On the abc Conjecture and some of its consequences

by

Michel Waldschmidt

Université P．et M．Curie（Paris VI）
http：／／www．imj－prg．fr／～michel．waldschmidt／

Abstract（continued）

This talk will be at an elementary level，giving a collection of consequences of the $a b c$ Conjecture．It will not include an introduction to the Inter－universal Teichmüller Theory of Shinichi Mochizuki．

[^0]Abstract
According to Nature News， 10 September 2012，quoting Dorian Goldfeld，the $a b c$ Conjecture is＂the most important unsolved problem in Diophantine analysis＂．It is a kind of grand unified theory of Diophantine curves：＂The remarkable thing about the $a b c$ Conjecture is that it provides a way of reformulating an infinite number of Diophantine problems，＂says Goldfeld，＂and， if it is true，of solving them．＂Proposed independently in the mid－80s by David Masser of the University of Basel and Joseph ©sterlé of Pierre et Marie Curie University（Paris 6），the abc Conjecture describes a kind of balance or tension between addition and multiplication，formalizing the observation that when two numbers a and b are divisible by large powers of small primes， $a+b$ tends to be divisible by small powers of large primes．The $a b c$ Conjecture implies－in a few lines－the proofs of many difficult theorems and outstanding conjectures in Diophantine equations－ including Fermat＇s Last Theorem．

American Broadcasting Company

http://fr.wikipedia.org/wiki/American_Broadcasting_Company

The radical of a positive integer

According to the fundamental theorem of arithmetic, any integer $n \geq 2$ can be written as a product of prime numbers :

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}} .
$$

The radical (also called kernel) $\operatorname{Rad}(n)$ of n is the product of the distinct primes dividing n :

$$
\begin{gathered}
\operatorname{Rad}(n)=p_{1} p_{2} \cdots p_{t} \\
\operatorname{Rad}(n) \leq n .
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \operatorname{Rad}(60500)=\operatorname{Rad}\left(2^{2} \cdot 5^{3} \cdot 11^{2}\right)=2 \cdot 5 \cdot 11=110, \\
& \operatorname{Rad}(82852996681926)=2 \cdot 3 \cdot 23 \cdot 109=15042 .
\end{aligned}
$$

Annapurna Base Camp, October 22, 2014

Mt. Annapurna (8091m) is the 10th highest mountain in the world and the journey to its base camp is one of the most popular treks on earth.
http://www.himalayanglacier.com/trekking-in-nepal/160/ annapurna-base-camp-trek.htm

$a b c$-triples

An $a b c$-triple is a triple of three positive integers a, b, c which are coprime, $a<b$ and that $a+b=c$.

Examples:

$$
\begin{array}{cl}
1+2=3, & 1+8=9 \\
1+80=81, & 4+121=125 \\
2+3^{10} \cdot 109=23^{5}, & 11^{2}+3^{2} 5^{6} 7^{3}=2^{21} \cdot 23
\end{array}
$$

$a b c-h i t s$

Following F. Beukers, an $a b c$-hit is an $a b c$-triple such that $\operatorname{Rad}(a b c)<c$.

http://www.staff.science.uu.nl/~beuke106/ABCpresentation.pdf Example: $(1,8,9)$ is an $a b c$-hit since $1+8=9$, $\operatorname{gcd}(1,8,9)=1$ and

$$
\operatorname{Rad}(1 \cdot 8 \cdot 9)=\operatorname{Rad}\left(2^{3} \cdot 3^{2}\right)=2 \cdot 3=6<9
$$

But

$$
(2,16,18)
$$

is not an $a b c$-hit since these three numbers are not coprime.

Further $a b c-$ hits

- $\quad\left(2,3^{10} \cdot 109,23^{5}\right)=(2,6436341,6436343)$
is an $a b c$-hit since $2+3^{10} \cdot 109=23^{5}$ and
$\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=15042<23^{5}=6436343$.
- $\quad\left(11^{2}, 3^{2} \cdot 5^{6} \cdot 7^{3}, 2^{21} \cdot 23\right)=(121,48234275,48234496)$
is an $a b c$-hit since $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$ and
$\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=53130<2^{21} \cdot 23=48234496$.
- $\quad\left(1,5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}, 19^{6}\right)=(1,47045880,47045881)$
is an $a b c$-hit since $1+5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3}=19^{6}$ and
$\operatorname{Rad}\left(5 \cdot 127 \cdot(2 \cdot 3 \cdot 7)^{3} \cdot 19^{6}\right)=5 \cdot 127 \cdot 2 \cdot 3 \cdot 7 \cdot 19=506730$.

More abc-hits

$$
\left(1,3^{16}-1,3^{16}\right)=(1,43046720,43046721)
$$

is an $a b c$-hit.
Proof.

$$
\begin{aligned}
3^{16}-1 & =\left(3^{8}-1\right)\left(3^{8}+1\right) \\
& =\left(3^{4}-1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =\left(3^{2}-1\right)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right) \\
& =(3-1)(3+1)\left(3^{2}+1\right)\left(3^{4}+1\right)\left(3^{8}+1\right)
\end{aligned}
$$

is divisible by 2^{6}.
Hence

$$
\operatorname{Rad}\left(\left(3^{16}-1\right) \cdot 3^{16}\right) \leq \frac{3^{16}-1}{2^{6}} \cdot 2 \cdot 3<3^{16}
$$

Infinitely many abc-hits

This argument shows that there exist infinitely many $a b c$-triples such that

$$
c>\frac{1}{6 \log 3} R \log R
$$

with $R=\operatorname{Rad}(a b c)$.

Question: Are there abc-triples for which $c>\operatorname{Rad}(a b c)^{2}$?

We do not know the answer.

Infinitely many $a b c$-hits

Proposition. There are infinitely many abc-hits.
Take $k \geq 1, a=1, c=3^{2^{k}}, b=c-1$.
Lemma. 2^{k+2} divides $3^{2^{k}}-1$.
Proof : Induction on k using

$$
3^{2^{k}}-1=\left(3^{2^{k-1}}-1\right)\left(3^{2^{k-1}}+1\right)
$$

Consequence :

$$
\operatorname{Rad}\left(\left(3^{2^{k}}-1\right) \cdot 3^{2^{k}}\right) \leq \frac{3^{2^{k}}-1}{2^{k+1}} \cdot 3<3^{2^{k}}
$$

Hence

$$
\left(1,3^{2^{k}}-1,3^{2^{k}}\right)
$$

is an $a b c$-hit.

Examples

When a, b and c are three positive relatively prime integers satisfying $a+b=c$, define

$$
\lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)}
$$

Here are the two largest known values for $\lambda(a b c)$

$a+b$	$=c$	$\lambda(a, b, c)$	authors
$2+3^{10} \cdot 109$	$=23^{5}$	$1.629912 \ldots$	É. Reyssat
$11^{2}+3^{2} 5^{6} 7^{3}$	$=2^{21} \cdot 23$	$1.625990 \ldots$	B.M. de Weger

At the date of September 11, 2008, $217 a b c$ triples with $\lambda(a, b, c) \geq 1.4$ were known.
http:///wuw.math. unicaen.fr/-nitaj/tableabc. pdf
Since August 1, 2015, 238 are known.

Eric Reyssat : $2+3^{10} \cdot 109=23^{5}$

Continued fraction

$$
2+109 \cdot 3^{10}=23^{5}
$$

Continued fraction of $109^{1 / 5}:[2 ; 1,1,4,77733, \ldots]$,
approximation : $[2 ; 1,1,4]=23 / 9$

$$
\begin{aligned}
109^{1 / 5} & =2.55555539 \ldots \\
\frac{23}{9} & =2.55555555 \ldots
\end{aligned}
$$

N. A. Carella. Note on the ABC Conjecture
http://arXiv.org/abs/math/0606221

Example of Reyssat $2+3^{10} \cdot 109=23^{5}$

$$
\begin{aligned}
& a+b=c \\
& \qquad a=2, \quad b=3^{10} \cdot 109, \quad c=23^{5}=6436343 \\
& \operatorname{Rad}(a b c)=\operatorname{Rad}\left(2 \cdot 3^{10} \cdot 109 \cdot 23^{5}\right)=2 \cdot 3 \cdot 109 \cdot 23=15042, \\
& \quad \lambda(a, b, c)=\frac{\log c}{\log \operatorname{Rad}(a b c)}=\frac{5 \log 23}{\log 15042} \simeq 1.62991 .
\end{aligned}
$$

Benne de Weger: $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$

$$
\operatorname{Rad}\left(2^{21} \cdot 3^{2} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 23\right)=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=53130
$$

$$
2^{21} \cdot 23=48234496=(53130)^{1.625990 \ldots}
$$

Explicit abc Conjecture

According to S．Laishram and T．N．Shorey，an explicit version，due to A ．Baker，of the $a b c$ Conjecture，yields

$$
c<\operatorname{Rad}(a b c)^{7 / 4}
$$

for any $a b c$－triple (a, b, c) ．

Lower bound for the radical of $a b c$

The $a b c$ Conjecture is a lower bound for the radical of the product $a b c$ ：
$a b c$ Conjecture．For any $\varepsilon>0$ ，there exist $\kappa(\varepsilon)$ such that，if a, b and c are relatively prime positive integers which satisfy $a+b=c$ ，then

$$
\operatorname{Rad}(a b c)>\kappa(\varepsilon) c^{1-\varepsilon}
$$

The $a b c$ Conjecture

Recall that for a positive integer n ，the radical of n is

$$
\operatorname{Rad}(n)=\prod_{p \mid n} p
$$

$a b c$ Conjecture．Let $\varepsilon>0$ ．Then the set of $a b c$ triples for which

$$
c>\operatorname{Rad}(a b c)^{1+\varepsilon}
$$

is finite．
Equivalent statement：For each $\varepsilon>0$ there exists $\kappa(\varepsilon)$ such that，if a, b and c in $\mathbf{Z}_{>0}$ are relatively prime and satisfy $a+b=c$ ，then

$$
c<\kappa(\varepsilon) \operatorname{Rad}(a b c)^{1+\varepsilon}
$$

The $a b c$ Conjecture of Esterlé and Masser

The $a b c$ Conjecture resulted from a discussion between J．Esterlé and D．W．Masser in the mid 1980＇s．

C.L. Stewart and Yu Kunrui

Best known non conditional result : C.L. Stewart and Yu Kunrui $(1991,2001)$

$$
\log c \leq \kappa R^{1 / 3}(\log R)^{3} .
$$

with $R=\operatorname{Rad}(a b c)$:

$$
c \leq e^{\kappa R^{1 / 3}(\log R)^{3}}
$$

25/100

Further examples

When a, b and c are three positive relatively prime integers satisfying $a+b=c$, define

$$
\varrho(a, b, c)=\frac{\log a b c}{\log \operatorname{Rad}(a b c)} .
$$

Here are the two largest known values for $\varrho(a b c)$, found by A. Nitaj.

$a+b$	$=c$	$\varrho(a, b, c)$
$13 \cdot 19^{6}+2^{30} \cdot 5$	$=3^{13} \cdot 11^{2} \cdot 31$	$4.41901 \ldots$
$2^{5} \cdot 11^{2} \cdot 19^{9}+5^{15} \cdot 37^{2} \cdot 47$	$=3^{7} \cdot 7^{11} \cdot 743$	$4.26801 \ldots$

On March 19, 2003, $47 a b c$ triples were known with $0<a<b<c, a+b=c$ and $\operatorname{gcd}(a, b)=1$ satisfying $\varrho(a, b, c)>4$.
http://www.math. unicaen.fr/~nitaj/tableszpiro.pdf
J. ©sterlé and A. Nitaj proved that the $a b c$
Conjecture implies a previous conjecture by L. Szpiro on the conductor of elliptic curves.

Given any $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that, for every elliptic curve with minimal discriminant Δ and conductor N,

$$
|\Delta|<C(\varepsilon) N^{6+\varepsilon}
$$

Abderrahmane Nitaj

عبدالرحمان نتاج

http://www.math.unicaen.fr/~nitaj/abc.html

Bart de Smit

http://www.math.leidenuniv.nl/~desmit/abc/,
www. abcathome.com

ABC@home is an educational and non-profit distributed computing project finding abc-triples related to the $A B C$ conjecture.

The $A B C$ conjecture is currently one of the greatest open problems in mathematics. If it is proven to be true, a lot of other open problems can be answered directly from it.

The $A B C$ conjecture is one of the greatest open mathematical questions, one of the holy grails of mathematics. It will teach us something about our very own numbers.

Escher and the Droste effect

http://escherdroste.math.leidenuniv.nl/

Fermat's Last Theorem $x^{n}+y^{n}=z^{n}$ for $n \geq 6$

Pierre de Fermat	Andrew Wiles
$1601-1665$	1953 -

Solution in 1994

Fermat's last Theorem for $n \geq 6$ as a consequence of the $a b c$ Conjecture

Assume $x^{n}+y^{n}=z^{n}$ with $\operatorname{gcd}(x, y, z)=1$ and $x<y$. Then $\left(x^{n}, y^{n}, z^{n}\right)$ is an abc-triple with

$$
\operatorname{Rad}\left(x^{n} y^{n} z^{n}\right) \leq x y z<z^{3} .
$$

If the explicit $a b c$ Conjecture $c<\operatorname{Rad}(a b c)^{2}$ is true, then one deduces

$$
z^{n}<z^{6},
$$

hence $n \leq 5$ (and therefore $n \leq 2$).

Perfect powers

$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$,
$128,144,169,196,216,225,243,256,289,324,343$,
$361,400,441,484,512,529,576,625,676,729,784, \ldots$

Neil J. A. Sloane's encyclopaedia
http://oeis.org/A001597

Square, cubes. . .

- A perfect power is an integer of the form a^{b} where $a \geq 1$ and $b>1$ are positive integers.
- Squares :
$1,4,9,16,25,36,49,64,81,100,121,144,169,196, \ldots$
- Cubes:
$1,8,27,64,125,216,343,512,729,1000,1331, \ldots$
- Fifth powers :

$$
1,32,243,1024,3125,7776,16807,32768, \ldots
$$

Nearly equal perfect powers

- Difference 1 : $(8,9)$
- Difference 2 : $(25,27), \ldots$
- Difference 3 : $(1,4),(125,128), \ldots$
- Difference $4:(4,8),(32,36),(121,125), \ldots$
- Difference $5:(4,9),(27,32), \ldots$

Two conjectures

Subbayya Sivasankaranarayana Pillai
Eugène Charles Catalan（1814－1894）
（1901－1950）
－Catalan＇s Conjecture：In the sequence of perfect powers，
8,9 is the only example of consecutive integers．
－Pillai＇s Conjecture ：In the sequence of perfect powers，the difference between two consecutive terms tends to infinity．

Results

P．Mihăilescu， 2002.

Catalan was right：the equation $x^{p}-y^{q}=1$ where the unknowns x, y, p and q take integer values，all ≥ 2 ， has only one solution
$(x, y, p, q)=(3,2,2,3)$ ．

Pillai＇s Conjecture ：

－Pillai＇s Conjecture ：In the sequence of perfect powers，the difference between two consecutive terms tends to infinity．
－Alternatively ：Let k be a positive integer．The equation

$$
x^{p}-y^{q}=k,
$$

where the unknowns x, y, p and q take integer values，all ≥ 2 ， has only finitely many solutions (x, y, p, q) ．

Previous work on Catalan＇s Conjecture

J．W．S．Cassels，Rob Tijdeman

$$
x^{p}<y^{q}<\exp \exp \exp \exp (730)
$$

Michel Langevin

Previous work on Catalan＇s Conjecture

Maurice Mignotte

Yuri Bilu

Not a consequence of the $a b c$ Conjecture

$$
p=3, q=2
$$

Hall＇s Conjecture（1971）：
if $x^{3} \neq y^{2}$ ，then
$\left|x^{3}-y^{2}\right| \geq c \max \left\{x^{3}, y^{2}\right\}^{1 / 6}$.

http：／／en．wikipedia．org／wiki／Marshall＿Hall，＿Jr

Pillai＇s conjecture and the $a b c$ Conjecture

There is no value of $k \geq 2$ for which one knows that Pillai＇s equation $x^{p}-y^{q}=k$ has only finitely many solutions．

Pillai＇s conjecture as a consequence of the $a b c$ Conjecture ： if $x^{p} \neq y^{q}$ ，then

$$
\left|x^{p}-y^{q}\right| \geq c(\epsilon) \max \left\{x^{p}, y^{q}\right\}^{\kappa-\epsilon}
$$

with

$$
\kappa=1-\frac{1}{p}-\frac{1}{q} .
$$

Conjecture of F．Beukers and C．L．Stewart（2010）

Let p, q be coprime integers with $p>q \geq 2$ ．Then，for any $c>0$ ，there exist infinitely many positive integers x, y such that

$$
0<\left|x^{p}-y^{q}\right|<c \max \left\{x^{p}, y^{q}\right\}^{\kappa}
$$

with $\kappa=1-\frac{1}{p}-\frac{1}{q}$ ．

Generalized Fermat's equation $x^{p}+y^{q}=z^{r}$
Consider the equation $x^{p}+y^{q}=z^{r}$ in positive integers (x, y, z, p, q, r) such that x, y, z relatively prime and p, q, r are ≥ 2.

If

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \geq 1
$$

then (p, q, r) is a permutation of one of

$$
\begin{gathered}
(2,2, k), \quad(2,3,3), \quad(2,3,4), \quad(2,3,5), \\
(2,4,4), \quad(2,3,6), \quad(3,3,3)
\end{gathered}
$$

and in each case the set of solutions (x, y, z) is known (for some of these values there are infinitely many solutions).

On the condition that x, y, z are relatively prime

$$
1+2^{3}=3^{2} \quad \Longrightarrow \quad 3^{6}+18^{3}=3^{8}
$$

Starting with $a^{p}+b^{q}=c$, multiply by $c^{p q}$ and get

$$
\left(a c^{q}\right)^{p}+\left(b c^{p}\right)^{q}=c^{p q+1}
$$

http://mathoverflow.net/

From Henri Darmon, communicated by Claude Levesque.

Frits Beukers and Don Zagier

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

10 solutions (x, y, z, p, q, r) (up to obvious symmetries) to the equation

$$
x^{p}+y^{q}=z^{r}
$$

are known.

Generalized Fermat's equation

For

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

the equation

$$
x^{p}+y^{q}=z^{r}
$$

has the following 10 solutions with x, y, z relatively prime :

$$
\begin{gathered}
1+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4}, \quad 7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2} \\
3^{5}+11^{4}=122^{2}, \quad 33^{8}+1549034^{2}=15613^{3} \\
1414^{3}+2213459^{2}=65^{7}, \quad 9262^{3}+15312283^{2}=113^{7} \\
17^{7}+76271^{3}=21063928^{2}, \quad 43^{8}+96222^{3}=30042907^{2}
\end{gathered}
$$

Conjecture of Beal, Granville andTijdeman-Zagier

The equation $x^{p}+y^{q}=z^{r}$ has no solution in positive integers (x, y, z, p, q, r) with each of p, q and r at least 3 and with x, y, z relatively prime.
http://mathoverflow.net/

Andrew Beal

Find a solution with all exponents at least 3, or prove that there is no such solution.

http://www.forbes.com/2009/04/03/
banking-andy-beal-business-wall-street-beal.html

Mauldin, R. D. - A generalization of Fermat's last theorem : the Beal Conjecture and prize problem. Notices Amer. Math. Soc. 44 №11 (1997), 1436-1437.

The prize Andrew Beal is very generously offering a prize of $\$ 5,000$ for the solution of this problem. The value of the prize will increase by $\$ 5,000$ per year up to $\$ 50,000$ until it is solved. The prize committee consists of Charles Fefferman, Ron Graham, and R. Daniel Mauldin, who will act as the chair of the committee. All proposed solutions and inquiries about the prize should be sent to Mauldin.

Beal's Prize : $1,000,000 \$$ US
An AMS-appointed committee will award this prize for either a proof of, or a counterexample to, the Beal Conjecture published in a refereed and respected mathematics publication. The prize money - currently US $\$ 1,000,000$ - is being held in trust by the AMS until it is awarded. Income from the prize fund is used to support the annual Erdős Memorial Lecture and other activities of the Society.

One of Andrew Beal's goals is to inspire young people to think about the equation, think about winning the offered prize, and in the process become more interested in the field of mathematics.

Beal's Prize

Henri Darmon, Andrew Granville

"Fermat-Catalan" Conjecture (H. Darmon and A. Granville), consequence of the $a b c$ Conjecture : the set of solutions
(x, y, z, p, q, r) to $x^{p}+y^{q}=z^{r}$ with
$(1 / p)+(1 / q)+(1 / r)<1$ is finite.

Hint: $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1 \quad$ implies $\quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq \frac{41}{42}$. 1995 (H. Darmon and A. Granville) : for fixed (p, q, r), only finitely many (x, y, z).

Infinitely many primes are not Wieferich assuming $a b c$

J.H. Silverman : if the $a b c$

Conjecture is true, given a positive integer $a>1$, there exist infinitely many primes p such that p^{2} does not divide $a^{p-1}-1$.

Fermat's Little Theorem

For $a>1$, any prime p not dividing a divides $a^{p-1}-1$.

Hence if p is an odd prime, then p divides $2^{p-1}-1$.

Wieferich primes (1909) : p^{2} divides $2^{p-1}-1$
The only known Wieferich primes below $4 \cdot 10^{12}$ are 1093 and 3511.

Consecutive integers with the same radical

Notice that

$$
75=3 \cdot 5^{2} \quad \text { and } \quad 1215=3^{5} \cdot 5
$$

hence

$$
\operatorname{Rad}(75)=\operatorname{Rad}(1215)=3 \cdot 5=15
$$

But also

$$
76=2^{2} \cdot 19 \quad \text { and } \quad 1216=2^{6} \cdot 19
$$

have the same radical

$$
\operatorname{Rad}(76)=\operatorname{Rad}(1216)=2 \cdot 19=38
$$

Consecutive integers with the same radical

For $k \geq 1$, the two numbers

$$
x=2^{k}-2=2\left(2^{k-1}-1\right)
$$

and

$$
y=\left(2^{k}-1\right)^{2}-1=2^{k+1}\left(2^{k-1}-1\right)
$$

have the same radical, and also

$$
x+1=2^{k}-1 \quad \text { and } \quad y+1=\left(2^{k}-1\right)^{2}
$$

have the same radical.

Erdős - Woods Conjecture

http://school.maths.uwa.edu.au/~woods/
There exists an absolute constant k such that, if x and y are positive integers satisfying

$$
\operatorname{Rad}(x+i)=\operatorname{Rad}(y+i)
$$

for $i=0,1, \ldots, k-1$, then $x=y$. \square

Consecutive integers with the same radical

Are there further examples of $x \neq y$ with

$$
\operatorname{Rad}(x)=\operatorname{Rad}(y) \quad \text { and } \quad \operatorname{Rad}(x+1)=\operatorname{Rad}(y+1) ?
$$

Is-it possible to find two distinct integers x, y such that

$$
\begin{aligned}
\operatorname{Rad}(x) & =\operatorname{Rad}(y) \\
\operatorname{Rad}(x+1) & =\operatorname{Rad}(y+1)
\end{aligned}
$$

and

$$
\operatorname{Rad}(x+2)=\operatorname{Rad}(y+2) ?
$$

Erdős - Woods as a consequence of $a b c$

$$
\begin{aligned}
& \text { M. Langevin: The } a b c \\
& \text { Conjecture implies that there } \\
& \text { exists an absolute constant } k \\
& \text { such that, if } x \text { and } y \text { are } \\
& \text { positive integers satisfying } \\
& \operatorname{Rad}(x+i)=\operatorname{Rad}(y+i) \\
& \text { for } i=0,1, \ldots, k-1 \text {, then } \\
& x=y \text {. }
\end{aligned}
$$

Erdős Conjecture on $2^{n}-1$

In 1965, P. Erdős conjectured that the greatest prime factor $P\left(2^{n}-1\right)$ satisfies

$$
\frac{P\left(2^{n}-1\right)}{n} \rightarrow \infty \quad \text { when } \quad n \rightarrow \infty
$$

In 2002, R. Murty and S. Wong proved that this is a consequence of the $a b c$ Conjecture.
In 2012, C.L. Stewart proved Erdős Conjecture (in a wider context of Lucas and Lehmer sequences) :

$$
P\left(2^{n}-1\right)>n \exp (\log n / 104 \log \log n)
$$

Conjectures by Machiel van Frankenhuijsen, Olivier

 Robert, Cam Stewart and Gérald TenenbaumLet $\varepsilon>0$. There exists $\kappa(\varepsilon)>0$ such that for any $a b c$ triple with $R=\operatorname{Rad}(a b c)>8$,

$$
c<\kappa(\varepsilon) R \exp \left((4 \sqrt{3}+\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Further, there exist infinitely many abc-triples for which

$$
c>R \exp \left((4 \sqrt{3}-\varepsilon)\left(\frac{\log R}{\log \log R}\right)^{1 / 2}\right)
$$

Is $a b c$ Conjecture optimal ?

Let $\delta>0$. In 1986, C.L. Stewart and R. Tijdeman proved that there are infinitely many $a b c$-triples for which

$$
c>R \exp \left((4-\delta) \frac{(\log R)^{1 / 2}}{\log \log R}\right) .
$$

Better than $c>R \log R$.

Machiel van Frankenhuijsen, Olivier Robert, Cam Stewart and Gérald Tenenbaum

Heuristic assumption

Whenever a and b are coprime positive integers, $R(a+b)$ is independent of $R(a)$ and $R(b)$.
O. Robert, C.L. Stewart and G. Tenenbaum, A refinement of the abc conjecture, Bull. London Math. Soc., Bull. London Math. Soc. (2014) 46 (6) : 1156-1166.
http://blms.oxfordjournals.org/content/46/6/1156.full.pdf
http://iecl.univ-lorraine.fr/-Gerald.Tenenbaum/PUBLIC/Prepublications_et_publications/abc.pdf

Waring's functions $g(k)$ and $G(k)$

- Waring's function g is defined as follows: For any integer $k \geq 2, g(k)$ is the least positive integer s such that any positive integer N can be written $x_{1}^{k}+\cdots+x_{s}^{k}$.
- Waring's function G is defined as follows : For any integer $k \geq 2, G(k)$ is the least positive integer such that any sufficiently large positive integer N can be written $x_{1}^{k}+\cdots+x_{s}^{k}$.

Waring's Problem

In 1770, a few months before J.L. Lagrange solved a conjecture of Bachet (1621) and Fermat (1640) by proving that every positive integer is the sum of at most four squares of integers,
E. Waring wrote :
"Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5,
6, 7, 8, vel novem cubis compositus, est etiam quadrato-quadratus vel e duobus, tribus, \&, usque ad novemdecim compositus, \& sic deinceps"
"Every integer is a cube or the sum of two, three, . . .nine cubes; every integer is also the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree."

[^1]$g(k) \geq I(k)$
For each integer $k \geq 2$, define $I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$. It is easy to show that $g(k) \geq I(k)(J$. A. Euler, son of Leonhard Euler). Indeed, write
$$
3^{k}=2^{k} q+r \quad \text { with } \quad 0<r<2^{k}, \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor
$$
and consider the integer
$$
N=2^{k} q-1=(q-1) 2^{k}+\left(2^{k}-1\right) 1^{k} .
$$

Since $N<3^{k}$, writing N as a sum of k-th powers can involve no term 3^{k}, and since $N<2^{k} q$, it involves at most $(q-1)$ terms 2^{k}, all others being 1^{k}; hence it requires a total number of at least $(q-1)+\left(2^{k}-1\right)=I(k)$ terms.

The ideal Waring's Theorem $g(k)=I(k)$

Conjecture (C.A. Bretschneider, 1853) : $g(k)=I(k)$ for any $k \geq 2$, with

$$
I(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2
$$

We know that the remainder $r=3^{k}-2^{k} q$ satisfies $r<2^{k}$. A slight improvement of this upper bound would yield the desired result. L.E. Dickson and S.S. Pillai proved independently in 1936 that $g(k)=I(k)$, provided that $r=3^{k}-2^{k} q$ satisfies

$$
r \leq 2^{k}-q-2 \quad \text { with } \quad q=\left\lfloor(3 / 2)^{k}\right\rfloor .
$$

The condition $r \leq 2^{k}-q-2$ is satisfied for $4 \leq k \leq 471600000$.

Mahler's contribution

- The estimate

Hence the ideal Waring's Theorem

$$
g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2
$$

holds for all sufficiently large k.

$n=x_{1}^{4}+\cdots+x_{19}^{4}: g(4)=19$
Any positive integer is the sum of at most 19 biquadrates
R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).

François Dress, R. Balasubramanian, Jean-Marc Deshouillers

Waring's Problem and the $a b c$ Conjecture

S. David : the estimate

$$
r \leq 2^{k}-q-2
$$

for sufficiently large k follows from the abc Conjecture.
S. Laishram : the ideal Waring's Theorem $g(k)=2^{k}+\left\lfloor(3 / 2)^{k}\right\rfloor-2$ follows from the explicit $a b c$ Conjecture.

Conjecture of Alan Baker (1996)

Let (a, b, c) be an $a b c$-triple and let $\epsilon>0$. Then

$$
c \leq \kappa\left(\epsilon^{-\omega} R\right)^{1+\epsilon}
$$

where κ is an absolute constant, $R=\operatorname{Rad}(a b c)$ and $\omega=\omega(a b c)$ is the number of distinct prime factors of $a b c$.

Remark of Andrew Granville : the minimum of the function on the right hand side over $\epsilon>0$ occurs essentially with $\epsilon=\omega / \log R$. This yields a slightly sharper form of the conjecture :

$$
c \leq \kappa R \frac{(\log R)^{\omega}}{\omega!}
$$

Shanta Laishram and Tarlok Shorey

The Nagell-Ljunggren equation is the equation

$$
y^{q}=\frac{x^{n}-1}{x-1}
$$

in integers $x>1, y>1$,

$$
n>2, q>1 .
$$

This means that in basis x, all the digits of the perfect power y^{q} are 1 .
If the explicit $a b c$-conjecture of Baker is true, then the only solutions are

$$
11^{2}=\frac{3^{5}-1}{3-1}, \quad 20^{2}=\frac{7^{4}-1}{7-1}, \quad 7^{3}=\frac{18^{3}-1}{18-1} .
$$

Let (a, b, c) be an $a b c$-triple. Then

$$
c \leq \frac{6}{5} R \frac{(\log R)^{\omega}}{\omega!}
$$

with $R=\operatorname{Rad}(a b c)$ the
radical of $a b c$ and $\omega=\omega(a b c)$ the number of distinct prime factors of $a b c$.

The $a b c$ conjecture for number fields

Andrea Surroca
Méthodes de transcendance et géométrie diophantienne,
A. Surroca, Thèse Université de Paris 6, 2003.

The $a b c$ conjecture for number fields (continued)

David Masser
http://www.math.harvard.edu/~elkies/

Mordell's Conjecture (Faltings's Theorem)

Using an extension of the $a b c$ Conjecture for number fields, N. Elkies deduces Faltings's Theorem on the finiteness of the set of rational points on an algebraic curve of genus ≥ 2.
L.J. Mordell (1922)
G. Faltings (1984)
N. Elkies (1991)

$a b c$ Conjecture for number fields (continued)

Jerzy Browkin
1934-2015

Kálmán Győry
http://www.math.klte.hu/
algebra/gyorya.htm

Thue-Siegel-Roth Theorem (Bombieri)

Using the $a b c$ Conjecture for number fields, E. Bombieri (1994) deduces a refinement of the Thue-Siegel-Roth

Theorem on the rational approximation of algebraic numbers

$$
\left|\alpha-\frac{p}{q}\right|>\frac{1}{q^{2+\varepsilon}}
$$

where he replaces ε by

$$
\kappa(\log q)^{-1 / 2}(\log \log q)^{-1}
$$

where κ depends only on the algebraic number α.

Siegel's zeroes (A. Granville and H.M. Stark)

The uniform $a b c$ Conjecture for number fields implies a lower bound for the class number of an imaginary quadratic number field, and K. Mahler has shown that this implies that the associated L-function has no Siegel zero.

$a b c$ and meromorphic function fields

Nevanlinna value distribution theory.
Recent work of Hu, Pei-Chu and Yang, Chung-Chun.

Further consequences of the $a b c$ Conjecture

- Erdős's Conjecture on consecutive powerful numbers.
- Dressler's Conjecture : between two positive integers having
the same prime factors, there is always a prime.
- Squarefree and powerfree values of polynomials.
- Lang's conjectures : lower bounds for heights, number of integral points on elliptic curves.
- Bounds for the order of the Tate-Shafarevich group.
- Vojta's Conjecture for curves.
- Greenberg's Conjecture on Iwasawa invariants λ and μ in cyclotomic extensions.
- Exponents of class groups of quadratic fields.
- Fundamental units in quadratic and biquadratic fields.
$a b c$ and Vojta's height Conjecture

Paul Vojta

Vojta's Conjecture on algebraic points of bounded degree on a smooth complete variety over a global field of characteristic zero implies the $a b c$ Conjecture.

$A B C$ Theorem for polynomials

Let K be an algebraically closed field. The radical of a monic polynomial

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

with α_{i} pairwise distinct is defined as

$$
\operatorname{Rad}(P)(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in K[X]
$$

The radical of a polynomial as a gcd

The common zeroes of

$$
P(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)^{a_{i}} \in K[X]
$$

and P^{\prime} are the α_{i} with $a_{i} \geq 2$. They are zeroes of P^{\prime} with multiplicity $a_{i}-1$. Hence

$$
\operatorname{Rad}(P)=\frac{P}{\operatorname{gcd}\left(P, P^{\prime}\right)}
$$

$A B C$ Theorem for polynomials

$A B C$ Theorem (A. Hurwitz,
W.W. Stothers, R. Mason).

Let A, B, C be three relatively prime polynomials in $K[X]$ with $A+B=C$ and let $R=\operatorname{Rad}(A B C)$. Then

$$
\begin{gathered}
\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(C)\} \\
<\operatorname{deg}(R)
\end{gathered}
$$

Adolf Hurwitz (1859-1919)

This result can be compared with the $a b c$ Conjecture, where the degree replaces the logarithm.

Proof of the $A B C$ Theorem for polynomials

Now suppose $A+B=C$ with A, B, C relatively prime.
Notice that

$$
\operatorname{Rad}(A B C)=\operatorname{Rad}(A) \operatorname{Rad}(B) \operatorname{Rad}(C)
$$

We may suppose A, B, C to be monic and, say, $\operatorname{deg}(A) \leq \operatorname{deg}(B) \leq \operatorname{deg}(C)$.

Write

$$
A+B=C, \quad A^{\prime}+B^{\prime}=C^{\prime}
$$

and

$$
A B^{\prime}-A^{\prime} B=A C^{\prime}-A^{\prime} C .
$$

Proof of the $A B C$ Theorem for polynomials
Recall $\operatorname{gcd}(A, B, C)=1$ ．Since $\operatorname{gcd}\left(C, C^{\prime}\right)$ divides $A C^{\prime}-A^{\prime} C=A B^{\prime}-A^{\prime} B$ ，it divides also

$$
\frac{A B^{\prime}-A^{\prime} B}{\operatorname{gcd}\left(A, A^{\prime}\right) \operatorname{gcd}\left(B^{\prime} B^{\prime}\right)}
$$

which is a polynomial of degree

$$
<\operatorname{deg}(\operatorname{Rad}(A))+\operatorname{deg}(\operatorname{Rad}(B))=\operatorname{deg}(\operatorname{Rad}(A B)) .
$$

Hence

$$
\operatorname{deg}\left(\operatorname{gcd}\left(C, C^{\prime}\right)\right)<\operatorname{deg}(\operatorname{Rad}(A B))
$$

and

$$
\operatorname{deg}(C)<\operatorname{deg}(\operatorname{Rad}(C))+\operatorname{deg}(\operatorname{Rad}(A B))=\operatorname{deg}(\operatorname{Rad}(A B C)) .
$$

http：／／www．kurims．kyoto－u．ac．jp／ ～motizuki／top－english．html

1 Conese aver

Thoustra
To Prospoctive

Shinichi Mochizuki

INTER－UNIVERSAL
TEICHMÜLLER THEORY
IV ：
LOG－VOLUME COMPUTATIONS AND
SET－THEORETIC
FOUNDATIONS
by
Shinichi Mochizuki

Papers of Shinichi Mochizuki

－General Arithmetic Geometry
－Intrinsic Hodge Theory
－p－adic Teichmüller Theory
－Anabelian Geometry，the Geometry of Categories
－The Hodge－Arakelov Theory of Elliptic Curves
－Inter－universal Teichmüller Theory

Shinichi Mochizuki

[1] Inter-universal Teichmüller Theory I : Construction of Hodge Theaters. PDF
[2] Inter-universal Teichmüller Theory II: Hodge-Arakelov-theoretic Evaluation. PDF
[3] Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice. PDF
[4] Inter-universal Teichmüller Theory IV : Log-volume Computations and Set-theoretic Foundations. PDF
http://www.kurims.kyoto-u.ac.jp/
~motizuki/top-english.html

```
[1] interuriversal Techmuler Thoory t Construction of Hodge Thesters. PDE NEW II [2013.03.2E]
```



```
[4 interurivessal Teichmuler Thosry IN. Log-vclume Camputations and Set-thearetc Foundstians, EDF
    NEW II (2013.03.20)
(51 A Panormic Overview of intenariveral Teictmuler Theary PDENFW II 32013-03-26)
```

In August 2012, Shinichi
Mochizuki released a series of four preprints containing a serious claim to a proof of the $a b c$ Conjecture.

When an error in one of the articles was pointed out by Vesselin Dimitrov and Akshay Venkatesh in October 2012, Mochizuki posted a comment on his website acknowledging the mistake, stating that it would not affect the result, and promising a corrected version in the near future. He proceeded to post a series of corrected papers of which the latest dated November 24, 2014.

Workshop on IUT Theory of Shinichi Mochizuki, December 7-11 2015

CMI Workshop supported by Clay Math Institute and Symmetries and Correspondences

Organisers : Ivan Fesenko, Minhyong Kim, Kobi Kremnitzer Finding the speakers and the program of the workshop: Ivan Fesenko

CMI Workshop supported by Clay Math Institute

 and Symmetries and CorrespondencesThe work（currently being refereed）of SHINICHI MOCHIZUKI on inter－universal Teichmüller theory（also known as arithmetic deformation theory）and its application to famous conjectures in diophantine geometry became publicly available in August 2012．This theory，developed over 20 years，introduces a vast collection of novel ideas，methods and objects．Aspects of the theory extend arithmetic geometry to a non－scheme－theoretic setting and，more generally，have the potential to open new fundamental areas of mathematics．
The workshop aims to present and analyse key principles， concepts，objects and proofs of the theory of Mochizuki and study its relations with existing theories in different areas，to help to increase the number of experts in the theory of Mochizuki and stimulate its further applications．

Participants

Speakers

Shinichi Mochizuki will answer questions during skype sessions of the workshop．He also responds directly to emailed questions．

Invited speakers：Oren Ben－Bassat，Weronika Czerniawska， Yuichiro Hoshi，Ariyan Javanpeykar，Kiran Kedlaya，Robert Kucharczyk，Ulf Kühn，Lars Kuehne，Emmanuel Lepage， Chung Pang Mok，Jakob Stix，Tamás Szamuely，Fucheng Tan， Go Yamashita，Shou－Wu Zhang．


```
Monkma OuNk non
```

```
Monkma OuNk non
```


On the abc Conjecture and some of its consequences

by
Michel Waldschmidt
Université P ．et M ．Curie（Paris VI）
http：／／www．imj－prg．fr／～michel．waldschmidt／

[^0]: http：／／www．kurims．kyoto－u．ac．jp／～motizuki／top－english．html

[^1]: 66/100

