \vdots \\
& & & z_{n} \\
-L_{0} & \cdots & -L_{n} & 0
\end{array}\right)
$$

A further lemma

Let M be a matrix, the entries of which are bilinear forms

$$
\mathrm{M}=\left(\sum_{s=0}^{S} \sum_{t=0}^{T} m_{i j s t} X_{s} Y_{t}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}
$$

There exist a matrix A whose entries are linear forms in X_{0}, \ldots, X_{S} and a matrix B whose entries are linear forms in Y_{0}, \ldots, Y_{T} such that $\mathrm{M}=\mathrm{AB}$.
Proof.
Write $\mathrm{M}=\mathrm{M}_{0} X_{0}+\cdots+\mathrm{M}_{S} X_{S}$ with

$$
\mathrm{M}_{s}=\left(\sum_{t=0}^{T} m_{i j s t} Y_{t}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}, \quad(0 \leq s \leq S)
$$

Take

$$
\mathrm{A}=\left(X_{0} \mathrm{I}_{d}, \ldots, X_{S} \mathrm{I}_{d}\right), \quad \mathrm{B}=\left(\begin{array}{c}
\mathrm{M}_{0} \\
\vdots \\
\mathrm{M}_{S}
\end{array}\right) . \square \quad . \begin{array}{cccc|}
\hline \text { คac } \\
80 / 80 \\
\hline
\end{array}
$$

