Survey of some recent results on the complexity of expansions of algebraic numbers

Michel Waldschmidt

Institut de Mathématiques de Jussieu + CIMPA http://www.math.jussieu.fr/~miw/

April 26, 2006

Expansion of algebraic numbers
Complexity of words
Words and transcendence
Continued fractions

Let $g \geq 2$ be an integer and x a real algebraic irrational number.

- The g-ary expansion of x should satisfy some of the laws shared by almost all numbers (for Lebesgue's measure).
- In particular each digit $0,1, \ldots, g-1$ should occur at least once.

As a consequence, each given sequence of digits should occur infinitely often.

- Hint : take a power of g.
- For instance, each of the four sequences $(0,0), \quad(0,1)$, $(1,0), \quad(1,1)$ should occur infinitely often in the binary expansion of x (take $g=4$.)

> 较

- A real number x is normal in basis g if its g-ary expansion has the following property .
- each digit occurs with frequency $1 / g$
- each sequence of two digits occurs with frequency $1 / g^{2}$
- and so on

A number is normal if it is normal in any basis $g>2$. Borel suggested that each real irrational algebraic number should be normal

- There is no explicitly known example of a triple $g, a, x)$, where $g \geq 3$ is an integer, a a digit in $\{0, \ldots, g-1\}$ and x an algebraic irrational number, for which one can claim that the digit a occurs infinitely often in the g-ary expansion of x. \qquad

xpansion of algobraic number

Normal numbers

- Almost all numbers (for Lebesgue's measure) are normal.
- Example of a 2-normal number (Champernowne 1933 Bailey and Crandall 2001) : the binary Champernowne number, obtained by concatenation of the sequence of integers
0.110111001011101111000100110101011110011011110 .
http://mathworld.wolfram.com/ChampernowneConstant.html - If a and g are coprime integers >1, then

$$
\sum_{n \geq 0} a^{-n} g^{-a^{n}}
$$

is normal in basis g.

- $\log 2$ is a BBP number in basis 2 since

$$
\sum_{n \geq 1} \frac{1}{n} \cdot x^{n}=-\log (1-x) \quad \text { and } \quad \sum_{n \geq 1} \frac{1}{n} \cdot 2^{-n}=\log 2 .
$$

- $\log 2$ is a BBP number in basis $3^{2}=9$ since

- π^{2} is a BBP number in basis 2 and $3^{4}=81$
(D.J. Broadhurst 1999)

Hypothesis A of Bailey and Crandall
Number of 1's in the binary expansion of an algebraic number

$$
\theta:=\sum_{n \geq 1} \frac{p(n)}{q(n)} \cdot g^{-n}
$$

where $g \geq 2$ is a positive integer, $R=p / q \in \mathrm{Q}(X)$ a rational function with $q(n) \neq 0$ for $n \geq 1$ and $\operatorname{deg} p<\operatorname{deg} q$. Set $y_{0}=0$ and

$$
y_{n+1}=g y_{n}+\frac{p(n)}{q(n)} \quad(\bmod 1)
$$

Then the sequence $\left(y_{n}\right)_{n \geq 1}$ either has finitely many limit points or is uniformly distributed modulo 1.
D. Bailey, J. Borwein, R. Crandall and C. Pomerance

On the Binary Expansions of Algebraic Numbers
Journal de Théorie des Nombres de Bordeaux, vol. 16 (2004), pp. 487-518.

If x is a real algebraic number of degree $d \geq 2$, then the number of 1's among the first N digits in the binary expansion of x is at least $C N^{1 / d}$, where C is a positive number which depends only on x.

Number of 1's in the binary expansion of an algebraic number

- For any integer $d \geq 2$, the number

$$
\sum_{n \geq 0} 2^{-d^{n}}
$$

is transcendental (result due to K. Mahler, 1929). Fredholm number: $\sum_{n>0} 2^{-2^{n}}$. A. J. Kempner (1916)

- The number

$$
\sum_{n \geq 0} 2^{-F_{n}}
$$

having 1 at the Fibonacci numbers positions 1, 2, 3, 5, 8 . is transcendental. (also follows from Mahler's method)

- Theorem (B. Adamczewski, Y. Bugeaud, F. Luca, 2004 - conjecture of A. Cobham, 1968) : The sequence of digits of a real irrational algebraic number is not automatic.
- In other terms if the sequence of g-ary digits of a real number x is given by a finite automaton, then x is transcendental.
- Tool : Schmidt's subspace Theorem.
- Automaton: States $i, a, b \ldots$ Transitions : 0 or 1
- Example : the automaton

a with $f(i)=0, f(a)=1$
\qquad
- produces the sequence $a_{0} a_{1} a_{2} \ldots$ where, for instance, a_{9} is $f(i)=0$ since $1001[i]=100[a]=10[a]=1[a]=i$
- This is the Thue-Morse sequence, where the $n+1$-th term a_{n} is 1 if the number of 1's in the binary expansion of n is odd, 0 if it is even.
The Thue-Morse number is $\sum_{n \geq 0} a_{n} 2^{-n}$.

The Thue-Morse sequence 01101001100101101
Powers of 2

The binary number

$\sum_{n>0} 2^{-2^{n}}=0.1101000100000001000 \cdots=0 . a_{1} a_{2} a_{3} \cdots$
with

$$
a_{n}= \begin{cases}1 & \text { if } n \text { is a power of } 2, \\ 0 & \text { otherwise }\end{cases}
$$

is produced by the automaton
with $f(i)=0, f(a)=1, f(b)=0$.

The Baum-Sweet sequence

- For $n \geq 0$ define $a_{n}=1$ if the binary expansion of n contains no block of consecutive 0's of odd length, $a_{n}=0$ otherwise : the Baum-Sweet sequence $\left(a_{n}\right)_{n \geq 0}$ starts with
$110110010100100110010 \ldots$
- This sequence is produced by the automaton

with $f(i)=1, f(a)=0, f(b)=0$.
- We shall consider infinite words $w=a_{1} \ldots a_{n}$ A factor of length m of such a w is a word of the form $a_{k} a_{k+1} \ldots a_{k+m-1}$ for some $k \geq 1$.
- The complexity of an infinite word w is the function $p(m)$ which counts, for each $m \geq 1$, the number of distinct factors of w of length m.
- Hence for an alphabet A with g elements we have $1 \leq p(m) \leq g^{m}$ and the function $m \mapsto p(m)$ is non-decreasing.
- According to Borel's suggestion, the complexity of the sequence of digits in basis g of an irrational algebraic number should be $p(m)=g^{m}$.
- Let $g \geq 2$ be an integer. An infinite sequence $\left(a_{n}\right)_{n \geq 0}$ is said to be g-automatic if a_{n} is a finite-state function of the base $-q$ representation of n : this means that there exists a finite automaton starting with the g-ary expansion of n as input and producing the term a_{n} as output.
- A. Cobham, 1972 : Automatic sequences have a complexity $p(m)=O(m)$.

Take $A=\{a, b\}$

- Start with $f_{1}=b, f_{2}=a$ and define (concatenation) :
$f_{n}=f_{n-1} f_{n-2}$.
- Hence $f_{3}=a b \quad f_{4}=a b a \quad f_{5}=a b a a b$
$f_{6}=a b a a b a b a \quad f_{7}=a b a a b a b a a b a a b$
$f_{6}=a b a a b a b a \quad f_{8}=a b a a b a b a b a a b a b a a b a b a$
- The Fibonacci word
$w=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b .$.
is generated by a binary recurrent morphism : it is the fixed point of the morphism $a \mapsto a b, b \mapsto a$; under this morphism, the image of f_{n} is
- The Thue-Morse-Mahler number in basis $g \geq 2$ is the number

$$
\xi_{g}=\sum_{n \geq 0} \frac{a_{n}}{g^{n}}
$$

where $\left(a_{n}\right)_{n \geq 0}$ is the Thue-Morse sequence. The g-ary expansion of ξ_{g} starts with
0.1101001100101101 .

- These numbers were considered by K. Mahler who proved in 1929 that they are transcendental.

Example 3 : the Rudin-Shapiro sequence

- The Rudin-Shapiro word aaabaabaaaabbbab.... For $n \geq 0$ define $r_{n} \in\{a, b\}$ as being equal to a (respectively b) if the number of occurrences of the pattern 11 in the binary representation of n is even (respectively odd).
- Let σ be the morphism defined from the monoid B^{*} on the alphabet $B=\{1,2,3,4\}$ into B^{*} by : $\sigma(1)=12, \sigma(2)=13$, $\sigma(3)=42$ and $\sigma(4)=43$. Let

$$
\mathbf{u}=121312421213 \ldots
$$

be the fixed point of σ begining with 1 and let φ be the morphism defined from B^{*} to $\{a, b\}^{*}$ by : $\varphi(1)=a a$,
$\varphi(2)=a b$ and $\varphi(3)=b a, \varphi(4)=b b$. Then the
Rudin-Shapiro word is $\varphi(\mathbf{u})$, hence it is morphic.

Sturmian words
The Fibonacci word is Sturmian

Assume $g=2$, say $A=\{a, b\}$.

- A word is periodic if and only if its complexity is bounded.
- If the complexity $p(m)$ a word w satisfies $p(m)=p(m+1)$ for one value of m, then $p(m+k)=p(m)$ for all $k \geq 0$, hence the word is periodic. It follows that a non-periodic word w has a Complexity $p(m) \geq m+1$.
- An infinite word of minimal complexity $p(m)=m+1$ is called Sturmian (Morse and Hedlund, 1938).
- Two dimensional billiards produce Sturmian words
- S. Ferenczi, C. Mauduit, 1997 : A number whose sequence of digits is Sturmian is transcendental.
Combinatorial criterion : the complexity of the g-ary expansion of every irrational algebraic number satisfies

$$
\liminf _{m \rightarrow \infty}(p(m)-m)=+\infty .
$$

- Tool : a p-adic version of the Thue-Siegel-Roth Theorem due to Ridout (1957).
- J-P. Allouche and L.Q. Zamboni(1998).
- R.N. Risley and L.Q. Zamboni(2000).
- B. Adamczewski and J. Cassaigne (2003).
- Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004). The binary complexity p of a real irrational algebraic number x satisfies

$$
\liminf _{m \rightarrow \infty} \frac{p(m)}{m}=+\infty .
$$

- Corollary (conjecture of A. Cobham (1968)) : If the sequence of digits of an irrational real number x is automatic, then x is transcendental.

Irrationality measures for automatic numbers

Christol, Kamae, Mendes-France, Rauzy
The result of B. Adamczewski, Y. Bugeaud and F. Luca implie he following statement related to the work of G. Christol,
T. Kamae, M. Mendès-France and G. Rauzy (1980)

Corollary. Let $g \geq 2$ be an integer, p be a prime number and
$\left(u_{k}\right)_{k>1}$ a sequence of integers in the range $\{0, \ldots, p-1\}$. The
ormal power series

$$
\begin{aligned}
& \sum_{k \geq 1} u_{k} X^{k} \\
& \sum_{k>1} u_{k} g^{-k}
\end{aligned}
$$

and the real number
are both algebraic (over $\mathbf{F}_{p}(X)$ and over \mathbf{Q}, respectively) if and nly if they are rational.
,$\left.x_{m-1}\right) \in \mathbf{Z}^{m}$, define
$|\mathbf{x}|=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{m-1}\right|\right\}$.
W.M. Schmidt (1970) : Let $m \geq 2$ be a positive integer, S a finite set of places of \mathbf{Q} containing the infinite place. For each $v \in S$ let $L_{0, v}, \ldots, L_{m-1, v}$ be m independent linear
forms in m variables with algebraic coefficients in the
completion of \mathbf{Q} at v. Let $\epsilon>0$. Then the set of
$\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m}$ such that

$$
\prod_{v \in S}\left|L_{0, v}(\mathbf{x}) \cdots L_{m-1, v}(\mathbf{x})\right|_{v} \leq|\mathbf{x}|^{-\epsilon}
$$

is contained in the union of finitely many proper subspaces of \mathbf{Q}^{m}.

- Ridout's Theorem : for any real algebraic number α, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $q=2^{k}$ and $|\alpha-p / q|<q^{-1-\epsilon}$ is finite
- In Schmidt's Theorem take $m=2, S=\{\infty, 2\}$,
$L_{0, \infty}\left(x_{0}, x_{1}\right)=L_{0,2}\left(x_{0}, x_{1}\right)=x_{0}$,
$L_{1, \infty}\left(x_{0}, x_{1}\right)=\alpha x_{0}-x_{1}, \quad L_{1,2}\left(x_{0}, x_{1}\right)=x_{1}$.
For $\left(x_{0}, x_{1}\right)=(q, p)$ with $q=2^{k}$, we have
$\left|L_{0, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=q, \quad\left|L_{1, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=|q \alpha-p|$,
$\left|L_{0,2}\left(x_{0}, x_{1}\right)\right|_{2}=q^{-1}, \quad\left|L_{1,2}\left(x_{0}, x_{1}\right)\right|_{2}=|p|_{2} \leq 1$.

Further transcendence results
Complexity of the continued fraction expansion of
Consequences of Nesterenko 1996 result on the transcendence of an algebraic number

- Similar questions arise by considering the continued fraction expansion of a real number instead of its g-ary expansion.
- Open question - A.Ya. Khintchine (1949) : are the partial quotients of the continued fraction expansion of a non-quadratic irrational algebraic real number bounded?
- No known example so far
- J.H. Evertse, 1996
- M. Queffélec, 1998 : transcendence of the Thue-Morse continued fraction.
- P. Liardet and P. Stambul, 2000.
- J-P. Allouche, J.L. Davison, M Queffélec and L.Q. Zamboni, 2001 : transcendence of Sturmian or morphic continued fractions.
- C. Baxa, 2004.
- B. Adamczewski, Y. Bugeaud, J.L. Davison, 2005 : transcendence of the Rudin-Shapiro and of the Baum-Sweet continued fractions.
- Open question : Do there exist algebraic numbers of degree at least three whose continued fraction expansion is generated by a morphism?
- B. Adamczewski, Y. Bugeaud (2004) : The continued fraction expansion of an algebraic number of degree at least three cannot be generated by a binary morphism.
- Provide an explicit example of an automatic real number $x>0$ such that $1 / x$ is not automatic.
- Show that

$$
\log 2=\sum_{n \geq 1} \frac{1}{n} 2^{-n}
$$

is not 2 -automatic.

- Show that
$\pi=\sum_{n \geq 0}\left(\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right) 2^{-4 n}$
is not 2 -automatic. two numbers

$$
\sum_{n \geq 1} e_{n} 2^{-n}, \quad \sum_{n \geq 1} e_{n} 3^{-n}
$$

is transcendental.
Complexity of words
Words and transcendence
Continued fractions

