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Émile Borel (1871–1956)
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! Les probabilités dénombrables et leurs applications
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C. R. Acad. Sci., Paris 230, 591-593 (1950).
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g-ary expansion of an algebraic number

Let g ≥ 2 be an integer and x a real algebraic irrational
number.

! The g–ary expansion of x should satisfy some of the laws
shared by almost all numbers (for Lebesgue’s measure).

! In particular each digit 0, 1, . . . , g − 1 should occur at least
once.

! As a consequence, each given sequence of digits should
occur infinitely often.

! Hint : take a power of g.

! For instance, each of the four sequences (0, 0), (0, 1),
(1, 0), (1, 1) should occur infinitely often in the binary
expansion of x (take g = 4.)
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Normal numbers

! A real number x is normal in basis g if its g–ary
expansion has the following property :

! each digit occurs with frequency 1/g
! each sequence of two digits occurs with frequency 1/g2

! and so on
A number is normal if it is normal in any basis g ≥ 2.
Borel suggested that each real irrational algebraic
number should be normal.

! There is no explicitly known example of a triple
(g, a, x), where g ≥ 3 is an integer, a a digit in
{0, . . . , g − 1} and x an algebraic irrational number,
for which one can claim that the digit a occurs
infinitely often in the g–ary expansion of x.
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Normal numbers

! Almost all numbers (for Lebesgue’s measure) are
normal.

! Example of a 2–normal number (Champernowne 1933,
Bailey and Crandall 2001) : the binary Champernowne
number, obtained by concatenation of the sequence of
integers

0. 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 . . .

http://mathworld.wolfram.com/ChampernowneConstant.html
! If a and g are coprime integers > 1, then∑

n≥0

a−ng−an

is normal in basis g.
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BBP numbers

! Hypothesis A of Bailey and Crandall (Experimental
Math. 2001) : behaviour of orbits of the discrete
dynamical system Tg(x) = gx (mod 1).

! J-C. Lagarias (Experimental Math. 2001) : connection
with special values of G functions

! D. Bailey, Jon Borwein, S. Plouffe (Math. Comp.
1997) : BBP numbers∑

n≥1

p(n)

q(n)
· g−n

where g ≥ 2 is an integer, p and q relatively prime
polynomials in Z[X] with q(n) $= 0 for n ≥ 1.
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BBP numbers : examples

! log 2 is a BBP number in basis 2 since∑
n≥1

1

n
·xn = − log(1− x) and

∑
n≥1

1

n
· 2−n = log 2.

! log 2 is a BBP number in basis 32 = 9 since∑
n≥1

1

2n− 1
·x2n−1 = log

1 + x

1− x
,

∑
n≥1

6

2n− 1
· 3−2n = log 2.

! π2 is a BBP number in basis 2 and 34 = 81
(D.J. Broadhurst 1999).
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Hypothesis A of Bailey and Crandall

Hypothesis A of Bailey and Crandall : Let

θ :=
∑
n≥1

p(n)

q(n)
· g−n

where g ≥ 2 is a positive integer, R = p/q ∈ Q(X) a
rational function with q(n) $= 0 for n ≥ 1 and deg p < deg q.
Set y0 = 0 and

yn+1 = gyn +
p(n)

q(n)
(mod 1)

Then the sequence (yn)n≥1 either has finitely many limit
points or is uniformly distributed modulo 1.
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Number of 1’s in the binary expansion of an
algebraic number

D. Bailey, J. Borwein, R. Crandall and C. Pomerance.
On the Binary Expansions of Algebraic Numbers,
Journal de Théorie des Nombres de Bordeaux, vol. 16
(2004), pp. 487-518. MR214495

If x is a real algebraic number of degree d ≥ 2, then the
number of 1’s among the first N digits in the binary
expansion of x is at least CN1/d, where C is a positive
number which depends only on x.
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Number of 1’s in the binary expansion of an
algebraic number

! For any integer d ≥ 2, the number∑
n≥0

2−dn

is transcendental (result due to K. Mahler, 1929). Fredholm
number :

∑
n≥0 2−2n. A. J. Kempner (1916)

! The number ∑
n≥0

2−Fn ,

having 1 at the Fibonacci numbers positions 1, 2, 3, 5, 8. . .
is transcendental. (also follows from Mahler’s method).
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Mahler’s method

! Mahler (1930, 1969) : Let d ≥ 2 ; the function
f(z) =

∑
n≥0

z−dn
satisfies f(zd) + z = f(z) for |z| < 1.

! Claim by J.H. Loxton and A.J. van der Poorten
(1982–1988) using Mahler’s method : automatic irrational
numbers are transcendental.

! P.G. Becker (1994) : for any given non–eventually periodic
automatic sequence u = (u1, u2, . . . ), the real number∑

k≥1

ukg
−k

is transcendental, provided that the integer g is sufficiently
large (in terms of u).
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Transcendence of automatic numbers

! Theorem (B. Adamczewski, Y. Bugeaud, F. Luca,
2004 – conjecture of A. Cobham, 1968) : The sequence
of digits of a real irrational algebraic number is not
automatic.

! In other terms if the sequence of g-ary digits of a real
number x is given by a finite automaton, then x is
transcendental.

! Tool : Schmidt’s subspace Theorem.
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Finite automata

! Automaton : States i, a, b. . . Transitions : 0 or 1.
! Example : the automaton

!0 1−−−−→ !0

i a
←−−−−

1

with f(i) = 0, f(a) = 1

! produces the sequence a0a1a2 . . . where, for instance,
a9 is f(i) = 0 since 1001[i] = 100[a] = 10[a] = 1[a] = i.

! This is the Thue-Morse sequence, where the n + 1-th
term an is 1 if the number of 1’s in the binary
expansion of n is odd, 0 if it is even.
The Thue-Morse number is

∑
n≥0 an2−n.
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The Thue-Morse sequence 01101001100101101 . . .

! For n ≥ 0 define an = 0 if the sum of the binary digits
in the expansion of n is even, an = 1 if this sum is
odd : the Thue-Morse sequence (an)n≥0 starts with

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 . . .

! No sequence of three consecutive identical blocks :

0 0 0
1 1 1

01 01 01
10 10 10

001 001 001
. . .
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Powers of 2

The binary number∑
n≥0

2−2n
= 0.1101000100000001000 · · · = 0.a1a2a3 . . .

with

an =

{
1 if n is a power of 2,

0 otherwise

is produced by the automaton

!0 !0 !0

i
1−−−−→ a

1−−−−→ b
!1

with f(i) = 0, f(a) = 1, f(b) = 0.
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The Baum-Sweet sequence

! For n ≥ 0 define an = 1 if the binary expansion of n
contains no block of consecutive 0’s of odd length,
an = 0 otherwise : the Baum-Sweet sequence (an)n≥0

starts with

1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 . . .

! This sequence is produced by the automaton

!1 0−−−−→ !0

i a
1−−−−→ b

←−−−−
0

!1

with f(i) = 1, f(a) = 0, f(b) = 0.

17 / 46

Expansion of algebraic numbers
Complexity of words

Words and transcendence
Continued fractions

Words

! We consider an alphabet A with g letters. The free
monoid A∗ on A is the set of finite words a1 . . . an

where n ≥ 0 and ai ∈ A for 1 ≤ i ≤ n. The law on A∗

is called concatenation.

! The number of letters of a finite word is its length : the
length of a1 . . . an is n.

! The number of words of length n is gn for n ≥ 0. The
single word of length 0 is the empty word e with no
letter. It is the neutral element for the concatenation.
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Infinite words

! We shall consider infinite words w = a1 . . . an . . .
A factor of length m of such a w is a word of the form
akak+1 . . . ak+m−1 for some k ≥ 1.

! The complexity of an infinite word w is the function
p(m) which counts, for each m ≥ 1, the number of
distinct factors of w of length m.

! Hence for an alphabet A with g elements we have
1 ≤ p(m) ≤ gm and the function m )→ p(m) is
non–decreasing.

! According to Borel’s suggestion, the complexity of the
sequence of digits in basis g of an irrational algebraic
number should be p(m) = gm.
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Automatic sequences

! Let g ≥ 2 be an integer. An infinite sequence (an)n≥0 is
said to be g–automatic if an is a finite-state function of
the base–g representation of n : this means that there
exists a finite automaton starting with the g–ary
expansion of n as input and producing the term an as
output.

! A. Cobham, 1972 : Automatic sequences have a
complexity p(m) = O(m).
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Morphisms

! Let A and B be two finite sets. A map from A to B∗ can
be uniquely extended to a homomorphism between the free
monoids A∗ and B∗. We call morphism from A to B such a
homomorphism.

! A morphism φ from A into itself is said to be prolongable if
there exists a letter a such that φ(a) = au, where u is a
non–empty word such that φk(u) $= e for every k ≥ 0. In
that case, the sequence of finite words (φk(a))k≥1

converges in AN (endowed with the product topology of
the discrete topology on each copy of A) to an infinite
word w = auφ(u)φ2(u)φ3(u) . . .. This infinite word is
clearly a fixed point for φ and we say that w is generated
by the morphism φ.
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Recurrent morphisms, binary morphisms,
morphic sequences

! If, moreover, every letter occurring in w occurs at least
twice, then we say that w is generated by a recurrent
morphism.

! If the alphabet A has two letters, then we say that w is
generated by a binary morphism.

! More generally, an infinite sequence w in AN is said to
be morphic if there exist a sequence u generated by a
morphism defined over an alphabet B and a morphism
φ from B to A such that w = φ(u).
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Automatic sequences and morphic sequences

! Theorem (A. Cobham) : automatic sequences are
the same as uniform morphic sequences.

! Jean-Paul Allouche and Jeffrey Shallit
Automatic Sequences : Theory,
Applications, Generalizations,
Cambridge University Press, 2003.

http ://www.cs.uwaterloo.ca/∼shallit/asas.html
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Example 1 : the Fibonacci word

Take A = {a, b}.
! Start with f1 = b, f2 = a and define (concatenation) :

fn = fn−1fn−2.

! Hence f3 = ab f4 = aba f5 = abaab
f6 = abaababa f7 = abaababaabaab
f8 = abaababaabaababaababa

! The Fibonacci word

w = abaababaabaababaababaabaababaabaab . . .

is generated by a binary recurrent morphism : it is the
fixed point of the morphism a )→ ab, b )→ a ;
under this morphism, the image of fn is fn+1.
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Example 2 : the Thue-Morse word
abbabaabbaababbab . . .

! In the Thue-Morse sequence 01101001100101101 . . .
replace 0 by a and 1 by b.
The Thue-Morse word

w = abbabaabbaababbab . . .

is generated by a binary recurrent morphism : it is the
fixed point of the morphism a )→ ab, b )→ ba.
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The Thue-Morse-Mahler number

! The Thue-Morse-Mahler number in basis g ≥ 2 is the
number

ξg =
∑
n≥0

an

gn

where (an)n≥0 is the Thue-Morse sequence. The g–ary
expansion of ξg starts with

0.1101001100101101 . . .

! These numbers were considered by K. Mahler who
proved in 1929 that they are transcendental.
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Example 3 : the Rudin–Shapiro sequence

! The Rudin–Shapiro word aaabaabaaaabbbab . . .. For n ≥ 0
define rn ∈ {a, b} as being equal to a (respectively b) if the
number of occurrences of the pattern 11 in the binary
representation of n is even (respectively odd).

! Let σ be the morphism defined from the monoid B∗ on the
alphabet B = {1, 2, 3, 4} into B∗ by : σ(1) = 12, σ(2) = 13,
σ(3) = 42 and σ(4) = 43. Let

u = 121312421213 . . .

be the fixed point of σ begining with 1 and let ϕ be the
morphism defined from B∗ to {a, b}∗ by : ϕ(1) = aa,
ϕ(2) = ab and ϕ(3) = ba, ϕ(4) = bb. Then the
Rudin-Shapiro word is ϕ(u), hence it is morphic.
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Example 4 : powers of 2

The binary automatic number∑
n≥0

2−2n
= 0.1101000100000001000 · · ·

yields the word

v = v1v2 · · · vn · · · = bbabaaabaaaaaaabaaa · · ·
where

vn =

{
b if n is a power of 2,

a otherwise.

The complexity p(m) of v is bounded by 2m :

m = 1 2 3 4 5 6 · · ·
p(m) = 2 4 6 7 9 11 · · ·
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Sturmian words

Assume g = 2, say A = {a, b}.
! A word is periodic if and only if its complexity is

bounded.

! If the complexity p(m) a word w satisfies
p(m) = p(m + 1) for one value of m, then
p(m + k) = p(m) for all k ≥ 0 , hence the word is
periodic. It follows that a non–periodic word w has a
complexity p(m) ≥ m + 1.

! An infinite word of minimal complexity p(m) = m + 1
is called Sturmian (Morse and Hedlund, 1938).

! Two dimensional billiards produce Sturmian words.
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The Fibonacci word is Sturmian

! The Fibonacci word

w = abaababaabaababaababaabaababaabaab . . .

is Sturmian.

! On the alphabet {a, b}, a Sturmian word w is
characterized by the property that for each m ≥ 1,
there is exactly one factor v of w of length m such that
both va and vb are factors of w of length m + 1.
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The Fibonacci word
abaababaabaababaababaabaababaabaab . . . is
Sturmian

aabaa
↗

a → aa → aab → aaba → aabab
↘

ab → aba → abaa → abaab
↘

abab → ababa
b → ba → baa → baab → baaba

↘
bab → baba → babaa
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Transcendence and Sturmian words

! S. Ferenczi, C. Mauduit, 1997 : A number whose sequence
of digits is Sturmian is transcendental.
Combinatorial criterion : the complexity of the g–ary
expansion of every irrational algebraic number satisfies

lim inf
m→∞ (p(m)−m) = +∞.

! Tool : a p–adic version of the Thue–Siegel–Roth Theorem
due to Ridout (1957).
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Further transcendence results on g-ary expansions
of real numbers

! J-P. Allouche and L.Q. Zamboni(1998).

! R.N. Risley and L.Q. Zamboni(2000).

! B. Adamczewski and J. Cassaigne (2003).
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Complexity of the g-ary expansion of an algebraic
number

! Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004).
The binary complexity p of a real irrational algebraic
number x satisfies

lim inf
m→∞

p(m)
m

= +∞.

! Corollary (conjecture of A. Cobham (1968)) : If the
sequence of digits of an irrational real number x is
automatic, then x is transcendental.
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Irrationality measures for automatic numbers

! Further progress by B. Adamczewski and J. Cassaigne
(2006) – solution to a Conjecture of J. Shallit (1999) :
A Liouville number cannot be generated by a finite
automaton.

! The irrationality measure of the automatic number
associated with σ(0) = 0n1 and σ(1) = 1n0 is at least
n.

! For the Thue-Morse-Mahler numbers for instance the
exponent of irrationality is ≤ 5.
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Christol, Kamae, Mendes-France, Rauzy

The result of B. Adamczewski, Y. Bugeaud and F. Luca implies
the following statement related to the work of G. Christol,
T. Kamae, M. Mendès-France and G. Rauzy (1980) :
Corollary. Let g ≥ 2 be an integer, p be a prime number and
(uk)k≥1 a sequence of integers in the range {0, . . . , p− 1}. The
formal power series ∑

k≥1

ukX
k

and the real number ∑
k≥1

ukg
−k

are both algebraic (over Fp(X) and over Q, respectively) if and
only if they are rational.
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Schmidt’s subspace Theorem

For x = (x0, . . . , xm−1) ∈ Zm, define
|x| = max{|x0|, . . . , |xm−1|}.
W.M. Schmidt (1970) : Let m ≥ 2 be a positive integer, S
a finite set of places of Q containing the infinite place. For
each v ∈ S let L0,v, . . . , Lm−1,v be m independent linear
forms in m variables with algebraic coefficients in the
completion of Q at v. Let ε > 0. Then the set of
x = (x0, . . . , xm−1) ∈ Zm such that∏

v∈S

|L0,v(x) · · ·Lm−1,v(x)|v ≤ |x|−ε

is contained in the union of finitely many proper subspaces
of Qm.
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Ridout’s Theorem

! Ridout’s Theorem : for any real algebraic number α,
for any ε > 0, the set of p/q ∈ Q with q = 2k and
|α− p/q| < q−1−ε is finite.

! In Schmidt’s Theorem take m = 2, S = {∞, 2},
L0,∞(x0, x1) = L0,2(x0, x1) = x0,
L1,∞(x0, x1) = αx0 − x1, L1,2(x0, x1) = x1.

For (x0, x1) = (q, p) with q = 2k, we have

|L0,∞(x0, x1)|∞ = q, |L1,∞(x0, x1)|∞ = |qα− p|,
|L0,2(x0, x1)|2 = q−1, |L1,2(x0, x1)|2 = |p|2 ≤ 1.
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Further transcendence results

Consequences of Nesterenko 1996 result on the transcendence of
values of theta series at rational points.

! The number
∑
n≥0

2−n2
is transcendental (D. Bertrand 1997 ;

D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa
1998).

! For the word

u = 01212212221222212222212222221222 . . .

generated by the non–recurrent morphism 0 )→ 012,
1 )→ 12, 2 )→ 2, the number η =

∑
k≥1

uk3−k is

transcendental.
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Complexity of the continued fraction expansion of
an algebraic number

! Similar questions arise by considering the continued
fraction expansion of a real number instead of its g–ary
expansion.

! Open question – A.Ya. Khintchine (1949) : are the
partial quotients of the continued fraction expansion of
a non–quadratic irrational algebraic real number
bounded ?

! No known example so far !
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Transcendence of continued fractions

! J. Liouville, 1844

! É. Maillet, 1906, O. Perron, 1929

! H. Davenport and K.F. Roth, 1955

! A. Baker, 1962

! J.L. Davison, 1989
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Transcendence of continued fractions (continued)

! J.H. Evertse, 1996.

! M. Queffélec, 1998 : transcendence of the Thue–Morse
continued fraction.

! P. Liardet and P. Stambul, 2000.

! J-P. Allouche, J.L. Davison, M Queffélec and
L.Q. Zamboni, 2001 : transcendence of Sturmian or
morphic continued fractions.

! C. Baxa, 2004.

! B. Adamczewski, Y. Bugeaud, J.L. Davison, 2005 :
transcendence of the Rudin-Shapiro and of the
Baum–Sweet continued fractions.
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Transcendence of continued fractions

! Open question : Do there exist algebraic numbers of
degree at least three whose continued fraction expansion
is generated by a morphism ?

! B. Adamczewski, Y. Bugeaud (2004) : The continued
fraction expansion of an algebraic number of degree at
least three cannot be generated by a binary morphism.
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Further open problems

! Provide an explicit example of an automatic real
number x > 0 such that 1/x is not automatic.

! Show that

log 2 =
∑
n≥1

1

n
2−n

is not 2-automatic.

! Show that

π =
∑
n≥0

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
2−4n

is not 2-automatic.
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Further open problems

Let (en)n≥1 be an infinite sequence over {0, 1} that is not
ultimately periodic. Prove or disprove : at least one of the
two numbers ∑

n≥1

en2−n,
∑
n≥1

en3−n

is transcendental.
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