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Preface

A transcendental number is a complex number which is not a root of a polynomial
f ∈ Z[X ] \ {0}. Liouville constructed the first examples of transcendental numbers
in 1844, Hermite proved the transcendence of e in 1873, Lindemann that of π in
1882. Siegel, and then Schneider, worked with elliptic curves and abelian varieties.
After a suggestion of Cartier, Lang worked with commutative algebraic groups; this
led to a strong development of the subject in connection with diophantine geometry,
including Wüstholz’s Analytic Subgroup Theorem and the proof by Masser and
Wüstholz of Faltings’ Isogeny Theorem.

In the meantime, Gel’fond developed his method: after his solution of Hilbert’s
seventh problem on the transcendence of αβ , he established a number of estimates
from below for |αβ1 − α2| and |β1 logα1 − logα2|, where α1, α2 and β are
algebraic numbers. He deduced many consequences of such estimates for diophantine
equations. This was the starting point of Baker’s work on measures of linear
independence of logarithms of algebraic numbers. One of the most important features
of transcendental methods is that they yield quantitative estimates related to algebraic
numbers. This is one of the main reasons for which “there are more mathematicians
who deal with the transcendency of the special values of analytic functions than those
who prove the algebraicity”1. A first example is Baker’s method which provides lower
bounds for nonvanishing numbers of the form

∣∣αb1
1 · · ·αbm

m − 1
∣∣,

when α1, . . . , αm are algebraic numbers and b1, . . . , bm rational integers. Such
estimates, which are of central interest, have a wide range of applications. A second
important example is Schmidt’s Subspace Theorem, which extends the Thue-Siegel-
Roth Theorem to simultaneous diophantine approximation; its range of application
is wider than Baker’s Theorem, but, in contrast with Baker, Schmidt’s result is so far
not effective.

This subject is growing so fast that it is hard to give a report on the state of the art
which covers all aspects. Our concern here is with commutative linear algebraic
groups. A connected and commutative algebraic subgroup of GLn splits over a
finite extension; over an algebraically closed field it is a product of additive and
multiplicative groups. Hence the algebraic groups we consider are Gd0

a ×Gd1
m , with

1 G. Shimura, Duke Math. J. 44, No 2 (1977), p. 365.
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d0 ≥ 0 and d1 ≥ 0. In terms of analytic functions, our main object of study is the
usual exponential function. We discuss the qualitative as well as the quantitative
aspects of the subject. The latter is not restricted to measures of linear independence
of logarithms of algebraic numbers, but includes also simultaneous diophantine
approximation results leading to statements of algebraic independence for values
of the exponential function, in either one or several variables.

We do not consider elliptic curves, abelian varieties, and more generally nonlinear
algebraic groups; we do not consider either elliptic functions, Weierstraß zeta
functions, theta functions nor abelian functions. A lot of results in this book have
already been extended to the more general set-up of commutative algebraic groups,
but a few items are specific to the linear ones. An example of a feature particular
to linear algebraic groups is the Fourier-Borel duality, which relates Gel’fond’s
method to Schneider’s. Moreover, restricting ourselves to the linear case enables
us to compute more easily all constants.

Among the recent developments of the subject is the introduction, by M. Laurent,
of interpolation determinants. They replace the constructions of auxiliary functions.
Instead of solving some system of equations, we only consider the determinant of
a matrix corresponding to this linear system. There is no need any more to appeal
to Dirichlet’s box principle (or pigeonhole principle, alias Thue-Siegel’s Lemma).
Here, we use this approach in most proofs.

The above-mentioned matrix is associated to the linear system with respect to
given bases. A further step has been performed by J-B. Bost, using Arakelov theory,
where he considers directly the related linear map without selecting bases. This
approach will certainly be more efficient for nonlinear algebraic groups, and we
mention it in passing, but we do not follow it here.

A central result in this book is the Linear Subgroup Theorem, which occurs in
two forms. The qualitative one (Chapter 11) is a lower bound for the dimension n
of the C-vector subspace of Cd spanned by points η whose coordinates are either
algebraic numbers, or else logarithms of algebraic numbers. The images of such
points η under the exponential map of some commutative linear algebraic group are
algebraic over the field of algebraic numbers. Hence the Linear Subgroup Theorem
deals with n-parameter subgroups of linear algebraic groups, and involves functions
of n complex variables.

The quantitative version of the Linear Subgroup Theorem concerns the simulta-
neous approximation of such pointsη. Linear combinations of logarithms of algebraic
numbers arise in several ways as special cases of this general setup.

The main conjecture is that linearly independent logarithms of algebraic numbers
should be algebraically independent. As a matter of fact, so far all known partial
results on this topic are consequences of the Linear Subgroup Theorem.

There is a strong contrast between the simplicity of the conjectures, both for
qualitative and quantitative statements, and currently known results. A comparison
between the conjecture on algebraic independence of logarithms (Conjecture 1.15)
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on one hand, the Linear Subgroup Theorem of Chapter 11 (Theorem 11.5) on the
other, illustrates this point for the qualitative aspect. For the quantitative one, an
example of this contrast is illustrated by comparing the known measures of linear
independence of logarithms (Theorem 9.1) with the conjectural ones (Conjectures
1.11 and 14.25).

We very much expect that, once the theory is more highly developed, the results
will be simpler to state, but we have far from reached this stage at present and the
statements of the results of the last chapters are not as simple as we would wish. The
quantitative version of the Linear Subgroup Theorem in Chap. 13 (Theorem 13.1) is
by no means a simple statement; on the other hand it includes a lot of diophantine
estimates, as shown in Chap. 14. The large amount of corollaries it contains may
be an excuse for its lack of simplicity, but it remains a challenge to get simpler
statements which are as powerful.

The first chapters may serve as an introduction to the subject of transcendental
numbers. For instance the first three chapters do not require much preliminary knowl-
edge and include already complete proofs of a number of classical transcendence
results.

Three proofs of Baker’s transcendence theorem on linear independence of loga-
rithms of algebraic numbers are given: in Chap. 4 we follow an argument of Bertrand
and Masser who derived Baker’s Theorem from the Schneider-Lang criterion con-
cerning algebraic values of meromorphic functions on Cartesian products. In Chap. 6
(and Chap. 9 for the nonhomogeneous case) we extend Schneider’s method, and in
Chap. 10 we explain Baker’s argument which extends Gel’fond’s solution of Hilbert’s
seventh problem. We give also several measures of linear independence of logarithms
of algebraic numbers: a comparatively simple proof is given in Chap. 7, and refined
estimates are proved in Chap. 9 and 10.

We do not consider applications of such estimates to diophantine equations,
but we give further examples of diophantine approximation results (in Chap. 14)
together with consequences (in Chap. 15). This last chapter deals with algebraic
independence; it does not cover the subject in an exhaustive way; a more complete
introduction to this topic is [NeP 2000], which includes transcendence criteria with
proofs.

Several results presented here are new, and the full details have not appeared in
print before.

Our emphasis is not only on the results, but also on the methods; this is why we
give several proofs of the same results. In the same spirit, sometimes we also propose
several choices of the parameters which occur in the transcendence arguments. It turns
out that the freedom in this choice is closely related to the quality of the quantitative
refinements: if the proof of the qualitative transcendence result can be achieved with
a broad range of choice for the auxiliary parameters, then one should expect a sharp
diophantine estimate.

Another goal is to describe some of the main tools which are available. We make
no attempt to be complete. In [FNe 1998] the reader will find some items which are
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not discussed here. An important example of a missing item is Nesterenko’s proof
[Ne 1996] of the algebraic independence of π and eπ .

Writing this book took more than 10 years. The first written parts were notes
of lectures given at the Institut Henri Poincaré in the 80’s for several courses of the
DEA (Diplôme d’Études Approfondies) of Mathématiques at the Université P. et
M. Curie (Paris VI). In 1992, I was invited by R. Balasubramanian to give a series
of lectures at the MathScience Institute of Madras, and I took this opportunity to
write down a preliminary version of some of the chapters below (more or less the
seven first chapters). These notes were published in [W 1992]. A chapter on zero
estimates by D. Roy was included, as well as an appendix by M. Laurent [Lau
1994]. The present book grew out of these Lecture Notes; the material of the last
eight chapters includes a multiplicity estimate (again written by D. Roy), the Linear
Subgroup Theorem (both in qualitative and quantitative form), as well as results of
simultaneous approximation and algebraic independence. Some of these results are
due to D. Roy (like the Strong Six Exponentials Theorem of § 11.6), others (mainly
in the last two chapters) have been obtained in joint papers with D. Roy.

The influence of Damien Roy on this book is important; not only did he write
two chapters, but he also contributed to the proof of many results quoted in this book,
and furthermore his many comments have been very influential.

Many other colleagues and friends also sent me comments, remarks and sugges-
tions along the many years which have been needed to complete this book. Even
though I do not mention them all, I am deeply thankful to them.

Special thanks are due to Guy Diaz who sent me a long list of comments on a
preliminary version of this book. I wish also to express my gratitude to Francesco
Amoroso, Yann Bugeaud, François Gramain, and Paul Voutier.

The help of Sinnou David during the last stage of the TEXnical preparation of
this volume is also gratefully acknowledged.

We consider mainly the Archimedean situation; the same topic has been investi-
gated in the ultrametric domain also, and this would have deserved consideration also.
In fact my main motivation to study this subject arose from Leopoldt’s Conjecture on
the p-adic rank of the units of algebraic number fields (solved by Ax-Baker-Brumer
for abelian extension). I wish to take this opportunity to thank Jean Fresnel, who
suggested this topic to me thirty years ago, and helped me take my first steps in
mathematical research.

Paris, January 2000

Michel Waldschmidt.
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Prerequisites

In this book, an algebraic number is a complex number which is algebraic over the
field of rational numbers. Given a (commutative) ring A and a subring k which is
a field, an element θ in A is algebraic over k if there exists a nonzero polynomial
P ∈ k[X ] such that P(θ ) = 0. An element of A is transcendental over k if it is not
algebraic over k. Hence a transcendental number is a complex number which is not
algebraic.

We denote by N = {0, 1, 2, . . .} the set of nonnegative integers, by Z the ring of
rational integers and by Q, R, C the fields of rational numbers, real numbers and
complex numbers respectively.

The set of algebraic numbers is a subfield of C: it is the algebraic closure of Q
into C (see [L 1993], Chap. V § 2). This field will be denoted by Q. We shall need
a few properties of algebraic numbers and number fields which will be recalled in
Chap. 3.

Given elements θ1, . . . , θn in our ring A, we say that they are algebraically
dependent over k if there exists a nonzero polynomial P ∈ k[X1, . . . , Xn] such
that P(θ1, . . . , θn) = 0. Otherwise they are algebraically independent over k. The
transcendence degree of A over k is the maximal integer n such that there exist n
elements in A which are algebraically independent over k. We denote it by trdegk(A).
For k1 ⊂ k2 ⊂ k3, we have (see for instance [L 1993], Chap. VIII)

trdegk1
(k3) = trdegk1

(k2) + trdegk2
(k3).

Any element of k2 is algebraic over k1 if and only if

trdegk1
(k2) = 0;

in this case we say that k2 is an algebraic extension of k1. As a consequence, for
complex numbers, the concept of algebraic independence over Q or over Q is the
same: we shall just speak of algebraically dependent or independent numbers.

We shall use the basic notions of linear algebra. The dimension of a k-vector
space V will be denoted by dimk(V ), the rank of a Z-module M by rankZ(M) or
simply rank(M). An abelian group is nothing else than aZ-module; when it is written
multiplicatively, one speaks of multiplicatively dependent or independent elements
(which means Z-linearly dependent or independent elements in the abelian group).
For instance if k is a field and γ1, . . . , γm elements in k× = k \ {0}, then γ1, . . . , γm
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are multiplicatively dependent if and only if there exists b = (b1, . . . , bm) ∈ Zm \ {0}
such that the number

γ b = γ b1
1 · · · γ bm

m

is 1.
The rank of a matrix M will be denoted rank(M): this is the largest integer r for

which there exists a regular r × r submatrix of M.
For a ring B, a subring A and a subset E of B, we denote by A[E] the subring

of B generated by A ∪ E , namely the intersection of all subrings of B containing
A and E . For a field K , a subfield k and a subset E of K , we denote by k(E) the
subfield of K generated by k and E . When E = {γ1, . . . , γm} is finite, we write
simply A[γ1, . . . , γm] and k(γ1, . . . , γm). In particular Q(γ ) (resp. Q(γ )) denotes
the field generated by an element γ ∈ C (resp. by a tuple γ = (γ1, . . . , γm) ∈ Cm).

For U and V vector spaces over a field k, Homk(U, V ) will denote the space of
k-linear mappings U → V .

The basic facts from algebraic geometry and commutative algebra which are
needed are recalled in §§ 5.2 and 8.2 respectively.

A useful tool is Dirichlet’s box principle, also called Dirichlet’s pigeonhole
principle (Schubfachprinzip). One of the many equivalent statements is:

• A mapping E → F between two finite sets E and F with

Card(E) > Card(F)

is not injective.

An important application of it is Thue-Siegel’s Lemma (see § 4.5). We shall not
need the more sophisticated version of Thue-Siegel’s Lemma in [BoVa 1983], based
on an idea of Mahler using geometry of numbers, but Minkowski’s Theorem (see
for instance [Sc 1991], Chap. I) will be used in § 7.8 for the proof of Lemma 7.19.

The notion of algebraic independence will be needed not only for numbers, but
also for functions. In a single variable we take for k the fieldC(z) of rational functions
and for A either the ring of analytic (i.e. holomorphic) functions over a domain (=
connected open subset) D of C, or the field of meromorphic functions over D. A
function f ∈ A is called transcendental if it is transcendental over C(z), algebraic
otherwise. An entire function is a function which is analytic in the whole of C. It is
easy to check that an entire function is algebraic if and only if it is a polynomial, and
that a meromorphic function in C is algebraic if and only if it is a rational function,
i.e. an element of C(z).

According to the general definition, analytic functions f1, . . . , fd of n variables
are algebraically independent over C if and only if, for any nonzero polynomial
P ∈ C[X1, . . . , Xd ], the function P( f1, . . . , fd ) is not the zero function. Also
f1, . . . , fd are algebraically independent over C(z1, . . . , zn) if and only if, for any
nonzero polynomial P in the ring of polynomialsC[X1, . . . , Xn, Y1, . . . , Yd ] in n +d
variables, the function

P
(
z1, . . . , zn, f1(z), . . . , fd (z)

)
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is not the zero function.
A function f is called transcendental if the n + 1 functions z1, . . . , zn , f (z)

are algebraically independent: this means that f is transcendental over the field
C(z1, . . . , zn).

The exponential function

1 + z +
z2

2
+

z3

6
+ · · · =

∞∑

n=0

zn

n!

is denoted either by ez or by exp(z), and

e = exp(1) = 2.71828182 . . .

is the natural basis of Napierian logarithms. For α ∈ C×, a determination of the
logarithm of α is any complex number λ such that exp(λ) = α. For a given α ∈ Q×,
the set of λ inCwith α = eλ is a whole class of the additive groupCmodulo 2iπZ. In
order to avoid confusion, we shall not use too often the notation logα which depends
on the choice of the branch of the logarithmic function. Nevertheless we remark that
the Q-vector space of logarithms of nonzero complex algebraic numbers

L = exp−1(Q×) =
{
λ ∈ C ; eλ ∈ Q×}

is the set of all numbers of the form logα where α runs over the set of nonzero
complex algebraic numbers and where we take all possible values for log:

L = {logα;α ∈ Q×}.
When a determination λ of the logarithm of α is chosen, for β ∈ C we write αβ in
place of exp(βλ).

We shall say that a complex function f of one variable is analytic in a closed
disc {z ∈ C ; |z| ≤ R} of C if f is continuous on this disc and analytic in the open
disc |z| < R. In this case we denote by | f |R the number sup{| f (z)| ; |z| ≤ R}. By
maximum modulus principle we also have

| f |R = sup{| f (z)| ; |z| = R}.
We shall also work with functions of several variables. For z = (z1, . . . , zn) ∈ Cn

(and therefore also for z in Nn or in Zn), we set

|z| = max
1≤i≤n

|zi | and ‖z‖ = |z1| + · · · + |zn|.

If, further, σ = (σ1, . . . , σn) ∈ Nn , then we define

zσ = zσ1
1 · · · zσn

n , σ ! = σ1! · · · σn!

(with 0! = 1) and
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Dσ =

(
∂

∂z1

)σ1

· · ·
(
∂

∂zn

)σn

·

For z and z′ in Cn , let
zz′ = z1z′1 + · · · + znz′n

denote the standard scalar product.
To each w = (w1, . . . , wn) ∈ Cn we attach a derivative operator of order 1:

Dw = w1
∂

∂z1
+ · · · + wn

∂

∂zn

on the ring of entire functions in Cn . More generally, for S a positive integer, a
derivative operator D of order S is a linear combination, with complex coefficients,
of (

∂

∂z1

)σ1

· · ·
(
∂

∂zn

)σn

,

where σ runs over the set of elements in Nn satisfying ‖σ‖ = S. This amounts to say
that D is a linear combination, with complex coefficients, of products Dw1

· · ·DwS
,

where (w1, . . . , wS) ranges over a finite subset of (Cn)S .
Most often, tuples of numbers are underlined, like w = (w1, . . . , wd ) ∈ Cd ; for

w1, . . . , w`0
in Cd we write w = (w1, . . . , w`0

) ∈ (Cd )`0 . For σ ∈ N`0 , τ ∈ Nd0 ,
t ∈ Zd1 and z ∈ Cd with d = d0 + d1, the function

D
σ
w

(
zτ et z

)
= Dσ1

w1
· · ·Dσ`0

w
`0

(
zτ1

1 · · · z
τd0
d0

et1zd0+1+···+td1 zd

)

is an exponential polynomial for which explicit expressions will be given (see
Lemmas 4.9 and 13.6).

For a complex function f which is continuous in a polydisc
{
z ∈ Cn ; |z| ≤ R

}

and analytic inside, we have again

sup{| f (z)| ; |z| ≤ R} = sup{| f (z)| ; |z| = R};
this number will be denoted | f |R .

Our main tool will be Schwarz’ Lemma, which is a sharp upper bound for the
modulus of a complex function, taking into account its zeroes. See § 2.2.3 for one
variable, § 6.2.1 for one point and several variables, § 4.3 for Cartesian products.

We shall use only very simple properties of analytic functions in Cn (see for
instance [LelGru 1986], Chap. I, § 1). Cauchy’s inequalities will occur in §§ 4.6 and
4.7: an entire function f in Cn , whose Taylor expansion at the origin is

∑

σ∈Nn

aσ zσ with aσ =
1

σ !
Dσ f (0)

satisfies, for all r > 0:
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|Dσ f (0)| ≤ σ !

r‖σ‖
| f |r .

One deduces, for ζ ∈ Cn and r ≥ 1 + |ζ |,

|Dσ f (ζ )| ≤ σ !

(r − |ζ |)‖σ‖ | f |r ≤ σ !| f |r .

In § 4.3 we shall also use the fact that a continuous mapping f :Cn → C is analytic
if and only if it is analytic in each z j when the other variables are fixed. This is a
consequence of Cauchy’s integral formula for polydiscs; see for instance [Hö 1973],
Th. 2.2.1.
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Notation

Some notation has already been fixed in the prerequisites section. We complete it
with the following ones which will be used throughout the book.

We shall use Kronecker’s diagonal symbol:

δi j =

{
1 if i = j ,
0 if i 6= j .

For x ∈ R, we set
log+ x = log max{e, x}

and we denote by [x] ∈ N the integral part of x , with 0 ≤ x − [x] < 1.
The binomial coefficient

(
n

k

)
=

n!

k!(n − k)!

is 0 unless 0 ≤ k ≤ n. More generally, an empty sum is equal to 0, while the value
of an empty product is 1.

The number of elements in a finite set E will be denoted either by Card(E) or
else by |E |.
� Matd×` denotes the space of d × ` matrices

� tM is the transposed of a matrix M.

� Id =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 is the identity d × d matrix.

� For a positive integer d and a real number S ≥ 0, the set of d-tuples

Zd [S] =
{
s ∈ Zd ; |s| ≤ S

}

has (2[S] + 1)d elements.

� For S = (S1, . . . , Sd ) ∈ Rd
>0, the set of d-tuples

Zd [S] =
{
s ∈ Zd ; |si | ≤ Si for 1 ≤ i ≤ d

}

has (2[S1] + 1) · · · (2[Sd ] + 1) elements.
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� When V is a vector subspace of Cd , we set

V[S] = V ∩ Zd [S] and V[S] = V ∩ Zd [S]

for S ∈ R>0 and S = (S1, . . . , Sd ) ∈ Rd
>0.

� For a finite subset E of an additive group G, and for m a positive integer,

E[m] = {x1 + · · · + xm ; xi ∈ E} ⊂ G.

In the successive chapters we introduce further notation as follows.

In Chapter 1

The distance between two matrices of the same size M and M′ is the maximum
absolute value of the difference between the entries: for

M =
(
xi j
)

1≤i≤d
1≤ j≤`

and M′ =
(
x ′i j

)
1≤i≤d
1≤ j≤`

,

in Matd×`(C),
dist(M,M′) = max

1≤i≤d
1≤ j≤`
|xi j − x ′i j |.

In Chapter 2

� The degree of a polynomial f in one variable X is denoted by deg f or degX f .
For a polynomial f in several variables we denote by degX f and degX f the
partial degree with respect to one variable X and the total degree with respect to
a set of variables X = (X1, . . . , Xm).

� For f ∈ C[X1, . . . ,Xm], let H( f ) be the maximum absolute value of the
coefficients of f .

� K [X±1
1 , . . . , X±1

n ] denotes the subring of K (X1, . . . , Xn) generated by K and

{X1, X−1
1 , . . . , X−1

n , Xn}
(see § 2.2.1).

In Chapter 3

� vp(α) is the p-adic absolute value.

� Mk , M∞k are the sets of normalized absolute values and of Archimedean
normalized absolute values of a number field k.

� dv(k) is the local degree of k at v.

� [k:Q] is the degree of k over Q.
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� Qp is the field of p-adic numbers.

� Pm denotes the projective space of dimension m.

� H(α) is the usual height of an algebraic number.

� L( f ), L(α) are the length of a polynomial or of an algebraic number.

� M( f ), M(α) denote Mahler’s measure of a polynomial or of an algebraic number.

� den(γ ), γ , s(α) denote the denominator, the house and the size of an algebraic
number.

� h(α), h(γ0: · · · : γN ) are the absolute logarithmic height of an algebraic number
or of a projective point.

� NK/k , TrK/k denote the norm and the trace attached to an extension K/k (see
also § 4.2.3).

� L2( f ) is the Euclidean norm of f ∈ C[X ].

In Chapter 4

� An is the space of entire functions in Cn .

In Chapter 5

� Ga and Gm are the additive and multiplicative groups.

� res is the restriction map (§ 5.2.2).

� T8 is the algebraic subgroup of a torus Gm
m associated with a subgroup8 of Zm .

� H (V ; D) and H (V ; D) are respectively an Hilbert function and the normalized
homogeneous part of highest degree of an Hilbert-Samuel polynomial of an
algebraic set V .

� τg is the translation by g in an abelian group.

In Chapter 6

� 2n(L) is defined in § 6.2.2.

� ‖ · ‖2 is the Euclidean norm in Exercise 6.4.

In Chapter 7

� 2(n; T0, L) is defined in § 7.2.

� 4(z; τ ) denote Fel’dman’s polynomials introduced in § 7.7.

� Let K be a field, n a positive integer and V a vector subspace of K n . We denote
by πV the canonical surjective linear map K n −→ K n/V with kernel V.
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In Chapter 8

� G+ and G− are algebraic subgroups of G.

� rank(I ) is the rank of an ideal I (§ 8.2.1).

� H (I ; D) and H (I ; D) are respectively an Hilbert function and the normalized
homogeneous part of highest degree of an Hilbert-Samuel polynomial of I .

� Te(G) is the tangent space at the origin of an algebraic group G.

� In § 8.3.1, V⊥ is the subspace of K [X ] = K [X1, . . . , Xd0 ] consisting of the linear
forms a1 X1 + · · · + ad0 Xd0 which vanish identically on V.

In Chapters 9 and 10

� General case: for a measure of linear independence of logarithms of algebraic
numbers:

3 = β0 + β1λ1 + · · · + βmλm .

� Homogeneous case: β0 = 0:

3 = β1λ1 + · · · + βmλm .

� Homogeneous rational case: β0 = 0 and βi = bi ∈ Z:

3 = b1λ1 + · · · + bmλm .

� δT (z; τ ), τ ∈ N denote the polynomials of Fel’dman-Matveev (§ 9.2.1).

� In § 9.2.1 also we define

δ(z; σ, κ) =

(
d

dz

)κ
δ(z; σ ).

� W⊥ is the orthogonal of W in an Euclidean vector space (§ 10.2.4).

In Chapter 11

� expG :Cd → G(C) denotes the exponential map of an algebraic group G and�G

its kernel.

� For d0 ≥ 0 and d1 ≥ 0,

LG = Qd0 ×Ld1 = exp−1
(
G(Q)

)

(see § 11.1.2).

� Vmax, Vmin, dmax, dmin are defined in § 11.1.2.
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� In § 11.1.3 we introduce the Q-vector space L̃ spanned by 1 and L; this is the
set of linear combinations, with algebraic coefficients, of 1 and logarithms of
algebraic numbers:

L̃ =
{
β0 + β1λ1 + · · · + βnλn ;

n ≥ 0, (β0, β1, . . . , βn) ∈ Qn+1
, (λ1, . . . , λn) ∈ Ln

}
.

� In § 11.6.2 we denote by L̃k the k-vector subspace of C spanned by 1 and L.

In Chapter 12

� Property ( A

C

B

0
) is defined in § 12.1.3.

� rstr(M) is the structural rank of a matrix M (§ 12.1.4).

In Chapter 13

� H (G; T ) is defined in § 13.1.

In Chapter 14

� ϕ(D, h): simultaneous approximation measure

� Lmn =
(
λi j

)
1≤i≤m
1≤ j≤n

denotes a m × n matrix with entries in L.

In Chapter 15

� In § 15.1.1, || · || denotes the distance to the nearest integer:

||x || = min
p∈Z
|x − p|.

� 8(D, H ): transcendence measure for a complex number (§ 15.1.3) and measure
of algebraic independence for a tuple (§ 15.1.5).

� ψ(D, µ): measure of algebraic approximation of a complex number (§ 15.1.3)
and measure of simultaneous approximation of a tuple (§ 15.1.5).

� In § 15.3.3, for K ⊂ C,

LK = exp−1(K×) =
{
z ∈ C ; ez ∈ K×

}
.



           

1. Introduction and Historical Survey

In this first chapter we give some historical background on Baker’s Theorem, both
in the qualitative and in the quantitative form, in the homogeneous as well as in
the nonhomogeneous version. We also describe the six exponentials Theorem, we
present the state of the art on the problem of algebraic independence of logarithms
of algebraic numbers. We conclude with a few comments on the Linear Subgroup
Theorem.

1.1 Liouville, Hermite, Lindemann, Gel’fond, Baker

We start by quoting some of the oldest results of the theory.
The first example of a transcendental number was provided by J. Liouville in

May 1844, in two notes in the Comptes Rendus de l’Académie des Sciences de Paris
[Lio 1844a], [Lio 1844b]. He developed this subject seven years later in a well known
paper [Lio 1851] in J. Math. Pures et Appl. (the so-called Liouville’s Journal).

Theorem 1.1 (Liouville). Let α be a complex number which is root of a nonzero
polynomial in Z[X] of degree d. There exists a constant c(α) > 0, which can be
easily computed, such that, for any rational number p/q with p/q 6= α and q > 0,

∣∣∣∣α −
p

q

∣∣∣∣ >
c(α)

qd
·

Liouville’s Theorem is a result of diophantine approximation. It enabled J. Li-
ouville to give the first example of transcendental numbers. It’s a different matter to
prove the transcendence of given numbers.

In 1873, Ch. Hermite published his four Notes in the Comptes Rendus de
l’Académie des Sciences de Paris [He 1873] where he obtained the transcendence of
e. One year later, G. Cantor [C 1874] gave a new proof that transcendental numbers
are dense in the real line (using the result, due to R. Dedekind, that algebraic numbers
are a countable set). In 1882, F. Lindemann [Li 1882a], [Li 1882b], [Li 1882c] proved
the transcendence of π , thereby solving the famous greek problem of squaring the
circle. Lindemann stated further results. One of them is now called the Hermite-
Lindemann Theorem:
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Theorem 1.2 (Hermite-Lindemann). Let β be a nonzero complex number. Then
one at least of the two numbers β and eβ is transcendental.

Hence, if β is algebraic, then exp(β) is transcendental (for instance the number
e itself is transcendental, as well as e

√
2). If α is a nonzero algebraic number, and if

λ is any nonzero determination of its logarithm, then λ is a transcendental number.
For instance, log 2 is a transcendental number. Taking α = 1 and log 1 = 2iπ , one
also deduces the transcendence of the number π .

The set L of logarithms of nonzero algebraic numbers, that is the inverse image
of the multiplicative group Q× by the exponential map:

L = exp−1(Q×) = {λ ∈ C ; eλ ∈ Q×}
will play an important role in these lectures. It is a Q-vector subspace of C, which
contains iπ as well as all the usual logarithms of positive algebraic numbers.

The Theorem of Hermite-Lindemann can be written:Q∩L = {0}, which means:

Any nonzero element of L is transcendental.

Another important result, stated by F. Lindemann and proved by K. Weierstraß [We
1885], reads as follows:

Let β1, . . . , βn be pairwise distinct algebraic numbers. Then the numbers
eβ1 , . . . , eβn are linearly independent over Q.

This result is equivalent to the following algebraic independence statement.

Theorem 1.3∗ (Lindemann-Weierstraß2). If β1, . . . , βn are algebraic numbers
which are linearly independent over Q, then the n numbers eβ1 , . . . , eβn are
algebraically independent.

This is one of the very few results on algebraic independence of numbers
connected with the exponential function (see § 1.4 below).

After the contributions of J. Liouville, Ch. Hermite, F. Lindemann and K. Weier-
straß, the next important step was provided by the work of C. L. Siegel [Si 1929],
A. O. Gel’fond [G 1934] and Th. Schneider [Sch 1934], which led to the solution
of Hilbert’s seventh problem [Hi 1900]. The story of this problem is as follows. In
his “Introductio in analysin infinitorum”, L. Euler [Eu 1748] (Book I, Ch. VI, On
Exponentials and Logarithms, N◦ 105, p.80) defined the exponential and logarithm
functions, and said:

From what we have seen, it follows that the logarithm of a number will not be a rational
number unless the given number is a power of the base a. That is, unless the number b is a
power of the base a, the logarithm of b cannot be expressed as a rational number. In case b
is a power of the base a, then the logarithm of b cannot be an irrational number. If, indeed,
log b =

√
n, then a

√
n = b, but this is impossible if both a and b are rational. It is especially

2 The star ∗ means that Theorem 1.3 will not be proved in the present volume.
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desirable to know the logarithms of rational numbers, since from these it is possible to find
the logarithms of fractions and also surds. Since the logarithms of numbers which are not
the powers of the base are neither rational nor irrational, it is with justice that they are called
transcendental quantities. For this reason, logarithms are said to be transcendental.

D. Hilbert [Hi 1900] proposed this question as the seventh of his problems:

The expression αβ for an algebraic base α and an irrational algebraic exponent β, e.g. the
number 2

√
2 or eπ = i−2i , always represents a transcendental or at least an irrational number.

(See the biography [Re 1970] of Hilbert by C. Reid, Chap. XIX p. 164).
This problem was solved in 1934 by A. O. Gel’fond [G 1934] and Th. Schneider

[Sch 1934], independently and simultaneously:

Theorem 1.4 (Gel’fond-Schneider). If λ1, λ2 are Q-linearly independent elements
of L, then they are Q-linearly independent.

This shows that L, which is a Q-vector space, is not a Q-vector space. More
precisely, the quotient λ1/λ2 of two nonzero elements of L is either a rational or a
transcendental number. For instance log 2/ log 3 is a transcendental number. Such
a quotient cannot be an algebraic irrational number, like i =

√−1 or like
√

2. The
connection with Hilbert’s problem is most easily seen by stating the Theorem of
Gel’fond-Schneider as follows:

If λ and β are two complex numbers with λ 6= 0 and β 6∈ Q, then one at least of
the three numbers eλ, β and eβλ is transcendental.

Hence, if α is a nonzero algebraic number, λ any nonzero logarithm of α, and β an
irrational algebraic number, then αβ = exp(βλ) is a transcendental number. As an
example, 2

√
2 is a transcendental number. The transcendence of eπ is obtained for

instance by the choice α = 1, λ = 2iπ and β = −i/2.

In his book [G 1952], A. O. Gel’fond emphasized the importance of getting a
generalization of this statement to more than two logarithms (see § 1.2 below). Let
λ1, . . . , λn be n logarithms of algebraic numbers which are linearly independent over
Q. The question is to prove that they are also linearly independent over the field Q
of algebraic numbers. For n = 2, this is Theorem 1.4 of Gel’fond-Schneider. This
problem was solved in 1966 by A. Baker [B 1966]:

Theorem 1.5 (Baker – Homogeneous Case). If λ1, . . . , λn are Q-linearly indepen-
dent elements of L, then they are linearly independent over Q.

Shortly later, A. Baker extended his result to a nonhomogeneous situation as
follows:

Theorem 1.6 (Baker – General Case). If λ1, . . . , λn are Q-linearly independent
elements of L, then the n + 1 numbers 1, λ1, . . . , λn are linearly independent over
Q.
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From Baker’s Theorem 1.6, one easily deduces that if a number of the form

eβ0α
β1
1 · · ·αβn

n = exp{β0 + β1λ1 + · · · + βnλn}
(with βi ∈ Q, λi ∈ L and αi = eλi ∈ Q×) is algebraic, then β0 = 0, and moreover,
eitherλ1, . . . , λn are all zero, or else the numbers 1, β1, . . . , βn are linearly dependent
over Q.

Also Theorem 1.6 shows that any nonzero element in the Q-vector space

{β1λ1 + · · · + βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}
spanned by L is transcendental.

Theorem 1.6 includes not only the Theorem of Gel’fond-Schneider, but also
the Theorem of Hermite-Lindemann (take n = 1). However it does not include
all that is known on the transcendence of values of the exponential function, even
if one does not mention results of algebraic independence (like Theorem 1.3 of
Lindemann-Weierstraß). One such result, which is not included in Baker’s Theorem,
is the so-called six exponentials Theorem (see § 1.3, Th. 1.12 below).

It will be convenient to show that several statements are equivalent to Baker’s
homogeneous Theorem 1.5. As pointed out by J-P. Serre in his Bourbaki lecture
on Baker’s work [Ser 1970], it means that the natural map from the tensor product
Q⊗QL inC, which extends the injection from L toC, is still injective (see Exercise
1.3. For a definition of the tensor product, see for instance [L 1993], Chap. XVI).

The only linear dependence relations, with algebraic coefficients, between
logarithms of algebraic numbers, are the trivial ones, like

log 24 =
√

3 log 9 +
(

1− 2
√

3
)

log 3 +
√

2 log 4 + (3− 2
√

2) log 2.

Roughly speaking, if Theorem 1.5 is not true, then any vanishing nontrivial linear
combination of elements of L with algebraic coefficients and minimal length would
have the property that the coefficients are linearly independent over Q, and at the
same time the elements of L also are linearly independent over Q.

Lemma 1.7. Let k ⊂ K be two fields, E be a K -vector space, and M be a k-vector
subspace in E . The three following statements are equivalent.

(i) Let m be a positive integer and let λ1, . . . , λm be elements of M which are
linearly independent over k. Then these elements are also linearly independent
over K in E .

(ii) Let m be a positive integer. Let λ1, . . . , λm be elements of M, not all vanishing,
and let β1, . . . , βm be k-linearly independent elements of K . Then

β1λ1 + . . . + βmλm 6= 0.

(iii) Let m be a positive integer. Let λ1, . . . , λm be k-linearly independent elements
of M and β1, . . . , βm be k-linearly independent elements of K . Then

β1λ1 + . . . + βmλm 6= 0.
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Proof. We first remark that the implication (i)⇒ (iii) is trivial.
a) Proof of (ii)⇒ (i). Assume that for some m ≥ 1 we have a relation β1λ1 + . . . +
βmλm = 0 with β1, . . . , βm not all zero in K . Let β ′1, . . . , β

′
s (with 0 < s ≤ m) be a

basis of the k-vector space they span. We can write

βi =
s∑

j=1

ci jβ
′
j (1 ≤ i ≤ m),

with ci j ∈ k, which are not all zero. Then

s∑

j=1

β ′j

(
m∑

i=1

ci jλi

)
= 0.

Since β ′1, . . . , β
′
s are k-linearly independent, we deduce from (ii)

m∑

i=1

ci jλi = 0 for 1 ≤ j ≤ s.

Therefore λ1, . . . , λm are K -linearly dependent.

b) Proof of (iii) ⇒ (ii). Assume β1λ1 + · · · + βmλm = 0 with β1, . . . , βm linearly
independent over k in K and λ1, . . . , λm in M. We shall conclude λ1 = · · · = λm = 0.
Renumbering λ1, . . . , λm if necessary, we may assume that λ1, . . . , λr (for some r
with 0 ≤ r ≤ m) is a basis of the k-vector space spanned by λ1, . . . , λm :

λi =
r∑

j=1

ci jλ j , (r + 1 ≤ i ≤ m),

where ci j are in k. We deduce

r∑

j=1

γ jλ j = 0 with γ j = β j +
m∑

i=r+1

ci jβi , (1 ≤ j ≤ r ).

Using (iii) (with m replaced by r ), we deduce from the linear independence of
λ1, . . . , λr over k that the r elements γ1, . . . , γr are k-linearly dependent in K .
However, since β1, . . . , βm are linearly independent over k, the only possibility is
r = 0, which means λ1 = · · · = λm = 0. ¤

When k = Q, K = Q, M = L and E = C, assertion (i) is nothing but Theorem
1.5 (see § 9.1.1 for an application of this Lemma 1.7 to the nonhomogeneous case).
Other statements which are equivalent to Theorem 1.5 are given in Exercise 1.5.
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1.2 Lower Bounds for |ab1
1 · · · abm

m − 1|

Baker’s Theorem 1.5 shows that expressions of the form

β1λ1 + · · · + βmλm

(where, for 1 ≤ i ≤ m, βi is an algebraic numbers and λi is a logarithm of an
algebraic number) can vanish only in trivial cases. In fact, the proof yields a stronger
result, giving an explicit lower bound for such nonzero numbers. We consider here
these results in the easiest case to explain, namely βi ∈ Z, λi = logαi where αi ∈ Z,
αi ≥ 2.

Let a1, . . . , am , b1, . . . , bm be rational integers with the ai ’s all greater than one.
We assume

ab1
1 · · · abm

m 6= 1,

and we ask for a lower bound for the distance between these two numbers.
There is a trivial estimate: a nonzero rational number is at least as large as the

inverse of a denominator:
∣∣∣ab1

1 · · · abm
m − 1

∣∣∣ ≥
∏

bi<0

abi
i

≥ exp

{
−

m∑

i=1

|bi | log ai

}

≥ exp
{−m B log A

}
,

where B = max{|b1|, . . . , |bm |} and A = max{a1, . . . , am}. This kind of estimate
extends to algebraic α’s. We shall call it Liouville’s inequality (compare with
Theorem 1.1; see also Chap. 2, Lemma 2.1, and Chap. 3, § 5).

The dependence in m and A in Liouville’s inequality is sharp, but the main
interest for applications is with the dependence in B. In order to see what can be
expected, it is convenient to give a connection with measures of linear independence
of logarithms of algebraic numbers. If

0 <
∣∣∣ab1

1 · · · abm
m − 1

∣∣∣ ≤ 1

2
,

then

1

2

∣∣b1 log a1 + · · · + bm log am

∣∣ ≤
∣∣∣ab1

1 · · · abm
m − 1

∣∣∣ ≤ 2
∣∣b1 log a1 + · · · + bm log am

∣∣

(see Exercise 1.1). Therefore the problem of obtaining a lower bound for the distance
between 1 and the product ab1

1 · · · abm
m is equivalent to obtaining a lower bound for

the nonzero number b1 log a1 + · · · + bm log am .
An easy application of Dirichlet’s box principle (see Exercise 1.2) now yields:
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Lemma 1.8. Let m, a1, . . . , am be rational integers, all of which are at least 2.
Define A = max{a1, . . . , am}. Then for every integer B ≥ 4 log A, there exist rational
integers b1, . . . , bm with

0 < max
1≤i≤m

|bi | < B

such that ∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≤ 2m log A

Bm−1
·

If a1, . . . , am are multiplicatively independent, then the left hand side is not zero.
The upper bound is polynomial in 1/B, while Liouville’s inequality is exponential
in −B. We shall see that, as far as the dependence in B is concerned, Lemma 1.8 is
closer to the truth than Liouville’s lower bound.

In 1935, one year after he had solved the seventh problem of D. Hilbert,
A. O. Gel’fond used his transcendence method in order to derive a lower bound for a
linear combination of two logarithms of algebraic numbers with algebraic coefficients
(for references, see [G 1952], [FSh 1967], [B 1977] and [Sp 1982]). Let us give a
simple example of such an estimate: for a1, a2 multiplicatively independent positive
rational integers, and for ε > 0, there exists a constant C1 = C1(a1, a2, ε), which can
be explicitly computed, such that, for all (b1, b2) ∈ Z2 with (b1, b2) 6= (0, 0), if we
set B = max{|b1|, |b2|, 2}, then

∣∣∣ab1
1 ab2

2 − 1
∣∣∣ ≥ C1 exp

{− (log B)5+ε
}
.

In 1939, A. O. Gel’fond refined the estimate and replaced the exponent 5+ε by 3+ε,
and in 1949 he 3 reached 2 + ε. At the same time he gave an estimate which is valid
for any m ≥ 2 (see [G 1952], Th. III of Chap. 1, p.28):

Theorem 1.9. (Gel’fond’s Ineffective Estimate). Let (a1, . . . , am) be a m-tuple of
positive multiplicatively independent rational integers. For every δ > 0, there exists
a positive constant C2 = C2(a1, . . . , am, δ) such that, if b1, . . . , bm are rational
integers, not all of which are zero, and if we set B = max{|b1|, . . . , |bm |, 2}, then

∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≥ C2e−δB .

For the proof of Theorem 1.9, the main tool is a result of diophantine approx-
imation, which we shall take for granted. A. O. Gel’fond used a result of his own,
which was a refinement of earlier results due to A. Thue, C. L. Siegel and F. Dyson.
Here, for simplicity, we shall use the stronger result due to K. F. Roth, which we do
not prove in these notes (see for instance [Ro 1955], [Sch 1957], [B 1975], [L 1983]
or [Sc 1991]):

3 Explicit estimates were provided later by A. Schinzel in [S 1967].
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Theorem 1.10∗ (Thue-Siegel-Roth). Let α be an algebraic number and let ε be a
positive real number. There exists a number C0 = C0(α, ε) > 0 such that for any
rational number p/q with q > 0 and p/q 6= α,

∣∣∣∣α −
p

q

∣∣∣∣ >
C0

q2+ε
·

Proof of Theorem 1.9. We shall use Theorem 1.10 with ε = 1:
∣∣∣∣α −

p

q

∣∣∣∣ >
C0(α, 1)

q3
·

Let δ > 0. Assume C2 does not exist: for each real number C > 0 there exists
b = (b1, . . . , bm) ∈ Zm with

0 <
∣∣∣ab1

1 · · · abm
m − 1

∣∣∣ ≤ C exp
{−δB

}

where B = max{2, |b1|, . . . , |bm |}. Hence the set E1 of b ∈ Zm for which

0 <
∣∣∣ab1

1 · · · abm
m − 1

∣∣∣ ≤ exp
{−δB

}

is infinite. Let N be a positive integer satisfying N > (6m/δ) log A, with A =
max{ai }. Since the set (Z/NZ)m is finite, there is an infinite subset E2 of E1 having
all elements in the same class modulo N . This means that there exists r ∈ Nm with
0 ≤ ri < N (1 ≤ i ≤ m) such that, for all b ∈ E2,

bi ≡ ri mod N (1 ≤ i ≤ m).

Let E3 be the set of b ∈ E2 with B ≥ N . Once more this is an infinite set. For each
b ∈ E3, there is a x ∈ Zm such that

bi = ri + N xi (1 ≤ i ≤ m).

We have |xi | ≤ 1 + B/N ≤ 2B/N (1 ≤ i ≤ m). Let us define two rational numbers
s = ar1

1 · · · arm
m and t = ax1

1 · · · axm
m . Notice that s does not depend on b ∈ E3, while t

depends on b. From the construction of E3 we deduce

0 <
∣∣st N − 1

∣∣ ≤ e−δB .

We now use the estimate |x −1| ≤ |x N −1|which is valid for all x > 0 (the number
1 + x + · · · + x N−1 is at least 1):

0 <
∣∣s1/N t − 1

∣∣ ≤ e−δB .

This shows that the rational number t is close to the algebraic number α = s−1/N

which is the real N -th root of 1/s:

0 < |t − α| ≤ αe−δB .
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Since the denominator of t is at most A2m B/N , Theorem 1.10 yields:

|t − α| ≥ C0(α, 1)A−6m B/N .

Combining the upper and lower bounds, we deduce the estimate

B

(
δ − 6m log A

N

)
≤ − log C0(α, 1)− 1

N
log s,

which shows that the number B is bounded (the numbers δ, A, N , C0(α, 1) and s do
not depend on b ∈ E3), which is in contradiction with the fact that E3 is an infinite
set. ¤

This proof produces a lower bound for
∣∣ab1

1 · · · abm
m − 1

∣∣ using a lower bound
for |α − (p/q)|. By means of similar arguments, one can go backwards and deduce
nontrivial measures of rational approximation for algebraic numbers using measures
of linear independence for logarithms of algebraic numbers (see § 10.4.1).

The proof of Theorem 1.9 does not enable one to compute the constant C2,
because one uses the Thue-Siegel-Roth Theorem which is not effective: the number
C0 in Theorem 1.10 depends on α and ε, but given α and ε we do not know how
to compute it. The proof of Theorem 1.10 is by contradiction: if the result does not
hold, there is a whole sequence of good rational approximations pn/qn to α, and this
is the main point which makes the result ineffective.

A. O. Gel’fond applied his estimate to several number theoretic questions, in
particular (with Y. V. Linnik) for Gauss’ problem of determining all imaginary
quadratic number fields with class number one. He also applied his lower bound
to the study of several types of diophantine equations.

The question of effectivity here is a crucial one. To solve a diophantine equation
is to give the complete list of solutions; for simplicity suppose we are looking
for solutions in rational integers. A first question is to decide whether there are
infinitely or only finitely many such solutions. Let us assume we are in the latter
case. Sometimes it is possible to produce an upper bound for the number of solutions.
Unless this upper bound is optimal, it will not be sufficient to derive an algorithm for
completely solving the equation. On the other hand, if we know an upper bound for
the maximum absolute value of the solutions themselves, then one deduces trivially
such an algorithm (there are only finitely many integers below the bound). The last
step is to produce an efficient algorithm which will complete the list of solutions, but
we shall not address this issue here; our concern is to describe one basic tool which
is efficient to produce an effective upper bound for the solutions.

We quote from Gel’fond’s book [G 1952] (p.126 of the English edition):

. . . one can assume the fundamental problem in the analytic theory of transcendental
numbers to be that of strengthening the analytic methods in the theory of transcendental
numbers, so that it will be possible to apply them to the investigation of the behavior of linear
forms in n logarithms of algebraic numbers.

Also, from p.177:



              

10 1. Introduction and Historical Survey

Nontrivial lower bounds for linear forms, with integral coefficients, of an arbitrary
number of logarithms of algebraic numbers, obtained effectively by methods of the theory of
transcendental numbers, will be of extraordinarily great significance in the solution of very
difficult problems of modern number theory. Therefore, one may assume, as was already
mentioned above, that the most pressing problem in the theory of transcendental numbers is
the investigation of the measures of transcendence of finite sets of logarithms of algebraic
numbers.

As we already know from § 1.1, this problem was solved in 1966 by A. Baker
[B 1975]. The next refinement is due to N. I. Fel’dman [F 1968] two years later.

Let a1, . . . , am be positive multiplicatively independent rational integers and
b1, . . . , bm rational integers, not all of which are zero; then

∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≥ exp

{− C3 log B
}

= B−C3 ,

where C3 = C3(a1, . . . , am) is a positive effectively computable number.

Fel’dman’s result is valid more generally when the integers a1, . . . , am are replaced by
algebraic numbers α1, . . . , αn , (and also when b1, . . . , bm are replaced by algebraic
numbers – in this case it is more convenient to state the result as a measure of
linear independence for logarithms of algebraic numbers, that is a lower bound for a
linear combination, with algebraic coefficients, of logarithms of algebraic numbers).
Such estimates have many applications to various diophantine problems, including
an effective improvement on Liouville’s Theorem 1.1 due to Fel’dman (improving
an earlier result of Baker – see § 10.4.1):

• For each algebraic number α of degree d ≥ 3, there exists two positive constants
c(α) and η(α) such that, for p/q ∈ Q,

∣∣∣∣α −
p

q

∣∣∣∣ >
c(α)

qd−η(α)
·

In 1993 E. Bombieri [Bo 1993] introduced a new method for obtaining effective
irrationality measures for roots of high order of algebraic numbers and examined the
applications to effective diophantine approximation in a number field by a finitely
generated subgroup. A new effective solution of Thue’s equation in number fields
and the Baker-Feldman effective improvement to Liouville’s Theorem resulted. The
main tools were the Thue-Siegel Principle, Viola’s version of Dyson’s Lemma, and
the geometry of numbers, there being no appeal to measure of linear independence
of logarithms of algebraic numbers. E. Bombieri and P. B. Cohen [BoCoh 1997]
extended this work to the nonarchimedean case and introduced, along the lines of
ideas by P. Corvaja [Co 1997], the use of Laurent’s determinantal method to replace
Siegel’s Lemma in this context.

It is stated in [BoCoh 1997] that Theorem 1 of that paper can be obtained directly
from Baker’s method, rather than from the Thue-Siegel method. The authors point
out that this would lead to a sharper version of their Theorem 1 and that their Theorem
2, whose proof uses the geometry of numbers, could then be applied directly to this
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sharper result. This program has been carried out by Y. Bugeaud [Bu 1998b], both
in the archimedean and nonarchimedean cases.

A detailed account of the history of measures of linear independence for
logarithms of algebraic numbers until 1976 is given by A. Baker in [B 1977], and
a more recent survey can be found in Chap. 4 § 1 of [FNe 1998] (see also [Mat
1998] and § 10.4). In this book we devote a lot of attention to this problem of giving
explicit measures of linear independence for logarithms of algebraic numbers. Since
the methods are usually not considered to be very simple, we try to make them easier
to understand by introducing progressively some of the different tools which have
been used so far for establishing the best known estimates. In Chap. 7 we prove a
first explicit lower bound, which is not the best known one, but requires a minimum
of technique. In particular the proof does not involve any derivation. One of the main
tools is a zero estimate, which is proved in Chap. 5 by D. Roy, following P. Philippon
[P 1986a]. A refinement of this zero estimate, involving derivations, is also due to
P. Philippon [P 1986a], and is explained by D. Roy in Chap. 8.

Apart from the numerical value of the constant, the best known measures of linear
independence for logarithms of algebraic numbers are proved twice, in Chapters 9
and 10, by means of dual methods.

A special case of the general measure of linear independence provided by
Theorem 9.1 is the following:

• Let a1, . . . , am , b1, . . . , bm be rational integers. Assume ai ≥ 2 for 1 ≤ i ≤ m
and ab1

1 · · · abm
m 6= 1. Define B = max{2, |b1|, . . . , |bm |}. Then

∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≥ exp

{− C(m)(log B)(log a1) · · · (log am)
}
,

where C(m) is a positive effectively computable number which depends only on
m.

We describe the state of the art on this topic in § 10.4 for the results, in § 14.4 for
the methods.

The second part of Lang’s book [L 1978] deals with measures of linear
independence for logarithms of algebraic numbers (not only for the usual exponential
function, but also for elliptic functions). The introduction to Chap. X and XI of [L
1978] (pp.212–217) proposes far reaching conjectures. For instance:

Conjecture 1.11. For any ε > 0, there exists a constant C7(ε) > 0 such that, for
any nonzero rational integers a1, . . . , am , b1, . . . , bm with ab1

1 · · · abm
m 6= 1

∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≥ C7(ε)m

Bm−1+ε Am+ε
,

where A = max1≤i≤m |ai | and B = max1≤i≤m |bi |.

A related open problem (see especially [B 1998], [P 1999b] and Exercise 1.11)
is the abc Conjecture of D. W. Masser and J. Œsterlé:
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(?) abc–Conjecture. For each ε > 0 there exists a positive number κ(ε) which has
the following property: if a, b and c are three positive rational integers which
are relatively prime, with a + b = c, and if

N =
∏

p|abc

p

denotes the radical (or squarefree part) of the product abc, then

c < κ(ε)N 1+ε .

The example a = 1, c = 32n
, b = c− a (where 2n divides b) shows that the exponent

1 + ε cannot be replaced by 1. This conjecture is closely related to a conjecture of
L. Szpiro on the conductor of elliptic curves. An analog of the abc Conjecture for
function fields is a theorem of W. W. Stothers (1981) and R. Mason (1984 — see
[L 1993]). Using (ordinary as well as p-adic) measures of linear independence for
logarithms of algebraic numbers, R. Tijdeman, C. L. Stewart and Yu Kunrui (see
[StY 1991] and [Sc 1991] Epilogue) made a small step in the direction of the abc
Conjecture:

log c ≤ κ(ε)N (1/3)+ε .

Applications of measures of linear independence of logarithms of algebraic
numbers arise in many subjects: class number problems (A. Baker and H. Stark), p-
adic L-functions (J. Ax and A. Brumer), knot theory (R. Riley), modular forms
(R. W. K. Odoni), Ramanujan τ function (K. and M. Murty, T. N. Shorey),
recurrent sequences (A. Schinzel, C. L. Stewart, J. H. Loxton, A. J. van der Poorten,
M. Mignotte, R. Tijdeman, T. N. Shorey,. . . ), diophantine equations (A. O. Gel’fond
and many others, including A. Baker).

Improvement on measures of linear independence of logarithms of algebraic
numbers are relevant for solving diophantine equations. There is a big industry on
this topic with many achievements. When only two logarithms are involved, the
numerical constants are so small that they enable one to solve completely whole
families of diophantine equations.

Further applications (together with proofs and references) can be found in the
following references: [G 1952], [Ser 1970], [Sho 1974], [B 1975], [B 1977], [V
1977], [L 1978], [Sp 1982], [Lox 1986], [ShoT 1986], [Ser 1989], [Ri 1994], [FNe
1998], Chap. 4 § 1.

Most applications involve only homogeneous linear combinations of logarithms
with rational coefficients. However, an application to computer science of the lower
bound in [NeW 1996] for |β − λ| (see § 14.2.3) is given in [MuTi 1996].

Conjecture 14.25 in Chap. 14 proposes a sharp lower bound for

|β0 + β1λ1 + · · · + βmλm |
(for βi ∈ Q and λ j ∈ L) when this number is nonzero.
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In a few particular special cases, very sharp numerical constants are known: for
instance, using completely different techniques, related with Padé approximation
and Siegel’s G-functions, E. Dubois, G. Rhin and Ph. Toffin [Rh 1987] proved: for
rational integers b0, b1 and b2 with B = max{|b1|, |b2|} ≥ 2,

|b0 + b1 log 2 + b2 log 3| ≥ B−13.3.

Such an estimate has recently been extended to

|b0 + b1 log 2 + b2 log 3 + b3 log 5 + b4 log 7|.
It should be pointed out that a similar method yields the irrationality of

(
log
(

1 +
1

q

))(
log
(

1− 1

q

))

(work of A. I. Galochkin and M. Hata).

We just mention that there is also a rich related theory for elliptic logarithms [PW
1988c], [Hir 1991], with explicit estimates by S. David (for n complex logarithms) [D
1995] and G. Rémond and F. Urfels [RemU 1996] (for two elliptic p-adic logarithms).
See also [FNe 1998], Chap. 4 § 3.

An important open question, related with the so-called S-units equations, is to
give an effective lower bound for non-vanishing expressions of the form

∣∣∣∣∣
n∑

i=1

α
bi1
1 · · ·αbim

m

∣∣∣∣∣

where α1, . . . , αm are nonzero algebraic numbers and bi j (1 ≤ i ≤ n, 1 ≤ j ≤ m)
are rational integers. Nontrivial (but also noneffective) lower bounds are known
from Schmidt’s subspace theorem (a far reaching generalization of the Thue-Siegel-
Roth theorem; see for instance [Sc 1980] and [Sc 1991]). Only the case n = 2 has
been made effective so far, thanks to effective measures of linear independence of
logarithms of algebraic numbers.

1.3 The Six Exponentials Theorem and the Four Exponentials
Conjecture

Let us start with an easy question: which are the real numbers t for which 2t is a
rational integer? Of course all t ∈ N satisfy this requirement; but there are others:
for a ∈ N, a 6= 0, if we set t = log a/ log 2, then 2t = exp(t log 2) = a ∈ N. Hence

{t ∈ R; 2t ∈ N} =

{
log a

log 2
; a ∈ N, a > 0

}
.

If we denote this set by E1, then E1 ∩Q = N.
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We consider now the set

E2 = {t ∈ R ; 2t ∈ N and 3t ∈ N}.
This set contains N and is contained in E1. In particular E2 ∩Q = N. The following
problem is still open: is it true that E2 = N? This means:

Problem. Does there exist an irrational number which belongs to E2?

This question amounts to ask whether there exist two positive integers a and b such
that

log a

log 2
=

log b

log 3
and at the same time this quotient is irrational. Another equivalent formulation is to
ask whether a 2× 2 matrix (

log a log b
log 2 log 3

)

(with positive integers a and b) can be singular without a being a power of 2. We shall
consider this question in a more general setting (the four exponentials Conjecture).

Finally we introduce a third set

E3 = {t ∈ R ; 2t ∈ N, 3t ∈ N and 5t ∈ N}.
Of course we have N ⊂ E3 ⊂ E2 ⊂ E1. The six exponentials Theorem below
implies E3 = N.

We may replace {2, 3, 5} by any set of three distinct primes. More generally, if
we consider three multiplicatively independent (complex) algebraic numbers, then
there is no need to restrict the discussion to real values of t .

Theorem 1.12 (Six Exponentials). Let x1, . . . , xd be complex numbers which are
linearly independent over Q and let y1, . . . , y` also be complex numbers which are
linearly independent overQ. Assume d` > d +`. Then one at least of the d` numbers

exp(xi y j ), (1 ≤ i ≤ d, 1 ≤ j ≤ `)
is transcendental.

It is clear that the interesting case is d = 3, ` = 2 (or d = 2, ` = 3, which gives
the same result because of the symmetry), and this explains the name of the result.

One conjectures that the conclusion is still valid under the weaker hypothesis
d` ≥ d + ` :

Conjecture 1.13 (Four Exponentials Conjecture). Let x1, x2 be two Q-linearly
independent complex numbers and y1, y2 also two Q-linearly independent complex
numbers. Then one at least of the 4 numbers

exp(xi y j ), (i = 1, 2, j = 1, 2)

is transcendental.
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The six exponentials Theorem 1.12 occurs for the first time in a paper by
L. Alaoglu and P. Erdős [AEr 1944], when these authors try to prove Ramanujan’s
assertion that the quotient of two consecutive superior highly composite numbers
4 is a prime, they need to know that if x is a real number such that px

1 and px
2 are

both rational numbers, with p1 and p2 distinct prime numbers, then x is an integer.
However this statement (special case of the Conjecture 1.13) is yet unproven. They
quote C. L. Siegel and claim that x indeed is an integer if one assumes px

i to be rational
for three distinct primes pi . This is just a special case of Theorem 1.12. They deduce
that the quotient of two consecutive superior highly composite numbers is either a
prime, or else a product of two primes.

Theorem 1.12 can be deduced from a very general result of Th. Schneider [Sch
1949]. Conjecture 1.13 is equivalent to the first of the eight problems at the end of
Schneider’s book [Sch 1957]. An explicit statement of the six exponentials Theorem,
together with a proof, has been published independently and at about the same time
by S. Lang [L 1965a], [L 1965b], [L 1966], Chap. 2 and K. Ramachandra [R 1968],
[R 1969a], Chap. 2. They both formulated the four exponentials Conjecture 1.13
explicitly.

Remark. Taking x1 = 1, x2 = |λ|/λ, y1 = λ and y2 = |λ|, one deduces from
Conjecture 1.13:

(?) For λ ∈ L with λ 6∈ R, the number e|λ| is transcendental.

Further similar open problems are proposed in § 11.6.1.

Baker’s Theorem and the six exponentials Theorem do not cover all known
transcendence results on the exponential function (without mentioning algebraic
independence results). We give below (Theorems 1.16 and 1.17) stronger versions
of the six exponentials Theorem.

1.4 Algebraic Independence of Logarithms

There are a few results of algebraic independence concerning the values of the expo-
nential function which are not included in Theorem 1.3 of Lindemann-Weierstraß.
For instance A. O. Gel’fond proved in 1949 that for a cubic number β and for
λ ∈ L \ {0}, if we set

α = eλ, αβ = eβλ and αβ
2

= eβ
2λ,

then the two numbers αβ and αβ
2

are algebraically independent (see [G 1952]). This
result has been extended, especially by G. V. Chudnovsky and P. Philippon. The best

4 S. Ramanujan defines an integer n to be a superior highly composite number if there
exists ε > 0 such that the divisor function d(n) (number of divisors of n) satisfies
d(m)m−ε < d(n)n−ε for m 6= n.
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result known in this direction is due to G. Diaz: if β is algebraic of degree d ≥ 3, then
for any λ ∈ L \ {0}, at least

[
(d + 1)/2

]
of the d − 1 numbers αβ, αβ

2
, . . . , , αβ

d−1

are algebraically independent [Di 1989] (see § 15.4).

The most far reaching conjecture on the subject is due to S. Schanuel [L 1966]:

Conjecture 1.14 (Schanuel’s Conjecture). If x1, . . . , xn areQ-linearly independent
complex numbers, then, among the 2n numbers

x1, . . . , xn, ex1 , . . . , exn ,

at least n are algebraically independent.

The conclusion may also be phrased: the transcendence degree over Q of the
field

Q
(
x1, . . . , xn, ex1 , . . . , exn

)

is at least n.
This conjecture is believed to include all known transcendence results as well as

all reasonable transcendence conjectures on the values of the exponential function.
The special case where x1, . . . , xn are all algebraic is just Theorem 1.3 of Lindemann-
Weierstraß. The other special case where ex1 , . . . , exn are algebraic would already
have tremendous consequences:

Conjecture 1.15 (Algebraic Independence of Logarithms). Let λ1, . . . , λn be ele-
ments of L which are linearly independent over Q. Then these numbers are alge-
braically independent.

We are very far from this conjecture. Indeed, it is not yet even known that there
exist at least two algebraically independent logarithms of algebraic numbers! In spite
of this bad situation, interesting partial results are known, as we shall see. Instead
of looking, for a fixed tuple (λ1, . . . , λn) ∈ Ln , to the condition P(λ1, . . . , λn) = 0
for some P ∈ Z[X1, . . . , Xn], we fix P ∈ Z[X1, . . . , Xn] and we consider the set of
zeros of P in Ln .

Some such results are known in connection with lower bounds for the ranks of
matrices whose entries are logarithms of algebraic numbers. We shall now look at
this problem.

Conjecture 1.13 can be stated as follows. Consider a 2× 2 matrix whose entries
are logarithms of algebraic numbers:

M =

(
λ11 λ12

λ21 λ22

)
.

Assume that the two rows of M are linearly independent over Q (in C2), and also
that the two columns are linearly independent over Q. Then the rank of M is 2.

It is not difficult (Exercise 1.8) to deduce the four exponentials Conjecture 1.13
from Conjecture 1.15 on algebraic independence of logarithms.
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Theorem 1.12 is equivalent to the following assertion:

Consider a d × ` matrix whose entries are logarithms of algebraic numbers:

M =



λ11 · · · λ1`

...
. . .

...
λd1 · · · λd`


 .

Assume that the d rows of M are Q-linearly independent (in C`), and also that
the ` columns are Q-linearly independent (in Cd ). If d` > d + `, then the rank
of M is at least 2.

We obtain the equivalence with Theorem 1.12 by noticing that a d × ` matrix has
rank at most 1 if and only if it can be written

(
xi y j )1≤i≤d,1≤ j≤`, for some complex

numbers x1, . . . , xd , y1, . . . , y` (see Exercise 1.9).
Assume now that d`/(d + `) is large. Is it possible to get a better lower bound

for the rank of M? We notice first that conditions on linear independence of rows
and columns are no longer sufficient, as shown by matrices like the following one,
which has rank 2: 



log 2 log 3 · · · log pm

log 3
... 0

log pm




where d = ` = m, and pm is the m-th prime number. Here is a simple statement
which extends Theorem 1.12 and will be proved in § 12.2.1.

Theorem 1.16. Let M =
(
λi j
)

1≤i≤d
1≤ j≤`

be a d × ` matrix with entries in L. Assume that

for any t = (t1, . . . , td ) ∈ Zd \ {0} and any s = (s1, . . . , s`) ∈ Z` \ {0}, we have

d∑

i=1

∑̀

j=1

ti s jλi j 6= 0.

Then the rank of M is at least d`/(d + `).

Let us assume that Conjecture 1.14 is true.

• How can one describe the rank of a matrix

M =
(
λi j

)
1≤i≤d
1≤ j≤`

with entries in L?

This problem has been solved by D. Roy [Roy 1989] as follows: let λ1, . . . , λr be
a basis of the Q-vector space spanned by the d` entries of M: there exist rational
integers ai jk such that
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λi j =
r∑

k=1

ai jkλk, (1 ≤ i ≤ d, 1 ≤ j ≤ `).

Consider the matrix

M̃ =

(
r∑

k=1

ai jk Xk

)

1≤i≤d
1≤ j≤`

=
r∑

k=1

Xk

(
ai jk

)
1≤i≤d
1≤ j≤`

,

with coefficients which are linear forms in unknowns X1, . . . , Xr and define the
structural rank of M as the rank of the matrix M̃ whose entries are in the field
Q(X1, . . . , Xr ) of rational functions in r variables:

rstr(M) = rank(M̃).

This number does not depend on the choice ofλ1, . . . , λr , and Conjecture 1.15 plainly
implies that the equality rank(M) = rstr(M) holds. One does not need the full force
of Conjecture 1.15: one needs only the homogeneous special case of it: if λ1, . . . , λn

are elements of L which are linearly independent overQ, and if P ∈ Q[X1, . . . , Xn]
is a nonzero homogeneous polynomial, then P(λ1, . . . , λn) is not zero.

A quite remarkable fact, proved by D. Roy [Roy 1989], is that the converse
holds, namely: if rank(M) = rstr(M) holds for all matrices M with entries in L, then
the conjecture on homogeneous algebraic independence of logarithms is true.

If one wishes to consider nonhomogeneous polynomials in logarithms of alge-
braic numbers, then it is sufficient to deal with matrices whose entries lie in the
Q-vector subspace of C spanned by 1 and L.

More generally, denote by L̃ the Q-vector space spanned in C by 1 and L:

L̃ = {β0 + β1λ1 + · · · + βnλn; n ≥ 0, βi ∈ Q, λi ∈ L}.
The structural rank of a matrix with entries in L̃ is defined as before, taking a
basis of the Q-vector space spanned by the coefficients and considering matrices
whose entries are linear forms. Again, it follows from [Roy 1989] that Conjecture
1.15 is equivalent to the fact that the rank equals the structural rank for matrices with
coefficients in L̃. Moreover, the following partial result in the direction of Conjecture
1.15 is known [Roy 1992a]— see Chap. 12:

Theorem 1.17 (D. Roy). Let M be a matrix whose entries are in L̃. Then

rank(M) ≥ 1

2
rstr(M).

Therefore, from this point of view, half of Conjecture 1.15 on algebraic indepen-
dence of logarithms is now proved!

The proof of this result rests on the so-called Linear Subgroup Theorem (see § 1.5
below and Chap. 11). Further related results are given in Roy’s papers, especially
[Roy 1992c] where he answers a question of J-J. Sansuc on the density of finitely
generated subgroups in the multiplicative group k× of a number field k for the
canonical embedding into (k ⊗Q R)×.
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1.5 Diophantine Approximation on Linear Algebraic Groups

The Linear Subgroup Theorem 11.5 is a statement which provides a lower bound for
the rank of matrices whose coefficients are either algebraic numbers or logarithms of
algebraic numbers. We do not state the precise result here (all necessary information
is provided in Chap. 11), but we only give some examples.

Let d0, d1, `0 and `1 be nonnegative integers. Define d = d0 + d1, ` = `0 + `1, and
assume d > 0 and ` > 0. Consider the d × ` matrix

M =

(B0 B1

B2 L

)
=




β11 · · · β1`0 β1,`0+1 · · · β1`
...

. . .
...

...
. . .

...
βd01 · · · βd0`0 βd0,`0+1 · · · βd0`

βd0+1,1 · · · βd0+1,`0 λ11 · · · λ1`1

...
. . .

...
...

. . .
...

βd1 · · · βd`0 λd11 · · · λd1`1




where each of the three matrices B0, B1 and B2 has algebraic entries, while the matrix
L has entries in L.

Under suitable assumptions, the following lower bound holds:

rank(M) ≥ d1`1 + d1`0 + d0`1

d1 + `1
·

This estimate is especially interesting when the right hand side is > d − 1, since in
this case the conclusion can be written: rank(M) = d. This happens when

`1 ≥ d1(d − `0 − 1) + 1.

Two important examples, as we shall see shortly, are given by:
a) `0 = d − 1 and `1 = 1
and
b) d0 = d − 1, d1 = 1 and `0 + `1 ≥ d.

A connection with Baker’s Theorem 1.6 on non-vanishing of linear combinations
of logarithms of algebraic numbers

β0 + β1λ1 + · · · + βn−1λn−1 − λn

arises from the following observation:

det


 In

X1
...

Xn
Y1 · · · Yn T


 = T − X1Y1 − · · · − XnYn.

Hence, in case a), one can choose



              

20 1. Introduction and Historical Survey




In

1
λ1
...

λn−1
β0 β1 · · · βn−1 λn




(with d = n + 1, d0 = 1, d1 = d − 1, `0 = d − 1, `1 = 1), while the following matrix
belongs to case b): 


In

β0

β1
...

βn−1
1 λ1 · · · λn−1 λn


 ,

(with d = n + 1, d0 = d − 1, d1 = 1, `0 = 1, `1 = d − 1).
For a homogeneous linear combination of only two logarithms βλ1−λ2, example

a) with `1 = 1 corresponds to Gel’fond’s solution of Hilbert’s seventh problem, while
example b) with d1 = 1 corresponds to Schneider’s proof of Theorem 1.4. The relation
between these two solutions is merely a transposition of the matrices; this duality will
be introduced and studied in § 13.7, in connection with the Fourier-Borel transform.

This shows that transcendence results, like the theorems of Hermite-Lindemann,
Gel’fond-Schneider, Baker, or the six exponentials Theorem, can be formulated as
lower bounds for the rank of a matrix like M. A quantitative estimate of diophantine
approximation is obtained from an effective version of the Linear Subgroup Theorem
as follows. We start from a matrix as above

M =

(
B0 B1

B2 L

) }d0

}d1

︸︷︷︸ ︸︷︷︸
`0 `1

,

where B0, B1, B2 are matrices with algebraic entries, while the entries of L are in L.
A result of diophantine approximation (see Chap. 13) will be a lower bound for the
distance between such a matrix M and a matrix with complex entries of low rank.

Therefore we consider another matrix, with complex entries, of the same size:

M′ =

(B′0 B′1

B′2 L′

)

If the transcendence proof yields rank(M) > r , and if the matrix M′ has rank at
most r , then one can produce an explicit lower bound for the distance between the
two matrices. Such a lower bound will depend on the parameters d0, d1, `0, `1, as
well as on the rank of M′. The explicit estimate (Theorem 13.1) depends also on the
heights of the algebraic numbers βi j and αi j = eλi j , on the degree of the number field
generated by these d` algebraic numbers, and on the absolute values of the λi j .

In the simplest case of square d × d matrices where M′ is only supposed to be of
rank at most d− 1, a lower bound for the distance between M and M′ is equivalent to
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an estimate from below for the determinant of M. One obtains in this way effective
versions of Baker’s Theorem 1.6 (see § 14.4).

Finally, we point out that this type of result can be used to produce results of
algebraic independence (see Chap. 15).

Exercises

Exercise 1.1.
a) Let z1 and z2 be two complex numbers. Denote by xi = Re(zi ) the real part of zi (i = 1, 2).
Check

|ez1 − ez2 | ≤ |z1 − z2|emax{x1,x2}.

Hint. One solution is to check, for x = Re(z),
∣∣∣∣
∫ 1

0
et zdt

∣∣∣∣ ≤
∫ 1

0
et x dt.

Another solution starts from
|ez − 1| ≤ e|z| − 1.

Moreover, for r > 0 and |z1 − z2| ≤ r , check

|ez1 − ez2 | ≤ |z1 − z2| e
r − 1

r
emin{x1,x2}.

b) For any 0 ≤ θ < 1, the condition |z−1| ≤ θ implies, for the principal value of the complex
logarithm,

| log z| ≤ 1

1− θ |z − 1| .

Hint. Check that, for any t and ϑ in R satisfying t ≤ ϑ < 1, the following upper bound holds:

| log(1− t)| ≤ |t |
1− ϑ ·

c) Let ϑ ∈ R and v,w ∈ C satisfy

|we−v − 1| ≤ ϑ and 0 ≤ ϑ < 1.

Show that there exists λ ∈ C with eλ = w and

|λ− v| ≤ 1

1− ϑ |we−v − 1|.

Hint. Define λ = v + log(we−v) where log is the principal value of the logarithm.

d) For any 0 ≤ θ ≤ π , and z ∈ C satisfying |z| ≤ θ , check

|z| ≤ θ√
2− 2 cos θ

|ez − 1| .
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Hint. Check, for |z| = θ ≤ π ,
|ez − 1| ≥ |eiθ − 1|.

Exercise 1.2. Complete the proof of Lemma 1.8 by applying Dirichlet’s pigeonhole principle
to the points

b1 log a1 + · · · + bm log am, (0 ≤ bi < B, 1 ≤ i ≤ m)

which all lie in the interval [0,m B log A].

Hint. Check Bm−1 log 2 ≥ m log A and use Exercise 1.1.a. See also Lemma 4.11.

Exercise 1.3. Show that the statements (i), (ii) and (iii) in Lemma 1.7 are also equivalent to:

(iv) Let n be a nonnegative integer, λ1, . . . , λn+1 be elements of M, and β1, . . . , βn elements
of K . Assume λ1, . . . , λn are K -linearly independent and

β1λ1 + · · · + βnλn = λn+1.

Then β1, . . . , βn are all in k.
(v) The natural map M⊗k K → E , which extends the injection from M to E , is still injective.

Hint. Let (µi )i∈I be a basis of the k-vector space M, and let (γ j ) j∈J be a basis of the k-vector
space K . Then µi ⊗ γ j (i ∈ I , j ∈ J ) is a basis of M ⊗k K over k:

M ⊗k K =

{∑

i∈I

µi ⊗ βi ; βi ∈ K with supp(βi )i∈I finite

}

=

{∑

j∈J

λ j ⊗ γ j ; λ j ∈M with supp(λ j ) j∈J finite

}

=

{∑

i∈I

∑

j∈J

ci jµi ⊗ γ j ; ci j ∈ k with supp(ci j )i∈I, j∈J finite

}
,

where finite support means that all but finitely many elements vanish.
The map M ⊗k K → E is nothing but

∑

i∈I

µi ⊗ βi 7−→
∑

i∈I

µiβi ,
∑

j∈J

λ j ⊗ γ j 7−→
∑

j∈J

λ jγ j

as well as ∑

i∈I

∑

j∈J

ci jµi ⊗ γ j 7−→
∑

i∈I

∑

j∈J

ci jµiγ j .

Exercise 1.4. Let k ⊂ K be two fields.
a) Let V be a K -vector subspace of K d . Show that the following conditions are equivalent:

(i) V is intersection of hyperplanes which are defined by linear forms with coefficients in
k.

(ii) V has a basis whose elements belong to kd .
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(iii) There exists a surjective linear map K d −→ K r with kernel V whose matrix (in the
canonical bases) has coefficients in k.

Such a subspace V is called rational over k.
b) Again let V be a vector subspace of K d . Denote by πV the canonical map K d → K d/V.
Check dimk

(
πV (kd )

) ≥ dimK (K d/V). Show that equality holds if and only if V is rational
over k.
c) Let V be a K -vector space. A k-structure on V is a k-vector subspace V ′ of V such that
any basis of V ′ over k is a basis of V over K (see for instance [Roy 1995], § 1). In the case
where V is a vector subspace of K d , show that V ∩ kd is a k-structure on V if and only if V
is rational over k.

Exercise 1.5. Show that Baker’s homogeneous Theorem 1.5 is also equivalent to each of the
following assertions:

(i) Let d be a positive integer. Let W be a subspace of Cd which is rational over Q (see
Exercise 1.4) such that W ∩ Qd = 0. Then W ∩Ld = 0.

(ii) Let n be a positive integer and E a subset of Ln . The smallest (= intersection of all)
subspace of Cn rational over Q which contains E is rational over Q .

(iii) Let `, d be positive integers and λ1, . . . , λ` be Q-linearly independent elements in Ld .
Then λ1, . . . , λ` are Q-linearly independent.

(iv) Let d be a positive integer and W a subspace of Cd which is rational over Q . Then

W ∩Ld =
⋃

V

V ∩Ld ,

where V ranges over the vector subspaces of Cd which are rational overQ and contained
in W .

Hint. The implication (iii) ⇒ Theorem 1.5 is clear (take d = 1), and (iv) ⇒ (i) is easy (if
W ∩ Qd = 0 then the only vector subspace of Cd which is rational over Q and contained in
W is {0}).

For the proof of Theorem 1.5 ⇒ (i), write W as intersection of Q-rational hyperplanes.
For (λ1, . . . , λd ) ∈ W ∩ Ld , choose a basis of the Q-vector subspace of C spanned by
λ1, . . . , λd .

For the proof of (i)⇒ (ii), consider a hyperplane Z in Cn which is rational over Q and
contains E . Let β1z1 + · · · + βnzn = 0 be an equation of Z . Select a basis of the Q-vector
subspace of C spanned by β1, . . . , βn . Deduce from (i) that there exists a subspace W of Cn ,
rational over Q , with E ⊂ W ⊂ Z .

For (ii)⇒ (iii), transpose the matrix in Matd×`(L) whose columns vectors are λ1, . . . , λ`
and apply (ii) with n replaced by `.

Finally, assuming (ii), we deduce that for any W ⊂ Cd rational over Q , there exists
V ⊂ Cd rational over Q and contained in W such that

W ∩Ld = V ∩Ld ,

which is more precise than (iv).

Exercise 1.6. A consequence of Baker’s Theorem 1.6 is the transcendence of numbers like

∫ 1

0

dt

1 + t3
=

1

3

(
log 2 +

π√
3

)
·
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Let P and Q be two nonzero polynomials with algebraic coefficients and deg P < deg Q.
Assume Q has no multiple zero. Let γ be a contour in the complex plane, which is either
closed, or has endpoints which are algebraic or infinite, and such that the definite integral

∫

γ

P(z)

Q(z)
dz

exists and is not zero. Then this integral is a transcendental number.

Hint. See [V 1971].

Exercise 1.7. Assume that the four exponentials Conjecture 1.13 is true. Deduce that if z ∈ C
satisfies |z| ∈ Q and e2iπ z ∈ Q , then z ∈ Q .

See fig. 1.18: Diaz’ curve e2iπ z , |z| = 1. By the four exponentials Conjecture, apart from
z = ±1, no point on this curve is algebraic; see [Di 1997a] for further comments on this topic.

Exercise 1.8.
a) Let λ1, . . . , λn be elements of L and let P ∈ Q[X1, . . . , Xn] be a nonzero polynomial
with algebraic coefficients such that P(λ1, . . . , λn) = 0. Assume that the Conjecture 1.15 on
the algebraic independence of logarithms of algebraic numbers holds. Deduce that there is a
vector subspace V of Cn , rational over Q , which is contained in the set of zeroes of P , and
contains the point (λ1, . . . , λn).
b) Let C be a field with infinitely many elements, K a subfield of C and V a vector subspace
of C4, which is rational over K and contained in the hypersurface z1z4 = z2z3. Show that there
exists (a: b) ∈ P1(K ) such that V is included either in the plane

{
(z1, z2, z3, z4) ∈ C4; az1 = bz2, az3 = bz4

}

or in the plane {
(z1, z2, z3, z4) ∈ C4; az1 = bz3, az2 = bz4

}
.

c) Deduce the four exponentials Conjecture 1.13 from the Conjecture 1.15 on algebraic
independence of logarithms of algebraic numbers.

Exercise 1.9. Let K be a field, M ∈ Matd×`(K ) a d × ` matrix with entries in K and r a
positive integer. Check that the two following properties are equivalent.
(i) rank(M) ≤ r .
(ii) There exist a d × r matrix X ∈ Matd×r (K ) and a r × ` matrix Y ∈ Matr×`(K ) such that
M = XY.

Hint. Consider the linear map K ` → K d associated to M in the canonical bases of K ` and
K d respectively.

Exercise 1.10. The following result, due to N. I. Feldman who improved a previous estimate
of A. Baker, has been quoted in § 1.2.

Given positive integers a1, . . . , am , there exists a positive constant C such that, for any
tuple (b1, . . . , bm) in Zm for which

ab1
1 · · · abm

m 6= 1,



             

Exercises 25

we have
|ab1

1 · · · abm
m − 1| ≥ B−C

with B = max{2, |b1|, . . . , |bm |}.
Deduce from this estimate the following statement:

Given a finite set S of prime numbers, there exists a constant c > 0 such that, for any pair
(x, y) of integers composed only of prime in S and satisfying x > y ≥ 2, we have

x − y ≥ x(log x)−c.

Exercise 1.11. (This is a refinement, due to P. Philippon, of [P 1999b], § 3). For relatively
prime nonzero integers u, v with v > 0, define h(u/v) = log max{|u| , v} (see § 3.2). For a
positive integer n, denote by R(n) the radical of n:

R(n) =
∏

p|n
p.

a) Let η be a real number in the range 0 < η < 1/2 and let B be a positive integer. Assume
the following property is true:

• For any positive rational numbers a1 and a2, the inequality

∏

p∈S

|a1aB
2 + 1|p ≥ exp

{
−ηB

(
h(a1) + h(a2) +

∑

p∈S

log p
)}

holds with S =
{

p ; |a1aB
2 + 1|p < 1

}
.

Deduce:

• For any triple (a, b, c) of relatively prime positive integers with a + b = c, we have

c ≤ (R(abc)
)K

with K =
η

1− 2η
B2.

b) Let K > 1 be a real number. Assume:

• For any triple (a, b, c) of relatively prime positive integers satisfying a + b = c, the
inequality

c ≤ (R(abc)
)K

holds.

Deduce the following statement:

• For any positive rational numbers a1 and a2, we have

∏

p∈S

|a1aB
2 + 1|p ≥ exp

{
−K

(
h(a1) + h(a2) +

∑

p∈S

log p
)}

with S =
{

p ; |a1aB
2 + 1|p < 1

}
.

Hint.
a) Write the decomposition of a/b into product of prime factors:
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a

b
=
∏

p|ab

pep

with ep = vp(a/b) and define

βp =

{
[ep/B] if ep ≥ 0,
−[−ep/B] if ep ≤ 0, a1 =

∏

p|ab

pep−Bβp and a2 =
∏

p|ab

pβp

where [ · ] denotes the integral part. Use the relation

c =
∏

p|c
|c|−1

p =
∏

p

min
{
1, |a1aB

2 + 1|p
}−1

and check

h(a1) ≤ B log R(ab), h(a2) ≤ 1

B
log(ab) ≤ 2

B
log c

and ∑

p|c
log p ≤ log R(c) ≤ B log R(c).

b) Define a as the numerator of a1aB
2 , b as the denominator of a1aB

2 , c as the numerator of
a1aB

2 + 1 and check
log R(ab) ≤ h(a1) + h(a2).
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Table 1.18. Diaz’ curve e2iπ z , |z| = 1 (see Exercise 1.7).
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2. Transcendence Proofs in One Variable

The present chapter is an introduction to the method which will be developed in this
book. However, we consider here only functions of a single variable. Our aim is to
prove the theorems of Hermite-Lindemann and Gel’fond-Schneider by means of the
alternants or interpolation determinants of M. Laurent [Lau 1989]. The real case of
these two theorems (§§ 2.3 and 2.4) is easier, thanks to an estimate, due to G. Pólya
(Lemma 2.2), for the number of real zeroes of real exponential polynomials. For
the complex (i.e. general) case (§§ 2.5 and 2.6), another type of zero estimate, due
to Y. V. Nesterenko, will be used. In the first section we explain the method, and
in the second one we introduce a few auxiliary lemmas. It should be pointed out
that the proof of our transcendence criterion (Lemma 2.1, which rests on Liouville’s
inequality) will be given only in the next chapter.

2.1 Introduction to Transcendence Proofs

A general transcendence problem is the following: consider two sequences, the first
one is a sequence of entire functions of a single variable, say ϕ1, ϕ2, . . ., while the
second one is a sequence of complex numbers ζ1, ζ2, . . .. We want to prove (under
additional suitable assumptions!) that one at least of the numbers ϕλ(ζµ) (λ ≥ 1,
µ ≥ 1) is transcendental.

One can ask a related problem, which is also very important in transcendence
theory, if the numbers ζµ are not all distinct. In this case, we introduce derivatives
and replace ϕλ(ζµ) by (d/dz)σµϕλ(ζµ), where σµ is the number of n with 1 ≤ n < µ

and ζn = ζµ.
One main tool (Lemma 2.1) is a transcendence criterion which follows from Li-

ouville’s inequality. Roughly speaking, it says : given complex numbers θ1, . . . , θm , if
there exists a sequence of polynomials fN ∈ Z[X1, . . . ,Xm] such that fN (θ1, . . . , θm)
is very small but not zero, then one at least of the numbers θ1, . . . , θm is transcen-
dental.

Therefore our main goal will be to produce polynomials taking small nonzero
values at a given point (θ1, . . . , θm).

Let us give a few examples.

Example 1 (Theorem 1.2 of Hermite-Lindemann). Let β be a nonzero complex
number. Put α = eβ . We want to prove that one at least of the two numbers α, β is
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transcendental. We shall construct sequences of polynomials in Z[X,X′,Y] having
a small nonzero value at the point (α, α−1, β).

We start from the observation that the values of both functions z and ez at the point
β are polynomials in α and β. From the multiplication theorem which is satisfied by
the exponential function, namely esz = (ez)s for s ∈ Z, we deduce that the values
of these functions at the points sβ, s ∈ Z are polynomials in α, α−1 and β. Further,
the derivatives of any monomial in z and ez have the same property, as shown by the
differential equations they satisfy. For each set {τ, t, σ, s} of rational integers with
τ ≥ 0 and σ ≥ 0, we define a polynomial f (σ s)

τ t (X,X′,Y) ∈ Z[X,X′,Y] by

f (σ s)
τ t (X,X′,Y) =

min{τ,σ }∑

κ=0

σ !τ !

κ!(σ − κ)!(τ − κ)!
tσ−κsτ−κYτ−κXmax{ts,0}X′max{−ts,0}

,

so that (
d

dz

)σ (
zτ et z

)
(sβ) = f (σ s)

τ t (α, α−1, β).

We wish to produce a sequence of functions, and a sequence of values. For this
purpose we choose an ordering (τλ, tλ), λ ≥ 1, of N2, and we define

ϕλ(z) = zτλetλz .

Also we consider the points sβ, s ∈ Z, but we repeat each of them infinitely often as
follows: we choose an ordering (σµ, sµ) (µ ≥ 1) of N× Z and we define ζµ = sµβ.
Hence (

d

dz

)σµ
ϕλ(ζµ) =

(
d

dz

)σµ (
zτλetλz

)
(sµβ) ∈ Z[α, α−1, β].

We shall put these numbers into a square matrix and we shall prove that its determinant
has a small nonzero absolute value. This will enable us to produce the required
polynomial f as a determinant of a matrix whose entries are f (σ s)

τ t .

Example 2 (Theorem 1.4 of Gel’fond-Schneider with Gel’fond’s method). For
` ∈ C× and β ∈ C \ Q, define α1 = e`, α2 = e`β . The goal is to prove that one
at least of the three numbers α1, α2, β is transcendental. Hence we want to produce
polynomials with small nonzero absolute value at the point (α1, α

−1
1 , α2, α

−1
2 , β).

We denote by Z[α±1
1 , α±1

2 , β] the ring generated by these five numbers.
We consider the functions ez and eβz , as well as monomials in these functions

and their inverse, say et1z+t2βz , with (t1, t2) ∈ Z2. We take the derivatives of these
functions at the points s`, with s ∈ Z. All the values we get lie in Z[α±1

1 , α±1
2 , β],

namely

θ
(σ s)
t1t2 =

(
d

dz

)σ (
e(t1+t2β)z

)
(s`) = (t1 + t2β)σαt1s

1 α
t2s
2 .

Choose an ordering (t1λ, t2λ) (λ ≥ 1), ofZ2, as well as an ordering (σµ, sµ) (µ ≥ 1),
of N× Z, where the map µ 7→ σµ is non-decreasing. Define, for λ ≥ 1 and µ ≥ 1,
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ϕλ(z) = exp
(
(t1λ + t2λβ)z

)
and ζµ = sµ`.

The numbers (d/dz)σµϕλ(ζµ) = θ
(σµsµ)
t1λt2λ belong to Z[α±1

1 , α±1
1 , β]. Again we shall put

these numbers into a square matrix whose determinant is small and nonzero, and
this will give us a polynomial f ∈ Z[X1,X−1

1 ,X2,X−1
2 ,Y] such that | f (α1, α2, β)|

is small and nonzero.

Example 3 (Theorem of Gel’fond-Schneider with Schneider’s method). As in
Example 2 before, let ` be a nonzero complex number and β an irrational complex
number. Define α1 = e`, α2 = e`β . We consider the values of the functions z and e`z

(as well as monomials zτ et`z with integers (τ, t) ∈ N × Z) at the points s1 + s2β,
(s1, s2) ∈ Z2. For each (τ, t) ∈ N × Z, define φτ t = zτ et`z . Similarly, for each
(s1, s2) ∈ Z2, define ξs1s2 = s1 + s2β. Since β is irrational, the points ξs1s2 are pairwise
distinct. For rational integers τ , t , s1, s2 with τ ≥ 0, the value of the function φτ t at
the point ξs1s2 is nothing else than the number θ (τ t)

s1s2
of Example 2:

φτ t (ξs1s2 ) = (s1 + s2β)ταs1t
1 α

s2t
2 = θ (τ t)

s1s2
.

In order to reproduce the same notation as above, one needs to choose an ordering for
the set of (τ, t) ∈ N× Z, as well as an ordering for the set of (s1, s2) ∈ Z2, and then

one considers matrices
(
ϕλ(ζµ)

)
1≤λ,µ≤L

, where ϕλ(z) = φτλtλ and ζµ = s1µ + s2µβ.

In all the examples which will be considered in this volume, the functions ϕλ
will be exponential polynomials in one or several variables, i.e. linear combinations
of functions of the form

zτ1
1 · · · zτn

n exp(x1z1 + · · · + xnzn),

where τ1, . . . , τn are nonnegative integers, x1, . . . , xn complex numbers (these 2n
numbers depend on λ). The points ζµ which will be considered will be of the form
s1 y

1
+ · · ·+sm y

m
, where y

1
, . . . , y

m
are fixed (i.e. independent onµ) elements, while

s1, . . . , sm are rational integers which depend on µ.
Let us come back to the one dimensional case and consider all our numbers

γλµ =

(
d

dz

)σµ
ϕλ(ζµ) (λ ≥ 1, µ ≥ 1).

We express each of them as the value of a polynomial at a point (θ1, . . . , θm). Our
goal is to prove that one at least of θ1, . . . , θm is transcendental.

Our method of proof shall involve putting these numbers into a matrix and
then examining the determinant of submatrices of these matrices. We shall call the
determinant of a matrix of the form

(
ϕλ(ζµ)

)
1≤λ,µ≤L

,
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an alternant when no derivative is involved (the points ζµ are distinct, hence σµ = 0
for all µ), and use the term interpolation determinant when the matrix is of the form

(( d

dz

)σµ
ϕλ(ζµ)

)

1≤λ,µ≤L

.

We choose a large integer L (large enough to perform some computations which
arise during the proof). The easiest case is when one knows that the square L × L
matrix

M =



γ11 · · · γ1L

...
. . .

...
γL1 · · · γL L




is nonsingular. This will happen in each of the three above examples under the extra
assumption that β and ` are real numbers (see Lemma 2.2, as well as §§ 2.3 and 2.4
below). In this situation, let 1 be the (nonzero) determinant of M. As noticed by
M. Laurent, a nontrivial upper bound for |1| (Lemmas 2.5 and 2.8) can be derived
from Schwarz’ Lemma which gives a sharp upper bound for the modulus on a disc
of a function having a zero of high multiplicity at the origin (Lemma 2.4).

The number1 is the value at the point (θ1, . . . , θm) of a polynomial with integer
coefficients, and Lemma 2.1 will lead to the desired transcendence result.

Unfortunately there are so far rather few results like Lemma 2.2 which enable
us to show that the above square matrix is nonsingular. In the general situation, one
only knows that the matrix with L rows and infinitely many columns:



γ11 γ12 · · · γ1µ · · ·

...
...

. . .
...

...
γL1 γL2 · · · γLµ · · ·


 .

has maximal rank L . A zero estimate (which is sometimes called multiplicity estimate
when derivatives are there) is a statement which shows that the matrix

(
γλµ

)
1≤λ≤L

1≤µ≤L′

is of maximal rank L , for some L ′ bounded by cL , where c is some explicit (small)
constant (this constant is of course at least one. If c = 1, we are in the first simpler
situation). The estimates for the lower bound and the upper bound for the absolute
value of the determinant are then more or less the same as in the case where L ′ = L .
Zero estimates are known for exponential polynomials, and will be discussed later
(especially in Chap. 5 and 8).

We conclude this section with some remarks on the set of ζµ’s. We shall deal
with sets of points (say in Cn) of the form s1 y

1
+ · · · + sm y

m
, where y

1
, . . . , y

m
are

fixed, and s1, . . . , sm are rational integers. One needs to choose the range for each
s j (1 ≤ j ≤ m). The same will apply for the rational integers (t1, . . . , td ) related
to the functions e(t1x1+···+td xd )z . There are several ways of choosing this range. All
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of them involve selecting positive numbers S1, . . . , Sm . We can then use the range
0 ≤ s j < S j , or 0 ≤ s j ≤ S j , or else |s j | < S j , or finally |s j | ≤ S j . Which one
we choose does not really matter, and we shall select different options in different
proofs. Here our favorite will be the last option.

2.2 Auxiliary Lemmas

In this section we state three auxiliary lemmas: the first one (a transcendence criterion
which rests on Liouville’s inequality) is arithmetic, the second (zero estimate for
exponential polynomials) is a statement with an algebraic nature (even if Pólya’s
proof involves Rolle’s Theorem), and the last one (Schwarz’ Lemma) is analytic.

2.2.1 Transcendence Criterion

To begin with, we give a criterion for irrationality only. Let ϑ be a real number. The
following conditions are equivalent

(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ −
p

q

∣∣∣∣ <
ε

q
·

(iii) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <

∣∣∣∣ϑ −
p

q

∣∣∣∣ <
1

q Q
·

(iv) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ −
p

q

∣∣∣∣ <
1√
5q2
·

Here, we are interested only in (ii)⇒(i) (see [Sc 1980] for further comments on
these equivalences, and also § 15.1). Indeed if ϑ = a/b and p/q 6= ϑ , then aq − bp
is a nonzero rational integer, hence has absolute value ≥ 1 and consequently

∣∣∣∣ϑ −
p

q

∣∣∣∣ ≥
1

bq
·

Therefore, in order to prove that some number is irrational, it is sufficient (and
in fact also necessary) to produce good rational approximations. This criterion for
irrationality extends into a transcendence criterion (cf. [FNe 1998], Chap. 2, § 1.5).
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Instead of considering polynomials of degree 1 like qX− p, one needs also to allow
the degree to be large.

Lemma 2.1. Let θ1, . . . , θm be complex numbers. Assume that for any κ > 0 there
exists a polynomial f ∈ Z[X1, . . . ,Xm] and a positive integer T with

deg f + log H( f ) ≤ T

and
0 < | f (θ1, . . . , θm)| ≤ e−κT .

Then one at least of the numbers θ1, . . . , θm is transcendental.

As mentioned earlier, a proof of Lemma 2.1 will be given in § 3.5 (another proof
is proposed in Exercise 2.2; see also § 15.1). Here is a sample of other references
for a proof: [G 1952], Chap. I § 2, Lemma II; [L 1966], Chap. I; [W 1974], Chap. I
§ 2; [L 1978], Chap. 7 § 2; [W 1979a], Lemma 1.1.3; [F 1982], Lemma 9.2. See also
[FNe 1998], Chap. I, § 1.7, Th. 1.5.

Remark. Let θ1, . . . , θk be nonzero complex numbers and θk+1, . . . , θ` be complex
numbers. We shall apply Lemma 2.1 with m = 2k + (`− k) = k + ` to the m-tuple

(
θ1, . . . , θk, θ

−1
1 , . . . , θ−1

k , θk+1, . . . , θ`
)
.

Notation. The ring Z[X±1
1 , . . . ,X±1

k ,Y1, . . . ,Y`−k], generated by

X1, . . . ,Xk,X−1
1 , . . . ,X−1

k ,Y1, . . . ,Y`−k,

is the image, in the field of rational functions Q(X1, . . . ,Xk,Y1, . . . ,Y`−k), of the
ring

Z[X1, . . . ,Xk,X′1, . . . ,X′k,Y1, . . . ,Y`−k],

under the obvious mapping X′i 7→ 1/Xi .
For f ∈ Z[X±1

1 , . . . ,X±1
k ,Y1, . . . ,Y`−k], we write

deg f ≤ D and H( f ) ≤ H

if f is the image of a polynomial

F ∈ Z[X1, . . . ,Xk,X′1, . . . ,X′k,Y1, . . . ,Y`−k]

for which deg F ≤ D and H(F) ≤ H . We also denote by f (θ1, . . . , θ`) the number
F
(
θ1, . . . , θk, θ

−1
1 , . . . , θ−1

k , θk+1, . . . , θ`
)
.
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2.2.2 Zero Estimate

The next lemma is our first and simplest example of a zero estimate ; it is due to
G. Pólya. This result was already used in a similar context by A. O. Gel’fond and
Yu. V. Linnik in Chap. 12 of [GLin 1962] (see also problem 75, Part V of Chap. 1 in
[PoSz 1976]).

Lemma 2.2. Let a1, . . . , an be nonzero polynomials in R[X ] of degrees d1, . . . , dn ,
and let w1, . . . , wn be pairwise distinct real numbers. Then the real function of one
real variable

F(x) =
n∑

i=1

ai (x)ewi x

has at most d1 + · · · + dn + n − 1 real zeroes.

Remark. A set { f1, . . . , fm} of C∞ real functions on a real interval [a, b] is called
a Chebishev system on [a, b] if each nonzero element in the span over R has at most
m − 1 zeroes. Therefore Lemma 2.2 states that the system

{
x j ewi x ; 0 ≤ j ≤ di , 1 ≤ i ≤ n

}

is a Chebishev system on R.

In Lemma 2.2 the zeroes are counted with multiplicities. For our application to
Schneider’s method in § 2.3, we need only an upper bound for the number of distinct
real zeroes, but for Gel’fond’s method in § 2.4, we have to take multiplicities into
account. It is also interesting to remark that simple arguments from linear algebra
show that the upper bound in Lemma 2.2 is best possible (see Exercise 2.3). Further
related exercises are given in Chap. 6 of [W 1974] (in particular Exercise 6.1.c
of [W 1974], where interpolation determinants are explicitly computed and further
references are provided to N. I. Fel’dman’s papers).

Proof. We first prove the following result. Let N be a positive integer. If a continu-
ously differentiable real function F of one real variable has at least N real zeroes
(counting multiplicities), then its derivative F ′ has at least N − 1 real zeroes.

Indeed, let x1, . . . , xk (with k ≥ 1) be pairwise distinct real zeroes of F , in
increasing order: x1 < x2 < · · · < xk . Let n1, . . . , nk be positive integers with
n1 + . . .+ nk ≥ N and assume that, for each i , xi is a zero of F of multiplicity at least
ni . Then xi is a zero of F ′ with multiplicity at least ni − 1 (1 ≤ i ≤ k). Moreover,
since F(xi ) = F(xi+1) for 1 ≤ i ≤ k − 1, it follows from Rolle’s Theorem that F ′
has at least one zero in the open interval (xi , xi+1). Therefore F ′ has at least

(n1 − 1) + · · · + (nk − 1) + (k − 1) ≥ N − 1

real zeroes. This proves the preliminary statement.

We now prove Lemma 2.2 by induction on the integer k := d1 + · · · + dn + n− 1.
In the case k = 0, we have n = 1 and d1 = 0, so F(x) = a1ew1x and the result is
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obvious. Assume k ≥ 1. After multiplication of F by e−wn x , we may assumewn = 0.
Hence wi 6= 0 for 1 ≤ i < n. Let N be a positive integer such that F has at least
N real zeros. Then, as we have seen, its derivative F ′ has at least N − 1 real zeros.
However, since wn = 0, we have

F ′(x) =
n−1∑

i=1

ãi (x)ewi x +
d

dx
an(x)

where

ãi = wi ai +
d

dx
ai

is a polynomial of degree di for 1 ≤ i < n, while (d/dx)an is of degree dn − 1
(we consider here that the zero polynomial is of degree −1). One uses the induction
hypothesis which yields N − 1 ≤ d1 + · · · + dn + n − 2, hence N is bounded as
claimed. ¤

We will deduce from Lemma 2.2 that certain determinants are not zero.

Corollary 2.3. Let w1, . . . , wn be pairwise distinct real numbers, x1, . . . , xm also
pairwise distinct real numbers, and δ1, . . . , δn , κ1, . . . , κm nonnegative integers, with
δ1 + · · ·+ δn = κ1 + · · ·+κm . Choose any ordering for the pairs ( j, ν) with 0 ≤ j < δν
and 1 ≤ ν ≤ n, and any ordering for the pairs (k, µ) with 0 ≤ k < κµ and
1 ≤ µ ≤ m. Then the determinant

det

(( d

dx

)k(
x j ewν x

)
(xµ)

)

( j,ν)
(k,µ)

is not zero.

Proof. We have to show that if aν j are real numbers such that

n∑

ν=1

δν−1∑

j=0

aν j

(
d

dx

)k (
x j ewν x

)
(xµ) = 0

for 0 ≤ k < κµ and 1 ≤ µ ≤ m, then aν j = 0 for all ν, j . This system of equations
means that the function

F(x) =
n∑

ν=1

δν−1∑

j=0

aν j x
j ewν x

has a zero at xµ of multiplicity at least κµ, for 1 ≤ µ ≤ m, and hence the total
number of zeroes of F is at least κ1 + · · · + κm . The polynomial

aν(x) =
δν−1∑

j=0

aν j x
j
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either is 0 or is of degree dν ≤ δν −1, with d1 + · · ·+ dn + n−1 ≤ δ1 + · · ·+ δn−1 <
κ1 + · · · + κm . From Lemma 2.2 one concludes a1 = · · · = an = 0, hence aν j = 0 for
all ν, j . ¤

Remark. For exponential polynomials in a single variable, one can use analytic
arguments and also derive a zero estimate in the complex case (cf. Exercise 2.9).

2.2.3 Schwarz’ Lemma

Our main tool from complex analysis will be Schwarz’ Lemma. In this chapter we
need only the easiest version of it, namely for analytic functions of a single variable
with a single (multiple) zero.

Lemma 2.4. Let T be a nonnegative integer, r and R real numbers satisfying
0 < r ≤ R and 9 a function of one complex variable which is an analytic in
the disc |z| ≤ R. Assume 9 has a zero of multiplicity at least T at 0. Then

|9|r ≤
(

R

r

)−T

|9|R .

Proof. The function 8(z) = z−T9(z) is analytic in the disc |z| ≤ R. Since r ≤ R,
we have |8|r ≤ |8|R . By the maximum modulus principle we deduce

|8|r = r−T |9|r and |8|R = R−T |9|R .
Lemma 2.4 follows. ¤

2.3 Schneider’s Method with Alternants – Real Case

We give here the first proof of Theorem 1.4 of Gel’fond-Schneider in the real case
(this is example 3 in § 2.1).

2.3.1 Upper Bound for an Alternant – One Variable

From Schwarz’ Lemma 2.4 we deduce the following upper bound.

Lemma 2.5. Let r and R be two real numbers with 0 < r ≤ R, ϕ1, . . . , ϕL be
functions of one complex variable, which are analytic in the disc |z| ≤ R of C, and
let ζ1, . . . , ζL belong to the disc |z| ≤ r . Then the absolute value of the determinant
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1 = det



ϕ1(ζ1) . . . ϕL (ζ1)

...
. . .

...
ϕ1(ζL ) . . . ϕL (ζL )




is bounded from above by

|1| ≤
(

R

r

)−L(L−1)/2

L!
L∏

λ=1

|ϕλ|R . (2.6)

Notice also that the conclusion is trivial in the case R = r .

Note. This lemma will enable us to prove that certain determinants have a small
absolute value. The main term on the right-hand side of (2.6) will be the first one:
L will be large and R/r will be bounded away from 1 (say R/r ≥ e), hence
(R/r )−L(L−1)/2 will be small. On the other hand, we shall check in the applications
that the quantity L!

∏L
λ=1 |ϕλ|R is not too big, and in fact is much smaller than

(R/r )L(L−1)/2.
The left-hand side of (2.6) does not depend on R. The estimate is trivial in each

of the following three cases:
1) for R = r ,
2) if 1 = 0,
3) if ϕ1, . . . , ϕL are all polynomials of degrees 0, 1, . . . , L − 1.

Otherwise, for R→∞ the right-hand side is unbounded. Hence there is at least
one (and most often only one) optimal value for R which minimizes the right-hand
side of (2.6).

Proof of Lemma 2.5. The determinant 9(ζ ) of the matrix
(
ϕλ(ζµζ )

)
1≤λ,µ≤L

is a

function of one complex variable which is analytic in the disc |ζ | ≤ R/r .

a) We first prove that 9 has a zero of multiplicity at least L(L − 1)/2 at the origin.
Since the determinant is multi-linear and expressing each ϕλ in terms of its Taylor

series, the problem can be reduced to the case whereϕλ(z) = znλ for some nonnegative
integer nλ and each 1 ≤ λ ≤ L . In this case,

9(ζ ) = ζ n1+···+nL det
(
ζ nλ
µ

)
1≤λ,µ≤L

.

If 9(ζ ) does not vanish identically, then the nλ are pairwise distinct, and the sum
n1 + · · · + nL is at least 0 + 1 + · · · + (L − 1) = L(L − 1)/2. Hence we get the factor
ζ L(L−1)/2 which we wanted.

The fact that 9(ζ ) vanishes at 0 with multiplicity at least L(L − 1)/2 can also
be checked by taking derivatives of 9: applying Leibniz’ rule on differentiating
products yields by induction on k

(
d

dζ

)k

9(ζ ) =
∑

κ1+···+κL =k

k!

κ1! · · · κL !
det

(( d

dζ

)κµ
ϕλ(ζ ζµ)

)

1≤λ,µ≤L

.
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At the point ζ = 0, if one at least of the determinants at the right-hand side is not
zero, then the numbers κµ are pairwise distinct, hence the integer k = κ1 + · · · + κL

is at least L(L − 1)/2.

b) We now use Lemma 2.4 with T = L(L − 1)/2, with r replaced by 1 and R by
R/r :

|1| = |9(1)| ≤
(

R

r

)−L(L−1)/2

|9|R/r .

The upper bound

|9|R/r ≤ L!
L∏

λ=1

|ϕλ|R,

which we get by expanding the determinant and by using a trivial upper bound for
each of the L! terms, yields the desired conclusion. ¤

Remark. Using Hadamard’s inequality (see the proof of Lemma 3.25) one may
replace L! by L L/2.

2.3.2 First Proof of the Real Case of Theorem 1.4 (Gel’fond-Schneider)

Proposition 2.7. Let α1 be a positive real number with α1 6= 1, and β an irrational
real number. Define α2 = αβ1 = exp(β logα1), where logα1 is the real value of the
logarithm of α1, and

c1 = (2 + |β|)(1 + | logα1|).
Then for any rational integers L , T0, T1, S and any real number E satisfying

T0 ≥ 2, T1 ≥ 2, S ≥ 3, E ≥ e and L = (T0 + 1)(2T1 + 1) = (2S + 1)2,

there exists a polynomial f ∈ Z[X±1
1 ,X±1

2 ,Y] satisfying

deg f ≤ L(T0 + 2T1S), H( f ) ≤ L!(2S)LT0

and
0 < | f (α1, α2, β)| ≤ E−L2/2(SE)c1T0 Lec1T1 SE L .

Consequence. Given α1, α2 and β with α2 = αβ1 as in Proposition 2.7, we wish to
deduce that one at least of these three numbers is transcendental. By Lemma 2.1, it is
sufficient to check that for any κ > 0, we can choose the parameters in Proposition
2.7 so that

κL
(
T0 + 2T1S + log L + T0 log(2S)

)
+ c1L

(
T0 log(SE) + T1SE

) ≤ 1

2
L2 log E .

There are plenty of admissible values for these parameters L , T0, T1, S, E (and
the explicit value of the constant c1 is just irrelevant). For instance one can take a
sufficiently large odd integer N , and choose
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L = N 8, T0 = N 6 − 1,

T1 =
1

2
(N 2 − 1) S =

1

2
(N 4 − 1) and E = e.

With this choice of parameters, we have, for sufficiently large N ,

deg f + log H( f ) ≤ 5N 14 log N ,

while

log | f (α1, α2, β)| ≤ −1

3
N 16.

Given κ > 0, we take N sufficiently large so that these estimates are valid, and also
so that N 2 > 15κ log N . This completes the proof of Theorem 1.4 in the real case.

Another choice is the following: given κ > 0, take for T1 a fixed integer≥ κ+2c1,
and choose for L a much larger integer (which tends to infinity), which is an odd
square divisible by 2T1 + 1. Then we put

T0 =
L

2T1 + 1
− 1, S =

1

2
(
√

L − 1) and E =
√

L.

As L →∞, we have

deg f + log H( f ) ≤ 1

2(2T1 + 1)
L2 log L + O(L2)

and

log | f (α1, α2, β)| ≤
(
−1

4
+

c1

2T1 + 1

)
L2 log L + O(L2).

¤

Proof of Proposition 2.7.

Step 1. Construction of 1
We choose any ordering {ϕ1, . . . , ϕL} for the set of (T0 + 1)(2T1 + 1) functions

φτ t (z) = zταt z
1 , (0 ≤ τ ≤ T0, |t | ≤ T1),

and any ordering {ζ1, . . . , ζL} for the set of (2S + 1)2 real numbers

ξs1s2 = s1 + s2β,
(
(s1, s2) ∈ Z2, −S ≤ s1, s2 ≤ S

)
.

Hence
φτ t (ξs1s2 ) = (s1 + s2β)τ

(
α

s1
1 α

s2
2

)t
.

We put the L2 numbersϕλ(ζµ) into a square L×L matrix, and we take the determinant

1 = det
(
ϕλ(ζµ)

)
1≤λ,µ≤L

. It will also be convenient to write:

1 = det

(
(s1 + s2β)τ

(
α

s1
1 α

s2
2

)t
)

(τ,t)
(s1 ,s2)

,
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with 0 ≤ τ ≤ T0, |t | ≤ T1, and −S ≤ s1, s2 ≤ S. This means that we do not write
explicitly the ordering which has been chosen for the rows and columns. A change
in these orderings will introduce a factor ±1, which has no effect on the absolute
value of the determinant.

We shall show that 1 is not zero by means of the zero estimate Lemma 2.2 and
produce an upper bound for |1| using Lemma 2.5.

Step 2. Consequence of the zero estimate
We prove that 1 does not vanish, which means that the matrix

(
ϕλ(ζµ)

)

1≤λ,µ≤L

=

(
(s1 + s2β)τ

(
α

s1+s2β
1

)t
)

(τ,t)
(s1 ,s2)

,

with
0 ≤ τ ≤ T0, −T1 ≤ t ≤ T1, −S ≤ s1, s2 ≤ S

has rank L . Indeed we may apply Corollary 2.3 with n = 2T1 + 1, m = (2S + 1)2,
δ1 = · · · = δn = T0 + 1, κ1 = · · · = κm = 1,

{w1, . . . , wn} = {t logα1 ; −T1 ≤ t ≤ T1},
{x1, . . . , xm} = {s1 + s2β ; −S ≤ s1, s2 ≤ S},

Since logα1 is not zero, the points w1, . . . , wn are pairwise distinct, and since β is
irrational, the points x1, . . . , xm are pairwise distinct.

Step 3. Bound for the Degree and Height
For any quadruple (τ, t, s1, s2) of rational integers with

0 ≤ τ ≤ T0, −T1 ≤ t ≤ T1, −S ≤ s1, s2 ≤ S

define
f (s1s2)
τ t = (s1 + s2Y)τ

(
Xs1

1 Xs2
2

)t ∈ Z[X±1
1 ,X±1

2 ,Y],

so that
φτ t (ξs1s2 ) = f (s1s2)

τ t (α1, α2, β).

We have
deg f (s1s2)

τ t ≤ T0 + 2T1S, H( f (s1s2)
τ t ) ≤ (2S)T0 .

Denote by f the determinant of the matrix
(

f (s1s2)
τ t

)

(τ,t)
(s1 ,s2)

,

with 0 ≤ τ ≤ T0, −T1 ≤ t ≤ T1, and with −S ≤ s1, s2 ≤ S. Hence

1 = f (α1, α2, β).

and f ∈ Z[X±1
1 ,X±1

2 ,Y] can be written
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f =
∑

σ

ε(σ )
T0∏

τ=0

T1∏

t=−T1

f (σ (τ,t))
τ t ,

where σ runs over the set of bijective mappings from (τ, t) to (s1, s2) and ε(σ ) ∈
{−1,+1}. The degree of f is bounded by

deg f ≤
T0∑

τ=0

T1∑

t=−T1

max
−S≤s1,s2≤S

deg f (s1s2)
τ t ≤ L(T0 + 2T1S).

We also need an upper bound for H( f ). In fact it is easier to work with the length
L( f ), which is defined as the sum of the absolute values of the coefficients of f .
Indeed the relations

L( f + g) ≤ L( f ) + L(g) and L( f g) ≤ L( f )L(g)

show that the length L(1) of a L × L determinant det
(

fλµ
)

is bounded by

L(1) ≤ L! max
1≤λ,µ≤L

L( fλµ)L .

Here we have
L( f (s1s2)

τ t ) ≤ (|s1| + |s2|)τ ≤ (2S)T0 ,

hence
H( f ) ≤ L( f ) ≤ L!(2S)LT0 .

Step 4. Upper bound for |1|
We are going to use Lemma 2.5 with r = S(1 + |β|) and R = Er . The choice of

r is the obvious one: it is the radius of a disc containing all points ζ1, . . . , ζL (here,
in the real case, it is the length of an interval centered at the origin which contains
these points). We bound |φτ t (z)| by |z|τ e|t z logα1|, hence

max
1≤λ≤L

|ϕλ|R ≤ RT0 eT1 R| logα1|

and from Lemma 2.5 we deduce

|1| ≤ E−L(L−1)/2L!RLT0 eLT1 R| logα1|.

We replace r and R by their values. From the crude inequalities

log L < T0 + T1 < T0 log S + T1SE

1

2
log E < T0 log E and log(1 + |β|) ≤ |β| log(SE)

we deduce

LT0 log R + LT1 R| logα1| ≤ c1L
(
T0 log(SE) + T1SE

)
.

This completes the proof of Proposition 2.7. ¤
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Remark. A sharper estimate can easily be achieved for the degree: since

deg f (s1s2)
τ t ≤ T0 + 2|t |S

and since
T1∑

t=−T1

|t | = T1(T1 + 1) <
1

2
(T1 + 1)(2T1 + 1)

we can replace the estimate for the degree in Proposition 2.7 by

deg f ≤ LT0 + L(T1 + 1)S.

We shall not use this remark in the present chapter but only later (see for instance
Exercise 3.8).

2.4 Gel’fond’s Method with Interpolation Determinants – Real
Case

We first give a proof of the real case of Theorem 1.2 (Hermite-Lindemann), and then
we give a second proof of Theorem 1.4 (Gel’fond-Schneider) in the real case.

2.4.1 Upper Bound for an Interpolation Determinant – One Variable

We generalize Lemma 2.5 by introducing derivatives.

Lemma 2.8. Let ϕ1, . . . , ϕL be entire functions in C, ζ1, . . . , ζL be elements of C,
σ1, . . . , σL nonnegative integers, and 0 < r ≤ R be real numbers, with |ζµ| ≤ r
(1 ≤ µ ≤ L). Then the absolute value of the determinant

1 = det

(( d

dz

)σµ
ϕλ(ζµ)

)

1≤λ,µ≤L

is bounded from above by

|1| ≤
(

R

r

)−L(L−1)/2+σ1+···+σL

L!
L∏

λ=1

max
1≤µ≤L

sup
|z|=R

∣∣∣∣
(

d

dz

)σµ
ϕλ(z)

∣∣∣∣ .

Proof. We claim that the function of one variable

9(z) = det

((( d

dz

)σµ
ϕλ

)
(zζµ)

)

1≤λ,µ≤L

has a zero at the origin of multiplicity at least
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1

2
L(L − 1)− σ1 − · · · − σL .

By multilinearity we reduce the proof of this claim to the special case ϕλ(z) = znλ

for some nλ ∈ N (1 ≤ λ ≤ L). In this special case we have

9(z)zσ1+···+σL = zn1+···+nL det

(
σµ!

(
nλ
σµ

)
ζ nλ
µ

)

1≤λ,µ≤L

where the binomial coefficient
(nλ
σµ

)
means 0 if σµ > nλ. If the right-hand side is

not identically zero, then the numbers n1, . . . , nL are pairwise distinct, and then the
right-hand side has a zero at the origin of multiplicity n1 + · · · + nL ≥ L(L − 1)/2.
Our claim on the order of vanishing of 9 at the origin easily follows.

Here again, like in the proof of Lemma 2.5, one can also check directly that the
first L(L − 1)/2− σ1 − · · · − σL derivatives of 9 vanish at 0: if (κ1, . . . , κL ) ∈ NL

is such that

det

(( d

dz

)σµ+κµ
ϕλ(0)

)

1≤λ,µ≤L

is not zero, then σ1 + κ1 + · · · + σL + κL ≥ L(L − 1)/2.
We conclude the proof of Lemma 2.8 by means of the Schwarz’ Lemma 2.4, just

as in Lemma 2.5. ¤

Remark. One could apply Cauchy’s inequalities and bound the number

sup
|z|=R

∣∣(d/dz)σµϕλ(z)
∣∣

by σµ!|ϕλ|R+1, for instance. In our applications a direct computation will be as easy.

2.4.2 Proof of the Real Case of the Theorem of Hermite-Lindemann

We develop here the first example of § 2.1, in the real case.

Proposition 2.9. Let β be a nonzero real number. Define α = eβ and

c2 = max(|β|, |β|−1) + 6.

Let T0, T1, S0, S1, L be rational integers which are all greater than 1, such that

L = (T0 + 1)(2T1 + 1) = (S0 + 1)(2S1 + 1).

Further let E ≥ e be a real number. Then there exists a polynomial f ∈ Z[X±1,Y]
such that

deg f ≤ L(T0 + T1S1), H( f ) ≤ L!(T0 + T1)L S0 SLT0
1

and
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0 < | f (α, β)| ≤ E−L2/2
(
(T0 + T1)E

)S0 L
(S1 E)c2T0 Lec2T1 S1 E L .

Consequence. Let us deduce from Lemma 2.1 that under the assumptions of
Proposition 2.9 one at least of the two numbers α, β is transcendental. Let κ be a
positive real number. By Lemma 2.1, it is sufficient to show that there exist parameters
T0, T1, S0, S1, L , E satisfying the requirements of Proposition 2.9, and also such that

1

2
L log E > κ

(
T0 + T1S1 + log L + S0 log(T0 + T1) + T0 log S1

)

+c2
(
S0 log

(
(T0 + T1)E

)
+ T0 log(S1 E) + T1S1 E

)
.

We give two sets of admissible choices for these parameters.

a) Let N be a sufficiently large odd integer. Choose

T0 = S0 = N 2 − 1, T1 = S1 =
1

2
(N − 1), L = N 3 and E = e.

In this case
deg f + log H( f ) ≤ 4N 5 log N

while

log | f (α, β)| ≤ −1

3
N 6.

b) Choose for S1 any integer with S1 > 2c2 + κ . Next take for N a sufficiently large
odd integer, which is a multiple of 2S1 + 1. Define

T0 = N − 1, T1 =
1

2
(N − 1), L = N 2,

S0 + 1 =
L

2S1 + 1
and E =

√
L.

Now

deg f + log H( f ) ≤ 1

2S1 + 1
N 4 log N + O(N 4)

and

log | f (α, β)| ≤
(
−1

2
+

2c2

2S1 + 1

)
N 4 log N + O(N 4).

¤

Proof of Proposition 2.9. We start from the fact that the values, at the points sβ
(s ∈ Z), of the derivatives of any monomial in the two functions z and ez belong to
the ring Z[α±1, β]: for τ , t , σ and s rational integers with τ ≥ 0 and σ ≥ 0, we have

γ
(σ s)
τ t =

(
d

dz

)σ (
zτ et z

)
(sβ) ∈ Z[α±1, β].

We build a matrix out of these numbers:
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M =
(
γ

(σ s)
τ t

)
(τ,t)
(σ,s)

where the index of rows is, say, (τ, t), while the index of columns is (σ, s) (any
ordering of these pairs will do). We want to give an upper bound for the rank of this
matrix. Here, in the real case, the matrix M will be square, we shall just prove that
the determinant of M is not zero, and then apply Lemma 2.2 to get the conclusion.

We consider the L × L determinant

1 = det

(( d

dz

)σ (
zτ et z

)
(sβ)

)

(τ,t)
(σ,s)

where (τ, t) is the index of rows (0 ≤ τ ≤ T0, −T1 ≤ t ≤ T1), while (σ, s) is the
index of columns (0 ≤ σ ≤ S0, −S1 ≤ s ≤ S1).

We use Corollary 2.3 with

n = 2T1 + 1, δ1 = · · · = δn = T0 + 1,

{w1, . . . , wn} = {−T1,−T1 + 1, . . . ,−1, 0, 1, . . . , T1},
{x1, . . . , xm} = {0,±β, . . . ,±S1β}, κ1 = · · · = κm = S0 + 1.

Since β 6= 0, the xi ’s are pairwise distinct and hence the determinant

1 = det

(( d

dz

)σ (
zτ et z

)
(sβ)

)

(τ,t)
(σ,s)

with

{
0 ≤ τ ≤ T0, |t | ≤ T1,

0 ≤ σ ≤ S0, |s| ≤ S1

is not zero.
We write 1 = f (α, β), where f is a polynomial in Z[X±1,Y], which can be

explicitly written as

f = det
(

f (σ s)
τ t

)
(τ,t)
(σ,s)

,

with

f (σ s)
τ t (X±1,Y) =

min{τ,σ }∑

κ=0

σ !τ !

κ!(σ − κ)!(τ − κ)!
tσ−κsτ−κXtsYτ−κ .

For each polynomial f (σ s)
τ t ∈ Z[X±1,Y] we have

deg f (σ s)
τ t ≤ T0 + T1S1 and H( f (σ s)

τ t ) ≤ (T0 + T1)S0 ST0
1 .

We deduce

deg f ≤ L(T0 + T1S1) and H( f ) ≤ L!(T0 + T1)L S0 SLT0
1 .

We use Lemma 2.8 with r = max{1, S1|β|} and R = Er , with λ replaced by
(τ, t), with µ replaced by (σ, s), with the following functions {ϕ1, . . . , ϕL}:

φτ t (z) = zτ et z, (0 ≤ τ ≤ T0, |t | ≤ T1),

and finally with the points
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{ζ1, . . . , ζL} = {sβ ; −S1 ≤ s ≤ S1},
each of them being repeated S0 + 1 times. We obtain

log |1| ≤ −
(

L(L − 1)

2
− L S0

)
log E + log(L!)

+
T0∑

τ=0

T1∑

t=−T1

max
0≤σ≤S0

log sup
|z|=R

∣∣∣∣
(

d

dz

)σ
φτ t (z)

∣∣∣∣ .

We bound sup|z|=R

∣∣(d/dz)σφτ t (z)
∣∣ as follows. Using Leibniz’ formula for derivatives

of products, we have

(
d

dz

)σ
φτ t (z) =

min{τ,σ }∑

κ=0

κ!

(
τ

κ

)(
σ

κ

)
tσ−κ zτ−κet z .

Bounding κ!
(
τ
κ

)
from above by τ κ , we find that

min{τ,σ }∑

κ=0

κ!

(
τ

κ

)(
σ

κ

)
|t |σ−κ ≤

σ∑

κ=0

(
σ

κ

)
τ κ |t |σ−κ = (τ + |t |)σ ≤ (T0 + T1)S0 .

Combining these two results, we obtain

max
0≤σ<S0

sup
|z|=R

∣∣∣∣
(

d

dz

)σ
φτ t (z)

∣∣∣∣ ≤ (T0 + T1)S0 RT0 eT1 R .

This inequality holds for any pair (τ, t). Notice that we have defined r so that r ≥ 1 in
such a way that R ≥ 1. Otherwise the term RT0 should be replaced by max{1, RT0}.
Anyway, it turns out that S1 will always be chosen > 1/|β|. We finally use the
following estimate:

log L + T0 log R + T1 R ≤ c2
(
T0 log(S1 E) + T1S1 E

)
.

¤

2.4.3 Second Proof of the Real Case of Theorem 1.4

Proposition 2.10. Let α1 and β be two real numbers, with α1 > 0, α1 6= 1 and
β 6∈ Q. Define α2 = αβ1 = exp(β logα1), where logα1 is the real valued logarithm of
α1. Let E ≥ e be a real number and T , S0, S1, L be four integers, all greater than
one, with

L = (2T + 1)2 = (S0 + 1)(2S1 + 1).

Then there exists a polynomial f ∈ Z[X±1
1 ,X±1

2 ,Y] satisfying

deg f ≤ L S0 + 2LT S1, H( f ) ≤ L!(2T )L S0 ,
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and
0 < | f (α1, α2, β)| ≤ E−L2/2(T E)c3 S0 Lec3T S1 E L

with c3 = 5(1 + |β|)(1 + | logα1|).
Consequence. The real case of Gel’fond-Schneider Theorem follows. The conditions
on the parameters are the same as for Proposition 2.7, provided that we replace the
parameters T0, T1 and S of Schneider’s method respectively by S0, S1 and T (replace
also c1 by c3). This relationship between the parameters is related to the fact that the
matrix associated with one method is just the transpose of the matrix which belongs
to the other method (see § 13.7 for this duality). This completes the second proof of
Theorem 1.4 in the real case.

Proof of Proposition 2.10.
We consider the following L × L determinant:

1 = det
(

(t1 + t2β)σαt1s
1 α

t2s
2

)
(t1 ,t2)
(σ,s)

.

with −T ≤ t1, t2 ≤ T on one hand, 0 ≤ σ ≤ S0 and −S1 ≤ s ≤ S1 on the other.
This number 1 is well defined only up to a multiplicative factor ±1 (depending on
the orderings of the rows and of the columns which is implicit). The zero estimate
(Corollary 2.3) implies 1 6= 0. We repeat the estimate which was made in § 2.3:
by expanding the determinant, we find that 1 is the value, at the point α1, α2, β, of
a polynomial f ∈ Z[X±1

1 ,X±1
2 ,Y] which satisfies the given bounds for deg f and

H( f ) .
We estimate |1| from above as follows: for max{|t1|, |t2|} ≤ T , define φt1t2 (z) =

e(t1+t2β)z . Then

1 = det

(( d

dz

)σ
φt1t2 (s logα1)

)

(t1 ,t2)
(σ,s)

.

with |t | ≤ T and 0 ≤ σ ≤ S0, |s| ≤ S1. We deduce from Lemma 2.8:

1

L
log |1| ≤ − L − 1

2
log E + S0 log E + log L + max

σ,t1,t2
log sup
|z|=R

∣∣∣∣
(

d

dz

)σ
φt1t2 (z)

∣∣∣∣

where r = max{1, S1| logα1|} and R = Er . From
(

d

dz

)σ
φt1t2 (z) = (t1 + t2β)σ e(t1+t2β)z,

we deduce

log sup
|z|=R

∣∣∣∣
(

d

dz

)σ
φt1t2 (z)

∣∣∣∣ ≤ S0 log
(
T (1 + |β|)) + T R(1 + |β|),

hence
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1

L
log |1| ≤

− L − 1

2
log E + log L + S0 log

(
T E(1 + |β|)) + T S1 E(1 + |β|)(1 + | logα1|)

≤ −1

2
L log E + c3

(
S0 log(T E) + T S1 E

)
.

¤

2.5 Gel’fond-Schneider’s Theorem in the Complex Case

We complete now the proof of Theorem 1.4 in the complex case. The transcendence
of the number eπ will follow.

2.5.1 Statement of Proposition 2.11

Proposition 2.11. Let λ be a nonzero complex number and β an irrational complex
number. Define α1 = eλ and α2 = eβλ. Let L , T0, T1 and S be positive rational integers
and E a real number satisfying

T0 ≥ 2, T1 ≥ 2, S ≥ 3, E ≥ e, L = (T0 + 1)(T1 + 1)

S2 > T0(T1 + 1) and S > T1.

Then there exists a polynomial f ∈ Z[X±1
1 ,X±1

2 ,Y] such that

deg f ≤ L(T0 + 2T1S), H( f ) ≤ L!SLT0

and
0 < | f (α1, α2, β)| ≤ E−L2/2(SE)c4T0 Lec4T1 SL E

with a constant c4 which depends only on λ and β.

2.5.2 Proof of Theorem 1.4 in the Complex Case

Given c > 0, we choose the parameters in such a way that

c
(
T0 + T1S + T0 log S

)
+ c4

(
T0 log(SE) + T1SE

)
<

1

2
L log E .

Here are two sets of admissible choices for the parameters (there are many further
possibilities).

(i) Take a sufficiently large integer N , and choose

L = N 8, T0 = N 6 − 1, T1 = N 2 − 1, S = 2N 4 and E = e.

(ii) Take for T1 a sufficiently large integer, choose for S a large integer such that S2

is a multiple of 2T1. Then put T0 = S2/2T1 and E = S.
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2.5.3 Sketch of the Proof of Proposition 2.11.

Consider a matrix

M =

(
(s1 + s2β)τ

(
α

s1
1 α

s2
2

)t
)

(τ,t)
(s1 ,s2)

,

where (τ, t) is the index of rows, (s1, s2) the index of columns. The parameters τ ,
t , s1 and s2 will run over nonnegative integers with 0 ≤ τ ≤ T0, 0 ≤ t ≤ T1 and
0 ≤ s1, s2 ≤ S.

We first want to prove that the rank of M is maximal, i.e. equal to the minimum
between the number (T0 + 1)(T1 + 1) of rows and the number (S + 1)2 of columns,
under suitable assumptions on the parameters. Here we shall assume that (S + 1)2 is
larger than (T0 +1)(T1 +1) and use a zero estimate from Y. V. Nesterenko (Proposition
2.12 below) to achieve this goal. Another solution to the same problem deals with
the case where (T0 + 1)(T1 + 1) is bigger than (S + 1)2 and involves a multiplicity
estimate (cf. Chap. 8).

The idea of proof of the zero estimate is the following. We introduce the points
s1γ1 + s2γ2 ∈ C× C×, where5

γ1 = (1, α1), γ2 = (β, α2), s1γ1 + s2γ2 = (s1 + s2β, α
s1
1 α

s2
2 ).

If the rank of M is less than (T0+1)(T1+1), then there exist complex (in fact algebraic)
numbers pτ t , not all zero, such that

T0∑

τ=0

T1∑

t=0

pτ t (s1 + s2β)ταs1t
1 α

s2t
2 = 0

for all (s1, s2) ∈ Z2 with 0 ≤ s1, s2 ≤ S. Therefore we get a nonzero polynomial

P(X, Y ) =
T0∑

τ=0

T1∑

t=0

pτ t X τY t ∈ C[X, Y ]

such that P(s1γ1 + s2γ2) = 0 for all (s1, s2) with 0 ≤ s1, s2 ≤ S. Here comes the main
argument: if S′ and S′′ are positive integers with S′ + S′′ = S, then all polynomials

P
(
s ′1 + s ′2β + X, α

s ′1
1 α

s ′2
2 Y
)
, (s ′1, s ′2) ∈ Z2 0 ≤ s ′1, s ′2 ≤ S′

vanish at s ′′1γ1 + s ′′2γ2 for (s ′′1 , s ′′2 ) ∈ Z2 with 0 ≤ s ′′1 , s ′′2 ≤ S′′. If we can eliminate the
variable Y between these (S′+1)2 polynomials, then we obtain a nonzero polynomial
in X only, for which the number of zeroes is bounded by the degree.

Once we know the rank of M, we extract a nonsingular matrix of maximal size
and we consider its determinant 1 6= 0. There are two ways of getting an upper
bound for |1|.
5 We write additively the law on the abelian group C × C×.
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• Either one uses Schneider’s method like in § 2.3.b: apply Lemma 2.5 to the
alternant involving the functions

φτ t (z) = zταt z
1 , 0 ≤ τ ≤ T0, 0 ≤ t ≤ T1,

and the points
s1 + s2β, 0 ≤ s1, s2 ≤ S.

• Or else (Gel’fond’s method) one considers the interpolation determinant con-
structed with the functions

ψs1s2 (z) = e(s1+s2β)z 0 ≤ s1, s2 ≤ S

with the derivatives (d/dz)τ , and with the points t logα1 (0 ≤ τ ≤ T0,
0 ≤ t ≤ T1). The desired estimate then follows from Lemma 2.8.

2.5.4 Zero Estimate

One important tool in the proofs of zero estimates is elimination. Let L be a field and
f1, . . . , fm be polynomials in L[T ]. To eliminate T between f1, . . . , fm is to find
polynomials A1, . . . , Am in L[T ] such that A1 f1 + · · ·+ Am fm is a nonzero constant
polynomial. A necessary condition to achieve this goal is that the polynomials
f1, . . . , fm have no common factor in the factorial ring L[T ]. The resultant (see
for instance § 8, Chap. 4 of [L 1993]) is a convenient tool for studying the converse.

One of the first appearances of the resultant in transcendental number theory is
in the paper [Bor 1899], where É. Borel proved a transcendence measure for the
number e. In 1932, J. F. Koksma and J. Popken [KoPop 1932] used resultants when
they established a transcendence measure for eπ . Next A. O. Gel’fond [G 1952] used
similar arguments in his proof of a transcendence criterion; this criterion is one of
the basic tools he introduced for proving results of algebraic independence (see also
[FNe 1998] as well as § 15.5.1). Another fundamental tool in this work of Gel’fond’s
is a zero estimate. Gel’fond proved his zero estimate by analytic means. Such analytic
arguments have been developed after, but turned out not to be sufficient for solving
some other problems of diophantine approximation.

Later, W. D. Brownawell and D. W. Masser [BrMa 1980] used resultants in
order to prove zero estimates. Further algebraic arguments have been introduced by
W. D. Brownawell and D. W. Masser [BrMa 1980], then refined by D. W. Masser
[Ma 1981b] (see also [Mo 1983]), G. Wüstholz [Wü 1989], P. Philippon [P 1986a],
[P 1996] and Y. V. Nesterenko (see Chap. 5 and 8).

Here we shall deal with polynomials in two variables: f1, . . . , fm belong to
K [X, Y ] where K is a field. We eliminate (if possible) Y in L[Y ] where L = K (X ).
Multiplying by a denominator in K [X ] yields polynomials A1, . . . , Am in K [X, Y ]
such that

A1(X, Y ) f1(X, Y ) + · · · + Am(X, Y ) fm(X, Y ) = R(X )

is a nonzero polynomial in K [X ]. Therefore the number of x ∈ K such that
f1, . . . , fm have a common zero (x, y) ∈ K 2 is at most the degree of R.
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Remark. In the proof of Proposition 2.11 (as well as in many other transcendence
proofs), two rings of polynomials occur: one for the zero estimate, here it is K [X, Y ],
and one for applying the transcendence Criterion 2.1, which has been denoted by
Z[X±1

1 ,X±1
2 ,Y].

The variables (X, Y ) will be specialized in the functions z, ez , and we shall
consider the values at the points z = s1 + s2β. Therefore (X, Y ) will be specialized
in (s1 + s2β, α

s1
1 α

s2
2 ) = s1γ1 + s2γ2.

On the other hand the variables (X±1
1 ,X±1

2 ,Y) related to Liouville’s inequality
will be specialized in (α1, α2, β).

The following zero estimate is due to Y. V. Nesterenko [LauMN 1995].

Proposition 2.12. Let K be a field of zero characteristic, T0 and T1 be two positive
integers, (x1, y1), . . . , (xN , yN ), (ξ1, η1), . . . , (ξM , ηM ) elements of K × K×, with
y1, . . . , yN pairwise distinct in K× and ξ1, . . . , ξM pairwise distinct in K . Assume

N > T1 and M > T0(T1 + 1).

Then there is no nonzero polynomial P ∈ K [X, Y ], with degree at most T0 in X and
degree at most T1 in Y , which satisfies

P(xν + ξµ, yνηµ) = 0 for 1 ≤ ν ≤ N and 1 ≤ µ ≤ M .

Proof. The proof involves an elimination procedure as follows: a nonzero polynomial
P ∈ K [X, Y ] of degree at most T0 in X and at most T1 in Y can be written

P(X, Y ) =
r∑

j=1

Q j (X )Y k j ,

where r is an integer with 1 ≤ r ≤ T1 + 1, where 0 ≤ k1 < k2 < · · · < kr ≤ T1

are integers, and where Q1, . . . , Qr are nonzero polynomials in K [X ] (of degree at
most T0). We shall assume k1 = 0, since there is no loss of generality to assume that
Y does not divide P . We want to eliminate Y between the polynomials

P(xν + X, yνY ) =
r∑

j=1

Q j (xν + X )y
k j
ν Y k j , (1 ≤ ν ≤ N ).

We shall find ν1, . . . , νr in {1, . . . , N } such that the polynomial

1(X ) = det
(

Q j (xνi + X )y
k j
νi

)
1≤i, j≤r

is not identically zero. Next, we show that there exist S1, . . . , Sr in K [X ], with

1(X ) =
r∑

i=1

P(xνi + X, yνi Y )Si (X ).



                

2.5 Gel’fond-Schneider’s Theorem in the Complex Case 53

Indeed, if C j denotes the column vector
(

Q j (xνi + X )y
k j
νi

)
1≤i≤r

of 1(X ), then

C1 + Y k2C2 + · · · + Y kr Cr is the column vector
(

P(xνi + X, yνi Y )
)

1≤i≤r
. We find

the polynomials Si by expanding the determinant with the first column replaced by
this linear combination.

In order to construct1 6= 0, we notice that if q j Xd j is the leading term of Q j (X ),
then the coefficient of Xd1+···+dr in 1(X ) is

q1 · · · qr det
(

y
k j
νi

)
1≤i, j≤r

.

The key point of the proof is provided by the following lemma.

Lemma 2.13. Let 0 ≤ k1 < k2 < · · · < kr be integers and M a subset of K× with
CardM > kr . Then there exist a1, . . . , ar in M such that

det
(

a
k j

i

)
1≤i, j≤r

6= 0.

Proof. The proof is by induction on r . For r = 1, the result is trivial. Assume
a1, . . . , ar−1 are such that

det
(

a
k j

i

)
1≤i, j≤r−1

6= 0.

Introduce the polynomial

P(z) = det




ak1
1 · · · akr

1
...

. . .
...

ak1
r−1 · · · akr

r−1
zk1 · · · zkr


 .

Then P is of exact degree kr . Since CardM > kr , there exists ar ∈ M such that
P(ar ) 6= 0. ¤

Proof of Proposition 2.12. We are now able to complete the proof of Proposition 2.12.
Since kr ≤ T1 < N , and since y1, . . . , yN are pairwise distinct, we can use Lemma
2.13 with M = {y1, . . . , yN }. We deduce that there exist ν1, . . . , νr in {1, . . . , N }
such that

det
(

y
k j
νi

)
1≤i, j≤r

6= 0.

Then
1(X ) = det

(
Q j (xνi + X )y

k j
νi

)
1≤i, j≤r

is a nonzero polynomial of exact degree deg Q1 + · · · + deg Qr , hence

deg1 ≤ rT0 ≤ T0(T1 + 1).
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Further, if

P(xν + ξµ, yνηµ) = 0 for 1 ≤ ν ≤ N and 1 ≤ µ ≤ M,

then
1(ξµ) = 0 for 1 ≤ µ ≤ M .

However ξ1, . . . , ξM are pairwise distinct, and M > T0(T1 + 1) ≥ deg1. This
completes the proof of Proposition 2.12. ¤

2.5.5 Proof of Proposition 2.11

Step 1. The Matrix M
We consider the L × (2S + 1)2 matrix

M =

(
(s1 + s2β)τ

(
α

s1
1 α

s2
2

)t
)

(τ,t)
(s1 ,s2)

,

with 0 ≤ τ ≤ T0, 0 ≤ t ≤ T1, and with s = (s1, s2) ∈ Z2, max{|s1|, |s2|} ≤ S.

Step 2. The Determinant 1
Our first goal is to show that this matrix M has rank L . We use Proposition 2.12

with N = S, M = S2, (ξµ, ηµ) are M points in the set

(s1 + s2β, α
s1
1 α

s2
2 ) (max{|s1|, |s2]} ≤ S

2
),

while (xν, yν) are N of these points with y1, . . . , yN pairwise distinct. Notice that
the numbers s1 + s2β (s ∈ Z2) are pairwise distinct, and that α1 and α2 are not both
roots of unity. From the conditions

S2 > T0(T1 + 1) and S > T1

one deduces that the assumptions of Proposition 2.12 are satisfied.
Therefore there exist L elements s(1), . . . , s(L) in Z2 with

max{|s(µ)
1 |, |s(µ)

2 |} ≤ S (1 ≤ µ ≤ L)

such that the determinant

1 = det

(
(s(µ)

1 + s(µ)
2 β)τ

(
α

s(µ)
1

1 α
s(µ)

2
2

)t)

(τ,t)
1≤µ≤L

is not zero.

Step 3. Estimates for Degree and Height
Define f ∈ Z[X±1

1 ,X±1
2 ,Y] by
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f = det

(
(s(µ)

1 + s(µ)
2 Y)τ

(
X

s(µ)
1

1 X
s(µ)

2
2

)t)

(τ,t)
1≤µ≤L

,

so that
1 = f (α1, α2, β).

Then
deg f ≤ L(T0 + 2T1S) and H( f ) ≤ L!SLT0 .

Step 4. Upper Bound for |1|
We claim that the absolute value of the determinant1 is bounded from above by

1

L
log |1| ≤ −1

2
L log E + c4

(
T0 log(SE) + T1SE

)
.

As we have seen, there are two proofs of this fact.

• Either one applies Lemma 2.5 to the alternant involving the functions

φτ t (z) = zτ etλz, (0 ≤ τ ≤ T0, 0 ≤ t ≤ T1)

and the points
s(µ)

1 + s(µ)
2 β, (1 ≤ µ ≤ L).

The estimates of § 2.3.b are still valid and produce the desired upper bound.

• Or else one applies Lemma 2.8 to the interpolation determinant constructed with
the functions ψs(µ)

1 s(µ)
2

(1 ≤ µ ≤ L), where

ψs1s2 (z) = e(s1+s2β)z for s = (s1, s2) ∈ Z2, 0 ≤ s1, s2 ≤ S

with the derivatives (d/dz)τ (0 ≤ τ ≤ T0), and with the points tλ (0 ≤ t ≤ T1).
The estimates are the same as in § 2.4.c. There is only a change of notation: the
parameters S0, S1 and T which occur there are now replaced respectively by T0,
T1 and S.

¤

2.6 Hermite-Lindemann’s Theorem in the Complex Case

We complete the proof of the complex case of Theorem 1.2 and deduce in particular
the transcendence of π .

2.6.1 Multiplicity Estimate

The proof of the Theorem of Hermite-Lindemann involves the complex analytic
functions z and ez . For P ∈ C[X, Y ], the derivative (d/dz)F of the function
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F(z) = P(z, ez)

is a polynomial in z and ez , which we call D P:

d

dz
P(z, ez) = D P(z, ez).

It is plain that D is the derivative operator (∂/∂X ) + Y (∂/∂Y ). Hence when K is any
field of zero characteristic we can define D on K [X, Y ] by

D =
∂

∂X
+ Y

∂

∂Y
·

Here is the multiplicity estimate of Y. V. Nesterenko [NeW 1996], Lemma 2.

Proposition 2.14. Let K be a field of zero characteristic and T0, T1, S0 and M be
positive integers satisfying

(S0 + 1)M > (T0 + M)(T1 + 1).

Let (ξ1, η1), . . . , (ξM , ηM ) be elements in K × K× with ξ1, . . . , ξM pairwise distinct.
Then there is no nonzero polynomial P ∈ K [X, Y ], of degree at most T0 in X and of
degree at most T1 in Y which satisfies

Dσ P(ξµ, ηµ) = 0 for 1 ≤ µ ≤ M and 0 ≤ σ ≤ S0. (2.15)

The proof is essentially the same as the proof of Proposition 2.12: we shall
eliminate Y using T1 + 1 derivatives, and get a polynomial in X which vanishes at ξ j

with multiplicity at least S0 + 1− T1.

Proof. Let us suppose that a polynomial P satisfies all the conditions of the lemma,
equalities (2.15) and P /= 0. We assume, as we may without loss of generality, that Y
does not divide the polynomial P , and also that P has degree at least 1 with respect
to Y . Let us define the numbers k0 = 0 < k1 < · · · < kn ≤ T1 by the conditions

P(X, Y ) =
n∑

i=0

Qi (X )Y ki , Qi (X ) =bi Xmi + · · · ∈ K [X ],

bi /= 0, i = 0, . . . , n.

For 0 ≤ σ ≤ n, we consider the polynomials

Dσ P(X, Y ) =
n∑

i=0

Qσ i (X ) · Y ki , (2.16)

where

Qσ i (X ) =
σ∑

j=0

(
σ

j

)
Q(σ− j)

i (X )k j
i = bi k

σ
i · Xmi + · · · .



                   

2.6 Hermite-Lindemann’s Theorem in the Complex Case 57

It follows from this representation that the determinant

1(X ) = det
(
Qσ i (X )

)
0≤i,σ≤n

can be written

1(X ) = det
(
bi k

σ
i · Xmi + · · ·)0≤i,σ≤n = b0 · · · bn B Xm0+···+mn + · · · ,

where B is a Vandermonde determinant constructed from the numbers k0, . . . , kn ,
hence B /= 0. Now from (2.16) we derive

1(X ) =
n∑

σ=0

1σ (X ) ·Dσ P(X, Y ), 1σ (X ) ∈ K [X ],

and for any τ ∈ Z, 0 ≤ τ ≤ S0 − n, with some cτ jσ ∈ K ,

1(τ )(ξ j ) =
n+τ∑

σ=0

cτ jσ ·Dσ P(ξ j , η j ) = 0, j = 1, . . . ,M.

Since n ≤ T1 and deg1(X ) = m0 + · · · + mn ≤ (n + 1)T0 ≤ T0(T1 + 1), we deduce

(S0 + 1− n)M ≤ deg1(X ) ≤ T0(T1 + 1),

and (S0 +1)M ≤ T0(T1 +1)+nM ≤ (T0 + M)(T1 +1). This contradicts the assumption
and completes the proof of Proposition 2.14. ¤

2.6.2 Proof of Theorem 1.2

Proposition 2.17. Let β be a nonzero complex number. There exists c5 > 0 with the
following property. Define α = eβ . For any integers T0, T1, S0, S1, L , all of which are
at least 2, and any real number E ≥ e, satisfying

L = (T0 + 1)(T1 + 1), (S0 + 1)(2S1 + 1) > (T0 + 2S1 + 1)(T1 + 1),

there exists a polynomial f ∈ Z[X±1,Y] such that

deg f ≤ L(T0 + T1S1), H( f ) ≤ L!(T0 + T1)L S0 SLT0
1

and
0 < | f (α, β)| ≤ E−L2/2

(
(T0 + T1)E

)S0 L
(S1 E)c5T0 Lec5T1 S1 E L .

The proof is essentially the same as in § 2.4 (which dealt only with the case where
β is real), apart from the zero estimate.

We consider the L × (S0 + 1)(2S1 + 1) matrix

M =

(( d

dz

)σ (
zτ et z

)
(sβ)

)

(τ,t)
(σ,s)

,
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where (τ, t) is the index of rows (0 ≤ τ ≤ T0, 0 ≤ t ≤ T1), while (σ, s) is the index
of columns (0 ≤ σ ≤ S0, −S1 ≤ s ≤ S1). Notice that

(
d

dz

)σ (
zτ et z

)
(sβ) = Dσ

(
X τY t

)
(sβ, αs).

Here, the variables (X, Y ) related with the zero estimate are specialized in (z, ez),
and for z = sβ we specialize (X, Y ) in (sβ, αs), while the variables (X±1,Y) in the
statement of Proposition 2.17 are specialized in (α, β).

Given the conditions on the parameters, we can apply Proposition 2.14 with the
points (ξµ, ηµ) (1 ≤ µ ≤ M) as (sβ, αs) (|s| ≤ S1), hence M = 2S1 +1 and conclude
that the matrix M has rank L .

We select L elements (σ (µ), s(µ)) (1 ≤ µ ≤ L), in Z2, with 0 ≤ σ (µ) ≤ S0 and
|s(µ)| ≤ S1, in such a way that the L × L determinant

1 = det

(( d

dz

)σ (µ)(
zτ et z

)
(s(µ)β)

)

(τ,t)
1≤µ≤L

is not zero. We derive the upper bound

1

L
log |1| ≤ −1

2
L log E +

(
S0 log

(
(T0 + T1)E

)
+ c5T0 log(S1 E) + c5T1S1 E

)
,

exactly like in § 2.4 above.
In order to complete the proof of Theorem 1.2 it remains to choose our parameters

T0, T1, S0, S1 and E so that one can apply Lemma 2.1. Hence we require that

S0 log
(
(T0 + T1)E

)
+ T0 log(S1 E) + T1S1 E

is small compared with L log E . The main difference with the proof in § 2.4.b lies
in the requirement

(S0 + 1)(2S1 + 1) > (T0 + 2S1 + 1)(T1 + 1),

which replaces the equality between L and (S0 + 1)(2S1 + 1) which took place in
§ 2.4.

Here are two sets of admissible choices for these parameters.

(i) Let N be a sufficiently large integer. Choose

T1 = S1 = N , T0 = S0 = N 2 and E = e.

(ii) Choose for S1 any sufficiently large integer, for T1 a large multiple of S1, and
define

T0 = E = T1, S0 =
T 2

1

S1
·

¤
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Exercises

Exercise 2.1. Let ϑ be a real number. Show that the following properties are equivalent.

(i) ϑ 6∈ Q
(ii) There exists an integer k ≥ 1 and a sequence (PN )N≥N0 of polynomials in Z[X] of degree

≤ k such that PN (ϑ) 6= 0 and |PN (ϑ)| → 0 as N →∞.

(iii) For any k ≥ 1 there exist infinitely many P ∈ Z[X] of degree ≤ k such that

0 < |P(ϑ)| ≤ 1

H(P)
·

Exercise 2.2.
a) Check that the following statement is equivalent with Lemma 2.1:

Given any algebraic numbersγ1, . . . , γm , there exists a positive constant c = c(γ1, . . . , γm)
which satisfies the following property.
Let f ∈ Z[X1, . . . ,Xm] and T be a positive number such that the absolute values of the
coefficients of f are all at most eT and the total degree of f is at most T . If the number
f (γ1, . . . , γm) is nonzero, then

| f (γ1, . . . , γm)| ≥ e−cT .

b) If α ∈ C× is a root of a polynomial with rational integer coefficients whose absolute values
are bounded above by some number H , then |α| ≥ (1 + H )−1.

Hint. See § 3.5.1.

c) For 1 ≤ i ≤ m, let γi ∈ C be root of a polynomial in Z[X] of degree di , leading coefficient
ai , and complex roots γi j (1 ≤ j ≤ di ). Let f ∈ Z[X1, . . . ,Xm] be a polynomial in m
variables of total degree at most L with integer coefficients. Define

1 = (a1 · · · am)d1···dm L .

Check that the polynomial

F(X) = 1
d1∏

j1=1

· · ·
dm∏

jm =1

(
X− f (γ1, j1 , . . . , γm, jm )

)

has rational integer coefficients.

Hint. Use the Theorem on symmetric polynomials ([L 1993], Chap. IV).

d) Deduce the statement in a).

Hint. Use b) for the number α = f (γ1, . . . , γm).

e) Show also that the statement in a) provides a necessary and sufficient condition for the
numbers γ1, . . . , γm to be all algebraic.
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Hint. Let θ be a complex transcendental number. Using Dirichlet’s box principle (see for
instance Lemma 4.11), show that there exists a positive real number c = c(θ ) such that, for
each T ≥ 2, there is a nonzero polynomial P ∈ Z[X] of total degree at most T and of
coefficients bounded in absolute value by eT , such that |P(θ )| ≤ e−cT 2

. See also Proposition
15.2.

Exercise 2.3.
a) Let w1, . . . , wn distinct real numbers, d1, . . . , dn nonnegative rational integers, and
u1, . . . , uN distinct real numbers, with N = d1 + · · · + dn + n − 1. Show that there exist
polynomials a1, . . . , an in R[t], of degrees d1, . . . , dn respectively, such that the function

F(t) =
n∑

i=1

ai (t)e
wi t

has a simple zero at each point u1, . . . , uN and no other zero.

Hint. Use linear algebra as well as Lemma 2.2.

b) Give also a generalization where the u j are no more distinct, but multiplicities are required.

Exercise 2.4 (Algebraic version of Lemma 2.2: upper bound for the number of consecutive
integral zeroes of an exponential polynomial; see [MiW 1994].)

a) Let K be a field, α1, . . . , αn nonzero elements of K which are pairwise distinct, and
a1, . . . , an nonzero polynomials in K [X ], of degrees say d1, . . . , dn . Then the function
Z −→ K which is defined by

F(m) =
n∑

i=1

ai (m)αm
i (2.18)

cannot vanish on a set of d1 + · · · + dn + n consecutive integers.

b) Let d1, . . . , dn be nonnegative integers and let E ⊂ Z be a set of d1 + · · · + dn + n − 1
consecutive integers. Show that there exist nonzero polynomials a1, . . . , an in K [X ], of degrees
respectively d1, . . . , dn , such that the function Z −→ K which is defined by (2.18) vanishes
on E .

Exercise 2.5. Let w1, . . . , wt be Q-linearly independent elements in Cn . Show that the t
functions ew1·z, . . . , ewt ·z are algebraically independent over the field Q(z1, . . . , zn).

Hint. Use induction like in the proof of Lemma 2.2.

Exercise 2.6. Under the assumptions of Lemma 2.5, let E ≥ 1 be a real number. For
1 ≤ µ ≤ L , define Rµ = E |ζµ|. Further, denote by S L the symmetric group on {1 . . . , L} of
order L!. Check

|1| ≤ E−L(L−1)/2 L! max
σ∈SL

L∏

λ=1

|ϕλ|Rσ (λ) .

Deduce

|1| ≤ E−L(L−1)/2 L!
L∏

µ=1

max
1≤λ≤L

|ϕλ|Rµ .
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Exercise 2.7.
a) Let L ≥ 14 be an integer, f :C2 → C an analytic function in C2 (entire function of
two variables), x1, . . . , xL , y1, . . . , yL complex numbers and r1, r2, R1, R2, E real numbers
satisfying

R1 ≥ r1 ≥ max
1≤λ≤L

|xλ|, R2 ≥ r2 ≥ max
1≤µ≤L

|yµ|, max

{
R1

r1

, R2

r2

}
≥ E ≥ e.

For 1 ≤ λ ≤ L and 1 ≤ µ ≤ L , assume that the number

uλµ = f (xλ, yµ)

is in Z. Assume also

log sup
{| f (z, w)| ; |z| ≤ R1, |w| ≤ R2

} ≤ 1

3
L log E .

Show that the determinant of the matrix
(
uλµ

)
1≤λ,µ≤L

is zero.

Hint. For L ≥ 14, check 3L + 6 log(L!) < L2.

b) Let d and ` be positive integers satisfying d` > d + `, let u1, . . . , ud be Q-linearly
independent real numbers, and let v1, . . . , v` be also Q-linearly independent real numbers.
Using question a), show that at least one of the d` numbers

eui v j , (1 ≤ i ≤ d, 1 ≤ j ≤ `)
is irrational.

Hint. Choose a large integer N , define T = N `, S = N d , L = N d`, so that T d = S` = L .
Consider the two sets, each consisting of L distinct complex numbers:

X =
{
t1u1 + · · · + td ud ; (t1, . . . , td ) ∈ Zd , 0 ≤ ti < T, (1 ≤ i ≤ d)

}

and
Y =

{
s1v1 + · · · + s`v`, ; (s1, . . . , s`) ∈ Z`, 0 ≤ s j < S, (1 ≤ j ≤ `)}.

Assume euv ∈ Q for any u ∈ X and any v ∈ Y. Let D be a positive integer such that
Deui v j ∈ Z for 1 ≤ i ≤ d and 1 ≤ j ≤ `. Use question a) with E = e for the entire function
of two complex variables (z, w) 7→ DT Sezw and get a contradiction.

c) Application. Deduce from b) the following statement: let x be a real number and let p1,
p2, p3 be three pairwise distinct prime numbers. If the three numbers px

1 , px
2 and px

3 are all
rational, then x is a nonnegative integer.

Exercise 2.8.
a) Let d and ` be positive integers, x1, . . . , xd real numbers which are linearly independent
over Q and y1, . . . , y` also Q-linearly independent real numbers. Further let L , T and S be
positive integers and E a real number satisfying

L = T d = S` and E ≥ e.

Show that there exists a polynomial f in d` variables with integer coefficients satisfying

deg f ≤ LT S, H( f ) ≤ L!
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and
0 < | f (ζ )| ≤ E−L2/2ecT SE L

where c depends only on x1, . . . , xd , y1, . . . , y`, while ζ ∈ Cd` denotes the point with
coordinates exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ `).
b) Deduce the real case of the six exponentials Theorem 1.12.

Hint. See also [Lau 1989] and [Pi 1993].

Exercise 2.9. Complete the proof of the Theorems of Hermite-Lindemann and Gel’fond-
Schneider as well as of the six exponentials Theorem in the complex cases by means of the
following result of R. Tijdeman (refining an earlier estimate of Gel’fond’s [G 1952], Chap. III,
§ 4, Lemma III; see also [F 1982], Chap. 9, § 4, Lemma 8.9 and [W 1974], Chap. 6), in place
of Nesterenko’s zero and multiplicity estimates.

Let a1, . . . , an be polynomials in C[z] of degrees d1, . . . , dn , and let w1, . . . , wn pairwise
distinct complex numbers. Define

� = max{|w1|, . . . , |wn|}.
Then the number of zeroes (counting multiplicities) of the function

F(z) =
n∑

i=1

ai (z)ewi z

in the disc |z| ≤ R of C is at most 2(d1 + · · · + dn + n − 1) + 5R�.

Exercise 2.10.
a) Let L ′ and L be two integers, 1 ≤ L ′ ≤ L . Let δλµ (1 ≤ λ,µ ≤ L) be L2 complex
numbers, E , M1, . . . ,ML positive real numbers, ζ1, . . . , ζL complex numbers and ϕ1, . . . , ϕL ′
entire functions in C. Assume

δλµ = ϕλ(ζµ) for 1 ≤ λ ≤ L ′, 1 ≤ µ ≤ L.

Assume further, E ≥ e, and, for 1 ≤ µ ≤ L ,

sup
|z|=E
|ϕλ(zζµ)| ≤ Mλ for 1 ≤ λ ≤ L ′

and
|δλµ| ≤ Mλ for L ′ < λ ≤ L .

Show that the absolute value of the determinant1 of the L×L matrix
(
δλµ
)

1≤λ,µ≤L
is bounded

by
|1| ≤ E−L ′(L ′−1)/2 L!M1 · · ·ML .

Hint. See § 7.2.

b) Check that for any K ≤ L the polynomial f ∈ Z[X±1
1 ,X±1

2 ,Y], given by the proof of
Proposition 2.11, satisfies

max
‖κ‖≤K

|Dκ f (α1, α2, β)| ≤ E−(L−K )2/2(SE)c′
4

T0 SL ec′
4

T1 SL E
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with a constant c′4 which depends only on λ and β. Here, for κ = (κ1, κ2, κ3) ∈ N3, Dκ denotes
the derivative (∂/∂X1)κ1 (∂/∂X2)κ2 (∂/∂Y)κ3 .

Hint. See [LauRoy 1999a].

c) Prove a similar result for Proposition 2.17.

Exercise 2.11. Let x1, . . . , xd be complex numbers which are linearly independent over Q ,
and y1, . . . , y` complex numbers which are also linearly independent over Q . Let K0 be the
field generated by the d` numbers exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ `). Define also

K1 = K0(x1, . . . , xd ), K2 = K0(y1, . . . , y`) and K3 = K0(x1, . . . , xd , y1, . . . , y`).

For i = 0, 1, 2, 3, show that the field Ki has transcendence degree at least 1 under the
assumption which is provided by the second column of the table 2.19. The functions which
are involved are displayed in the third column, the points are Zy1 + · · · + Zy`. The fourth
column tells whether the proof involves or not derivatives. The fifth (and last) column gives
the reference of the corresponding theorem.

Hint. Compare with § 11.2.

Table 2.19.

Field Assumption Functions
d

dz
Theorem

K0 d` > d + ` ex1z, . . . , exd z No 1.12

K1 d ≥ 1, ` ≥ 2 z, ex1z, . . . , exd z No 1.4

K2 d ≥ 2, ` ≥ 1 ex1z, . . . , exd z Yes 1.4

K3 d ≥ 1, ` ≥ 1 z, ex1z, . . . , exd z Yes 1.2



 

64 2. Transcendence Proofs in One Variable



         

3. Heights of Algebraic Numbers

A nonzero rational integer has absolute value at least 1. A nonzero rational number
has absolute value at least the inverse of any denominator. Liouville’s inequality
(§ 3.5) is an extension of these estimates and provides a lower bound for the absolute
value of any nonzero algebraic number. More specifically, if we are given finitely
many (fixed) algebraic numbers γ1, . . . , γt , and a polynomial P ∈ Z[X1, . . . ,Xt ]
which does not vanish at the point (γ1, . . . , γt ) then we can estimate from below
|P(γ1, . . . , γt )|. The lower bound will depend upon the degrees of P with respect to
each of the Xi ’s, the absolute values of its coefficients as well as some measure of
the γi ’s.

In order to obtain such lower bounds, we introduce a notion of height for an
algebraic number (§ 3.2). There are several such heights (§ 3.4) and they all satisfy
the fundamental property that for each fixed d and H , the set of algebraic numbers of
degree at most d and height at most H is finite. It follows that there exists a function
depending on d and H which bounds from below the absolute value of a nonzero
algebraic number of degree at most d and height at most H . Now the problem is to
compute explicitly such a function, and also to give an upper bound for the height of
P(γ1, . . . , γt ) in terms of P ∈ Z[X1, . . . ,Xt ] and the heights of the γ j ’s. From this
point of view the so-called absolute logarithmic height is more convenient than the
others, because it has several equivalent definitions:

• The first one is the integral, on the unit circle, of the logarithm of the modulus of
the minimal polynomial of the given algebraic number (§ 3.3),
• The second one involves the absolute values (see § 3.1) of the conjugates and the

leading coefficient of the minimal polynomial of the algebraic number,
• The third one is phrased in terms of the absolute values — Archimedean and

ultrametric — of the algebraic number.

We study this height with somewhat more details than are strictly necessary, because
it is an important tool in many situations. We conclude this chapter with Lehmer’s
problem and related questions (§ 3.6).
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3.1 Absolute Values on a Number Field

We need a little bit of algebraic number theory. There are plenty of references on this
subject (see, for example, [Ar 1967]; [Bou 1985] Chap. 6; [FrTa 1991] Chap. 1,2,3;
[L 1970]; [L 1978]Chap. 4 § 1, pp. 77–84 and Chap. 7 § 1, pp. 159–162; [L 1983]
Chap. 3 § 1, pp. 50–54; [L 1993], Chap. 12; [Neu 1999], Chap. 2; [Sc 1999]; [Ser
1989], Chap. 2 § 1–3, pp. 7–16; [Sil 1986], Chap. VIII § 5).

We explain briefly the basic facts we shall need, detailed proofs can be found in
[L 1993], (especially Chap. 12) which we take as basic reference.

3.1.1 p-adic Valuation and p-adic Absolute Values over Q

For x ∈ Q, x 6= 0, we write the decomposition of x into a product of prime factors
as follows

x = ±
∏

p

pvp(x).

This defines, for each prime number p, a map vp from Q× to Z, which we extend
by vp(0) = ∞. The map vp:Q −→ Z ∪ {∞} thus obtained is the p-adic valuation
over Q. One can easily prove that it satisfies the following properties:

(i) for x ∈ Q, vp(x) =∞ is equivalent to x = 0
(ii) for (x, y) ∈ Q2, vp(xy) = vp(x) + vp(y)
(iii) for (x, y) ∈ Q2, vp(x + y) ≥ min{vp(x), vp(y)}.

To vp is associated an absolute value | · |p, which is the map fromQ toQ defined
by

|x |p = p−vp(x)

for x 6= 0 and |0|p = 0.
The p-adic absolute value satisfies the following properties:

(i) for x ∈ Q, |x |p = 0 is equivalent to x = 0
(ii) for (x, y) ∈ Q2, |xy|p = |x |p|y|p
(iii) for (x, y) ∈ Q2, |x + y|p ≤ max{|x |p, |y|p}.
Such an absolute value is called an ultrametric absolute value. It is a nonarchimedean
absolute value: the set {|n|p ; n ∈ Z} is bounded. An important property of
an ultrametric absolute value | · | is the fact that |x | < |y| implies |x + y| =
max{|x |, |y|} = |y|. This property will be used several times.

This p-adic absolute value defines a distance on Q, hence a topology. The ball
of radius p−r (with r ∈ Z) with a ∈ Q as its center:

D(a, r ) = {x ∈ Q ; |x − a|p ≤ p−r } = {x ∈ Q ; vp(x − a) ≥ r}
is the set of rational numbers x such that the difference x − a is divisible by pr ,
i.e. such that x − a is the product of pr by a rational number with denominator not
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divisible by p. For r ≥ 1, this means that the numerator of x−a (written as a quotient
of two coprime integers) is congruent to 0 modulo pr .

The completion of Q for the p-adic valuation is the field Qp of p-adic numbers.
Each element x of Qp can be written as

x =
a−N

pN
+

a−N+1

pN−1
+ · · · + a0 + a1 p + · · · + an pn + · · · ,

with ai ∈ {0, . . . , p − 1}. Such a series is called the Hensel’s expansion of x . For
x 6= 0, the least n ∈ Z for which an 6= 0 is nothing else than vp(x).

Two absolute values on a field are said to be equivalent if they define the same
topology on that field.

One can show (Ostrowski’s Theorem, see for instance [K 1980] or [Neu 1999],
Chap. 2 § 4) that any nontrivial absolute value on Q is equivalent to either a p-adic
absolute value or to the usual absolute value on Q.

If one fixes a nonzero rational number x and takes the product of all these absolute
values of x , then something quite interesting occurs. A property known as the product
formula holds:

|x |
∏

p

|x |p = 1 for all x ∈ Q×,

which can also be written additively:
∑

p

vp(x) log p = log |x | for all x ∈ Q×.

The fact that this property holds in many common types of fields is of great importance
in algebraic number theory as well as in the study of diophantine and transcendence
problems. We shall return to the product formula later in this chapter.

3.1.2 Number Fields

Let α be an algebraic number. The image of the homomorphism Q[X ] −→ C,
which maps f ∈ Q[X ] onto f (α), is the field Q(α) generated by α over Q. The
kernel of the same homomorphism is a prime (hence maximal) ideal ofQ[X ], which
has a uniquely defined monic generator. This generator f is called the irreducible
polynomial of α overQ. The degree of f is called the degree of the algebraic number
α. Two algebraic numbers are called conjugate if they have the same irreducible
polynomial over Q.

Let a0 be the least positive integer such that g = a0 f has integer coefficients.
The product g = a0 f , say

g(X ) = a0 Xd + · · · + ad ∈ Z[X ],

is the minimal polynomial of α over Z. This polynomial g is irreducible in the
factorial ring Z[X ] (see [L 1993], Chap. 4 § 2), which means that g is irreducible
in Q[X ] and the rational integers a0, . . . , ad are relatively prime. The number α is
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called an algebraic integer if a0 = 1, a unit if a0 = 1 and ad = ±1. The set of algebraic
integers is a ring in the field Q, and the units are the invertible elements of this ring.

A number field is a subfield k ofCwhich, considered as a vector space overQ, is
of finite dimension. We denote this dimension by [k : Q] and we call it the degree of
k (overQ). For instance, when γ is an algebraic number, then k = Q(γ ) is a number
field of degree [Q(γ ) : Q] equal to the degree of γ and such a γ is called a generator
of the number field k.

When k is a number field, each γ ∈ k is algebraic overQ. On the other hand, using
the fact that [k3 : k2][k2 : k1] = [k3 : k1] when k1 ⊂ k2 ⊂ k3 are finite extensions (see
[L 1993], Chap. 5 § 1), it follows easily that for each number field k there exist
α1, . . . , αn in k such that k = Q(α1, . . . , αn).

Let k be a number field of degree d. If k = Q(γ ) for some γ ∈ k, then there are
exactly d distinct embeddings of k into C. Indeed, if γ1, . . . , γd are the roots of f in
C (these are the conjugates of γ ), then the d embeddings of k into C are given by

k −→ C
γ 7−→ γi

(1 ≤ i ≤ d). By induction one deduces that any number field k of degree d has
exactly d embeddings into C. Moreover, a number γ ∈ k is a generator of k over
Q if and only if the d images of γ under these embeddings are distinct. From this
follows the Theorem of the primitive element (see Exercise 3.1): for each number
field k there exists an algebraic number γ ∈ k such that k = Q(γ ).

We shall now study the set of absolute values of a number field. To do this, we
have to study how an absolute value can be extended.

We can deal with the trivial absolute value (defined by |0| = 0 and |x | = 1
for x 6= 0) as follows: if K/k is a finite extension, the unique extension to K
of the trivial absolute value on k is the trivial absolute value on K . Indeed, for
α ∈ K×, there exist a positive integer d and a0, . . . , ad in k with a0ad 6= 0 such that
a0α

d + a1α
d−1 + · · · + ad = 0. Since v is trivial on k, we have

|aiα
d−i | <

{ |a0α
d | for 1 ≤ i ≤ d if |α| > 1,

|ad | = 1 for 0 ≤ i ≤ d − 1 if |α| < 1.

Notice as well that since v is trivial, it is ultrametric and thus if |x | < |y| then
|x + y| = max{|x |, |y|} = |y|. Therefore, we conclude that |α| = 1.

Let | · | be a nontrivial absolute value on a number field k. The restriction of this
absolute value toQ is equivalent either to the usual absolute value onQ (in this case
the absolute value is Archimedean), or else to a p-adic absolute value (in this case
the absolute value is said to be ultrametric).

In each equivalence class v of nontrivial absolute values, we choose the repre-
sentative | · |v which is normalized by

{ |x |v = x if x ∈ Q, x > 0, and v is Archimedean,
|p|v = 1

p if v extends the p-adic valuation of Q.
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We write v | ∞ if v is Archimedean, and v | p if v extends the p-adic valuation. We
denote by Mk (resp. M∞k ) the set of normalized absolute values (resp. Archimedean
normalized absolute values) of k. For v ∈ Mk , the completion of k at v will be
denoted by kv .

3.1.3 Archimedean Absolute Values over a Number Field

Let k be a number field, γ a generator of k overQ, and f the irreducible polynomial
of γ over Q.

To each complex embeddingσ : k −→ Cwe associate a normalized Archimedean
absolute value vσ defined by |x |vσ = |σ (x)| for x ∈ k. Conversely, let v be a
normalized Archimedean absolute value on k. The completion kv of k is an extension
of the completion R of Q. We denote by γv the image of γ in kv . Then R(γv) is a
finite extension of R (because γv is a root of f ), hence is either R or C. We know
which one it is by writing the decomposition of f ∈ Q[X ] into irreducible factors in
R[X ]: f = f1 · · · fr , where r = r1 + r2, f1, . . . , fr1 are of degree d1 = . . . = dr1 = 1,
while fr1+1, . . . , fr are of degree dr1+1 = . . . = dr = 2. If γv is root of one of the fi ’s
of degree 1, then R(γv) = R, while if γv is root of one of the fi ’s of degree 2, then
R(γv) = C. In any case, we have kv = R(γv), sinceR andC are complete, and we get
a complex embedding σv of k into C such that vσv = v. Hence the mapping σ 7→ vσ
is surjective.

If σ (γ ) ∈ R, then σ (k) ⊂ R and kv = R. The embedding σ and the absolute
value v are called real. If σ (γ ) 6∈ R, then kv = C. Here the embedding σ and the
absolute value v are called complex. We denote by dv the degree [kv : R]:

dv =

{
1 if v is real,
2 if v is complex.

Let σ1 and σ2 be two distinct embeddings of k into C which give rise to the same
Archimedean absolute value v. For any α ∈ k we have

|σ1(α)|v = |σ2(α)|v and |1− σ1(α)|v = |1− σ2(α)|v,
which implies that the complex numbers σ1(α) and σ2(α) are conjugate. Therefore, to
a real absolute value v corresponds one and only one real embedding of k, while to a
complex absolute value v correspond two (complex conjugate) embeddings of k into
C. We deduce that the number of elements in M∞k (i.e. the number of nonequivalent
Archimedean absolute values of k) is r = r1 + r2, where (as before) r1 is the number
of real roots of f , while r2 is the number of pairs of conjugate complex roots of f ,
with d = r1 + 2r2. We can index the irreducible factors of f over R by v ∈ M∞k
(instead of 1 ≤ i ≤ r ):

f =
∏

v∈M∞k

fv and d =
∑

v∈M∞k

dv with dv = deg fv.
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The d-tuple
(|γ1|, . . . , |γd |

)
consists of the elements |γ |v (v ∈ M∞k ), where each

|γ |v is repeated dv times. For instance, supposing that the minimal polynomial of γ
over Q is f (X ) = a0 Xd + · · · + ad , we get

∏

v∈M∞k

|γ |dvv =
d∏

i=1

|γi | =
∣∣∣∣
ad

a0

∣∣∣∣

and
∏

v∈M∞k

max{1, |γ |v}dv =
d∏

i=1

max{1, |γi |}.

3.1.4 Ultrametric Absolute Values over a Number Field

Let p be a prime number. The absolute value | · |p on Qp has a unique extension
to any finite extension K of Qp. This is due to the fact that Qp is complete (see [L
1993], Chap. 12, Prop. 2.5 or [Neu 1999], Chap. 2 Th. 4.8). This extension is given
as follows. For α ∈ K , let NK/Qp (α) denote the norm of the Qp-endomorphism of
K which maps x onto αx . If n is the degree of K overQp, the extension | · |p of the
p-adic absolute value of Qp to K is defined by

|α|p = |NK/Qp (α)|1/n
p .

Denote by Qp the algebraic closure of Qp, equipped with this absolute value. Then
Qp is not complete (which makes a difference with the Archimedean situation).
This is not a serious drawback, and we could take Qp as the analog of the field of
complex number. But we shall prefer to denote by Cp the completion of Qp for the
absolute value | · |p. This is a complete field in which Qp is dense, and moreover
Cp is algebraically closed (we shall need only that it contains an algebraic closure
of Qp, hence it also contains an algebraic closure of Q).

Again let k = Q(γ ) be a number field of degree d and f the irreducible polynomial
of γ over Q. Denote by γ (p)

1 , . . . , γ
(p)
d the roots of f in Cp. There are d distinct

embeddings of k into Cp (each embedding maps a root of f onto another root of the
same). These embeddings are given by

k −→ Cp

γ 7−→ γ
(p)
i

(1 ≤ i ≤ d). To each such embedding σ : k −→ Cp we associate an ultrametric
absolute value vσ | p defined by |x |vσ = |σ (x)|p.

Let v be an absolute value on k which extends the p-adic absolute value of Q.
We view the completion kv of k as an extension of Qp and denote by γv the image
of γ into kv . ThenQp(γv) is a finite extension ofQp. But we can say more about the
degree of this extension. Consider the decomposition of f ∈ Q[X ] into irreducible
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factors 6 in Qp[X ]: f = f1 · · · fr (notice that the number r of irreducible factors
varies with p). Since γv is a root of f into Cp, there is a unique i , 1 ≤ i ≤ r ,
such that γv is a root of fi . Therefore fi has a root in the field Qp(γv), which is an
extension of Qp of degree dv = deg( fi ), and kv = Qp(γv). This number dv is called
the local degree at v. From this it follows that kv is (isomorphic to) a subfield of Cp,
and we get an embedding σv of k into Cp such that vσv = v. Hence the mapping
σ 7→ vσ is surjective.

Let σ1 and σ2 be two distinct embeddings of k into Cp. They give rise to the
same ultrametric absolute value v if and only if σ1(γ ) and σ2(γ ) are conjugate over
Qp, which means that they are roots of the same irreducible factor fi (cf. [L 1993],
Chap. 12, Prop. 3.2 or [Neu 1999], Chap. 2, Prop. 8.2). Therefore the number of
distinct embeddings σ into Cp associated to a given absolute value v | p is the local
degree dv = [kv : Qp] of v, and the number of elements v ∈ Mk with v | p is the
number r of irreducible factors of f over Qp. This enables us to write

f =
∏

v∈Mk ,v|p
fv and d =

∑

v∈Mk ,v|p
dv with dv = deg fv.

The d-tuple
(|γ (p)

1 |p, . . . , |γ (p)
d |p

)
consists of the elements |γ |v (v ∈ Mk , v | p),

where each |γ |v is repeated dv times. For instance

∏

v∈Mk ,v|p
|γ |dvv =

d∏

i=1

|γ (p)
i |p =

∣∣∣∣
ad

a0

∣∣∣∣
p

and
∏

v∈Mk ,v|p
max{1, |γ |v}dv =

d∏

i=1

max{1, |γ (p)
i |p}.

The next lemma shows that this last number is 1/|a0|p.

Lemma 3.1. Let p be a prime number. Let

f (X ) = a0 Xd + a1 Xd−1 + · · · + ad

be a polynomial in Z[X ] with degree d and gcd(a0, . . . , ad ) = 1. Denote the roots of
f in Cp by α1, . . . , αd :

f (X ) = a0

d∏

i=1

(X − αi ).

Then

|a0|p
d∏

i=1

max{1, |αi |p} = 1.

It follows from Lemma 3.1 that for each subset I of {1, . . . , d}, the number

6 Since f is irreducible in Q[X ] the polynomials f1, . . . , fr in Q p[X ] are pairwise distinct.
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a0

∏

i∈I

αi

is an algebraic integer.

Proof. We may assume |α1|p ≤ · · · ≤ |αd |p. Since the numbers ai are relatively
prime, max{|a0|p, . . . , |ad |p} = 1. Let us write ai/a0 as a symmetric function of the
αi : ai

a0
= (−1)i

∑

1≤s1<···<si≤d

αs1 · · ·αsi (1 ≤ i ≤ d).

If |αi |p ≤ 1 for all i = 1, . . . , d, then |ai |p ≤ |a0|p and max{|a0|p, . . . , |ad |p} =
|a0|p = 1, which gives the desired result. Otherwise let j (1 ≤ j ≤ d), be such that

|α1|p ≤ · · · ≤ |α j−1|p ≤ 1 < |α j |p ≤ · · · ≤ |αd |p.
Then, using the main property of ultrametric absolute values, we obtain

max

{∣∣∣∣
ai

a0

∣∣∣∣
p

; 1 ≤ i ≤ d

}
=

∣∣∣∣
ad− j+1

a0

∣∣∣∣
p

= |α j · · ·αd |p =
d∏

i=1

max{1, |αi |p},

hence

max{|a1|p, . . . , |ad |p} = |a0|p
d∏

i=1

max{1, |αi |p}.

Since this number is at least |a0|p, we deduce

max{|a0|p, . . . , |ad |p} = |a0|p
d∏

i=1

max{1, |αi |p},

hence the result. ¤

We have already defined an algebraic integer as an algebraic number whose
irreducible polynomial over Q has coefficients in Z (which means that the minimal
polynomial of α over Z is monic). From Lemma 3.1 we deduce at once:

Corollary 3.2. Let α be an algebraic number. The following conditions are equiva-
lent:
(i) α is an algebraic integer.
(ii) There exists a monic polynomial in Z[X ] which vanishes at α.
(iii) For each number field k containing α, and for each ultrametric absolute value
v of k, we have |α|v ≤ 1.
(iv) There exists a number field k containingα such that, for each ultrametric absolute
value v of k, we have |α|v ≤ 1.

Remark 1. Let α be an algebraic number with conjugates α1, . . . , αd (with d =
[Q(α) : Q] and, say, α1 = α). If D ∈ Z is such that
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∣∣∣∣∣D
∏

i∈I

αi

∣∣∣∣∣
v

≤ 1

for all subsets I of {1, . . . , d} and all ultrametric absolute values v, then

|D|p
d∏

i=1

max
{
1, |αi |p

} ≤ 1

for each prime number p and each embedding of Q(α1, . . . , αd ) into Cp. Hence
|D|p ≤ |a0|p for each p, which means that a0 divides D. This shows that a0 is the
positive generator of the ideal of D ∈ Z for which, for any subset {i1, . . . , it } of
{1, . . . , d}, the number Dαi1 · · ·αit is an algebraic integer.

Remark 2. (M. Laurent). Even if we do not need it, the relation between valuations
and prime ideals in a number field is worth mentioning. We just quote one result
involving ideals. Let α be a nonzero algebraic number. The ring of integers Ok of
the number field k = Q(α) is a Dedekind domain. The principal fractional ideal

(
α
)

can be written B/C, where B and C are nonzero relatively prime integral ideals of
k. Let us show that

C =
{
γ ∈ Ok ; γα ∈ Ok

}
and NC = a0,

where NC is the absolute norm of the ideal C.
We write (

α
)

=
∏

P

P mP (α),

where P runs over the set of prime ideals of Ok . Hence

B =
∏

P

P max{0,mP (α)}, C =
∏

P

P max{0,−mP (α)}.

Recall that the absolute norm of P is defined by NP = Card(Ok/P ). If v ∈ Mk is
the ultrametric absolute value associated to P and dv the local degree, then

|α|dvv = NP−mP (α)

(in view of the product formula below, the product of the left hand side for all
ultrametric v, as well as the product of the left hand side for all prime ideals P , is
1/|N(α)|, where N(α) is the absolute norm of α). Indeed, for γ ∈ Ok and m ≥ 1, we
have

γ ∈ P m ⇐⇒ |γ |dvv ≤ NP−m .

Using Corollary 3.2, we conclude

C =
{
γ ∈ Ok ; |γ |v ≤ |α|−1

v for all ultrametric v ∈ Mk
}

=
{
γ ∈ Ok ; γα ∈ Ok

}

and
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B =
{
γα ; γ ∈ C

}
.

Further, by the multiplicativity property of N, we deduce from Lemma 3.1:

NC =
∏

P

NP max{0,−mP (α)} =
∏

v ultrametric

max
{
1, |α|dvv

}
= a0.

3.1.5 The Product Formula

Again let k be a number field of degree d. Let α ∈ k have minimal polynomial
a0 Xd + · · · + ad over Z. If v is an ultrametric absolute value of k, say v | p, with
|α|v > 1, then, by Lemma 3.1, we deduce that p divides a0. On the other hand, if
α 6= 0, then the minimal polynomial of α−1 is ad Xd + · · · + a0. Hence, if |α|v < 1,
then p divides ad . As a consequence, for each α 6= 0 in k, the set of v in Mk for which
|α|v 6= 1 is finite.

The product formula reads∏

v∈Mk

|α|dvv = 1 for α ∈ k, α 6= 0.

We already know this formula holds in the rational case k = Q. The general case
readily follows by considering ad/a0, which is the absolute norm of α, namely
Nk/Q(α) with k = Q(α).

We shall need a generalization of the relations d =
∑

v∈M∞k
dv =

∑
v|p dv when

the basis fieldQ is replaced by a finite extension. For this purpose it will be convenient
to write dv = dv(k). Let K be a finite extension of k. One can define a map from MK

onto Mk by mapping w onto the restriction v of w on k, in which case one writes
w | v. We claim that for each v ∈ Mk ,∑

w|v
dw(K ) = [K : k]dv(k)

(see [L 1993], Chap. 12 Prop. 3.3 and [Neu 1999], Chap. 2 § 8). Indeed, for γ ∈ K
such that K = Q(γ ), we also have K = k(γ ), and the irreducible polynomial g of
γ over k (which is of degree [K : k]) can be decomposed into irreducible factors
in kv[X ], say g =

∏
w|v gw, where gw is of degree [Kw : kv]. Therefore, for each

v ∈ Mk , ∑

w|v
[Kw : kv] = [K : k].

Since dw(K ) = [Kw : kv]dv(k), our claim follows.
An alternate proof of this relation (suggested by Dong Ping Ping) is as follows.

For α ∈ k and γ ∈ K such that k = Q(α) and K = Q(γ ), there exists a polynomial
Q ∈ Q[X ] such that α = Q(γ ). Let f be the minimal polynomial of γ over Q and
denote by α1, . . . , αdv (k) the conjugates of α (in C if v is Archimedean, in Cp if v is
ultrametric) which induce the absolute value v on k. Among the [K : Q] roots of f
in C (resp. in Cp), there are exactly [K : k]dv(k) roots whose images by Q belong
to the set {α1, . . . , αdv (k)}. These roots are all the roots of f in C (resp. in Cp) which
induce the absolute valuesw in K over v. Therefore there are precisely

∑
w|v dw(K )

such roots.
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3.2 The Absolute Logarithmic Height (Weil)

Let k be a number field. For α ∈ k we define

Hk(α) =
∏

v∈Mk

max{1, |α|v}dv .

This is a finite product (all but finitely many factors in the right hand side are equal
to 1). Let K be a finite extension of k. For α ∈ k we obtain

HK (α) =
∏

w∈MK

max{1, |α|w}dw(K )

=
∏

v∈Mk

max{1, |α|v}
∑

w|v dw(K )

= Hk(α)[K : k].

This shows that the number Hk(α)1/[k :Q] does not depend on the number field k
containing α. The logarithm of this number will play an important role. When α is
an algebraic number and K a number field which contains α, we define

h(α) =
1

[K : Q]
log HK (α) =

1

[K : Q]

∑

v∈MK

Dv log max{1, |α|v},

where Dv denotes the local degree at v ∈ MK . This is the (Weil) absolute logarithmic
height of the number α. It does not depend on the choice of the number field K
containing α, but only on α.
Example. For two rational integers a, b which are relatively prime,

h
(a

b

)
= log max{|a|, |b|}.

Property 3.3. For algebraic numbers α1 and α2,

h(α1α2) ≤ h(α1) + h(α2) (3.4)

and
h(α1 + α2) ≤ log 2 + h(α1) + h(α2). (3.5)

Moreover, for any algebraic number α 6= 0 and for any n ∈ Z,

h(αn) = |n|h(α). (3.6)

Proof. The upper bound (3.4) is a consequence of the estimate

max{1, xy} ≤ max{1, x}max{1, y} for all x ≥ 0, y ≥ 0,

while (3.5) follows from the inequality
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max{1, x + y} ≤ 2 max{1, x}max{1, y} for all x ≥ 0, y ≥ 0.

Since
max{1, xn} = max{1, x}n for all x > 0, n ∈ Z, n ≥ 0,

property (3.6) reduces to h(α) = h(1/α) for α 6= 0, which follows from the product
formula, since max{1, x} = x max{1, 1/x} for x > 0. ¤

Remark. The term log 2 in the right hand side of the estimate (3.5) cannot be replaced
by a smaller absolute constant, as shown by the following example: α1 = q/(q − 1),
α2 = q/(q + 1) with q an even integer. Another example is α1 = α2 = 1.

The next lemma provides an upper bound for the absolute logarithmic height of
an algebraic number which is given as the value of a polynomial in algebraic numbers
γ1, . . . , γt .

When f ∈ C[X1, . . . ,Xt ] is a polynomial in t variables, with complex coeffi-
cients, we denote by L( f ) its length, which is the sum of the modulus of its complex
coefficients. The length is very convenient because it satisfies the inequalities

L( f + g) ≤ L( f ) + L(g) and L( f g) ≤ L( f )L(g)

which will be used repeatedly in the transcendence proofs. Indeed, if we write

f =
∑

λ

pλX
λ and g =

∑

µ

qµXµ
,

where pλ and qµ are complex numbers, λ = (λi ) and µ = (µi ) run over finite subsets

of Nt , while Xλ stands for
∏t

i=1 Xλi
i , then the length of

f g =
∑

ν

∑

λ+µ=ν

pλqµXν

satisfies
L( f g) =

∑

ν

∣∣∣
∑

λ+µ=ν

pλqµ
∣∣∣ ≤

∑

ν

∑

λ+µ=ν

∣∣pλqµ
∣∣ = L( f )L(g).

We shall prove (as a consequence of Lemma 3.8 below) the following estimate:

Lemma 3.7. Let f ∈ Z[X1, . . . ,Xt ] be a nonzero polynomial in t variables with
rational integer coefficients. Let γ1, . . . , γt be algebraic numbers. Then

h
(

f (γ1, . . . , γt )
) ≤ log L( f ) +

t∑

i=1

(
degXi

f
)
h(γi ).

Applying Lemma 3.7 with f (X1, . . . ,Xn) = X1 + · · · + Xn , one can deduce a
generalization of (3.5):
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h(α1 + · · · + αn) ≤ log n + h(α1) + · · · + h(αn).

When p1/q1 and p2/q2 are two rational numbers with (p1, q1) = (p2, q2) = 1 and
qi > 0, then (3.5) (as well as Lemma 3.7) yields

h

(
p1

q1
+

p2

q2

)
≤ log 2 + log max{|p1|, q1} + log max{|p2|, q2}.

However, it is sometimes more efficient to write p1/q1 = a/c and p2/q2 = b/c with
gcd(a, b, c) = 1 and c > 0:

h

(
a

c
+

b

c

)
≤ log max{|a + b|, c}
≤ log 2 + log max{|a|, |b|, c}.

This example suggests a refinement of Lemma 3.7, using a notion of simultaneous
height for several numbers. Let K be a number field of degree D. Let γ0, . . . , γν
and λ be elements of K with (γ0, . . . , γν) 6= (0, . . . , 0) and λ 6= 0. From the product
formula, it follows that the number

1

D

∑

v∈MK

Dv log max{|γ0|v, . . . , |γν |v},

which is attached to the (ν + 1)-tuple (γ0, . . . , γν) ∈ K ν+1, is the same as the number

1

D

∑

v∈MK

Dv log max{|λγ0|v, . . . , |λγν |v},

which is attached to the (ν + 1)-tuple (λγ0, . . . , λγν) ∈ K ν+1. Therefore this number,
which we will denote by h(γ0: · · · : γν), depends only on the class (γ0: · · · : γν) of
(γ0, . . . , γν) in the projective space Pν(K ). For instance h(α) = h(1:α).

Lemma 3.8. Let K be a number field and ν1, . . . , ν` be positive integers. For
1 ≤ i ≤ `, let γi1, . . . , γiνi be elements of K and denote by γ the point(
γi j
)

1≤ j≤νi ,1≤i≤` in K ν1+···+ν` . Further, let f be a nonzero polynomial in ν1 + · · · + ν`
variables, with coefficients in Z, of total degree at most Ni with respect to the νi

variables corresponding to γi1, . . . , γiνi . Then

h
(

f (γ )
) ≤ log L( f ) +

∑̀

i=1

Ni h(1: γi1: · · · : γiνi ).

Recall that L( f ) denotes the length of f (sum of the absolute values of the
coefficients). We deduce Lemma 3.7 from Lemma 3.8 by taking νi = 1 for 1 ≤ i ≤ `.
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Proof. Write

f =
∑

λ

pλ
∏̀

i=1

νi∏

j=1

X
λi j

i j ,

where pλ are rational integers and λ = (λi j ) runs over a finite subset of Nν1+···+ν` . Let
v be an absolute value of k. If v is ultrametric, then

log max{1, | f (γ )|v} ≤ log max

{
1,max

λ

∏̀

i=1

νi∏

j=1

|γi j |λi j
v

}

≤
∑̀

i=1

Ni log max{1, |γi1|v, . . . , |γiνi |v}.

If v is Archimedean, then

log max{1, | f (γ )|v} ≤ log L( f ) + log max

{
1,max

λ

∏̀

i=1

νi∏

j=1

|γi j |λi j
v

}

≤ log L( f ) +
∑̀

i=1

Ni log max{1, |γi1|v, . . . , |γiνi |v}.

Using the relation
∑

v∈M∞k
Dv = D, we easily deduce the conclusion. ¤

3.3 Mahler’s Measure

Lemma 3.9. Let f ∈ C[X ] be a nonzero polynomial of degree d:

f (X ) = a0 Xd + a1 Xd−1 + · · · + ad−1 X + ad = a0

d∏

i=1

(X − αi ).

Then

|a0|
d∏

i=1

max{1, |αi |} = exp

(∫ 1

0
log | f (e2iπ t )|dt

)
.

Proof. This is a special case of Jensen’s formula for analytic functions. Since both
sides of the conclusion of Lemma 3.9 are multiplicative functions of f , it is sufficient
to consider the case where f is either a0 or else X − α. In the first case the left hand
side is |a0| and the desired equality plainly holds. In the latter case, the left hand side
is max{1, |α|}. Therefore Lemma 3.9 is equivalent to the fact that, for any complex
number α, ∫ 1

0
log |e2iπ t − α|dt = log max{1, |α|}.

(See for instance [M 1976], pp. 5–6). ¤
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Under the notation of Lemma 3.9, we define Mahler’s measure of f by

M( f ) = |a0|
d∏

i=1

max{1, |αi |}.

This is a multiplicative function:

M( f1 f2) = M( f1)M( f2)

for f1 and f2 in C[X ], a fact which follows immediately from the definition of M.

When α is an algebraic number with minimal polynomial f ∈ Z[X ] over Z, we
define its Mahler’s measure by M(α) = M( f ).

Lemma 3.10. Let α be an algebraic complex number of degree d. Then

h(α) =
1

d
log M(α).

Proof. Denote, as before, by a0 > 0 the leading coefficient of the minimal polynomial
of α, by k the number field Q(α), and, for v ∈ Mk , by dv the local degree at v. From
the definition of M(α) follows

M(α) = a0

∏

v∈M∞k

max{1, |α|v}dv .

In Lemma 3.1 we have proved

|a0|−1
p =

∏

v|p
max{1, |α|v}dv .

Therefore the product formula

a0 =
∏

p

|a0|−1
p

implies
a0 =

∏

v 6∈M∞k

max{1, |α|v}dv ,

which provides the desired conclusion. ¤
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3.4 Usual Height and Size

There are several other notions of heights or size (in French: taille) for algebraic
numbers. We shall give a few examples (see also the appendix to this Chap. 3). One
main property of a height is that the set of algebraic numbers of bounded height and
degree should be finite. For instance, for any ν ≥ 1, D ≥ 1 and h ≥ 1, the set of
projective points γ ∈ Pν(Q) with h(γ ) ≤ h, and for which there exists a system of
projective coordinates γ = (γ0: · · · : γν) satisfying

[
Q(γ0, . . . , γν) : Q

] ≤ D,

is a finite subset of Pν(Q). This is a completely elementary result due to Northcott
([L 1991], Chap. II, Th. 2.2; see also [Sc 1991], Lemma 7C). To give estimates for
the number of elements of such sets is also an interesting question (see the reference
to Schanuel’s work in [L 1983], [L 1991] and [Sc 1999], Th. 3B).

The usual height H( f ) of a polynomial f (X ) = a0 Xd +a1 Xd−1 + · · ·+ad ∈ Z[X ]
is the maximum of the complex modulus of its coefficients:

H( f ) = max{|a0|, . . . , |ad |}.
The usual height H(α) of an algebraic number α is the usual height of its minimal
polynomial over Z.

The house of an algebraic number is the maximum of the modulus of its
conjugates in C:

α = max{|α1|, . . . , |αd |}
when the minimal polynomial of α is written in C[X ] as

f (X ) = a0 Xd + · · · + ad = a0

d∏

i=1

(X − αi ).

The denominator den(α) of α is the positive generator of the ideal of D ∈ Z for
which Dα is an algebraic integer. It is a divisor of a0.

Among several notions of size, one of the most frequently used is

s(α) = log max{den(α) ; α }.

Lemma 3.11. For α ∈ Q of degree d, we have

1

d
log H(α)− log 2 ≤ h(α) ≤ 1

d
log H(α) +

1

2d
log(d + 1)

and
1

d
s(α) ≤ h(α) ≤ log den(α) + log max

{
1, α

} ≤ 2s(α).

Proof. The first part of the conclusion can be written
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2−dH(α) ≤ M(α) ≤ H(α)
√

d + 1.

The left inequality follows from the identity which relates the coefficients of a
polynomial with the roots of this polynomial:

a j = (−1) j a0

∑

1≤s1<···<s j≤d

αs1 · · ·αs j , (1 ≤ j ≤ d).

The number of terms in the sum is
(d

j

) ≤ 2d , and each of these terms is bounded
from above by M(α)/a0.

The right inequality follows from the arithmetico-geometric inequality:

exp

(∫ 1

0
log
∣∣ f
(
e2iπ t

)∣∣dt

)
≤
∫ 1

0

∣∣ f
(
e2iπ t

)∣∣dt.

Using this bound for f p, with p positive real, we deduce

M( f ) ≤
(∫ 1

0

∣∣ f
(
e2iπ t

)∣∣p
dt

)1/p

.

For p = 2 we obtain the desired estimate.
The proof of the second series of inequalities does not involve any difficulty and

is left as an exercise. ¤

Remark 1. Some authors (for instance W. M. Schmidt in [Sc 1991], Ch. I, § 7)
prefer another normalization of the absolute height, using the Euclidean norm at the
Archimedean places; so the modified logarithmic height of a rational number a/b
(with a, b relatively prime) is then log

√
a2 + b2 (see Exercise 3.2.b).

Remark 2. The fact that M is a multiplicative function on the ring C[X ]:

M( f1 f2) = M( f1)M( f2),

combined with the estimates

2−dH( f ) ≤ M( f ) ≤ √d + 1 H( f ) (3.12)

for d = deg f , yields

H( f1)H( f2) ≤ 2d
√

d + 1 H( f1 f2)

where d = deg( f1 f2).
Such an upper bound for the product H( f1)H( f2) in terms of H( f1 f2) already

appears in the seminal paper [KoPop 1932] of J. F. Koksma and J. Popken, where the
authors give a transcendence measure for eπ (see [FNe 1998], Chap. 2, § 4.2, Th. 27
p. 102). In their paper Koksma and Popken introduce some of the main tools which
will enable A. O. Gel’fond, at the end of the 40’s, to create his method of algebraic
independence (see [G 1952]). Gel’fond established sharp estimates concerning the
height of polynomials and extended his investigations to polynomials in several
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variables. Related results also occur in the book Diophantine Geometry of S. Lang in
1962 (see also [L 1983]). The above simple proof, which rests on the multiplicativity
of the measure M, is due to K. Mahler [M 1962]. Further references on this topic are
given in [Ev 1998].

3.5 Liouville’s Inequalities

3.5.1 Introduction

One characteristic of transcendence proofs, and more generally of results of diophan-
tine approximation, is that some variant of the following fact is needed: if a rational
integer is nonzero, then its absolute value is at least 1. One of the variants of this fact
asserts that if a rational number p/q (where p and q are relatively prime rational
integers and q > 0) is nonzero, then |p/q| ≥ 1/q. Now the bound depends on the
number considered. In terms of the logarithmic height h(p/q) = log max{|p|, q} of
p/q (with (p, q) = 1 and q > 0), the previous inequality yields:

log |x | ≥ −h(x) for all x ∈ Q×.
Liouville’s inequality is a generic name for similar lower bounds for nonzero algebraic
numbers α.

There is a simple lower bound for the modulus of a nonzero complex algebraic
number α in terms of the usual height H(α):

|α| ≥ 1

H(α) + 1
·

Since H(α−1) = H(α), this lower bound is equivalent to an upper bound |α| ≤ H(α)+1
(which plainly holds also for α = 0). More generally, if α is a complex number which
is root of a nonzero polynomial f (X ) = a0 Xn + · · · + an ∈ Z[X ] of degree n with
max
0≤i≤n

|ai | ≤ H ( f need not be the minimal polynomial of α), then |α| ≤ H + 1.

Indeed, this estimate holds trivially if |α| ≤ 1, while if |α| > 1, then

|α| ≤ |a0α| = |a1 + a2α
−1 + · · · + anα

−n+1|
≤ H

(
1 + |α|−1 + · · · + |α|−n+1

)
< H

(
1− |α|−1

)−1
.

One of the most useful inequalities of Liouville’s type is

log |α|v ≥ −[Q(α) : Q]h(α) (3.13)

for all α ∈ Q, α 6= 0, and all absolute values v ofQ(α). For the proof, we first remark
that for all α ∈ Q (including α = 0), we have

log |α|v ≤ [Q(α) : Q]h(α).
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Further, if α 6= 0, then h(α) = h(α−1) (see (3.6)).
From Lemma 3.8 we now deduce the following statement: under the hypotheses

of Lemma 3.8, if the number f (γ ) is nonzero, then for all absolute values v of the
number field k, we have

log | f (γ )|v ≥ −D log L( f )− D
∑̀

i=1

Ni h(1: γi1: · · · : γiνi ),

where D = [K : Q].
In the next section we give a slight refinement, where D log L( f ) is replaced by

(D − 1) log L( f ) when v is an Archimedean absolute value.

3.5.2 The Main Lower Bound

Proposition 3.14 (Liouville’s inequality). Let K be a number field of degree D, v
be an Archimedean absolute value of K and ν1, . . . , ν` be positive integers. For
1 ≤ i ≤ `, let γi1, . . . , γiνi be elements of K . Further, let f be a polynomial in
ν1 + · · · + ν` variables, with coefficients in Z, which does not vanish at the point
γ =

(
γi j
)

1≤ j≤νi ,1≤i≤`. Assume f is of total degree at most Ni with respect to the νi

variables corresponding to γi1, . . . , γiνi . Then

log | f (γ )|v ≥ −(D − 1) log L( f )− D
∑̀

i=1

Ni h(1: γi1: · · · : γiνi ).

The simplest case ` = 1, ν1 = 1 can be written as follows: for a polynomial
f ∈ Z[X] of degree at most N and an algebraic number α ∈ C of degree d which is
not a root of f , we have

| f (α)| ≥ L( f )1−de−d Nh(α).

(We deduce this estimate from Proposition 3.14 by taking for v the Archimedean
absolute value associated with the given embedding of Q(α) in C).

Proof. We write the product formula for f (γ ) 6= 0:

Dv log | f (γ )|v = −
∑

w 6=v
Dw log | f (γ )|w,

wherew runs over the absolute values of K distinct from v. Ifw is Archimedean we
have

log | f (γ )|w ≤
∑̀

i=1

Ni log max
{
1, |γi1|w, . . . , |γiνi |w

}
+ log L( f ).
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The sum of Dw forwArchimedean andw 6= v is D−Dv ≤ D−1. Ifw is ultrametric,
the same estimate holds without the term log L( f ). We conclude the proof by using
the bound

∑

w 6=v
Dw

∑̀

i=1

Ni log max
{
1, |γi1|w, . . . , |γiνi |w

} ≤ D
∑̀

i=1

Ni h(1: γi1: · · · : γiνi ).

¤

3.5.3 Further Lower Bounds

Using inequality (3.13) for α = β − (p/q) (or, alternatively, if v is Archimedean,
using Proposition 3.14 for the polynomial in a single variable f (X) = qX− p), we
deduce that for each algebraic number β, there exists a constant c(β) > 0 such that
for all p/q ∈ Q with q > 0 and p/q 6= β, and for any absolute value v of Q(β), we
have ∣∣∣∣β −

p

q

∣∣∣∣
v

≥ c(β)

max{|p| , q}d
with d = [Q(β) : Q] (and |p| is the usual absolute value of p). An admissible value
for c(β) is 2−de−dh(β).

Finally, the size inequality

{ log |α|v ≥ −(d − 1) log α − d log denα if v is Archimedean

log |α|v ≥ −d log α − d log denα if v is ultrametric

for all α ∈ Q, α 6= 0 is proved by writing

– that the norm over Q of the product α · den(α) is a nonzero rational integer if v is
Archimedean,

– the product formula for α · den(α) if v is ultrametric.

A Liouville number is a real number ϑ such that, for any κ > 0, there exists
p/q ∈ Q with q ≥ 2 and

0 <

∣∣∣∣ϑ −
p

q

∣∣∣∣ ≤
1

qκ
·

From Liouville’s inequality one deduces that a Liouville number is transcendental.

3.5.4 Proof of Lemma 2.1

From Proposition 3.14 one deduces the following result:

Given algebraic numbers γ1, . . . , γm and a polynomial f ∈ Z[X1, . . . ,Xm]
which does not vanish at the point (γ1, . . . , γm), we have

| f (γ1, . . . , γm)| ≥ e−cT
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where T = deg f + log H( f ),

c = D
(
2 + h(γ1) + · · · + h(γm)

)
and D = [Q(γ1, . . . , γm) : Q].

Lemma 2.1 easily follows.

3.5.5 Estimates for Determinants

Most often we shall use Proposition 3.14 for a polynomial given by a determinant.
We need to produce upper bounds for the degrees and heights of this polynomial;
such estimates are given by the following simple lemma:

Lemma 3.15. Let L be a positive integer and pλµ (1 ≤ λ,µ ≤ L) be L2 polynomials
in ν1 + · · ·+ ν` variables Xi j (1 ≤ j ≤ νi , 1 ≤ i ≤ `), with coefficients in Z. Define,
for 1 ≤ λ ≤ L ,

Mλ = max
1≤µ≤L

L(pλµ)

and
Niλ = max

1≤µ≤L
degXi

pλµ (1 ≤ i ≤ `),

where degXi
denotes the total degree with respect to the set of variables Xi1, . . . ,Xi,νi .

Then
1 = det

(
pλµ

)
1≤λ,µ≤L

is a polynomial in Z[X1, . . . ,X`] of length bounded by

L(1) ≤ L!
L∏

λ=1

Mλ

and degrees bounded by

degXi
1 ≤

L∑

λ=1

Niλ (1 ≤ i ≤ `).

Consequently if γi j (1 ≤ j ≤ νi , 1 ≤ i ≤ `) are algebraic numbers in a number
field of degree ≤ D such that the polynomial 1 does not vanish at the point

γ =
(
γi j
)

1≤ j≤νi
1≤i≤`
∈ Cν1+···+ν` ,

then

log |1(γ )| ≥

−(D − 1)

(
log(L!) +

L∑

λ=1

log Mλ

)
− DL

∑̀

i=1

(
h(1: γi1: · · · : γiνi )

L∑

λ=1

Niλ

)
.
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Remark. In § 2.2.1 we introduced the ring Z[X±1
1 , . . . ,X±1

k ,Y1, . . . ,Y`−k]. Let
1 = det

(
pλµ

)
be the determinant of a L × L matrix with coefficients in this ring.

Assume
max

1≤µ≤L
degX±1

i
pλµ ≤ Niλ (1 ≤ i ≤ k),

max
1≤µ≤L

degY j
pλµ ≤ N ′jλ (1 ≤ j ≤ `− k)

and
L(pλµ) ≤ Mλ

for 1 ≤ λ ≤ L . We can apply Lemma 3.15 with ` replaced by ` + k, with ν j = 1 for
all j and with

Xi1 =

{Xi for 1 ≤ i ≤ k,
X−1

i−k for k < i ≤ 2k,
Yi−2k for 2k < i ≤ ` + k.

We deduce

degX±1
i
1 ≤

L∑

λ=1

Niλ (1 ≤ i ≤ k),

degY j
1 ≤

L∑

λ=1

N ′jλ (1 ≤ j ≤ `− k).

Further, let γ = (γ1, . . . , γ`) be a `-tuple of algebraic numbers in a number field of
degree D with γ j 6= 0 for 1 ≤ j ≤ k. Assume 1(γ ) 6= 0. We can apply Proposition
3.14, but one must carefully add the contributions of degXi

and degX−1
i

:

log |1(γ )| ≥

(D − 1)
L∑

λ=1

log Mλ − (D − 1) log(L!)− 2D
k∑

i=1

L∑

λ=1

Niλ − D
`−k∑

j=1

L∑

λ=1

N ′jλ.

See for instance Exercise 3.8.

3.6 Lower Bound for the Height

We quoted Northcott’s Theorem in § 3.4 as a fundamental property of any height.
Another important property of the absolute logarithmic height (which distinguishes
this height from most other ones) is that for α ∈ Q×, h(α) = 0 if and only if α is
a root of unity (i.e. a torsion point in the multiplicative group Gm(Q) = Q×). This
raises the important problem of estimating h(α) from below when it does not vanish.

3.6.1 Kronecker’s Theorem

By definition the values of Mahler’s measure M are ≥ 1.
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If a nonzero algebraic numberα satisfies M(α) < 2, thenα is an algebraic integer,
and α−1 also, which means that α is a unit. In other terms the (absolute logarithmic)
height of an algebraic number which is not a unit is at least (log 2)/d.

Let α be nonzero algebraic integer. Assume M(α) = 1, which means that all
conjugates of α have modulus at most 1. Then α is a root of unity. Indeed, if α has
degree d, then each α` with ` ≥ 1 is a root of a monic polynomial, with rational
integer coefficients, of degree d, whose coefficients have usual absolute values at
most 2d . The set of such polynomials is finite, hence so is the set of α` (` ≥ 1). The
conclusion plainly follows.

Using Corollary 3.2, one deduces the following statement, due to L. Kronecker
[Kr 1857]: if k is a number field and α a nonzero element of k such that |α|v ≤ 1 for
all v ∈ Mk , then α is a root of unity.

Therefore the only algebraic numbers α which satisfy h(α) = 0 are 0 and the
roots of unity. The other ones satisfy h(α) > 0. To give a sharp lower bound for h(α),
when α is a unit but not a root of unity, in terms of the degree of α is an interesting
and difficult problem (see [L 1991], Chap. IX, § 7).

Remark. For an algebraic number α of degree d, since h(α) = (1/d) log M(α), the
conditions h(α) > 0 and M(α) > 1 are plainly equivalent.

If κ > 0 and α ∈ Q satisfy h(α) ≥ κ , then from the inequality

eκd > 1 + κd

with d = [Q(α) : Q] we deduce M(α) > 1 + κd.
Conversely, if α ∈ Q has degree d and if κ > 0, ε > 0 satisfy

M(α) ≥ 1 + κd and κd < ε,

then (using Exercise 1.1.a) we deduce

h(α) > cκ with c(ε) =
1

ε
log(1 + ε).

Notice that c(ε)→ 1 as ε → 0. More precisely we have

1 < c(ε) < 1 + ε.

3.6.2 Lehmer’s Problem

In 1933 D. H. Lehmer [Le 1933] asked whether it is true that for every positive ε
there exists an algebraic integer α for which 1 < M(α) < 1+ε. The answer is not yet
known but it is easy to see (Exercise 3.9) that for each positive integer d there exists a
positive number c(d) such that, for any nonzero algebraic numberαwhich is not a root
of unity and is of degree at most d, the inequality h(α) ≥ c(d) is valid. The example
α = 21/d shows that such a function c(d) must satisfy c(d) ≤ (log 2)/d. It is widely
believed that there exists a positive absolute constant c0 such that c(d) ≥ c0/d. This



                 

88 3. Heights of Algebraic Numbers

problem is known as Lehmer’s problem (see Chap. 7 of [BerDGPS 1992]) and an
answer would have various applications. The first one is due to D. H. Lehmer himself
in [Le 1933]: he introduced the subject while looking for large prime numbers. Next,
following A. Schinzel, C. Pinner and J. Vaaler related the Mahler measure of a
polynomial and the number of its irreducible non-cyclotomic factors. Polynomials
with small measure also occur in ergodic theory and dynamical systems (works of
Ia. Sinaı̈, W. Lawton, E. Bombieri and J. E. Taylor). We refer to M. J. Mossinghoff’s
thesis [Mos 1995] for further references (see also [Ev 1998]).

The smallest known value M(α) > 1 for an algebraic number α is the root
1.1762808183 . . . of the reciprocal7 polynomial of degree 10 :

X10 + X9 − X7 − X6 − X5 − X4 − X3 + X + 1 = X5 Q

(
X +

1

X

)

with
Q(Y ) = (Y + 1)2(Y − 1)(Y + 2)(Y − 2)− 1

This example is due to D. H. Lehmer [Le 1933].
In 1980 and then in 1989, D. Boyd developed an algorithm for searching

polynomials with small Mahler’s measure. He found all polynomials of degree at
most 20 and Mahler’s measure at most 1.3. In his thesis M. J. Mossinghoff [Mos
1995] listed 1560 irreducible non-cyclotomic polynomials with Mahler’s measure
less than 1.3 and degree at most 64. None of these has Mahler’s measure less than
Lehmer’s degree 10 example reported in 1933.

The first result in the direction of Lehmer’s problem is due to A. Schinzel and
H. Zassenhaus [SZa 1965]: when α 6= 0 is an algebraic integer of degree d ≥ 2 which
is not a root of unity, then

α > 1 + 4−s−2

where 2s is the number of nonreal conjugates of α. Therefore

M(α) > 1 +
c

2d

for some absolute constant c > 0.
In 1971, by means of an averaging technique in Fourier analysis, P. E. Blanksby

and H. L. Montgomery [BlMon 1971] refined this result and proved, for an algebraic
integer of degree d > 1 which is not a root of unity,

M(α) > 1 +
1

52d log(6d)
·

A consequence is the estimate

α > 1 +
1

30d2 log(6d)
·

7 A polynomial f ∈ C[X ] of degree d is reciprocal if f (X ) = X d f (1/X ).
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Also in that year Smyth [Sm 1971] used Parseval’s formula to prove, under the same
assumptions, that if α−1 is not a conjugate of α, then M(α) ≥ 1.3247179572 . . .,
this number being the real root of X3 − X − 1 and the smallest PV-number 8. An
interesting consequence of his result is that it solves Lehmer’s problem when d is
odd (one can use c0 = 0.2811 . . . in this case). In 1978, C. L. Stewart [Ste 1978]
introduced a method from transcendental number theory to prove

M(α) > 1 +
1

104d log d

for d ≥ 2. This is marginally weaker than the previous result of Blanksby-
Montgomery, but the interest lies in the method.

3.6.3 Dobrowolski’s Theorem

In 1979, E. Dobrowolski [Do 1979] succeeded to extend Stewart’s argument and to
obtain the following statement: for each ε > 0, there exists an integer d0(ε) such
that, for any d > d0(ε) and any nonzero algebraic number α of degree ≤ d which is
not a root of unity,

h(α) >
1− ε

d

(
log log d

log d

)3

,

which can be written

M(α) > 1 + (1− ε)

(
log log d

log d

)3

·

In 1981, independently, D. C. Cantor and E. G. Straus [CaStr 1982] and U. Rausch
[Ra 1985] simplified Dobrowolski’s proof by introducing a determinant and replaced
1−ε by 2−ε. Finally R. Louboutin [Lo 1983] reached (9/4)−ε by a modification of
this determinant. The same result with (9/4)−ε has been also obtained by M. Meyer
[Me 1988], using a construction of an auxiliary function (like Dobrowolski), but with
Thue-Siegel lemma replaced by a refinement due to E. Bombieri and J. Vaaler [BoVa
1983].

Dobrowolski’s result is effective: by [Do 1979], for all d ≥ 2,

M(α) > 1 +
1

1200

(
log log d

log d

)3

·

P. Voutier [Vou 1996] improved this bound: for d ≥ 2,

h(α) >
1

4d

(
log log d

log d

)3

·

8 A Pisot-Vijayaraghavan number, or PV-number, is a real algebraic integer> 1 all of whose
other conjugates lie inside the open unit disc. A Salem number is a real algebraic integer
> 1 all of whose other conjugates lie inside the closed unit disc, with at least one conjugate
on the unit circle. See [BerDGPS 1992].
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Let α be a nonzero algebraic integer of degree≤ d with d ≥ 2. Since log α ≥ h(α),
we deduce, if α is not a root of unity,

log α >
1

4d

(
log log d

log d

)3

·
The estimate (see [Du 1993])

α > 1 +

(
64

π2
− ε

)
1

d

(
log log d

log d

)3

for d > d0(ε)

is sharper for large d, while

log α >
log
(
d + (1/2)

)

d2
for d ≥ 1

(see [Mat 1991]) is stronger for small d. From the latter one deduces that a nonzero
algebraic integer α satisfying h(α) < 2/(3d3) is a root of unity (compare with
Theorem 3.16). Another uniform estimate is [Vou 1996]:

α > 1 +
1

2d

(
log log d

log d

)3

for d ≥ 2.

Our aim in the rest of this section is twofold. On one hand we wish to establish
a lower bound which will be useful later (namely in Chap. 7, proof of Lemma 7.19):

Theorem 3.16. Let d be a positive integer and α be a nonzero algebraic number of
degree ≤ d which is not a root of unity. Then

h(α) >
1

11d3
·

On the other hand we wish to give a further example of a transcendence proof
using an interpolation determinant. This will produce a sharpening of Theorem 3.16,
but only for sufficiently large d:

Theorem 3.17. There exists a positive integer d0 such that, for any integer d ≥ d0

and a nonzero algebraic number α of degree ≤ d which is not a root of unity,

h(α) ≥ 1

250d

(
log log d

log d

)3

·

From the previous discussion it is clear that d0 = 2 is an admissible value for the
constant in Theorem 3.17, and in fact this would follow from the argument given
below. But assuming that d is sufficiently large will simplify the estimates (we insist
that d is only an upper bound for the degree of α, and not the actual degree).

It may be useful for the reader if we repeat that there is no loss of generality,
in the proofs of Theorems 3.16 and 3.17, to assume that α is an algebraic integer.
Indeed, we have seen that the result is obvious unless α is a unit.
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3.6.4 Fermat’s Little Theorem

One main tool is Fermat’s little theorem, which is used as follows:

Lemma 3.18. Let p be a prime number and f ∈ Z[X1, . . . , Xk] a polynomial in k
variables with integer coefficients. Then there exists g ∈ Z[X1, . . . , Xk] such that

f (X p
1 , . . . , X p

k )− f (X1, . . . , Xk)p = pg(X1, . . . , Xk).

Proof. For simplicity write X for (X1, . . . , Xk) and X p for (X p
1 , . . . , X p

k ), so that the
conclusion is just

f (X p)− f (X )p = pg(X ).

The result holds for a monomial f (X ) = aX i1
1 · · · X ik

k :

f (X p)− f (X )p = (a − a p)X pi1
1 · · · X pik

k

and p divides the integer a − a p. If the result holds for f1 and for f2, namely if

f1(X p)− f1(X )p = pg1(X ) and f2(X p)− f2(X )p = pg2(X ),

then it holds for f = f1 + f2, because the coefficients of the polynomial

( f1 + f2)p − f p
1 − f p

2 =
p−1∑

h=1

(
p

h

)
f h
1 f p−h

2

are rational integers which are all divisible by p. Therefore one may choose

g = g1 + g2 −
p−1∑

h=1

(p − 1)!

h!(p − h)!
f h
1 f p−h

2 .

Lemma 3.18 plainly follows. ¤

Remark. An explicit expression for g can be given. For instance for k = 1 if the
given polynomial f is f (X ) = a0 Xd + a1 Xd−1 + · · · + ad , then one can write:

g(X ) =
d∑

i=0

ad−i − a p
d−i

p
X pi −

∑
i0+···+id =p

0≤ih<p,(0≤h≤d)

(p − 1)!

i0! · · · id !
ai0

d · · · aid
0 X i1+2i2+···+did .

We now give a very simple proof of the following estimate, once more due to
E. Dobrowolski [Do 1978]: if a nonzero algebraic integer α of degree ≤ d is not a
root of unity, then

α > 1 +
1

4ed2
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Let α be a nonzero algebraic integer of degree d. Denote by 6 the set of
embeddings of Q(α) into C, so that

{
σα ; σ ∈ 6} =

{
α1, . . . , αd

}

is the set of conjugates of α. For any positive integer h, the value of the Newton sum

Sh =
∑

σ∈6
σαh

(which is the trace of αh from Q(α) to Q) is a rational integer. Let p be a prime
number. Fermat’s little Theorem gives the congruence Sh ≡ S p

h (mod p). On the
other hand, using Lemma 3.18 with k = d for the polynomial f = X h

1 +· · ·+X h
d , we can

write Shp − S p
h = pg(α1, . . . , αd ), for some g ∈ Z[X1, . . . , Xd ]. Now g(α1, . . . , αd )

is an algebraic integer, and since it is a rational number, we get Shp ≡ S p
h (mod p).

This shows that the three numbers Shp, Sh and S p
h are congruent modulo p. For any

h ≥ 1 we have
|Sh | ≤ d α h .

We now assume α ≤ 1 + 1/(4ed2). By the so-called Bertrand’s Postulate (which
was proved by Chebishev in 1850 – see [HaWr 1938], Chap. 22 and [GLin 1962],
Th. 3.5.1), there exists a prime number p in the range 2ed < p < 4ed. For 1 ≤ h ≤ d ,
the estimates

|Sh | ≤ d

(
1 +

1

4ed2

)d

≤ de and |Shp| ≤ d

(
1 +

1

4ed2

)4ed2

≤ de

hold. Therefore |Sh − Shp| ≤ 2de < p, which implies Sh = Shp for 1 ≤ h ≤ d. This
means that α and α p have the same minimal polynomial, i.e. that they are conjugates.
One deduces from the following lemma that α is a root of unity.

Lemma 3.19. Let α be a nonzero algebraic number. Assume that there exist two
distinct positive rational integers h and ` such that αh and α` are conjugate. Then α
is a root of unity.

Proof. Let K be the splitting field of α overQ: if6 denotes the set of embeddings of
the fieldQ(α) in C, then K is the field generated overQ by

{
σα ; σ ∈ 6}. From the

assumption that αh and α` are conjugate, we deduce that there exists an element ϕ in
the Galois group of K overQ such that ϕ(αh) = α`. By induction, for any n ≥ 1, we
deduce ϕn(αhn

) = α`
n
. Let m be the order of ϕ in the Galois group. Then αhm

= α`
m
.

Since h 6= `, we conclude that α is a root of unity. ¤

Proof of Theorem 3.16. We first notice that the inequality

(
1 +

1

4ed2

)11d2

> e

holds for d ≥ 2. Hence for d ≥ 2 we deduce
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h(α) ≥ 1

d
log α ≥ 1

d
log

(
1 +

1

4ed2

)
>

1

11d3
·

¤

Remark. Using the same arguments, E. Dobrowolski [Do 1978] also proves that a
nonzero algebraic integer α which is a not root of unity satisfies

α ≥ 1 +
log d

6d2
·

As we have seen, sharper results [Mat 1991], [Du 1993], [Vou 1996] are now
available.

In order to prove Theorem 3.17, we need some preparation.
The proof of the next lemma involves the norm Nk/Q: k → Q of a number field

k: for α ∈ k, the norm of α with respect to the extension k/Q is the determinant of
the endomorphism x 7→ αx of theQ-vector space k. If we denote again by6 the set
of embeddings of k into C, then

Nk/Q(α) =
∏

σ∈6
σα.

The absolute norm of an algebraic number α is NQ(α)/Q(α) ∈ Q. When α is an
algebraic integer, we have Nk/Q(α) ∈ Z (the absolute value of this integer is nothing
else than the absolute norm of the principal ideal (α) in the ring of integers of k).
The following relation holds for any element α in a number field k:

Nk/Q(α) =
(
NQ(α)/Q(α)

)[k :Q(α)]
.

Lemma 3.20. Let p be a prime number and α an algebraic integer of degree d .
Denote by 6 the set of embeddings of Q(α) into C. Then the number

∏

σ∈6

∏

τ∈6
(τα p − σα)

is a rational integer which is divisible by pd .

Proof. The minimal polynomial f ∈ Z[X ] of α over Z can be written

f (X ) =
∏

σ∈6
(X − σα).

Hence ∏

σ∈6

∏

τ∈6
(τα p − σα) =

∏

τ∈6
f (τα p) = NQ(α)/Q

(
f (α p)

)
.

Since α is an algebraic integer and f ∈ Z[X ], the number f (α p) is also an algebraic
integer, hence its norm is a rational integer.
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Using Lemma 3.18 with k = 1, we write f (X p) − f (X )p = pg(X ) for some
g ∈ Z[X ]. Since f (τα) = 0 for all τ ∈ 6, we deduce f (τα p) = pg(τα) and

∏

τ∈6
f (τα p) = pd

∏

τ∈6
g(τα).

Finally, we observe that the number
∏

τ∈6
g(τα) = NQ(α)/Q

(
g(α)

)

is a rational integer. ¤

Remark. Using the product formula in place of the norm would enable us to deal
with algebraic numbers in place of algebraic integers. Compare with Lemma 3.23
below.

Lemma 3.21. Let α be an algebraic integer of degree d, measure M(α) and length
L(α). Let p be a prime number. If α is neither 0 nor a root of unity, then

M(α) ≥
(

p

L(α)

)1/p

.

Proof. From Lemma 3.19 (with h = 1 and ` = p) we deduce that α and α p are not
conjugate. If f (X ) = Xd +a1 Xd−1 + · · ·+ad is the minimal polynomial of α, then the
number f (α p) is a nonzero algebraic integer. Hence its norm NQ(α)/Q

(
f (α p)

)
over

Q is a nonzero rational integer which, by Lemma 3.20, is divisible by pd . A trivial
upper bound for the absolute value of this number

NQ(α)/Q
(

f (α p)
)

=
∏

σ∈6

d∑

j=0

ad− jσα
pj

(where a0 = 1) is obtained as follows:

∣∣NQ(α)/Q
(

f (α p)
)∣∣ ≤

∏

σ∈6

d∑

j=0

|ad− j |max{1, |σα|pj } ≤ L(α)dM(α)pd .

Therefore
pd ≤ L(α)dM(α)pd .

¤

Remark. If we use the fact that there is a prime number p in the interval
[2L(α), 4L(α)], together with the estimate 2 log x ≥ x log 2 which holds in the
range 2 ≤ x ≤ 4, we deduce

M(α) ≥
(

p

L(α)

)1/p

≥ 21/2L(α) ≥ 1 +
log 2

2L(α)
·
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3.6.5 Dobrowolski’s Proof of Theorem 3.17

In order to obtain a lower bound for M(α) which depends only on the degree of
α, one main idea of Dobrowolski’s is to use the same outline, not for the minimal
polynomial f of α itself, but for a suitable multiple of f T , where T is a large integer.

The argument is as follows (see [Do 1979] and [Sc 1999], § 6). All throughout the
proof we assume d is sufficiently large. Select two parameters L and T (depending
on d) with L > dT . The first step establishes the existence of a nonzero polynomial
F in Z[X ], of degree ≤ L and length

L(F) ≤ L2dT 2/L ,

which satisfies (
d

d X

)t

F(α) = 0 for 0 ≤ t < T .

The second step is the zero estimate: there exists a prime number p in the range

2 ≤ p ≤ p0 where p0 :=
3

2
· L

d
log

L

d

such that F(α p) 6= 0.
Assuming for the moment these two preliminary steps, we complete the proof of

Theorem 3.17.
We deduce from Lemma 3.20 that the number

N = NQ(α)/QF(α p) =
∏

τ∈6
F(τα p)

is a nonzero rational integer which is a multiple of pdT . Hence

|N | ≥ pdT .

On the other hand the estimate
∏

τ∈6
|F(τα p)| ≤ L(F)d

∏

τ∈6
max{1, |τα|}pL

gives
|N | ≤ L(F)dM(α)pL .

Therefore

M(α) ≥ pdT/(pL)L(F)−d/(pL) ≥ pdT/(pL)L−2d2T 2/(pL2).

We wish now to choose the parameters T and L such that the quantity

min
p≤p0

{
dT

pL
log p − 2d2T 2

pL2
log L

}

is large: its value will provide a lower bound for log M(α). Choose for instance the
parameters as follows:



              

96 3. Heights of Algebraic Numbers

T =

[
5

log d

log log d

]
and L = dT 2.

Since
dT 2

L
>

p

2T 2 log p
+

2d2T 3 log L

L2 log p
,

one deduces the lower bound

log M(α) ≥ 1

2T 3
,

which yields the conclusion of Theorem 3.17.
Let us come back to the first step: the construction of F . Using Dirichlet’s

box principle (see Exercise 3.12), Dobrowolski ([Do 1979], Lemma 1) shows the
existence of F ∈ Z[X] with a zero of multiplicity ≥ T at α and with the following
upper bound for its height:

H(F) ≤
((

23/2(L + 1)L (T−1)/2
)dT

M(α)T L
)1/(L−dT )

.

In order to deduce the desired upper bound for the length of F , it suffices to check

23dT/2(L + 1)LM(α)T L ≤ L (3dT 2/2)−(2d2T 3/L)+(dT/2).

Given our choice of parameters (recall that d is sufficiently large), this estimate is
satisfied as soon as log M(α) ≤ (1/11) log log d, an assumption which of course does
not involve any loss of generality for the proof of Theorem 3.17.

In order to complete the proof of Theorem 3.17, we only need to prove the zero
estimate of the second step: one at least of the numbers F(α p), with p prime in the
range 2 ≤ p ≤ p0, is not zero. The number of primes in this range is > L/d. We
are going to check that the set

{
σα p ; σ ∈ 6, p ≤ p0

}
.

has more than L elements. It will follow that the nonzero polynomial F ∈ Z[X]
cannot vanish at all points in this set, which is what we want.

By Lemma 3.19, for p1 6= p2 and for any σ and τ in 6, we have σα p1 6= τα p2 .
If there is a prime p for which the elements σα p (σ ∈ 6), are not pairwise distinct,
then α p is of degree < d, and we complete the proof of our claim by means of an
inductive argument, thanks to the following lemma (compare with Lemma 3 of [Ra
1985]):

Lemma 3.22. Let α be a nonzero algebraic integer which is not a root of unity.
Define d = [Q(α) : Q]. Assume that there exists a positive integer n such that
[Q(αn) : Q] < d. Then there exists an algebraic integer β such that

[Q(β) : Q] ≤ d

2
and M(β) ≤ M(α).
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Proof. Define k = Q(αn) and notice that α is a root of Xn − αn ∈ k[X ]. Hence the
irreducible polynomial g of α over k is a divisor of Xn − αn in k[X ]. It follows that
the constant term, say β ∈ k, of g, can be written ζαr , where r = [Q(α) : k] is the
degree of g, while ζ is a n-th root of unity. Therefore we have

h(β) = rh(α)

and

[Q(β) : Q] ≤ [k : Q] =
d

r
=

1

r
[Q(α) : Q],

hence
M(β) ≤ M(α).

¤

It is interesting to compare the previous sketch of proof with the usual one in
transcendental number theory: a nonzero number is constructed and its absolute
value is estimated from above and from below. But here, in place of a sharp analytic
upper bound (Schwarz’ Lemma) and a weak arithmetic lower bound (Liouville’s
inequality), we have a sharp arithmetic lower bound (coming from Fermat’s little
Theorem) and a trivial upper bound. However it is possible to give the proof in a
way which is closer to the usual one, involving a sharp (ultrametric) upper bound
together with the product formula. Here is the needed p-adic estimate.

Lemma 3.23. Let α be an algebraic number of degree d = [Q(α) : Q]. Let p be
a prime number, F ∈ Z[X ] a polynomial of degree L which vanishes at α with
multiplicity at least T and v a place of Q(α) which extends the p-adic valuation of
Q. Then

|F(α p)|v ≤ p−T max{1, |α|v}pL .

Proof. Consider first the case where F is the minimal polynomial f of α over Z.
Using Lemma 3.18 with k = 1, we can write f (X p) = f (X )p + pg(X ) for some
g ∈ Z[X ] of degree ≤ pd. Hence

|g(α)|v ≤ max{1, |α|v}pd

and
| f (α p)|v = |pg(α)|v ≤ p−1 max{1, |α|v}pd ,

which is what we wanted.
In the general case, F is divisible by f T : let G ∈ Z[X ] satisfy F = f T G. Hence

G has degree L − dT and

|G(α p)|v ≤ max{1, |α|v}p(L−dT ).

Therefore

|F(α p)|v = | f (α p)|Tv |G(α p)|v ≤ p−T max{1, |α|v}pL .



              

98 3. Heights of Algebraic Numbers

¤

Remark 1. From Lemma 3.23 one deduces the following lower bound, which could
be used in the proof of Theorem 3.17 in place of the one which we derived from
Lemma 3.20 : Under the assumptions of Lemma 3.23, assume that α is an algebraic
integer and F(α p) 6= 0. Let 6 the set of embeddings of Q(α) into C. Then

∏

τ∈6
|F(τα p)| ≥ pdT .

This follows from the product formula
(∏

τ∈6
|F(τα p)|

)(∏

v

|F(α p)|v
)

= 1

where v runs over the set of ultrametric absolute values of Q(α), using the upper
bound |F(α p)|v ≤ 1 for any ultrametric absolute value v ofQ(α) such that |p|v = 1.

Remark 2. Under the hypotheses of Lemma 3.23, assume further that α is an integer.
Then one can derive the conclusion in the general case from the special case F = f
by means of an ultrametric Schwarz’ lemma as follows.

Let 6v be the set of embeddings of Q(α) into an algebraically closed field Cv
containing the completion of Q(α) at v. The analytic function z 7→ F(z) on Cv
vanishes at the points z = σα (σ ∈ 6v) with multiplicity ≥ T . Since |σα|v ≤ 1 for
any σ ∈ 6v , we deduce

∣∣∣∣∣∣∣∣

F(w)∏

σ∈6v
(w − σα)T

∣∣∣∣∣∣∣∣
v

≤ R−dT sup
|z|v=R
|F(z)|v

for any w ∈ Cv with |w|v ≤ 1 and any R > 1. Let R → 1: for the same w ∈ Cv ,
we obtain

|F(w)|v ≤
∏

σ∈6v
|w − σα|Tv = | f (w)|Tv .

Remark 3. In [AmD 1999], Th. 3.1, F. Amoroso and S. David prove a multidimen-
sional generalization of Lemma 3.23. They first prove the corresponding estimate
when α is an integer, and deduce the general case by means of the strong approxi-
mation Theorem.
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3.6.6 Proof of Theorem 3.17 Following Cantor-Straus and Rausch

We shall now provide the details of the proof of Theorem 3.17 by means of the idea of
Cantor, Straus and Rausch which does not use Dirichlet’s box principle, but replaces
the auxiliary function by a determinant.

We proceed by induction on the degree d = [Q(α) : Q]. We may assume that d
is sufficiently large, and that the conclusion of Theorem 3.17 holds for any algebraic
integer of degree < d. Let α be an algebraic integer of degree d. By Lemma 3.22,
we may assume that for any prime number p, the number α p has degree d over Q.

Let P = {p1, . . . , pr } be a set of r distinct primes. Define L = d(T + r ). As
we have seen, Dobrowolski’s original proof involved the construction of a nonzero
auxiliary polynomial f of degree < L which vanishes at the points σ1α, . . . , σdα

with multiplicity ≥ T . The statement that not all of the numbers f (σiα
p j ) are zero

will be called the zero estimate.
In place of this construction, Cantor, Straus and Rausch consider the system of

equations which occurs in the zero estimate, namely




1

t!

(
d

d X

)t

f (σiα) = 0, (0 ≤ t < T, 1 ≤ i ≤ d)

f (σiα
p j ) = 0, (1 ≤ j ≤ r, 1 ≤ i ≤ d),

where the unknowns are the coefficients of f ∈ Z[X ] with deg f < L . The number
of unknowns (the coefficients of f ) is L , which is also the number of equations. Let
1 be the determinant of this system. We are going to write down 1 explicitly.

We consider the set
{
ζ1, ζ2, . . . , ζL

}
of complex numbers defined by




ζ(i−1)T + j = σiα for 1 ≤ i ≤ d and 1 ≤ j ≤ T ,

ζdT +d( j−1)+i = σiα
p j for 1 ≤ i ≤ d and 1 ≤ j ≤ r .

This means that

• each of the d numbers σ1α, . . . , σdα is repeated T times,

• each of the dr numbers σiα
p j (1 ≤ i ≤ d, 1 ≤ j ≤ r ) occurs just once.

Next define nonnegative integers {t1, . . . , tL} by
{ t(i−1)T + j = j − 1 for 1 ≤ i ≤ d and 1 ≤ j ≤ T ,

tdT +i = 0 for 1 ≤ i ≤ dr .

Therefore, for 1 ≤ λ ≤ L ,

tλ = Card
{
µ ; 1 ≤ µ < λ, ζµ = ζλ

}
<

{
T if ζλ is of the form σi (α),
1 if ζλ is of the form σiα

p j

and we have

1 = det

((
µ− 1

tλ

)
ζ
µ−1−tλ
λ

)

1≤λ,µ≤L

,
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where the binomial coefficient
(m

n

)
is defined as 0 for n > m.

We first check (zero estimate) 1 6= 0. Indeed, otherwise, there would exist a
nonzero polynomial of degree < L vanishing at σ1α, . . . , σdα with multiplicity
≥ T , and with a root at each point σiα

p j (1 ≤ i ≤ d, 1 ≤ j ≤ r ). Since the d(r + 1)
numbers

σ1α, . . . , σdα and σiα
p j , (1 ≤ i ≤ d, 1 ≤ j ≤ r )

are pairwise distinct (recall Lemmas 3.19 and 3.22), and since a nonzero polynomial
of degree < L has not more than L − 1 roots (counting multiplicities), that is not
possible.

We now invoke Fermat’s little Theorem (Lemma 3.20) in order to get a lower
bound for the absolute value of the interpolation determinant 1.

Lemma 3.24. We have

|1| ≥
r∏

j=1

pdT
j .

Proof. For T1, . . . , Tm positive integers with T1 + · · · + Tm = L , consider the
determinant D ∈ Z[X1, . . . , Xm] of the following L × L matrix

M = ( M1 M2 · · · Mm )

where, for 1 ≤ j ≤ m, M j denotes the L × T j block

M j =




1 0 · · · 0
X j 1 · · · 0
X2

j 2X j · · · 0
...

...
. . .

...
Xµ−1

j (µ− 1)Xµ−2
j · · · (

µ−1
T j−1

)
X
µ−T j

j

...
...

. . .
...

X L−1
j (L − 1)X L−2

j · · · ( L−1
T j−1

)
X

L−T j

j




.

The square of D is a symmetric polynomial in X1, . . . , Xm . Moreover for 1 ≤ i <
j ≤ m the polynomial D is divisible, in the ring Z[X1, . . . , Xm], by (X i − X j )Ti T j .

Choose m = d(r + 1), T1 = · · · = Td = T , Td+1 = · · · = Tm = 1. If we define, for
0 ≤ j ≤ r and 1 ≤ i ≤ d,

ξ jd+i = σiα
p j

where p0 = 1, then we have 1 = ±D(ξ1, . . . , ξm). It follows from Lemma 3.20 that
12 is a rational integer, which is divisible by p2dT

j for 1 ≤ j ≤ r . ¤

Next we produce an upper bound for the absolute value of 1:
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Lemma 3.25. We have

|1| ≤ Ld(T 2+r )/2M(α)L(T +p1+···+pr ).

Proof. We use the so-called Hadamard’s inequality (see for instance [F 1982],
Appendix C):

• the determinant 1 of a L × L matrix
(
aλµ

)
1≤λ,µ≤L satisfies the inequality

|1|2 ≤
L∏

λ=1

L∑

µ=1

|aλµ|2.

Here we get

|1|2 ≤
L∏

λ=1

L∑

µ=1

(
µ− 1

tλ

)2

max{1, |ζλ|}2(µ−1).

We split the product on λ in two parts: the first one is

dT∏

λ=1

L∑

µ=1

(
µ− 1

tλ

)2

max{1, |ζλ|}2(µ−1) =
d∏

i=1

T∏

j=1

L∑

µ=1

(
µ− 1

j − 1

)2

max{1, |σiα|}2L

≤
d∏

i=1

T−1∏

t=0

L2t+1 max{1, |σiα|}2L

≤ LdT 2
M(α)2LT

and the second

L∏

λ=dT +1

L∑

µ=1

(
µ− 1

tλ

)2

max{1, |ζλ|}2(µ−1) =
d∏

i=1

r∏

j=1

L∑

µ=1

max{1, |σiα
p j |}2L

≤ Ldr M(α)2L(p1+···+pr ).

¤

We now complete the proof of Theorem 3.17. From Lemmas 3.24 and 3.25 we
derive

r∏

j=1

pdT
j ≤ Ld(T 2+r )/2M(α)L(T +p1+···+pr ).

Recall that L = d(T + r ). Take for p1, . . . , pr the first r primes with r = T 2 − T ,
and define

T =

[
5

log d

log log d

]
·

From the prime number Theorem ([HaWr 1938], Th. 6 and Chap. 22) one deduces
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r∑

j=1

log p j ' r log r and
r∑

j=1

p j ' 1

2
r2 log r

as r →∞. Since, as soon as d is sufficiently large, we have

dT 2

L
>

dT log L

2L log T
+

4

5
,

we deduce

log M(α) >
1

T 3
·

¤

3.6.7 Further Related Questions and Results

Several related results are worth mentioning.
A. Schinzel, E. Dobrowolski and W. Lawton gave lower bounds for the height

for an algebraic number α (which is neither zero nor a root of unity) in terms of the
number of non-vanishing coefficients of a polynomial f ∈ Z[X ] such that f (α) = 0.

In [Mi 1979], M. Mignotte gave a lower bound for |α − 1| which is stronger
than Liouville’s one in terms of the degree; this is specially interesting when α has a
small Mahler’s measure. The proof involved an auxiliary polynomial. This estimate
was improved in [MiW 1994] by means of an interpolation determinant. A p-adic
analogue has been obtained by Y. Bugeaud [Bu 1998a]. Further refinements are due
to E. M. Matveev [Mat 1996b], and F. Amoroso [Am 1996] and [Am 1998]. A
remarkable connection with Riemann’s hypothesis is described in [Am 1996] , while
[Am 1998] contains a survey of such results.

Higher dimensional generalizations of Kronecker’s Theorem, Lehmer’s problem
and Dobrowolski’s estimate have been considered from different points of view.

In [AmD 1999], F. Amoroso and S. David extend Dobrowolski’s result to
simultaneous approximation. Lehmer’s Problem is related to the multiplicative group
Gm. Here is a generalization to Gn

m suggested in [AmD 1999].

Conjecture 3.26. For each positive integer n ≥ 1 there exists a positive number
c1(n) such that, if α = (α1, . . . , αn) is a n-tuple of multiplicatively independent
algebraic numbers and if ω(α) denotes the minimum degree of a nonzero polynomial
in Q[X1, . . . , Xn] which vanishes at α, then

h(1:α1: · · · :αn) ≥ c1(n)

ω(α)
· (3.27)

A partial result is proved in [AmD 1999]:

h(1:α1: · · · :αn) ≥ c2(n)

ω(α)
(
1 + logω(α)

)κ(n)



              

3.6 Lower Bound for the Height 103

for some positive constants c2(n) and κ(n) which depend only on n.
A consequence (see Exercise 3.13) of Conjecture 3.26 is the following open

problem:

(?) For each positive integer n ≥ 1 there exist a positive number c3(n) having the
following property. Let α1, . . . , αn be multiplicatively independent algebraic
numbers. Define D = [Q(α1, . . . , αn) : Q]. Then

n∏

i=1

h(αi ) ≥ c3(n)

D
· (3.28)

A weaker estimate of the form
n∏

i=1

h(αi ) ≥ c4(n)

D(1 + log D)nκ(n)
(3.29)

is proved in [AmD 1999].

Another kind of higher dimensional Lehmer type problem arose from a work of
S. Zhang in 1992 on positive line bundles on arithmetic varieties. He showed that
if V is a curve of a linear torus which is not a translate of a subtorus of positive
dimension by a torsion point, then there exists a positive constant c such that V has
only finitely many algebraic points of height≤ c. Hence for sufficiently small c these
points have a vanishing height. A more elementary proof of this result for the special
case of the curve x + y = 1 in the torus G2

m was given by D. Zagier, with the best

possible value for the constant: any solution (x, y) ∈ Q2
of the equation x + y = 1

with x 6= 0 and x6 6= 1 satisfies

h(x) + h(y) ≥ 1

2
log

(
1 +
√

5

2

)
·

F. Beukers and D. Zagier gave sharp explicit results on this question and mentioned
a number of applications. W. M. Schmidt, then E. Bombieri and U. Zannier, and then
W. M. Schmidt again, extended Zagier’s elementary argument to higher dimensional
subvarieties of Gn

m. A survey on this topic is given by W. M. Schmidt in [Sc 1999].
Algebraic units u such that 1− u is also a unit are sometimes called exceptional

units. See [Sil 1996] for a survey of this topic.
One main tool is the notion of height for subvarieties of an affine or projective

space. So far we have considered only the height of an algebraic point, which has
dimension 0.

Subvarieties of codimension 1 are hypersurfaces . Lemma 3.9 suggested to
Mahler a natural extension of his measure to polynomials in several variables (see
[S 1999]):

log M( f ) =
∫ 1

0
· · ·
∫ 1

0
log | f (e2iπ t1 , . . . e2iπ tn )|dt1 · · · dtn.
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The name generalized cyclotomic polynomial is sometimes used for a polynomial f
(in several variables) which defines a hypersurface V of a torus containing a translate
of a subtorus by a torsion point. By a result of D. Boyd, W. Lawton and C. Smyth,
an irreducible polynomial f which is not a generalized cyclotomic polynomial has
M( f ) > 1.

For a subvariety of any dimension, H. Gillet, C. Soulé, G. Faltings and P. Philippon
introduced closely related notions of height9. For instance (see [DP 1999]) the
canonical height of a hypersurface defined by F = 0 (where F is an irreducible
polynomials with coefficients inZ) is nothing else than log M(F) where M is Mahler’s
measure (in several variables).

In the case (which we are interested in) of a subvariety of a torus, a canonical
height can be defined (à la Néron-Tate), which vanishes exactly for the subvarieties
containing a translate of a subtorus by a torsion point. For a hypersurface V of Gn

m
defined overQ, say f = 0, which is not an algebraic subgroup ofGm, a lower bound
for h(V ) (that is for log M( f )) has been given in [AmD 2000].

An interesting related topic (see for instance [DP 1999]) is then to compare the
height of the variety V with the minimum height of algebraic points on V. The limit
distribution of small points on algebraic tori has been studied by Y. Bilu.

These problems are the multiplicative analogues of a conjecture of F. A. Bogo-
molov about the discreteness of algebraic points on an algebraic curve of genus at
least 2 with respect to the distance induced by the Néron-Tate height on the Jaco-
bian. We do not deal here with Abelian varieties, and we shall only refer to work by
L. Szpiro, J-F. Burnol, S. Zhang, E. Bombieri and U. Zannier, E. Ullmo, S. David
and P. Philippon (extensions to semi-abelian varieties have also been considered by
B. Poonen and A. Chambert-Loir).

There are further lower bounds for the height of algebraic numbers. For instance
A. Schinzel and E. Dobrowolski got estimates which depend on the number of
nonzero coefficients of the minimal polynomial. In [Mat 1996a], E. M. Matveev
proves, for some classes of algebraic integers, a sharper estimate than Dobrowolski’s
one including the discriminant 1 of α: he replaces the degree d of α by d/11/d .

Other estimates are due to M. Langevin; on one hand he proves [La 1986]: Let V
be a neighborhood of a point of the unit circle. There exists two effectively computable
constants c > 1 and D0 > 0 such that for any nonzero algebraic number α of degree
D ≥ D0, all of whose conjugates are outside V, the inequality M(α) > cD holds.
On the other hand, after a joint work with E. Reyssat and G. Rhin, he answered two
questions of Favard by proving lower bounds for the diameter of an algebraic integer
α, which is defined as

diam(α) = max
1≤i 6= j≤d

|αi − α j |,
where {α1, . . . , αd} is the set of conjugates of α. These lower bounds are

diam(α) ≥ √3 for d = [Q(α) : Q] ≥ 2

9 A special case was already considered by W. M. Schmidt (see [Sc 1980]) who defined the
height of a vector subspace by considering the Plücker coordinates of the corresponding
point in a Grassmanian.



            

Open Problems 105

and, for any ε > 0,
diam(α) ≥ 2− ε for d ≥ d0(ε).

For further results and references on the height of algebraic numbers, see Chap. 7
of [BerDGPS 1992], [S 1999] and [Sc 1999].

Open Problems

1. (Lehmer’s problem [Le 1933] — see § 3.6). Does there exist an absolute constant
c0 > 0 such that, for any nonzero algebraic number which is not a root of unity,
dh(α) ≥ c0?

2. (Conjecture of Schinzel and Zassenhaus [SZa 1965]). Does there exist an absolute
constant c > 0 such that, for any nonzero algebraic integer of degree d which is not
a root of unity, α ≥ 1 + (c/d)?

Since, for any algebraic integer α of degree d, we have h(α) ≤ log α ≤ dh(α),
the conjecture of Schinzel and Zassenhaus would follow from a positive answer to
Lehmer’s problem 1 above.

3. (A. Dubickas) Check that for any nonzero algebraic integer α of degree d which
is not a root of unity,

log max
{
α ; α−1

}
≥ 1

d
log 2.

4. (D. Boyd [Boy 1980]) The minimal value for α when α is a nonzero algebraic
integer of degree d which is not a root of unity should be reached for the roots of

Xd + X2d/3 − 1

with d multiple of 3. An example is X3 + X2 − 1.

5. In the case f (X ) = q X − p with p and q rational integers, Liouville’s inequality
(Theorem 1.1) gives an estimate for the approximation of algebraic numbers by
rational numbers. In this special case this lower bound is not the best known (Theorem
1.10 of Thue-Siegel-Roth-Schmidt; see [Sc 1980]). Is it possible to improve the
estimate in the general case of Proposition 3.14? Even an ineffective result might be
useful.
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Exercises

Exercise 3.1. Letα1, . . . , αs be algebraic numbers. Define k = Q(α1, . . . , αs) and d = [k : Q].
Show that there exist rational integers a2, . . . , as with 0 ≤ ai ≤ d(d − 1)/2 such that the
number γ = α1 + a2α2 + · · · + asαs satisfies k = Q(γ ).

Hint. See [MiW 1977] Lemme 3.

Exercise 3.2.
a) For f ∈ C[X1, . . . ,Xt ], we denote by | f |1 the upper bound of | f (z)| on the unit polydisc:

| f |1 = sup
{| f (z1, . . . , zt )| ; z ∈ C t , |zi | = 1, 1 ≤ i ≤ t

}
.

Hence | f |1 ≤ L( f ). Show that in Lemmas 3.7, 3.8 and Proposition 3.14, one can replace
log L( f ) by log | f |1.

Hint. Start by proving the following statement: if a0, . . . , aN , y are complex numbers, then
∣∣∣∣∣

N∑

i=0

ai yi

∣∣∣∣∣ ≤ sup
|z|=1

∣∣∣∣∣
N∑

i=0

ai z
i

∣∣∣∣∣ ·max
(
1, |y|)N

.

When |y| ≤ 1, this inequality follows from the maximum modulus principle for a0 + a1z + · · ·+
aN zN . When |y| > 1, perform the change of variables z′ = 1/z.

Deduce by induction: for a polynomial f ∈ C[X1, . . . ,Xt ], when y1, . . . , yt are complex
numbers,

| f (y1, . . . , yt )| ≤ | f |1
t∏

i=1

max(1, |yi |)degXi
f .

b) For an algebraic number γ of degree d and minimal polynomial

a0 X d + · · · + ad = a0

d∏

i=1

(X − γi ),

define a modified Mahler’s measure by

M̃(γ ) = a0

d∏

i=1

√
1 + |γi |

and a modified absolute logarithmic height by

h̃(γ ) =
1

d
log M̃(γ ).

Check, under the assumptions of Lemma 3.7,

h̃
(

f (γ1, . . . , γt )
) ≤ log H( f ) +

t∑

i=1

(
degXi

f
)̃
h(γi ).

Hint. Compare with [Sc 1991], Chap. I, § 7, Lemma 7D.
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c) Let k be a number field of degree d. For γ = (γ0: · · · : γν) ∈ Pν(k), define

h̃(γ ) =
1

d

∑

v∈Mk

dv log ‖γ ‖v,

where

‖γ ‖v =

{max{|γ0|v, . . . , |γν |v} for v ultrametric,
√|γ0|2v + · · · + |γν |2v for v Archimedean.

Check that one can replace the height h by this modified height h̃ and at the same time the
length L by the usual height H in Lemmas 3.7, 3.8 and 3.14.

Exercise 3.3.
a) Let N and M be positive integers and ϑ1, . . . , ϑN , θ1, . . . , θM algebraic numbers. Check
that

h(1:ϑ1: · · · :ϑN : θ1: · · · : θM ) ≤ h(1:ϑ1: · · · :ϑN ) + h(1: θ1: · · · : θM ).

Deduce, for algebraic numbers ϑ0, . . . , ϑs , not all of which are zero,

h(ϑ0: · · · :ϑs) ≤
s∑

i=0

h(ϑi ).

b) Let a1, . . . , an be rational integers, b1, . . . , bn be non-vanishing integers and β1, . . . , βn

algebraic numbers. Define

N = max{|a1|, |b1|, . . . , |an|, |bn|}
and

γ =
a1

b1
β1 + · · · + an

bn
βn .

Then

h(γ ) ≤ n(n + 1) log N + log n +
n∑

i=1

h(βi ).

Hint. This is Lemma 2.7 of [W 1980].

c) Let L1, . . . , Lk , N1, . . . , Nk and M be positive integers. For 1 ≤ i ≤ k, let γ0i , . . . , γNi i be
algebraic numbers. Assume that for each i = 1, . . . , k, at least one of the numbers γ0i , . . . , γNi i

is nonzero and denote by γi the point in PNi (Q) with projective coordinates (γ0i : · · · : γNi i ). We

will also write γ for the point
(
γνi

)
0≤ν≤Ni ,1≤i≤k

inQ
N1+···+Nk +k

. Furthermore, let F0, . . . , FM be
polynomials in N1 +· · ·+ Nk +k variables, with coefficients inZ, each of which is homogeneous
of degree L i with respect to the Ni + 1 variables X0i , . . . ,XNi i . Assume that one at least of
the M + 1 numbers θµ = Fµ(γ ) (0 ≤ µ ≤ M) is nonzero, and define θ as the point in PM (Q)
with projective coordinates (θ0: · · · : θM ). Then

h(θ ) ≤ log max
0≤µ≤M

L(Fµ) +
k∑

i=1

L i h(γi ).

d) Let P ∈ Q[X0, . . . ,Xn, Y ] be a homogeneous polynomial in n + 2 variables such that
P(0, . . . , 0, 1) 6= 0. Let (α0: · · · :αn :β) ∈ Pn+1(Q) satisfy P(α0: · · · :αn :β) = 0. Then

h(α0: · · · :αn :β) ≤ h(α0: · · · :αn) + h(p) + log N ,
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where N + 1 is the number of monomials in P and p is the projective point which is defined
by the sequence of coefficients of P .
(Compare with [Ser 1989], § 2.3, N◦4, Prop. 14.)
e) For any polynomial F ∈ Z[X, T ], there exists a constant c > 0 such that, if α and β are
algebraic numbers with F(α, β) = 0, and if the polynomial F(α, T ) ∈ Q(α)[T ] is not zero,
then h(β) ≤ c max{1, h(α)}.

Exercise 3.4. For f ∈ Z[X] a nonzero polynomial, define t( f ) = deg f + log H( f ). For an
algebraic number α with minimal polynomial fα ∈ Z[X], define t(α) = t( fα). Check the
following Liouville’s inequality:

If f ∈ Z[X] and α ∈ Q satisfy f (α) 6= 0, then

| f (α)| ≥ e−t( f )t(α).

Hint. One may use Proposition 3.14 together with the estimates

(N + 1)d−1(d + 1)N/2 ≤ ed N for integers d ≥ 1 and N ≥ 0.

Remark. Another way of proving a lower bound for | f (α)| is to use the fact that the resultant
of f and fα is a nonzero rational integer - see [Bor 1899].

Exercise 3.5. Show that in Proposition 3.14, if the Archimedean absolute value v is not real,
then the conclusion can be refined as

log | f (γ )|v ≥ −
(

d

2
− 1

)
log | f |1 − d

2

t∑

i=1

Ni h(1: γi1: · · · : γiνi ).

Show also that if v is an ultrametric absolute value of k, then

log | f (γ )|v ≥ − d

dv

(
log | f |1 +

t∑

i=1

Ni h(1: γi1: · · · : γiνi )

)
.

where dv is, as usual, the local degree at v.

Hint. Use Exercise 3.2.a.

Exercise 3.6. Let f ∈ Z[X ] be a nonzero polynomial of degree d with leading coefficient
a0 > 0 and let α ∈ C be a zero of f .
a) Let p/q be a rational number with q > 0 such that f (p/q) 6= 0. Show that

∣∣∣∣α −
p

q

∣∣∣∣ ≥
max{1, |α|}

q(|p| + q)d−1M( f )
.

b) Deduce that for an algebraic number α of degree d, if we set

c(α) =





1

2d−1M(α)
if |α| ≤ 1,

|α|
(2 + |α|)d−1M(α)

if |α| > 1,
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then for all p/q ∈ Q with p/q 6= α we have
∣∣∣∣α −

p

q

∣∣∣∣ ≥
c(α)

qd
·

c) Show that, for each κ > | f ′(α)|, there are only finitely many p/q ∈ Q with
∣∣∣∣α −

p

q

∣∣∣∣ ≤
1

κqd
·

Example: Let α be a real quadratic number, which is root of a polynomial aX 2 + bX + c of
discriminant 1 = b2 − 4ac > 0. Then for each κ >

√
1 there exist q0 > 0 such that, for

p/q ∈ Q with q > q0, ∣∣∣∣α −
p

q

∣∣∣∣ >
1

κq2
·

Exercise 3.7.
a) Let β be a nonzero algebraic number and λ a nonzero logarithm of an algebraic number.
Define α = eλ and D = [Q(α, β) : Q]. Then

|βλ| > (
2eh(α)+h(β))−D

.

Hint. Using (3.13), deduce |β| ≥ e−Dh(β). Using Proposition 3.14, show that |α − 1| ≥
2
(
2eh(α)

)−D
if α /= 1. From Exercise 1.1, deduce min{|α − 1|, 1} < 2|λ|}.

b) Let λ1, . . . , λm be logarithms of algebraic numbers and b1, . . . , bm rational integers. Let D
be the degree of a number field containing the m algebraic numbersα j = exp(λ j ) (1 ≤ j ≤ m).
If the number

3 = b1λ1 + · · · + bmλm

is nonzero, then

|3| ≥ 2−D exp

{
−D

m∑

j=1

|b j |h(α j )

}
.

Exercise 3.8. Let α1, . . . , αn+1 be nonzero algebraic numbers and β1, . . . , βn be algebraic
numbers. Denote by D the degree of the number field

Q(α1, . . . , αn+1, β1, . . . , βn).

Let T0, T1, S1, . . . , Sn+1 be positive rational integers. Define L =
(T0+n

n

)
(2T1 + 1) and

S∗ = max{S1, . . . , Sn+1}. Further let s(1), . . . , s(L) be any elements in the set Zn+1(S) of
s = (s1, . . . , sn+1) ∈ Zn+1 which satisfy |si | ≤ Si (1 ≤ i ≤ n + 1). Let 1 be the determinant
of the L × L matrix

(
(s(µ)

1 + s(µ)
n+1β1)τ1 · · · (s(µ)

n + s(µ)
n+1βn)τn

(
α

s(µ)
1

1 · · ·α
s(µ)
n+1

n+1

)t
)

(τ,t)
1≤µ≤L

,

where (τ, t) ranges over the set of elements (τ1, . . . , τn, t) ∈ Nn×Z for which τ1 +· · ·+τn ≤ T0

and |t | ≤ T1. Assume 1 6= 0. Prove

1

L
log |1| ≥ −(D − 1)

(
T0 log(2S∗) + log L

)− D(T1 + 1)
n+1∑

i=1

Si h(αi )− DT0h(1:β1: · · · :βn).
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Hint. Use Lemma 3.15 with ` = 2n + 3,

ν1 = · · · = ν2n+2 = 1, ν2n+3 = n,

pλµ =
n∏

j=1

(
s(µ)

j + s(µ)
n+1X2n+3, j

)τ j ·
n+1∏

i=1

(
X

max{ts(µ)
i
,0}

i1 X
max{−ts(µ)

i
,0}

n+1+i,1

)

where (τ, t) corresponds to the index λ,

Niλ = Nn+1+i,λ = t max |s(µ)
i | ≤ t Si (1 ≤ i ≤ n + 1)

and N2n+3,λ ≤ T0, so that L(pλµ) ≤ (2S∗)T0 ,

L∑

λ=1

Niλ =
L∑

λ=1

Nn+1+i,λ ≤ 1

2
L(T1 + 1)Si (1 ≤ i ≤ n + 1)

and
L∑

λ=1

N2n+3,λ ≤ LT0

Next apply Proposition 3.14 with γi1 = αi for 1 ≤ i ≤ n +1, γi1 = α−1
i−n−1 for n +2 ≤ i ≤ 2n +2

and γ2n+3, j = β j for 1 ≤ j ≤ n.

Exercise 3.9.
a) Check that for a nonzero algebraic number α, of degree d ∈ {1, 2, 3, 4, 5}, which is not a
root of unity, the number dh(α) = log M(α) is bounded from below by the value given in table
3.30 (the last column provides a polynomial which yields the minimum).

Table 3.30

d = dh(α) ≥ minimum for

1 log 2 = 0.6931 . . . X − 2

2 log
(
(1 +
√

5)/2
)

= 0.4812 . . . X 2 − X − 1

3 0.2811 . . . X 3 − X − 1

4 0.3223 . . . X 4 − X − 1

5 0.2998 . . . X 5 − X 4 + X 3 − X + 1
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b) Show that the proof (see § 3.6) of Kronecker’s result is effective: if d is a positive integer,
there exists a positive number c(d) such that, for any nonzero algebraic numbers α which is
not a root of unity and is of degree at most d, the inequality h(α) ≥ c(d) is valid.

Hint. Let α be an algebraic number of degree at most d. Assume that there exists a positive
integer ` such that

M(α)` < 1 + 2−d and ` ≥ d(2d+1 + 1)d+1.

Check H(α j ) ≤ 2d for 0 ≤ j ≤ ` and deduce that the numbers 1, α, . . . , α` are not pairwise
distinct.

c) Let A and d be two positive integers, H and C two positive real numbers, and α a nonzero
algebraic number of degree d. Assume

dh(α) ≤ 1

H
, 1

C2
=
(π

A

)2
+

(
2A − 1

H

)2

and
C > 2d e(2A−1)/H .

Show that α is a root of unity of order < 2A.

Hint. Show that there exists an integer r in the range 1 ≤ r ≤ 2A − 1 such that
| log(αr )| ≤ 1/C . Deduce |αr−1| < 2/C . Use Liouville’s inequality (3.14) for f (X ) = X r−1
and conclude.

d) Deduce from c) that a suitable value for c(d) in question b) above is 2−2d−4 (compare with
[SZa 1965]).

Hint. Choose A = 2d+2, H = A2.

Exercise 3.10. (see [CaStr 1982] and [Ra 1985]). Let a, b, c be positive real numbers and α
an algebraic integer of degree ≤ d which is not a root of unity. Assume that there is a prime
p in the range ad < p ≤ bd. Assume also

(
1 +

c

d2

)bd2

≤ a

2
·

Deduce
α > 1 +

c

d2
·

See also [Do 1978] for a much stronger estimate.

Exercise 3.11. Show that the polynomial D which occurs in the proof of Lemma 3.24 (namely
the so-called confluent Vandermonde determinant) is equal to

±
∏

1≤i< j≤m

(X i − X j )
Ti T j

Exercise 3.12.
a) Let ν, µ, ` be positive integers, pi j (1 ≤ i ≤ ν, 1 ≤ j ≤ µ) polynomials in Z[X1, . . . ,X`]
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and γ = (γ1, . . . , γ`) a tuple of algebraic numbers in a number field of degree D. Define, for
1 ≤ j ≤ µ and 1 ≤ k ≤ `,

Nk j = max
1≤i≤ν

degXk
pi j

and

V j =

(
ν∑

i=1

L(pi j )

)∏̀

k=1

eNk j h(γk ).

Assume ν > Dµ. Show that there exist x1 . . . , xν in Z satisfying
ν∑

i=1

xi pi j (γ ) = 0 (1 ≤ j ≤ µ)

and
0 < max

1≤i≤ν
|xi | ≤ 2 +

(
2µ
(
V1 · · · Vµ

)D
)1/(ν−µD)

.

Hint. Use Dirichlet’s box principle as in the proof of Lemmas 4.11 and 4.12. See also Lemma
4 of [MiW 1978] and Lemma 1 of [Do 1979].

b) Deduce the existence of F for the first step of the proof of Dobrowolski’s Theorem given
in § 3.6.5.

Exercise 3.13. Letα1, . . . , αn be nonzero algebraic numbers. Denote by [Q(α) : Q] the degree
of the number field they generate.
a) Recall the notation ω(α) in Conjecture 3.26. Check

ω(α) ≤ n[Q(α) : Q]1/n .

Hint. Using linear algebra, for any integer δ satisfying
(
δ + n

n

)
> [Q(α) : Q],

show that there exists a nonzero polynomial P ∈ Q[X ] of total degree≤ δ such that P(α) = 0.

b) Assume α1, . . . , αn are multiplicatively independent. Let ε > 0. Show that there exist
multiplicatively independent algebraic numbers γ1, . . . , γn such that

[Q(α) : Q]h(α1) · · · h(αn) ≥ (1− ε)[Q(γ ) : Q]h(1: γ1: · · · : γn)n .

Hint. Since α1, . . . , αn are multiplicatively independent, we have h(αi ) > 0 for 1 ≤ i ≤ n.
Let N be a sufficiently large integer. Define Ai = [Nh(αi )] and select γi = α1/Ai

i .

c) Deduce that Conjecture 3.28 is a consequence of Conjecture 3.26
d) Check also that (3.29) follows from (3.27).

Hint. Use Theorem 3.16.

Exercise 3.14. Let P ∈ C[X ] be a nonzero polynomial of degree ≤ d and let p be a prime
number. Check ∏

ζ

|P(ζ )| ≤ pd M(P)p−1,

where ζ (in the product of the left hand side) ranges over the set with p − 1 elements of
primitive p-th roots of unity.
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Annex to Chapter 3. Inequalities Between Different Heights of a
Polynomial - From a Manuscript by Alain Durand

Let f ∈ C[X ] be a nonzero polynomial with complex coefficients of degree d:

f = a0 Xd + a1 Xd−1 + · · · + ad = a0

d∏

i=1

(X − αi ).

There are several notions of height for f . For instance we have Mahler’s measure of
f (see § 3.3):

M( f ) = |a0|
d∏

i=1

max{1, |αi |},

the usual height of f (see § 3.4):

H( f ) = max{|a0|, |a1|, . . . , |ad |},
the Euclidean norm of f :

L2( f ) =
(|a0|2 + |a1|2 + · · · + |ad |2)1/2 =

(∫ 1

0
| f (e2iπ t )|2dt

)1/2

,

the sup norm on the unit disc (or on the unit circle, which is the same by the maximum
modulus principle):

| f |1 = sup
|z|≤1
| f (z)| = sup

|z|=1
| f (z)|,

and finally the length of f (see § 3.2):

L( f ) = |a0| + |a1| + · · · + |ad |.
Inequalities like

(d + 1)−1/2M( f ) ≤ H( f ) ≤ L2( f ) ≤ | f |1 ≤ L( f ) ≤ 2dM( f )

relate these functions. Table 3.31 below (due to the late Alain Durand) provides an
upper bound for the quotient of one of the norms (left column) by another one (first
row). In each case but two, below the upper bound is displayed one polynomial for
which the estimate is optimal (where fd denotes the polynomial 1 + X + · · · + Xd ).
There are two exceptions where the optimal result is not known:
(1) By (3.12),

M( f ) ≤ √d + 1 H( f ).

There are examples which show that for d sufficiently large, there exist polynomials
f of degree d with H( f ) = 1 and M( f ) ≥ √d + 1 − (log d)/2 (see [Dur 1990],
p.56).
(2) One can also prove that

L( f ) ≤ √d| f |1
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Table 3.31

M( f ) H( f ) L2( f ) | f |1 L( f )

M( f ) ≤ 1
√

d + 1 1 1 1

(1) X d X d X d

H( f ) ≤
(

d

[d/2]

)
1 1 1 1

(X + 1)d X d X d X d

L2( f ) ≤
(

2d

d

)1/2 √
d + 1 1 1 1

(X + 1)d fd X d X d

| f |1 ≤ 2d d + 1
√

d + 1 1 1

(X + 1)d fd fd X d

L( f ) ≤ 2d d + 1
√

d + 1
√

d 1

(X + 1)d fd fd (2)

and give examples of polynomials f of degree d with | f |1 = 1 and L( f ) ≥ √d−3d1/6

for d sufficiently large (again see A. Durand, op. cit., 64–65, or J-P. Kahane, Sur
les polynômes à coefficients unimodulaires, Bull. London Math. Soc., 12 (1980),
321–342).



        

4. The Criterion of Schneider-Lang

Baker’s Theorem 1.6 was proved in 1966. In 1980, D. Bertrand and D. W. Masser
realized that it was a consequence of a result which was known earlier, namely the
criterion of Schneider-Lang for Cartesian products [BertMa 1980], [Ma 1981a].
The main purpose of this chapter is to explain this argument (§ 4.2).

We shall state the criterion of Schneider-Lang (§ 4.1) only for entire functions
(there is an extension to meromorphic functions, which is relevant for the study of
analytic subgroups of commutative algebraic groups). We shall give a proof (§ 4.6)
only of the special case which we use for the proof of Baker’s Theorem, namely
when one considers exponential polynomials.

It is possible to prove the main result of this chapter (Corollary 4.2) by means
of interpolation determinants, using the multiplicity estimate of P. Philippon (see
Chap. 8). It is possible also to prove it with interpolation determinants and without
zero estimate (see [W 1997b]). Here, we shall use the old fashioned argument which
rests on Thue-Siegel’s Lemma and the construction of an auxiliary function (§ 4.5).
This classical method deserves a place in these lectures: we remind the reader that,
until recently, all known transcendence proofs of the theorems of Gel’fond-Schneider,
Baker, or the six exponentials Theorem, involved a construction of an auxiliary
function by means of Thue-Siegel’s Lemma.

We need also a Schwarz’ Lemma for entire functions which vanish with a high
multiplicity on a Cartesian product (§ 4.3). This lemma is usually proved by means
of integral formulae. Here we shall prove it by induction.

4.1 Algebraic Values of Entire Functions Satisfying Differential
Equations

The criterion of Schneider-Lang is a general statement dealing with values of
meromorphic functions of one or several complex variables, satisfying differential
equations.

The first general result dealing with analytic or meromorphic functions of
one variable and containing the solution to Hilbert’s seventh problem appears in
[Sch 1949]. In fact one can deduce the transcendence of αβ (Gel’fond-Schneider
Theorem 1.4) from this criterion, either by using the two functions z and αz without
derivatives (Schneider’s method), or else ez and eβz with derivatives (Gel’fond’s
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method). The statement is rather complicated, and Th. Schneider made successful
attempts to simplify it [Sch 1957]. Schneider’s criteria in [Sch 1957], Chap. II, § 3,
Th.12 and 13 deal only with Gel’fond’s method, i.e. involve derivatives. Further
simplifications have been introduced by S. Lang later: either for Schneider’s method
(see [L 1966], Chap. III, § 1, Th.1), or else for Gel’fond’s method and functions
satisfying differential equations (see [L 1965b], [L 1966], Chap. III, § 1, Th.1 and
[L 1993], Appendix 1). This last result is known as the criterion of Schneider-Lang.
It has been extended by S. Lang to functions of several variables [L 1965b], [L
1966], Chap. IV, § 1, Th.1. Incidentally, the first transcendence proof involving
functions of several variables goes back to [Sch 1941], where Th. Schneider proved
the transcendence of the values B(a, b) of the Beta function at rational points. Until
1970, all transcendence results in several variables involved only Cartesian products.
The introduction of deeper tools from complex function theory occurred in the joint
work [BoL 1970] of E. Bombieri and S. Lang, where Lelong’s measure of the zeroes
of an analytic function plays an important role (see [LelGru 1986], Chap. VI, §. 2
and [W 1979b], § 7.4). Then E. Bombieri [Bo 1970], introducing Hörmander’s
L2-estimates into the subject (see also [LelGru 1986], Chap. VI, §. 2, Th. 1 and [W
1979b], Th. 5.1.1), answered a question of Nagata raised in [L 1966]: in this context
it turns out that the convenient generalization of a finite set ofC to higher dimension
is the notion of hypersurface, and the number of elements is replaced by the degree of
the hypersurface. However the special case (dealing with Cartesian products) which
was considered by Th. Schneider and S. Lang is sufficient for our purpose.

The criterion of Schneider-Lang has many consequences. The one variable case
already contains the theorems of Hermite-Lindemann and Gel’fond-Schneider (see
[L 1993], Appendix 1: the transcendence of e and π ). Here for simplicity we state
the criterion only for entire functions in Cn , and we prove it only for exponentials
and polynomials.

We denote by An the ring of entire functions in Cn . We introduce the following
definition: an entire function f in Cn is of finite order of growth if

lim sup
R→∞

log log | f |R
log R

<∞, where | f |R = sup
|z|≤R
| f (z)|.

For instance a polynomial, or an exponential function et1z1+···+tn zn , satisfy this property
(the left hand side is 0 if f is a polynomial, 1 for an exponential function).

Theorem 4.1∗ (Criterion of Schneider-Lang for entire functions10). Let d and n be
two integers with d > n ≥ 1, K be a number field, and f1, . . . , fd be algebraically
independent entire functions of finite order of growth. Assume, for 1 ≤ ν ≤ n
and 1 ≤ i ≤ d, that the partial derivative (∂/∂zν) fi of fi belongs to the ring
K [ f1, . . . , fd ]. Further, let (y

1
, . . . , y

n
) be a basis of Cn over C. Then the numbers

10 A more general statement is valid for meromorphic functions in n variables, of finite order
of growth, assuming that at least n + 1 of them are algebraically independent; see [L 1966],
Chap. IV, § 1, Th. 1 and [W 1979b], Corollaire 5.1.2.
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fi (s1 y
1

+ · · · + sn y
n
),

(
1 ≤ i ≤ d, (s1, . . . , sn) ∈ Zn

)

do not all belong to K .

An important point in this criterion is that two bases of Cn are concerned: the
first one, implicit, is the canonical basis. The Q-structure of Cn is involved by the
fact that the partial derivatives of the functions are supposed to be polynomials in
f1, . . . , fd with algebraic coefficients. The second basis (y

1
, . . . , y

n
) is not supposed

to be defined over Q.
We shall prove (and use) only the following corollary.

Corollary 4.2 (Criterion of Schneider-Lang for Cd0 × (C×)d1 ). Let d0, d1 and n be
three integers with 0 ≤ d0 ≤ n < d0 + d1. Let x1, . . . , xd1

beQ-linearly independent

elements of Qn
, and (y

1
, . . . , y

n
) be a basis of Cn over C. Write y

j
= (y1 j , . . . , ynj )

(1 ≤ j ≤ n). Then one at least of the following (d0 + d1)n numbers

yhj , e
x i y

j , (1 ≤ h ≤ d0, 1 ≤ i ≤ d1, 1 ≤ j ≤ n)

is transcendental.

Proof of Corollary 4.2 as a consequence of Theorem 4.1. Define

d = d0 + d1, fh(z) = zh, (1 ≤ h ≤ d0)

and
fd0+i (z) = ex i z, (1 ≤ i ≤ d1).

From the assumption of linear independence of x1, . . . , xd1
overQ, it follows easily

(see Exercise 2.4) that the functions f1, . . . , fd are algebraically independent. These
functions satisfy differential equations, for 1 ≤ j ≤ n,

∂

∂z j
fh = δhj =

{
0 if h 6= j ,
1 if h = j ,

(1 ≤ h ≤ d0),

and
∂

∂z j
fd0+i = x j i fd0+i , (1 ≤ i ≤ d1),

where x i = (x1i , . . . , xni ) (1 ≤ i ≤ d1). Let K be the field generated over Q by the
(d0 + 2d1)n numbers

x j i , fh(y
j
) = yhj and fd0+i (y

j
) = e

x i y
j ,

(1 ≤ h ≤ d0, 1 ≤ i ≤ d1, 1 ≤ j ≤ n).

From the addition theorem which is satisfied by the exponential function, it follows
that the values of f1, . . . , fd at the points of s1 y

1
+ · · ·+ sn y

n
(s = (s1, . . . , sn) ∈ Zn)

all belong to K . Hence we deduce from Theorem 4.1 that K is not a number field. ¤
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We shall use only two special cases of Corollary 4.2 (however, see Exercise 4.2).
Here is the case d0 = 0:

Corollary 4.3. Let x1, . . . , xd be elements ofQn
which generate a subgroup of rank

at least n + 1, and let {y
1
, . . . , y

`
} be a subset of Cn which contains a basis of Cn

over C. Then one at least of the d` numbers x i y
j

(1 ≤ i ≤ d, 1 ≤ j ≤ `) does not

belong to L.

For n = 1, Corollary 4.3 is clearly equivalent to Theorem 1.4 (Gel’fond-
Schneider).

Next the case d0 = 1, d1 = n.

Corollary 4.4. Let x1, . . . , xd be Q-linearly independent elements in Qd
, and let

(y
1
, . . . , y

d
) be a basis of Cd over C. Write y

j
= (y1 j , . . . , yd j ) ∈ Cd and assume

that the d numbers y1 j (1 ≤ j ≤ d) are algebraic. Then one at least of the d2

numbers x i y
j

(1 ≤ i ≤ d, 1 ≤ j ≤ d) does not belong to L.

For d = 1 this is clearly equivalent to Theorem 1.2 (Hermite-Lindemann).
In § 4.2 we show that Theorem 1.5 (homogeneous case of Baker’s Theorem)

follows from Corollary 4.3, and Theorem 1.6 (nonhomogeneous case) from Corollary
4.4.

4.2 First Proof of Baker’s Theorem

4.2.1 A Special Case

We explain the idea of D. Bertrand and D. W. Masser [BertMa 1980] in a special
case, before considering the general case. Assume

`1 + 3
√

2`2 + 3
√

4`3 = 0,

where `1, `2, `3 are nonzero elements of L. Using Theorem 1.4 of Gel’fond-
Schneider (i.e. the case n = 1 of Corollary 4.3), one deduces that the three numbers
`1, `2, `3 are linearly independent over Q.

We multiply the given relation by 3
√

2 and by 3
√

4:

2`3 + 3
√

2`1 + 3
√

4`2 = 0 and 2`2 + 2 3
√

2`3 + 3
√

4`1 = 0.

Therefore the three functions ez1 , ez2 and e
3√2z1+ 3√4z2 take algebraic values at the points

y
1

= (`2, `3), y
2

= (`1, `2) and y
3

= (2`3, `1). We define x1 = (1, 0), x2 = (0, 1) and

x3 = ( 3
√

2, 3
√

4), so that

x1 y
1

= `2, x1 y
2

= `1, x1 y
3

= 2`3,

x2 y
1

= `3, x2 y
2

= `2, x2 y
3

= `1,

x3 y
1

= −`1, x3 y
2

= −2`3, x3 y
3

= −2`2.
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By Theorem 1.12 (six exponentials Theorem), the matrix
(
`2 `1 2`3

`3 `2 `1

)

has rank 2, hence {y
1
, y

2
, y

3
} contains a basis of C2 over C. This is in contradiction

with Corollary 4.3. Hence a relation `1 + 3
√

2`2 + 3
√

4`3 = 0 with `i ∈ L implies
`1 = `2 = `3 = 0.

There is a better way of proving the same result, where Theorem 1.12 is not
needed: instead of multiplying by 3

√
2 and 3

√
4, we make use of the three embeddings

of the field K = Q( 3
√

2) into C. We deal with the general case using this way.

4.2.2 The Main Result

Theorem 4.5. Let K be a number field of degree d over Q, let (β1, . . . , βd ) be
a basis of the Q-vector space K , and let `1, . . . , `d be elements of L. Assume
β1`1 + · · · + βd`d ∈ Q. Then `1 = . . . = `d = 0.

We first deduce (in § 4.2.4) Theorem 4.5 from Corollaries 4.3 and 4.4. Next
(§ 4.2.5) we shall show that Baker’s Theorem 1.6 follows from Theorem 4.5 (compare
with Lemma 1.7).

4.2.3 Trace

We shall need a well-known result from algebraic number theory which we now
recall:

Lemma 4.6. Let K be a number field. Then (x, y) 7→ Tr(xy) is a nondegenerate
bilinear form on K .

The trace K → Q is aQ-linear map Tr = TrK/Q which can be defined as follows:
Tr(γ ) =

∑
σ γ

σ , whereσ runs over the set of complex embeddings of K (this is a finite
set with [K : Q] elements; see Chap. 3), while γ σ ∈ C stands for the image of γ ∈ K
under σ . If a0 Xn + a1 Xn−1 + · · ·+ an is the minimal polynomial of γ over Z, then the
sum of the complex conjugates of γ is−a1/a0, and Tr(γ ) = −[K : Q(γ )]a1/a0 ∈ Q.

Let (β1, . . . , βd ) is a basis of the Q-vector space K (with d = [K : Q]). The
non-degeneracy of the trace means that the determinant det

(
Tr(βiβ j )

)
1≤i, j≤d

is not
zero.

Proof. Define B =
(
β
σi
k

)
1≤i,k≤d

. A simple computation shows that the product of B

by its transpose is
(
Tr(βiβ j )

)
1≤i, j≤d , hence

det
(
Tr(βiβ j )

)
1≤i, j≤d = (det B)2.

The fact we need is that det B is not zero. If cσ are complex numbers such that
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∑

σ

cσβ
σ
i = 0 for 1 ≤ i ≤ d,

since (β1, . . . , βd ) is a basis of K over Q, it follows by linearity
∑

σ

cσβ
σ = 0 for all β ∈ K .

This implies cσ = 0 for all σ , as shown by the theorem of linear independence of
characters (the restrictions of σ to K× are distinct characters of the multiplicative
group K× in C×, hence they are linearly independent; see for instance [L 1993],
Chap. VI, Theorem 4.1). ¤

4.2.4 Proof of Theorem 4.5 Using Corollaries 4.3 and 4.4

Denote by {σ1, . . . , σd} the embeddings of K into C. For 1 ≤ i ≤ d, define the
complex number λi by

λi =
d∑

k=1

β
σi
k `k .

We consider three cases.

First case: One at least (but not all) of λ1, . . . , λd vanishes. We choose an ordering
of {σ1, . . . , σd} so that

λ1 6= 0, . . . , λn 6= 0, λn+1 = · · · = λd = 0.

By assumption we have 1 ≤ n < d.
For 1 ≤ i ≤ d, define x i ∈ Cn by

x i = (βσ1
i , . . . , β

σn
i ).

If a1, . . . , ad are rational numbers such that a1x1 +· · ·+ad xd = 0, then
∑d

i=1 aiβi = 0,
hence a1 = · · · = ad = 0. This shows that x1, . . . , xd are Q-linearly independent.

For 1 ≤ j ≤ d, we define y
j
∈ Cn by

y
j

= (βσ1
j λ1, . . . , β

σn
j λn).

From Lemma 4.6 we deduce that the matrix B has rank d. It follows that the d × n
matrix Bn =

(
β
σi
k

)
1≤k≤d,1≤i≤n has rank n (its n columns are independent in K d ). The

product of Bn by the n × n diagonal matrix diag(λ1, . . . , λn) is the d × n matrix
whose row vectors are y

1
, . . . , y

d
:



β
σ1
1 λ1 · · · β

σn
1 λn

...
. . .

...
β
σ1
d λ1 · · · β

σn
d λn


 =



β
σ1
1 · · · β

σn
1

...
. . .

...
β
σ1
d · · · β

σn
d





λ1 · · · 0
...

. . .
...

0 · · · λn


 .

Therefore {y
1
, . . . , y

d
} contains a basis of Cn .
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Finally, we check x i y
j
∈ L as follows: from the assumption λn+1 = · · · = λd = 0,

we deduce

x i y
j

=
n∑

ν=1

β
σν
i β

σν
j λν =

d∑

ν=1

β
σν
i β

σν
j λν =

d∑

ν=1

β
σν
i β

σν
j

d∑

k=1

β
σν
k `k =

d∑

k=1

ci jk`k

with

ci jk =
d∑

ν=1

β
σν
i β

σν
j β

σν
k = Tr(βiβ jβk) ∈ Q.

Using Corollary 4.3 we conclude that this case is impossible.

Second case: None of the numbers λ1, . . . , λd is zero. One of the embeddings of K
intoC, say σ1, is the natural embedding given by the fact that β1, . . . , βd are complex
numbers. Therefore λ1 ∈ Q. For 1 ≤ k ≤ d, define xk ∈ Cd by xk = (βσ1

k , . . . , β
σd
k ).

By Lemma 4.6, the matrix B =
(
β
σi
k

)
1≤i,k≤d

is regular. Hence these d elements

x1, . . . , xd of Qd
are linearly independent over Q.

For 1 ≤ j ≤ d, define y
j
∈ Cd by y

j
= (βσ1

j λ1, . . . , β
σd
j λd ). Since B has rank d

and since


β
σ1
1 λ1 · · · β

σd
1 λd

...
. . .

...
β
σ1
d λ1 · · · β

σd
d λd


 =



β
σ1
1 · · · β

σd
1

...
. . .

...
β
σ1
d · · · β

σd
d





λ1 · · · 0
...

. . .
...

0 · · · λd


 ,

it follows that (y
1
, . . . , y

d
) is a basis of Cd .

Finally, we have y1 j ∈ Q for 1 ≤ j ≤ d and, as in the first case,

x i y
j

=
d∑

k=1

Tr(βiβ jβk)`k ∈ L for 1 ≤ i ≤ d and 1 ≤ j ≤ d.

From Corollary 4.4 we deduce again that this case is impossible.

Third case: λ1 = · · · = λd = 0. Since the first and second case are excluded, we have
λ1 = · · · = λd = 0, which is what we wanted to prove. ¤

4.2.5 Proof of Baker’s Theorem 1.6 as a Consequence of Theorem 4.5

Let `1, . . . , `m be Q-linearly independent elements in L and γ0, γ1, . . . , γm be
algebraic numbers. Assume

γ0 + γ1`1 + · · · + γm`m = 0,

We shall deduce γ0 = · · · = γm = 0.
Define K = Q(γ1, . . . , γm), choose a basis (β1, . . . , βd ) of the Q-vector space

K , and write the elements γ j (for 1 ≤ j ≤ m) as linear combinations of the βi with
rational coefficients c j i :
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γ j =
d∑

i=1

c j iβi , (1 ≤ j ≤ m).

Then we have the relation
d∑

i=1

βi`
′
i ∈ Q

where

`′i =
m∑

j=1

c j i` j ∈ L,

and Theorem 4.5 implies `′1 = · · · = `′d = 0. However the linear independence of
`1, . . . , `m over Q shows that the relations

m∑

j=1

c j i` j = 0, (1 ≤ i ≤ d)

imply c j i = 0 for 1 ≤ i ≤ d and 1 ≤ j ≤ m, hence γ1 = · · · = γm = 0, and finally
γ0 = 0. ¤

4.3 Schwarz’ Lemma for Cartesian Products

Schwarz’ Lemma for analytic functions of a single variable provides a sharp upper
bound for the values of a function having lot of zeroes. It is a difficult (and interesting)
problem to extend this lemma to functions of several variables (see Chap. 7 of [W
1979b]). We shall deal with Cartesian products. After the work of Th. Schneider [Sch
1941] and S. Lang [L 1966] connected with the proof of the criterion of Schneider-
Lang, F. Gross [Gr 1969] used interpolation formulae for Cartesian products and
extended Pólya’s Theorem (cf. Exercise 4.5) to several variables. Here we use an
inductive argument in place of such integral formulae.

Here is the main result of this section.

Proposition 4.7. Let E1, . . . , En be subsets of C, each with S1 elements. Define
E = E1 × · · · × En ⊂ Cn . Let r > 0 satisfy r ≥ max1≤i≤n maxζ∈Ei |ζ |. Let R be a
positive real number such that R ≥ 18nr . Let f be an entire function of n variables
such that

Dσ f (ξ ) = 0 for all ξ ∈ E and all σ ∈ Nn with |σ | < S0.

Then

| f |r ≤ | f |R
(

R

18nr

)−S0 S1

·

The proof of Proposition 4.7 will rest on the study of the ideal in An generated
by n polynomial functions P1(z1), . . . , Pn(zn).
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When P ∈ C[X ] is a polynomial in one variable and ζ a complex zero of P , we
denote by mP (ζ ) the multiplicity of ζ as a zero of P . We also consider that the zero
polynomial has degree −1.

For a function f ∈ An , an index j with 1 ≤ j ≤ n and an integer p, we say
that f is a polynomial in z j of degree < p if the Taylor expansion at the origin of
f involves only zh

j with 0 ≤ h < p. We insist that f is not necessarily assumed to
be a polynomial in zi for i 6= j .

Lemma 4.8. Let m and n be rational integers with 1 ≤ m ≤ n. For m ≤ i ≤ n, let
Pi ∈ C[X ] be a nonzero monic polynomial of degree pi and let Ei = P−1

i (0) ⊂ C
be the set of zeroes of Pi . Denote by I the ideal, in the ring An of entire functions
of n complex variables, generated by the n − m + 1 functions Pm(zm), . . . , Pn(zn).
Further define E = Em × · · · × En ⊂ Cn−m+1.
a) If f ∈ I is a polynomial of degree < pi in zi for m ≤ i ≤ n, then f = 0.
b) The ideal I consists of the elements f ∈ An which satisfy

Dκ f (z1, . . . , zm−1, ζm, . . . , ζn) = 0

for all (ζm, . . . , ζn) ∈ E , and for all (κ1, . . . , κn) ∈ Nn with κi = 0 for 1 ≤ i < m
and 0 ≤ κi < mPi (ζi ) for m ≤ i ≤ n.
c) For each function f in An , there is a unique family ( f0, fm, . . . , fn) of n −m + 2
functions in An satisfying the following properties:

(i)

f (z) = f0(z) +
n∑

i=m

fi (z)Pi (zi ).

(ii) For m ≤ j ≤ n, f0 is a polynomial in z j of degree < p j .
(iii) For m ≤ i < j ≤ n, fi is a polynomial in z j of degree < p j .

d) Let r and R be positive real numbers with R ≥ 5r . Assume each Ei is contained
in the disc of the complex plane of radius r . Then for i ∈ {0,m,m + 1, . . . , n}, we
have

| fi |R ≤ 9(n−m+1)p R−pi | f |R,
where p = max{pm, . . . , pn} and p0 = 0.
e) Let k ∈ {1, . . . , n}. If f is a polynomial in zk of degree ≤ d, then so are
f0, fm, . . . , fn .

Remark 1. The decomposition given in c) is unique, but not canonical: for n > m it
depends on the ordering of Pm(zm), . . . , Pn(zn). In any case a choice should be made
if we want unicity in the decomposition of, say, P1(z1)P2(z2) for m = 1 and n = 2.
For instance when m = 1, n = 2, p1 ≥ 1 and p2 = 0, the decomposition which arises
from Lemma 4.8 is trivial: f0 = f1 = 0, f2 = f , while for p1 = 0 and p2 ≥ 1, the
decomposition f (z) = f1(z) + f2(z)P2(z2) is not trivial.
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Remark 2. From a) and c) we deduce

f ∈ I if and only if f0 = 0.

Remark 3. For the proof of Proposition 4.7, it will be sufficient to use the case m = 1
of Lemma 4.8. To a certain extent, this amounts to take P1 = · · · = Pm−1 = 0, and
this is very useful for the inductive argument in the proof of Lemma 4.8.

Proof of Lemma 4.8. We split the proof into several steps.

Step 1. We first notice that one inclusion in b) is obvious: for m ≤ i ≤ n, the
polynomial Pi obviously satisfies

(
d

d X

)κi

Pi (ζi ) = 0

for all ζi ∈ Ei and for all κi ∈ N with 0 ≤ κi < mPi (ζi ). Therefore each f ∈ I
satisfies the vanishing condition stated in b).

Step 2. The proof of Lemma 4.8 will use induction on n. In this second step (which
is split into five substeps) we prove the case m = n together with a slight refinement
of d), namely with

| f0|R ≤ 3p| f |R and | fn|R ≤
(

3

R

)p

| f |R .

This refinement will be useful for the induction hypothesis in step 3.6.
We shall sometimes write z for zn , P in place of Pn , E for En , p for pn , and also

f (z) for f (z1, . . . , zn−1, z) when z1, . . . , zn−1 are fixed in Cn−1.

Step 2.1. We prove property b). The ideal I is the principal ideal of An generated
by the polynomial P(zn). Let f ∈ An satisfy

(
∂

∂zn

)κ
f (z1, . . . , zn−1, ζ ) = 0

for all ζ ∈ E and for all κ ∈ N with 0 ≤ κ < mP (ζ ).
The function

g(z1, . . . , zn) =
f (z1, . . . , zn−1, zn)

P(zn)

is continuous on Cn , is an entire function of zn ∈ C for each (z1, . . . , zn−1) ∈ Cn−1

and is an entire function of (z1, . . . , zn−1) ∈ Cn for each zn ∈ C (one could restrict
to zn ∈ C \ E but it is true also for all zn ∈ C). Hence g ∈ An and therefore f ∈ I.

Step 2.2. Property a) readily follows: if f = g P is a polynomial in zn of degree< p,
then g = f/P is a polynomial in zn of degree < 0, hence g = 0.
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Step 2.3. Unicity in c) is a consequence of a): if f0 + fn P = 0 then f0 ∈ I; the
condition degzn

f0 < p yields f0 = 0, hence fn P = 0 and finally fn = 0.

Step 2.4. We now prove the existence of a decomposition in c):

f (z) = f0(z) + fn(z)P(z)

with

degzn
f0 < p, | f0|R ≤ 3p| f |R and | fn|R ≤

(
3

R

)p

| f |R,
which includes the announced refinement of the estimate for d).

For p = 0 we have P = 1 and we take f0 = 0, fn = f .
For p = 1, we write P(X ) = X − ζ and we define

f0(z1, . . . , zn) = f (z1, . . . , zn−1, ζ ),

fn(z1, . . . , zn) =
f (z1, . . . , zn)− f (z1, . . . , zn−1, ζ )

zn − ζ
,

so that f0 and fn are in An .
We deduce the estimate (valid for p = 1):

| f0|R ≤ | f |R and | fn|R ≤ 2

R − r
| f |R .

Assume p ≥ 2. We prove the existence of f0 and fn together with an estimate

| f0|R ≤ Ap| f |R and | fn|R ≤
(

2

R − r

)p

| f |R

with some number Ap ≥ 1, by induction on p. Since R ≥ 3r (indeed we assumed
R ≥ 5r ), we have 2/(R − r ) ≤ 3/R, and the desired estimate for | fn|R will follow.
At the end of this step 2.4 we shall check the inequality Ap ≤ 3p.

Let ζ be a root of P . Define Q(X ) = P(X )/(X − ζ ). We first write, as before,

f (z) = f (ζ ) + (z − ζ )g(z),

where g ∈ An satisfies

|g|R ≤ 2

R − r
| f |R .

We use the induction hypothesis: there exist g0 and fn in An , where g0 is a polynomial
in z = zn of degree < p − 1, such that g(z) = g0(z) + Q(z) fn(z) where

|g0|R ≤ Ap−1|g|R and | fn|R ≤
(

2

R − r

)p−1

|g|R .

The last inequality yields

| fn|R ≤
(

2

R − r

)p

| f |R,
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as wanted. Define f0(z) = f (ζ ) + (z− ζ )g0(z), so that f (z) = f0(z) + P(z) fn(z), and
f0 ∈ An is a polynomial in z = zn of degree < p. We have

| f0|R ≤ | f |R + (R + r )|g0|R ≤ | f |R
(

1 + 2Ap−1
R + r

R − r

)
·

This proves the desired estimate for f0, with Ap = 1 + 2Ap−1(R + r )/(R − r ). Since
the estimate for p = 1 holds with A1 = 1, we deduce that it holds for p ≥ 2 with

Ap = 1 +
2(R + r )

R − r
+ · · · +

(
2(R + r )

R − r

)p−1

=
R − r

R + 3r

((
2(R + r )

R − r

)p

− 1

)

< 2p R + r

R + 3r

(
R + r

R − r

)p−1

< 2 · 3p−1 < 3p,

because R ≥ 5r .

Step 2.5. We now check property e) by induction on p. Let k ∈ {1, . . . , n} and d
satisfy degzk

f ≤ d. Recall the construction in step 2.4.
For p = 0 since f0 = 0 and fn = f we have degzk

f0 ≤ d and degzk
fn ≤ d.

For p = 1 again degzk
f0 ≤ d and degzk

fn ≤ d. Moreover, if k = n, then
degzn

fn ≤ d − 1.
For p ≥ 2 and k < n we have (with the notation of step 2.4)

f (z) = f (ζ ) + (z − ζ )g(z), g(z) = g0(z) + Q(z) fn(z), f0(z) = f (ζ ) + (z − ζ )g0(z)

and we find successively, using the induction hypothesis on p,

degzk
g ≤ d, degzk

g0 ≤ d, degzk
fn ≤ d, degzk

f0 ≤ d.

For p ≥ 2 and k = n we have

degzk
g ≤ d − 1, degzk

g0 ≤ d − 1, degzk
fn ≤ d − 1, degzk

f0 ≤ d.

This completes the proof of Lemma 4.8 in the special case m = n.

Step 3. We now prove Lemma 4.8 by induction on m, for decreasing values
m = n, n − 1, . . . , 1. The start of the induction is m = n which has been carried
out in step 2. Let m satisfy 1 ≤ m < n. Assume the result holds for m + 1.

Step 3.1. We prove the existence of a decomposition in c). Let f ∈ An . Write z for
(z1, . . . , zn). Using step 2 (with a renumbering of zm, . . . , zn), we get a decomposition

f (z) = ϕ0(z) + ϕ1(z)Pm(zm)
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with ϕ0 and ϕ1 in An and ϕ0 a polynomial in zm of degree < pm . The induction
hypothesis (with m + 1) yields

ϕ0(z) = ψ0(z) + ψm+1(z)Pm+1(zm+1) + · · · + ψn(z)Pn(zn)

and
ϕ1(z) = θ0(z) + θm+1(z)Pm+1(zm+1) + · · · + θn(z)Pn(zn)

with ψ0 and θ0 in An polynomials of degree < p j in z j for m + 1 ≤ j ≤ n. Further,
for m + 1 ≤ i < j ≤ n, ψi and θi in An are polynomials of degree < p j in z j .
Furthermore, by step 2.5, since ϕ0 is a polynomial of degree < pm in zm , so are
ψ0, ψm+1, . . . , ψn . The functions

f0(z) = ψ0(z), fm(z) = θ0(z)

and
fi (z) = ψi (z) + θi (z)Pm(zm) (m + 1 ≤ i ≤ n)

are in An and satisfy

f (z) = f0(z) + fm(z)Pm(zm) + · · · + fn(z)Pn(zn).

We already know that f0 = ψ0 is a polynomial of degree < p j in z j for m ≤ j ≤ n
and that fm = θ0 is a polynomial of degree < p j in z j for m + 1 ≤ j ≤ n. Finally,
for m + 1 ≤ i < j ≤ n, fi (z) = ψi (z) + θi (z)Pm(zm) is a polynomial of degree < p j

in z j .

Step 3.2. We prove property e). Recall the construction and notation in step 3.1.
If f is a polynomial in zk of degree ≤ d, it follows from step 2.5 that the same

holds for ϕ0 and ϕ1, hence (by induction hypothesis) for each ofψi and θi , and finally
also for each fi if k 6= m.

For k = m we distinguish the case pm = 0 and pm ≥ 1. In the former case (where
Pm = 1) there is no difficulty. In the latter, since f and ϕ0 have degree≤ d in zm , we
have degzm

ϕ1 ≤ d − pm , hence degzm
θi ≤ d − pm and the inequality degzm

fi ≤ d
follows.

Step 3.3. We prove property a). Let f ∈ I be a polynomial in zi of degree < pi

for i ≥ m. Let (ζm+1, . . . , ζn) ∈ Em+1 × · · · × En (the case where this set is empty
is trivial) and let κ ∈ Nn satisfy κi = 0 for 1 ≤ i ≤ m and 0 ≤ κi < mPi (ζi ) for
m + 1 ≤ i ≤ n. For any (z1, . . . , zm−1) ∈ Cm−1,

Q = Dκ f (z1, . . . , zm−1, X, ζm+1, . . . , ζn)

is a polynomial in C[X ] of degree < pm . Since f ∈ I, we deduce from step 1
(

d

d X

)κm

Q(ζm) = 0

for any ζm ∈ Em and any κm ∈ N in the range 0 ≤ κm < mPm (ζm). The sum of
multiplicities of Q is
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≥
∑

ζm∈Em

mPm (ζm) = pm .

Since deg Q < pm , we deduce Q = 0.
We expand f (z):

f (z) =
pm−1∑

h=0

zh
mϕh(z1, . . . , zm−1, zm+1, . . . , zn)

where ϕh is a polynomial in z j of degree < p j for m + 1 ≤ j ≤ n. Since Q = 0 we
have

Dκϕh(z1, . . . , zm−1, ζm+1, . . . , ζn) = 0 for 0 ≤ h < pm .

Each ϕh is an entire functions of n−1 variables. We use assertion b) of the induction
hypothesis (with n, m replaced by n − 1,m + 1 respectively): each ϕh lies in the
ideal of the ring of entire functions in z1, . . . , zm−1, zm+1, . . . , zn generated by
Pm+1(zm+1), . . . , Pn(zn). Using assertion a) of the inductive hypothesis with m + 1,
we obtain ϕh = 0 for any h = 0, . . . , pm − 1, hence f = 0.

It will be useful to point out the following result: if f0 in the decomposition c)
satisfies

Dκ f0(z1, . . . , zm−1, ζm, . . . , ζn) = 0

for any ζ ∈ E and any κ ∈ Nn with κ1 = · · · = κm−1 = 0 and 0 ≤ κi < mPi (ζi ) for
m ≤ i ≤ n, then f0 = 0.

Step 3.4. We prove unicity of the decomposition in c). Assume

fi (z)Pi (zi ) + · · · + fn(z)Pn(zn) = 0

for some i in the range {0,m,m + 1, . . . , n}, where P0(z0) = 1 if i = 0. It suffices to
check fi = 0.

If i = 0 then

f0(z) = − fm(z)Pm(zm)− · · · − fn(z)Pn(zn),

hence f0 ∈ I. However f0 is a polynomial in z j of degree < p j for j ≥ m. From
step 3.3 we infer f0 = 0.

Assume now m ≤ i ≤ n and consider the function fi (z)Pi (zi ) ∈ An . On one
hand it lies in the ideal of An generated by the polynomials Pi+1(zi+1), . . . , Pn(zn).
On the other hand it is a polynomial in z j of degree< p j for i +1 ≤ j ≤ n. Assertion
a) of the inductive hypothesis (with m + 1) yields fi (z)Pi (zi ) = 0. Since Pi 6= 0, we
conclude fi = 0.

Step 3.5. We prove property b). Let f ∈ An satisfy the vanishing conditions of b):

Dκ f (z1, . . . , zm−1, ζm, . . . , ζn) = 0

for all ζ ∈ E and all κ ∈ Nn with κi = 0 for 1 ≤ i < m and 0 ≤ κi < mPi (ζi ) for
m ≤ i ≤ n.
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Using c), write

f (z) = f0(z) + fm(z)Pm(zm) + · · · + fn(z)Pn(zn).

Using step 1 we deduce that f0 satisfies the same vanishing conditions Dκ f0(z, ζ ) =
0. From the last remark of step 3.3 we deduce f0 = 0, hence f ∈ I.

Step 3.6. For the proof of property d), we come back to the construction of fi in step
3.1. From step 2.4 we deduce

|ϕ0|R ≤ 3pm | f |R and |ϕ1|R ≤
(

3

R

)pm

| f |R .

By induction assume, for j = 0 and for m + 1 ≤ j ≤ n,

|ψ j |R ≤ Cm+1 R−p j |ϕ0|R and |θ j |R ≤ Cm+1 R−p j |ϕ1|R
with Cm+1 = 3p(n−m)(1 + 2p)n−m−1 (so that Cn = 3p). Using the inequalities

Cm+1(3pm + 2pm 3pm ) ≤ Cm

and
|Pj |R ≤ (R + r )p j ≤ (2R)p j ,

we obtain, for j = 0,m + 1, . . . , n,

| f j |R ≤ |ψ j |R + (2R)pm |θ j |R
≤ Cm+1 R−p j | f |R(3pm + 2pm 3pm )

≤ Cm R−p j | f |R .
Since fm = θ0, these estimates also hold for j = m. Finally the inequality
Cm ≤ 9(n−m+1)p concludes the proof of Lemma 4.8. ¤

Proof of Proposition 4.7. Let f ∈ An satisfy the hypotheses of Proposition 4.7.
From Lemma 4.8 with m = n, we deduce that f belongs to the ideal I generated in
An by the functions P1(z1), . . . , Pn(zn), where

Pi (X ) =
∏

ξ∈Ei

(X − ξ )S0 , (1 ≤ i ≤ n),

and that there exist entire functions f1, . . . , fn in An with

f (z) = f1(z)P1(z1) + · · · + fn(z)Pn(zn)

and
| fi |R ≤ 9np R−pi | f |R, (1 ≤ i ≤ n).

Since |Pi |r ≤ (2r )S0 S1 and p = p1 = · · · = pn = S1S0, using the maximum modulus
principle | fi |r ≤ | fi |R , we deduce
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| f |r ≤
n∑

i=1

| fi |r (2r )S0 S1 ≤ n2p32np
( r

R

)p | f |R .

Finally, we bound n2p32np by 18np. ¤

4.4 Exponential Polynomials

Let d1, `1 and n be positive integers, x1, . . . , xd1
and y

1
, . . . , y

`1
be elements of

Cn . For τ ∈ Nn and t ∈ Zd1 we write zτ in place of zτ1
1 · · · zτn

n and t x in place of
t1x1 + · · ·+ td1 xd1

. Hence t xz denotes the complex number
∑d1

i=1

∑n
ν=1 ti xνi zν (scalar

product of t x and z in Cn). Consider the function

zτ et xz = zτ1
1 · · · zτn

n exp
(
(t1x1 + · · · + td1 xd1

)z
)
.

We are interested in the derivative Dσ , for σ ∈ Nn , of this function at the
point sy = s1 y

1
+ · · · + s`1 y

`1
where s ∈ Z`1 . In the next lemma we write

explicitly this number Dσ
(
zτ et xz

)
(sy). We state the result for values of complex

exponential functions, but an equivalent algebraic statement holds over a field of
zero characteristic.

Lemma 4.9. For τ ∈ Nn , t ∈ Zd1 , σ ∈ Nn and s ∈ Z`1 , define a polynomial P
(σ s)
τ t

in n(d1 + `1) variables with coefficients in Z as follows:

P
(σ s)
τ t (X, Y ) =

∑

κ

n∏

ν=1

(
σν!τν!

κν!(σν − κν)!(τν − κν)!

(
d1∑

i=1

ti Xνi

)σν−κν ( `1∑

j=1

s j Yν j

)τν−κν)
,

where κ = (κ1, . . . , κn) runs over the set of elements in Nn for which

0 ≤ κν ≤ min{σν, τν} for 1 ≤ ν ≤ n.

Then we have

Dσ
(
zτ et xz

)
(sy) = P

(σ s)
τ t (x, y) ·

d1∏

i=1

`1∏

j=1

e
x i y

j
ti s j
,

where x stands for (xνi )1≤ν≤n,1≤i≤d1 and y for (yν j )1≤ν≤n,1≤ j≤`1 . The total degree of

P
(σ s)
τ t with respect to the nd1 variables Xνi (resp. to the n`1 variables Yν j ) is bounded

by ‖σ‖ (resp. ‖τ‖). If T and S are positive real numbers with T ≥ max{‖t‖, 1} and

S ≥ max{‖s‖, 1}, then the length of P
(σ s)
τ t is at most
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T ‖σ‖S‖τ‖min

{(
1 +
|τ |
T S

)‖σ‖
;

(
1 +
|σ |
T S

)‖τ‖}
·

Proof. A simple computation based on Leibniz’ formula yields the relation between

Dσ
(
zτ et xz

)
(sy) and P

(σ s)
τ t (x, y). The length of P

(σ s)
τ t is bounded as follows:

L(P
(σ s)
τ t ) ≤

∑

κ

n∏

ν=1

(
σν!τν!

κν!(σν − κν)!(τν − κν)!‖t‖
σν−κν‖s‖τν−κν

)

≤
n∏

ν=1

σν∑

κν=0

σν!

κν!(σν − κν)!τ
κν
ν ‖t‖σν−κν‖s‖τν−κν

≤
n∏

ν=1

σν∑

κν=0

σν!

κν!(σν − κν)!τ
κν
ν T σν−κν Sτν−κν

≤ T ‖σ‖S‖τ‖
(

1 +
|τ |
T S

)‖σ‖
·

Lemma 4.9 easily follows (by symmetry – see also § 13.7). ¤

4.5 Construction of an Auxiliary Function

There are mainly two variants for the construction of an auxiliary function: either one
shows that there is a nontrivial solution to a system of homogeneous linear equations,
which forces the function to vanish at a finite collection of points; or else one builds
a function which is small on a large disc. In either cases the construction of the
auxiliary function involves Dirichlet’s box principle, either for a system of equations
(Thue-Siegel’s Lemma), of for a system of inequalities. This alternative does not
make too much difference: with both approaches one then proves by induction that
the constructed function at the same time satisfies the vanishing conditions at the
given points, and has a small maximum modulus on large discs. We choose here the
second option for two reasons: firstly the other one is already explained at several
other places ([L 1966], Chap. IV, [Bo 1970], [W 1979b], § 5.4, [LelGru 1986],
Chap. 6). Secondly the construction we are going to work out would enable us to
use Schwarz’ Lemma only with a single point (in the construction of the auxiliary
function) and to use instead a multiplicity estimate (see step 4 in § 4.6 below).

The following auxiliary function arises from [W 1981].

Proposition 4.10. Let L and n be positive integers, N , U , V , R, r positive real
numbers and ϕ1, . . . , ϕL entire functions in Cn . Define W = N + U + V and assume

W ≥ 12n2, e ≤ R

r
≤ eW/6,

L∑

λ=1

|ϕλ|R ≤ eU
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and
(2W )n+1 ≤ L N

(
log(R/r )

)n
.

Then there exist rational integers p1, . . . , pL , with

0 < max
1≤λ≤L

|pλ| ≤ eN ,

such that the function F = p1ϕ1 + · · · + pLϕL satisfies

|F |r ≤ e−V .

A variant of Proposition 4.10 is given in Exercise 4.7.
The proof involves an application of Dirichlet’s box principle which goes back

to the work of A. Thue and C. L. Siegel. We also use a simple interpolation formula
obtained by truncating the Taylor expansion at the origin of an entire function.

We start with the following version of Thue-Siegel’s Lemma (cf. [W 1974],
lemme 1.3.2):

Lemma 4.11. Let vi j (1 ≤ i ≤ ν, 1 ≤ j ≤ µ) be real numbers, U a positive integer
satisfying

U ≥ max
1≤ j≤µ

ν∑

i=1

|vi j |,

and X , ` positive integers such that

`µ < (X + 1)ν .

Then there exist rational integers ξ1, . . . , ξν with

0 < max
1≤i≤ν

|ξi | ≤ X,

and

max
1≤ j≤µ

∣∣∣∣∣
ν∑

i=1

vi jξi

∣∣∣∣∣ ≤
U X

`
·

Proof. We consider the mapping ϕ from the set

E =
{
ξ = (ξ1, . . . , ξν) ∈ Zν ; 0 ≤ ξi ≤ X, (1 ≤ i ≤ ν)

}

to Rµ which maps ξ to η = (η1, . . . , ηµ) with

η j =
ν∑

i=1

vi jξi , (1 ≤ j ≤ µ).

For 1 ≤ j ≤ µ, denote by −V j (resp. W j ) the sum of negative (resp. positive)
elements among {v1 j , . . . , vν j }:
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V j =
ν∑

i=1

max{0,−vi j }, W j =
ν∑

i=1

max{0, vi j } (1 ≤ j ≤ µ),

so that V j + W j ≤ U for 1 ≤ j ≤ µ. For ξ ∈ E , the image η = ϕ(ξ ) belongs to the
set

F =
{
η = (η1, . . . , ηµ) ∈ Rµ ; −X V j ≤ η j ≤ X W j , (1 ≤ j ≤ µ)

}
.

For 1 ≤ j ≤ µ, we decompose the interval [−X V j , X W j ] into ` intervals, each of
length at most U X/`, so that F is cut into `µ pieces Fk (1 ≤ k ≤ `µ). Since

`µ < (1 + X )ν = CardE ,

Dirichlet’s box principle shows that there exist two distinct elements ξ ′ and ξ ′′ in E
whose images under ϕ belong to the same Fk . Denote by ξ the difference ξ ′ − ξ ′′ in
Zν , and by η the image ϕ(ξ ) of ξ . We deduce

ξ = (ξ1, . . . , ξν) ∈ Zν, 0 < max
1≤i≤ν

|ξi | ≤ X,

and

η = (η1, . . . , ηµ) ∈ Rµ, max
1≤ j≤µ

|η j | ≤ U X

`
,

which concludes the proof of Lemma 4.11. ¤

We apply Lemma 4.11 as follows:

Lemma 4.12. Let X be a positive integer, U , V be positive real numbers and ui j

(1 ≤ i ≤ ν, 1 ≤ j ≤ µ) be complex numbers. Assume

ν∑

i=1

|ui j | ≤ eU , (1 ≤ j ≤ µ)

and (√
2XeU+V + 1

)2µ ≤ (X + 1)ν .

Then there exists (ξ1, . . . , ξν) ∈ Zν satisfying

0 < max
1≤i≤ν

|ξi | ≤ X

and

max
1≤ j≤µ

∣∣∣∣∣
ν∑

i=1

ui jξi

∣∣∣∣∣ ≤ e−V .

It is important to notice that the numbers ui j are not supposed to be algebraic,
there are just complex numbers.
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Proof. By homogeneity, replacing if necessary ui j by ui j e−U and V by U + V , we
may assume U = 0. From the hypothesis one deduces that there exists an integer `
which satisfies

`2µ < (X + 1)ν and
√

2
X

`
≤ e−V .

We solve the system of linear inequalities




max
1≤ j≤µ

∣∣∣∣∣
ν∑

i=1

Re(ui j )ξi

∣∣∣∣∣ ≤
X

`
,

max
1≤ j≤µ

∣∣∣∣∣
ν∑

i=1

Im(ui j )ξi

∣∣∣∣∣ ≤
X

`
,

by means of Lemma 4.11. ¤

Here is the simple interpolation formula we need:

Lemma 4.13. Let r and R be real numbers satisfying 0 < r < R, T a positive
integer, and F an entire function in Cn . Then

|F |r ≤ (1 +
√

T )
( r

R

)T |F |R +
∑

‖τ‖<T

|Dτ F(0)|r
‖τ‖

τ !
·

Exercise 4.6 gives a variant of Lemma 4.13.

Proof. We truncate the Taylor expansion of F at the origin: define

G(z) = F(z)−
∑

‖τ‖<T

Dτ F(0)
zτ

τ !
·

Let z0 ∈ Cn satisfy |z0| = r and |F(z0)| = |F |r . Define two entire functions f and g
of a single variable w by

f (w) = F(z0w), g(w) = G(z0w).

Since g has a zero of multiplicity at least T at the origin, Schwarz’ Lemma yields

| f (z0)| = |g(1)| ≤
( r

R

)T |g|R/r .

Using Cauchy-Schwarz’ inequality
∣∣∣∣∣
T−1∑

t=0

xt yt

∣∣∣∣∣

2

≤
(

T−1∑

t=0

|xt |2
)(

T−1∑

t=0

|yt |2
)

and Parseval’s formula
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∞∑

t=0

|at |2%2t =
1

2π%

∫

|w|=%
| f (w)|2dw ≤ | f |2%

for

f (w) =
∞∑

t=0

atw
t and % > 0,

we deduce that the polynomial

P(w) = f (w)− g(w) =
T−1∑

t=0

atw
t

satisfies

|P|2R/r ≤
(

T−1∑

t=0

|at |
(

R

r

)t
)2

≤ T | f |2R/r .

Hence

|g|R/r ≤ (1 + T 1/2)| f |R/r and |G(z0)| ≤ (1 + T 1/2)
( r

R

)T |F |R .

We conclude

|F |r = |F(z0)| ≤ |G(z0)| +
∑

‖τ‖<T

|Dτ F(0)| |z0|‖τ‖
τ !
·

¤

Proof of Proposition 4.10. Define the integer T by

4

3
W ≤ T log

R

r
<

4

3
W + log

R

r
·

For 1 ≤ λ ≤ L and τ ∈ Nn , define

uλτ = 2T nDτϕλ(0)
r‖τ‖

τ !
·

We consider the linear system of inequalities:
∣∣∣∣∣

L∑

λ=1

pλuλτ

∣∣∣∣∣ ≤ e−V , (τ ∈ Nn, ‖τ‖ < T ).

The unknowns are p1, . . . , pL inZ, and the numberµ of inequalities is
(T +n−1

n

) ≤ T n .
For ‖τ‖ < T we have

L∑

λ=1

∣∣Dτϕλ(0)
∣∣r
‖τ‖

τ !
≤

L∑

λ=1

|ϕλ|r ≤ eU ,

hence
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L∑

λ=1

|uλτ | ≤ 2T neU .

From the assumptions R/r ≥ e and W ≥ 12n2 we deduce

T ≤ 4

3
W + 1 and 3

(
4

3
W + 1

)n

< eW/3.

Therefore 3T n < eW/3, which gives

2
√

2T neW + 1 ≤ e4W/3.

Since R/r ≤ eW/6 we have T log(R/r ) < (3/2)W . We use the upper bound for
(2W )n+1 in the hypothesis of Proposition 4.10 and we bound (3/2)n−1 by 2n−1 in
order to get (8/3)W T n ≤ L N . Therefore we have

(
2
√

2T neW + 1
)2T n

< eL N ,

which enables us to use Lemma 4.12 with X = [eN ] and with eU replaced by
2T neU ). We deduce that there exists a nontrivial solution (p1, . . . , pL ) ∈ ZL with
max1≤λ≤L |pλ| ≤ eN . The function F = p1ϕ1 + · · · + pLϕL then satisfies

∑

‖τ‖<T

|Dτ F(0)|r
‖τ‖

τ !
≤ 1

2
e−V .

From the estimates

|F |R ≤
L∑

λ=1

|pλ| |ϕλ|R ≤ eN+U

and 1 +
√

T ≤ (1/2)eW/3, we deduce

(
1 +
√

T
) ( r

R

)T |F |R ≤ 1

2
eW/3

(
R

r

)−T

eN+U ≤ 1

2
e−V .

Lemma 4.13 provides the conclusion

|F |r ≤ e−V .

¤

4.6 Direct Proof of Corollary 4.2

We already deduced Corollary 4.2 from Theorem 4.1, but since we did not include
a proof of Theorem 4.1, we produce a direct proof of Corollary 4.2. We decompose
it into several steps.
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Step 1. Introducing the parameters
Assume that the numbers yhj and e

x i y
j which occur in the conclusion of Corollary

4.2 all belong to a number field K . Choose rational integers T0, T1, S0 and S1, all
of which are at least 2. We shall see that an admissible choice is to take for S1 a
large, fixed, positive integer, to take T0 = T1 (= T , say) and S0 integers which tend
to infinity and are related by

S0S1 = c0T d/n,

where c0 > 1 is a suitable integer which depends only on the x i ’s and the y
j
’s.

All numbers c1, . . . , c13 below are positive real numbers which can be explicitly
computed in terms of y

1
, . . . , y

n
, x1, . . . , xd1

.

Define L = (T0 + 1)d0 (T1 + 1)d1 , and denote by {ϕ1, . . . , ϕL} the set of L functions
of n complex variables:

{
zτ et xz ; 0 ≤ τh ≤ T0, (1 ≤ h ≤ d0), 0 ≤ ti ≤ T1, (1 ≤ i ≤ d1)

}
,

where
zτ et xz = zτ1

1 · · · z
τd0
d0

exp
(
(t1x1 + · · · + td1 xd1

)z
)
.

We embed Nd0 into Nn by (τ1, . . . , τd0 ) 7→ (τ1, . . . , τn) with τd0+1 = · · · = τn = 0.
We shall consider the derivatives of these functions at the points sy = s1 y

1
+ · · ·+

sn y
n

for s ∈ Nn with 0 ≤ s j < S1.

Step 2. A lower bound: Liouville’s estimate
The numbers Dσ

(
zτ et xz

)
(sy) belong to the number field K . In order to use

Liouville’s inequality, we apply Lemma 4.9 with

τ ∈ Nd0 , |τ | ≤ T0; t ∈ Nd1 , |t | ≤ T1; `1 = n, s ∈ Nn, |s| < S1,

so that the total degree of the polynomial P
(σ s)
τ t in Lemma 4.9 is at most

d0T0 + ‖σ‖,
and the length of the same polynomial is bounded by

(d1T1)‖σ‖(nS1 + |σ |)d0T0 .

It follows that if F = p1ϕ1 + · · · + pLϕL is a linear combination of ϕ1, . . . , ϕL with
integer coefficients pλ, with max1≤λ≤L |pλ| ≤ eN (for some N > 0), and if σ ∈ Nn

and s ∈ Nn with |s| < S1 are such that Dσ F(sy) does not vanish, then

log |Dσ F(sy)| ≥ −c1
(
N + ‖σ‖ log T1 + T0 log(S1 + ‖σ‖) + T1S1

)
, (4.14)

where c1 ≥ 1 can be explicitly computed by means of Liouville’s inequality (Lemma
2.1 or 3.14).
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Step 3. The auxiliary function
Our goal now is to choose the coefficients pλ ∈ Z in a suitable way. Since

x1, . . . , xd1
are linearly independent overQ, the functions z1, . . . , zn , ex1z, . . . , exd1

z

are algebraically independent (see Exercise 2.5), hence the functions ϕ1, . . . , ϕL are
linearly independent over C.

We introduce a new parameter E ≥ e (which we shall choose at the end of the
proof). We are going to define four constants c2, . . . , c5, and to check the hypotheses
of Proposition 4.10 with

r = c2S1, R = Er, U = V = c3L1/n log E, N = c4U,

under the following assumption:

T0 log(S1 E) + T1S1 E ≤ c5L1/n log E . (4.15)

We start with the definition of c2. We shall need 1+|sy| ≤ r for s ∈ Nn with |s| < S1.
We choose

c2 = |y
1
| + · · · + |y

n
| + 2;

(the condition c2 ≥ 2 will be useful). Next consider c4: the quantity c1 N , which
occurs in the lower bound of step 2, should be smaller than U . We take c4 = 1/(2c1)
(since c1 ≥ 1, we have c4 < 1, hence N < U ).

The main assumption in Proposition 4.10 is

(2W )n+1 ≤ L N
(
log(R/r )

)n
.

Here, R/r = E , N = c4U , U = c3L1/n log E , W ≤ 3U , hence this condition is
satisfied if 6n+1cn

3 ≤ c4. We define c3 = c1/n
4 6−1−(1/n).

The conditions W ≥ 12n2 and W ≥ 6 log(R/r ) can now be written
c3L1/n log E ≥ max{6n2, 3 log E}, or equivalently

L ≥ 3nc−n
3 max

{
1,

(
2n2

log E

)n
}
·

Since E ≥ e and c−n
3 = 6n+1c−1

4 = 2n+23n+1c1, it is sufficient to assume L ≥
62n+2n2nc1.

Finally, we estimate |ϕλ|R :

log |ϕλ|R ≤ d0T0 log R + (‖x1‖ + · · · + ‖xd1
‖)T1 R

≤ d0T0 log(c2S1 E) + c2(‖x1‖ + · · · + ‖xd1
‖)T1S1 E .

We use a very crude bound for the number L:

log L = d0 log(T0 + 1) + d1 log(T1 + 1) ≤ d0T0 + d1T1 ≤ d0T0 + c2d1T1S1 E .

Therefore

log
L∑

λ=1

|ϕλ|R ≤ d0T0 log(ec2S1 E) + c2(d1 + ‖x1‖ + · · · + ‖xd1
‖)T1S1 E .
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Since S1 ≥ 2, E ≥ e and c2 ≥ 2, we have log(ec2S1 E) ≤ c2 log(S1 E), and we
conclude

log
L∑

λ=1

|ϕλ|R ≤ c6
(
T0 log(S1 E) + T1S1 E

)
,

with
c6 = c2(d0 + d1 + ‖x1‖ + · · · + ‖xd1

‖).
The condition (4.15) will guarantee log

∑L
λ=1 |ϕλ|R ≤ U if we take c5 = c3/c6.

Now c2, c4, c3, c6, c5 have been successively defined, and the hypotheses of
Proposition 4.10 have been checked. Let F be the function which is constructed in
this proposition: log |F |r ≤ −U . Since 1 + |sy| ≤ r , we deduce from Cauchy’s
inequalities |Dσ F(sy)| ≤ σ !|F |r :

log |Dσ F(sy)| ≤ −c3L1/n log E + log(σ !) (4.16)

for all σ ∈ Nn and s ∈ Nn with |s| < S1.

Step 4. Lower bound for the order of vanishing of F at sy
We compare the upper bound (4.14) with the lower bound (4.16) for the number

|Dσ F(sy)|, with σ ∈ Nn , |σ | < S0, and s ∈ Nn , |s| < S1. These two estimates are
not consistent if the parameters satisfy

c3L1/n log E > nS0 log S0 + c1
(
N + nS0 log T1 + T0 log(S1 + nS0) + T1S1

)
.

Recall that 2c1 N ≤ c3L1/n log E . We impose the following condition11 on the
parameters (which includes all preceding ones)

L1/n log E > c7
(
S0 log(S0T1) + T0 log(S0S1 E) + T1S1 E

)
, (4.17)

where c7 ≥ max{c−1
5 , 2nc1/c3}. We deduce that for σ ∈ Nn with |σ | < S0, the

function Dσ F has a zero at each point sy (s ∈ Nn , |s| < S1).
We shall also choose the parameters so that (S0S1)n is large compared with

L = (T0 + 1)d0 (T1 + 1)d1 :
S0S1 ≥ c8L1/n, (4.18)

where c8 is a sufficiently large number, namely c8 ≥ 1 + 2c3. Hence, at this stage of
the proof, we get a system of relations

|Dσ F(sy)| = 0, for σ ∈ Nn with |σ | < S0 and for s ∈ Nn with |s| < S1,

where the number L of coefficients of the constructed polynomial is smaller than the
number of relations. A good zero estimate (which takes care of the derivatives – this
will be called a multiplicity estimate) would enable us to conclude the proof right
now (without using the Schwarz’ Lemma of § 4.3). Such a result will be proved in
Chap. 8. Here, we shall avoid such a multiplicity estimate, but use Proposition 4.7
instead.

11 Another lower bound for c7 will occur later in step 6.
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Step 5. Upper bound for the first non-vanishing coefficient
We want to estimate the first non-vanishing coefficient in the Taylor expansion

of F at one of the sy. Let S′0 be the largest integer such that

Dσ F(sy) = 0 for all s ∈ Nn with |s| < S1 and all σ ∈ Nn with |σ | < S′0.

The existence of S′0 follows from the fact that the function F does not vanish
identically, as noticed before. We have already computed the lower bounds S′0 ≥ S0.
From the definition of S′0 we deduce that there exist σ 0 ∈ Nn and s0 ∈ Nn with

Dσ 0
F(s0 y) 6= 0 and |σ 0| = S′0, |s0| < S1.

Since y
1
, . . . , y

n
is a basis ofCn , there exists a positive constant c9 such that, for

w ∈ Cn with |w| < |y
1
|+ · · ·+ |y

n
|+1, there exists z ∈ Cn withw = z1 y

1
+ · · ·+ zn y

n
and |zi | ≤ c9. Now we use Proposition 4.7 for the function f (z) = F(z1 y

1
+· · ·+zn y

n
),

with a new parameter E ′ ≥ E , and with

E1 = · · · = En = {0, 1, . . . , S1 − 1}, r = c9S1, R = 18n E ′r,

(and also with S0 and E replaced by S′0 and E ′ respectively). We deduce the upper
bound

log | f |r ≤ −S′0S1 log E ′ + log | f |R .
The same computation as before yields a constant c10 such that

log | f |R ≤ N + c10
(
T0 log(S1 E ′) + T1S1 E ′

)
.

On the other hand from the choice of c9 and Cauchy’s inequalities we deduce

log |Dσ 0
F(s0 y)| ≤ nS′0 log S′0 + log | f |r

≤ −S′0S1 log E ′ + nS′0 log S′0 + N + c10
(
T0 log(S1 E ′) + T1S1 E ′

)
.

It is useful to notice that

S′0S1 log E ′ ≥ S0S1 log E > 2c3L1/n log E = 2U > 2N .

This enables us to deduce from the previous upper bound:

log |Dσ 0
F(s0 y)| ≤ −1

2
S′0S1 log E ′ + nS′0 log S′0 + c10

(
T0 log(S1 E ′) + T1S1 E ′

)
.

Step 6. Conclusion and choice of parameters
We shall be able to conclude the proof if the lower bound from step 2 does not

match with the upper bound from step 5. This means that the parameters should
satisfy

1

2
S′0S1 log E ′ > c1

(
N + nS′0 log T1 + T0 log(S1 + nS′0) + T1S1

)
+

+nS′0 log S′0 + c10
(
T0 log(S1 E ′) + T1S1 E ′

)
.
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We already know S0S1 ≥ c8L1/n from (4.18). By (4.17), we deduce that each of the
two terms c1 N and T0 log S1 is small compared with (1/2)S′0S1 log E ′. Therefore it
is sufficient to add the following constraint12 on the parameters:

S′0S1 log E ′ > c11

(
S′0 log(S′0T1) + T0 log(S′0 E ′) + T1S1 E ′

)
. (4.19)

The conditions on the parameters are (4.17), (4.18) and (4.19), with E ′ ≥ E ≥ e,
L = (T0 + 1)d0 (T1 + 1)d1 . In loose terms, that means: each of the numbers

S0 log(S0T1), T0 log(S0S1 E), T1S1 E,

is small compared to L1/n log E , next each of the numbers

S′0 log(S′0T1), T0 log(S′0 E ′), T1S1 E ′,

is small compared to S′0S1 log E ′, and finally L1/n is small compared to S0S1.
We are free to choose T0, T1, S0, S1 and E . The number S′0 cannot be chosen (we

just know that it is at least S0), but we can choose E ′ as a function of S′0.
Here is an admissible choice for the parameters: we start with a large integer

S1. How large it should be is easy to state explicitly in terms of d, n, x1, . . . , xd1
,

y
1
, . . . , y

n
and the degree D of the number field K . Next we choose an integer T (at

the end we get the conclusion by letting T tend to infinity, while S1 is fixed) which is
a n-th power and also a multiple of Sn

1 (both conditions are not important: they just
enable us to avoid taking integral parts!). We define

T0 = T1 = T, S0 =
c0T d/n

S1

, E = S(d−n)/d
0 , E ′ = S′0

(d−n)/d
.

The left hand side of (4.17) is equivalent to
(
(d/n) − 1

)
T d/n log T , while the right

hand side is at most (c12/S1)T d/n log T . In the same way the left hand side of (4.19)
is
(
1− (n/d)

)
S1S′0 log S′0, while the right hand side is at most c13S′0 log S′0.

With this choice of parameters the conditions (4.17) and (4.19) are satisfied, and
the proof of Corollary 4.2 is therefore complete. ¤

Exercises

Exercise 4.1. Prove Theorem 4.1 using the method of § 4.6.

Hint. In Liouville’s estimate, derivatives must be estimated for functions satisfying differential
equations; see [L 1966], Chap. 4, § 2, Lemma 1, [Bo 1970], Lemma 1, and [W 1979b], Lemme
5.4.2.

12 provided that c7 is sufficiently large. This is the extra condition on c7 which has been
announced in step 4
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Exercise 4.2. Deduce Corollary 4.2 from Baker’s Theorem 1.6.

Remark. It follows that Corollary 4.1 can be deduced from Corollary 4.2 and Corollary 4.3
together. In particular the special case d0 ≤ 1 of Corollary 4.1 implies the general case.

Hint. Using Theorem 1.5, prove the following statement (compare with Exercise 1.5):

Let V be a vector subspace ofCm defined by homogeneous linear equations
∑m

ν=1 zν`ν j = 0
(1 ≤ j ≤ `), with `ν j ∈ L. If V ∩ Qm = 0, then V ∩ Qm

= 0

Deduce that Corollary 4.2 is a consequence of Theorem 1.5 (take m = dr + 1, where r is the
dimension of the Q-vector space spanned by x1, . . . , xd ).

Exercise 4.3.
a) (Blaschke products.) Let z and ζ be two complex numbers. Define r = |z| and % = |ζ |.
Assume R satisfies r ≤ R, % ≤ R and r% < R2. Check

|r − %|
R2 − r%

≤
∣∣∣∣

z − ζ
R2 − zζ

∣∣∣∣ ≤
r + %

R2 + r%
·

b) Let ζ ∈ C and R > 0 satisfy |ζ | ≤ R. Check that the function

z 7−→ z − ζ
R2 − zζ

can be continued as an analytic function on an open neighborhood of the closed disc |z| ≤ R
with ∣∣∣∣

z − ζ
R2 − zζ

∣∣∣∣ =
1

R
for |z| = R.

Hint. For |z| = R we have R2 − zζ = z(z − ζ ).

c) Let N , κ1, . . . , κN be positive integers and r , R positive real numbers with r ≤ R. Let
ζ1, . . . , ζN be distinct elements in the disc |ζ | ≤ R and let f be an analytic function in an
open neighborhood of the closed disc |z| ≤ R which vanishes at each ζi with multiplicity≥ κi

(1 ≤ i ≤ N ). Check

| f |r ≤ | f |R
N∏

i=1

(
R2 + r |ζi |
R(r + |ζi |)

)−κi

·

d) Prove the following variant of Proposition 4.7.
Let n, N1, . . . , Nn be positive integers and E , 2 positive real numbers with E ≥ 1. For

1 ≤ i ≤ n, let ri , %i , Ri be positive real numbers satisfying

ri ≤ Ri , %i ≤ Ri and
R2

i + ri%i

Ri (ri + %i )
≥ E

and let Ei be a subset with Ni elements of the disc |z| ≤ %i ofC. Define E = E1×· · ·×En ⊂ Cn .
Let f be a complex function of n variables which is analytic in an open neighborhood of the
closed polydisc {

z ∈ Cn ; |zi | ≤ Ri (1 ≤ i ≤ n)
}
.

Assume
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Dσ f (ξ ) = 0 for any ξ ∈ E and any σ ∈ Nn with σ1 N1 + · · · + σn Nn < 2.

Then
| f |r ≤ E−2| f |R .

Hint. See F. Gramain, Lemmes de Schwarz pour des produits Cartésiens, Publ. Math. St
Etienne, to appear.

Exercise 4.4 (Schwarz’ Lemma for complete intersections of hyperplanes without multiplic-
ities).

Let P1, . . . , Pn be n polynomials in C[z1, . . . , zn]. Assume, for 1 ≤ i ≤ n, that Pi is a
product of polynomials of degree 1, and define p j = deg Pj . Assume that the set

S = {s ∈ Cn ; P1(s) = · · · = Pn(s) = 0}
has exactly p1 · · · pn elements. Define p = min{p1, . . . , pn} and r = max{|s| ; s ∈ S}. Show
that there exists a constant c > 0, which depends only on P1, . . . , Pn , and satisfies the following
property: for all R ≥ max{1, 2r} and all f ∈ An which vanishes at each point of S, there exist
f1, . . . , fn in An such that

| f j |R ≤ c
( r

R

)−p | f |R, (1 ≤ j ≤ n).

Deduce the following Schwarz’ Lemma for a function f which vanishes on S:

| f |r ≤ c′
( r

R

)−p | f |R,

where c′ depends only on P1, . . . , Pn .

Remark. In the case n = 2, the assumption that P1 and P2 are products of linear polynomials
can be slightly relaxed: one of them is any polynomial, the other is product of polynomials of
degree 1 or 2; see [W 1983].

Exercise 4.5. Let n be a positive integer. Show that there exists a positive number c = c(n)
with the following property: let f be an entire function in Cn which satisfies f (Nn) ⊂ Z and

log | f |R ≤ cR for all sufficiently large R.

Then f is a polynomial.
Compare with [Gr 1969].

Remark. By Pólya’s Theorem (see for instance [F 1982], Chap. 2, § 3, Th. 1.2), an entire
function f of a single variable such that

f (N) ⊂ Z and lim sup
R→∞

1

R
log | f |R < log 2

is a polynomial.
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Exercise 4.6. Let R1, . . . , Rn be positive real numbers. Denote by D(0, R) the polydisc
{
z ∈ Cn ; |zν | ≤ Rν, (1 ≤ ν ≤ n)

}
.

Let F be an analytic function in an open neighborhood of this polydisc. Write the Taylor
expansion of F at the origin

F(z) =
∑

τ∈N n

aτ zτ .

Let r1, . . . , rn be positive real numbers with rν ≤ Rν (1 ≤ ν ≤ n) and let T1, . . . , Tn be
positive integers.
a) Assume aτ = 0 for 0 ≤ τν < Tν (1 ≤ ν ≤ n). Check

sup
z∈D(0,r )

|F(z)| ≤ sup
z∈D(0,R)

|F(z)| max
1≤ν≤n

(
Rν
rν

)−Tν

·

b) Check

sup
z∈D(0,r )

|F(z)| ≤ (1 +
√

T1 · · · Tn

)
sup

z∈D(0,R)
|F(z)| max

1≤ν≤n

(
Rν
rν

)−Tν

+
∑

0≤τν<Tν
1≤ν≤n

|aτ |r τ

and also

sup
z∈D(0,r )

|F(z)| ≤ sup
z∈D(0,R)

|F(z)| max
1≤ν≤n

(
Rν
rν

)−Tν

+ 2
∑

0≤τν<Tν
1≤ν≤n

|aτ |r τ .

Exercise 4.7. Let L , n be positive integers and N , U , V , R1, . . . , Rn , r1, . . . , rn be positive
real numbers. Define W = N + U + V and assume

W ≥ 20n3, e ≤ Rν
rν
≤ eW/9n, (1 ≤ ν ≤ n)

and

3W n+1 ≤ L N
n∏

ν=1

log
Rν
rν
·

Let ϕ1, . . . , ϕL be entire functions in Cn satisfying

L∑

λ=1

sup
|zν |≤Rν
1≤ν≤n

|ϕλ(z)| ≤ eU .

Show that there exist rational integers p1, . . . , pL , with

0 < max
1≤λ≤L

|pλ| ≤ eN ,

such that the function F = p1ϕ1 + · · · + pLϕL satisfies

|F |r ≤ e−V .
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Exercise 4.8. Let n0, n1, . . . , nL , N be nonnegative integers, ζ0, . . . , ζN pairwise distinct
complex numbers and r1, . . . , rL , R1, . . . , RL positive real numbers satisfying

0 = n0 ≤ n1 < n2 < · · · < nL = N

and
Rµ ≥ rµ ≥ max

0≤i≤nµ
|ζi | (1 ≤ µ ≤ L).

Let f1, . . . , fL be complex functions of a single variable which are analytic in a neighborhood
of the closed disc |z| ≤ max1≤µ≤L Rµ. Define F = ( f1, . . . , fL ). Assume that for 0 ≤ ν < L
and nν ≤ i < nν+1, the L × (ν + 1) matrix

(
F(ζn1 ), . . . , F(ζnν ), F(ζi )

)

has rank ≤ ν. Show that the determinant of the L × L matrix

A =
(

F(ζn1 ), . . . , F(ζnL )
)

has absolute value bounded by

| det A| ≤ L!

(
L∏

µ=1

(
R2
µ + r 2

µ

2Rµrµ

)−nµ)
max
τ∈SL

L∏

λ=1

| fλ|Rτ (λ)

where S L denotes the symmetric group on {1, . . . , L}.
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5. Zero Estimate, by Damien Roy

In this chapter, we present the zero estimate of P. Philippon [P 1986a] in the context of
linear commutative algebraic groups when no order of vanishing is prescribed. This
result takes into account the multidegrees of the obstruction subgroup and improves in
this way the earlier zero estimates of D. W. Masser [Ma 1981b] and D. W. Masser and
G. Wüstholz [MaWü 1981]. A refinement will be given in Chap. 8 when multiplicities
are introduced.

5.1 The Main Result

Let K be an algebraically closed field of characteristic zero and let d0, d1 be
nonnegative integers with d = d0 + d1 > 0. We denote by Gd0

a × Gd1
m , or more

simply by G, the group K d0 × (K×)d1 with its group law written additively.
The basic functions on G are the polynomials in

X1, . . . , Xd0 , Y1, . . . , Yd1 , Y−1
1 , . . . , Y−1

d1
.

They form a subring

K [G] = K [X1, . . . , Xd0 , Y1, . . . , Yd1 , Y−1
1 , . . . , Y−1

d1
]

of the field K (X , Y ) of rational functions in X , Y . Given nonnegative inte-
gers D0, D1, . . . , Dd1 , we say that an element P of K [G] is of multidegree ≤
(D0, D1, . . . , Dd1 ) if its total degree in X1, . . . , Xd0 is≤ D0 and if, for j = 1, . . . , d1,
its degree in Y j and its degree in Y−1

j are ≤ D j .
The object of a zero estimate is to give constraints between the multidegrees of

a nonzero element of K [G] vanishing at each point of a given subset of G. Here, we
use the group structure on G by assuming that this subset has the form

6[d] =
{
σ1 + · · · + σd ; (σ1, . . . , σd ) ∈ 6d

}

for some positive integer d and some other subset 6 of G containing the neutral
element e of G.

In § 3, we recall the notion of algebraic subgroup G∗ of G and show that these
are products of the form G∗ = V×T8 where V is a subspace of K d0 ,8 is a subgroup
of Zd1 and T8 is given by



                   

148 5. Zero Estimate, by Damien Roy

T8 =
{
(y1, . . . , yd1 ) ∈ (K×)d1 ; yϕ1

1 · · · y
ϕd1
d1

= 1 for all ϕ = (ϕ1, . . . , ϕd1 ) ∈ 8}.
We show that the dimension of G∗ is d∗ = d∗0 + d∗1 where d∗0 = dim(V) and
d∗1 = d1 − rank(8), and that G∗ is connected if and only if 8 is a direct factor
of Zd1 . Let r = rank(8). We also attach to G∗ the polynomial

H (G∗; D0, D1, . . . , Dd1 ) =
d∗!
d∗0 !

2d∗1 D
d∗0
0

∑
| det Mi1,...,ir |D j1 · · · D jd∗

1

which is closely related to an Hilbert function of G∗. In this expression, the
sum extends to all partitions of {1, . . . , d1} into disjoint subsets {i1, . . . , ir } and
{ j1, . . . , jd∗1 } with i1 < . . . < ir and j1 < . . . < jd∗1 , and the symbol Mi1,...,ir denotes
the r × r matrix formed by the columns of indices i1, . . . , ir of a fixed r × d1 matrix
M whose rows generate 8. We also make the convention that the empty matrix has
determinant 1. Thus the sum reduces to D1 · · · Dd1 when r = 0. In particular, for the
group G, we have

H (G; D0, D1, . . . , Dd1 ) =
d!

d0!
2d1 Dd0

0 D1 · · · Dd1

Our aim is to show:

Theorem 5.1 (P. Philippon). Let 6 be a subset of G containing e. Assume that,
for given integers D0, D1, . . . , Dd1 ≥ 0, there exists a nonzero element P of K [G]
of multidegree ≤ (D0, D1, . . . , Dd1 ) which vanishes on 6[d]. Then there exists a
connected algebraic subgroup G∗ of G of dimension < d such that

Card

(
6 + G∗

G∗

)
H (G∗; D0, D1, . . . , Dd1 ) ≤ H (G; D0, D1, . . . , Dd1 ).

In the above inequality, the expression (6 + G∗)/G∗ stands for the image of 6
under the canonical map from G to G/G∗. It consists of all translates of G∗ of the
form σ + G∗ with σ ∈ 6. The conclusion of the theorem implies that it is a finite
set even though 6 may be infinite. The group G∗ produced by Theorem 5.1 is often
called an obstruction subgroup.

Exercise 5.3 provides a partial converse to this result. In the applications where
6 often has the form 6′[S] for some fixed 6′ and a large integer S, the conclusion
of the theorem appears to be optimal up to a constant factor. The example below
illustrates this.

5.1.1 An Example of Application

Theorem 5.1 will be applied in chapters 6 and 7 with a group G of the form
G = Gd0

a × Gm. Since Z has only two direct factors, {0} and Z, the connected
algebraic subgroups G∗ of such a group G are of the form G∗ = V ×G∗1 where V is
a subspace of K d0 and G∗1 is either Gm = K× or {1}. Moreover, if V has dimension



             

5.1 The Main Result 149

n, then G∗ has dimension n + 1 in the first case and dimension n in the second case.
For integers D0, D1 ≥ 0, this gives:

H (G∗; D0, D1) =





2(n + 1)Dn
0 D1 if G∗1 = K×,

Dn
0 if G∗1 = {1}.

The next example provides a simple application of the theorem with the group
G = Ga × Gm. Another example, with the group G = G2

a , is given in Exercise
5.1.

Example. Let β ∈ K and α1, α2 ∈ K×. Assume that β /∈ Q and that α1, α2 are
multiplicatively independent (i.e. that they generate a subgroup of rank two of K×).
Fix a positive integer S and consider the subset 6 of the group G = Ga ×Gm given
by

6 =
{
(s1 + s2β, α

s1
1 α

s2
2 ) ; s = (s1, s2) ∈ Z2, |s| ≤ S

}
.

Suppose that, for some positive integers D0, D1, there exists a nonzero polynomial
P ∈ K [G] = K [X, Y, Y−1] of bidegree ≤ (D0, D1) which vanishes at each point of

6[2] =
{
(s1 + s2β, α

s1
1 α

s2
2 ) ; s = (s1, s2) ∈ Z2, |s| ≤ 2S

}
.

Then, according to Theorem 5.1, there exists a connected algebraic subgroup G∗ of
G of dimension < 2 such that

Card

(
6 + G∗

G∗

)
H (G∗; D0, D1) ≤ 4D0 D1.

There are only three possibilities for G∗. If G∗ has dimension 0, it is reduced to the
neutral element {e} of G, where e = (0, 1). If G∗ has dimension 1, it is either K ×{1}
or {0}× K×. In all cases, the set (6 + G∗)/G∗ has cardinality (2S + 1)2. This follows
from our assumptions that β /∈ Q and that α1, α2 are multiplicatively independent.
Moreover, the quantity H (G∗; D0, D1) is 1 in the first case, D0 in the second and
2D1 in the third. Since D0 and D1 are assumed to be positive, we deduce that, in all
cases, we must have:

D0 D1 ≥ 1

4
(2S + 1)2.

One appreciates this result by observing that conversely, for any pair of positive
integers D0, D1 with D0 D1 ≥ 2(2S + 1)2, there exists a nonzero polynomial
P ∈ K [G] of bidegree≤ (D0, D1) which vanishes at each point of6[2]. To see why
this is true, denote by E the subspace of K [G] consisting of polynomials of bidegree
≤ (D0, D1), denote by F the vector space of K -valued functions on the set6[2], and
consider the linear map ϕ: E → F which sends a polynomial P ∈ E to the K -valued
function on6[2] induced by P . Since E has dimension (D0 + 1)(2D1 + 1) > 2D0 D1

while F has dimension (4S + 1)2 < 4(2S + 1)2, the map ϕ cannot be injective when
D0 D1 ≥ 2(2S + 1)2, and then, its kernel contains a nonzero element.
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5.2 Some Algebraic Geometry

As above, K denotes an algebraically closed field of characteristic zero. We also fix
a positive integer n.

5.2.1 Algebraic Subsets of K n

An algebraic subset of K n is a subset of K n which is the set of common zeros of a
family of polynomials in K [X1, . . . , Xn].

From this definition, it follows that the intersection of a family of algebraic
subsets of K n is again an algebraic subset of K n and that a finite union of algebraic
subsets of K n is also an algebraic subset of K n .

An algebraic subset of K n is called irreducible if it is not empty and cannot be
written as the union of two algebraic subsets of K n properly contained in it. An
irreducible algebraic subset of K n is also called an algebraic subvariety of K n or
simply a subvariety of K n . Thus, if an algebraic subvariety of K n is contained in
a finite union of algebraic subsets of K n , then it is contained in one of them. The
space K n and the points of K n are examples of subvarieties of K n , but the empty set
is excluded. One can show that each algebraic subset V of K n is a finite (possibly
empty) union of subvarieties V1, . . . , Vs of K n:

V = V1 ∪ · · · ∪ Vs .

In this decomposition of V , one can impose the condition Vi 6⊆ V j for i 6= j . In this
case the subvarieties Vi are uniquely determined: they are the maximal subvarieties
of K n contained in V , and they are called the irreducible components of V .

An algebraic subset of K n is said to be connected if it cannot be written as the
union of two disjoint non empty algebraic sets. Thus, an irreducible algebraic set is
always connected but the converse is false.

The dimension of an algebraic subvariety V of K n is the largest integer d for
which there exists a strictly increasing chain

V0 ⊂ V1 ⊂ . . . ⊂ Vd = V

of subvarieties of K n ending with V . It can be shown that this integer always exists
and is ≤ n. In fact, any chain like the above can be refined to a maximal one by
inserting subvarieties before V0 or between two consecutive ones until this becomes
impossible without introducing repetitions, and the number of subvarieties in any
such maximal chain ending with V is d + 1 where d is the dimension of V . It
follows from the definition that if V1 ⊂ V2 are two distinct subvarieties of K n , then
dim(V1) < dim(V2). The dimension of a point is 0, and for K n it is n.

The dimension of a nonempty algebraic subset of K d is defined as the maximum
of the dimensions of its irreducible components. Thus, if V , V ′ are two non empty
algebraic subsets of K n with V ′ ⊆ V , then we have dim(V ′) ≤ dim(V ), with equality
if and only if V and V ′ have a common irreducible component of dimension dim(V ).



            

5.2 Some Algebraic Geometry 151

This follows from the fact that each irreducible component of V ′ is contained in one
of V . In particular, an algebraic subset V of K n of dimension d contains only finitely
many subvarieties of K n of dimension d.

An algebraic subset of K n is said to be equidimensional if all its irreducible
components have the same dimension.

5.2.2 Hilbert–Samuel Polynomial

Let V be a nonempty algebraic subset of K n and let K [V ] be the set of all maps
from V to K induced by polynomials in K [X1, . . . , Xn]. Then K [V ] is a subring of
the ring of all functions from V to K and the restriction map

resV : K [X ] −→ K [V ]

is a surjective homomorphism of rings. Its kernel is thus an ideal of K [X ]. It consists
of all polynomials of K [X ] vanishing identically on V . It is called the ideal of V
and denoted I (V ). The above map therefore induces an isomorphism of rings

K [X ]/I (V ) ' K [V ] .

Observe that if V1 and V2 are two algebraic subsets of K n , then we have V1 ⊆ V2

if and only if I (V2) ⊆ I (V1). This follows from the fact that Vi is the set of common
zeros of the elements of I (Vi ). In particular, V1 and V2 are equal if and only if
I (V1) = I (V2). Another property that we will need is that an algebraic subset V of
K n is irreducible if and only if I (V ) is a prime ideal of K [X ].

For each integer D ≥ 0, we denote by K [X ]≤D the vector space over K consisting
of all polynomials in X1, . . . , Xn of total degree ≤ D. The Hilbert function of an
algebraic subset V /= ∅ of K n is the map H (V ;−):N→ N given by

H (V ; D) = dimK
(
resV K [X ]≤D

)

for each integer D ∈ N. This is also given by

H (V ; D) = dimK
(
(K [X ]≤D + I )/I

)

where I = I (V ) is the ideal of V . This function carries many information about V .
First of all, it can be shown that for all sufficiently large D ∈ N, its value at D is
given by a polynomial in D whose degree is the dimension of V :

H (V ; D) =
d∑

i=0

ai Di with d = dim(V ).

This polynomial is called the Hilbert–Samuel polynomial of V . It can be shown
that all its coefficients are rational numbers and that d! is a common denominator
for them. In particular, the product d!ad is a positive integer. It is called the degree
of V and denoted deg(V ). Geometrically, the intersection of V with a linear affine
subvariety L of K n of dimension n−d is in general finite and its cardinality is equal
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to deg(V ). In fact, when V ∩ L is finite, its cardinality is at most equal to deg(V ). A
reference for this is, for example, § 12, Chap. VII of [ZSa 1958], or § 7, Chap. I of
[Har 1977].

Example. For V = K n , we have

H (K n; D) = dimK

(
K [X ]≤D

)

=

(
D + n

n

)

=
1

n!
Dn + · · · ,

hence the degree of K n is 1.

5.2.3 Multihomogeneous Hilbert–Samuel Polynomial

One can get more information about a nonempty algebraic set V of K n by partitioning
the set of variables X = (X1, . . . , Xn) into subsets

X (1) = (X (1)
1 , . . . , X (1)

n1
) , . . . , X (k) = (X (k)

1 , . . . , X (k)
nk

)

with n1 + . . . + nk = n and by considering the function H (V ;−):Nk → N given for
any D = (D1, . . . , Dk) ∈ Nk by

H (V ; D) = dimK
(
resV K [X (1), . . . , X (k)]≤D

)

where K [X (1), . . . , X (k)]≤D denotes the K -vector space of all polynomials in the
ring K [X (1), . . . , X (k)] which have total degree ≤ Di in each set of variables
X (i). An element of K [X (1), . . . , X (k)]≤D is said to be a polynomial of multidegree
≤ (D1, . . . , Dk) with respect to the sets of variables X (1), . . . , X (k) and the function
H (V ; D) so defined is called a multihomogeneous Hilbert function of V . This
function is also given by

H (V ; D) = dimK
(
(K [X (1), . . . , X (k)]≤D + I )/I

)

where I = I (V ) denotes the ideal of V . As before it can be shown that for
all sufficiently large integers D1, . . . , Dk , its value at the point D is given by a
polynomial in D1, . . . , Dk of total degree equal to the dimension of V

H (V ; D) =
∑

|i |≤d

ai Di with d = dim(V ).

This polynomial is called the Hilbert–Samuel multihomogeneous polynomial of V
corresponding to our partition of X . The reason why it is said “multihomogeneous”

is that if we add to each set X (i) a new variable X (i)
0 to create a new set X̃

(i)
=

(X (i)
0 , X (i)

1 , . . . , X (i)
ni

), and if we consider the ideal Ĩ of K [X̃
(1)
, . . . , X̃

(k)
] generated

by all polynomials which are separately homogeneous in each set of variables X̃
(i)

and
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whose image under the specializations X (1)
0 → 1, . . . , X (k)

0 → 1 fall into I (V ), then

H (V ; D) becomes the dimension over K of the quotient (K [X̃
(1)
, . . . , X̃

(k)
]D + Ĩ )/̃I

where K [X̃
(1)
, . . . , X̃

(k)
]D stands for the space consisting of 0 and of all polynomials

which are separately homogeneous of degree Di in each set of variables X̃
(i)

.

We denote by
H (V ; D) = d!

∑

|i |=d

ai Di

the product by d! of the homogeneous part of degree d = dim(V ) of this polynomial.
It can be proven that the coefficients of H (V ; D) are integral and nonnegative. More
generally, the numbers

ci = i1! · · · ik!ai (with |i | = d)

are also integral. They are called the multidegrees of V .
To present the geometric interpretation of these numbers, fix a k-tuple i =

(i1, . . . , ik) ∈ Nk with |i | = d. If one index i j is> n j , then ci = 0. Otherwise, choose
a linear affine subvariety L of K n of dimension d defined by i j inhomogeneous linear
forms in X ( j) for j = 1, . . . , k. Then, in general, L will meet V in a finite set of
points of cardinality equal to ci . In fact, if V ∩ L is finite, its cardinality is ≤ ci . A
reference for this is [Vd 1928].

Example. For V = K n , we have

H (K n; D) = dimK

(
K [X (1), . . . , X (k)]≤D

)

=

(
D1 + n1

n1

)
· · ·
(

Dk + nk

nk

)

=
1

n1!
· · · 1

nk!
Dn1

1 · · · Dnk
k + · · · ,

hence

H (K n; D) =
n!

n1! · · · nk!
Dn1

1 · · · Dnk
k .

We state without proof the following important fact (see Theorem 8 of [Vd 1928],
or Exercises 8.4 and 8.5 in Chap. 8):

Proposition 5.2∗. If V is an algebraic subset of K n of dimension d and if V1, . . . , Vr

are its irreducible components of dimension d, then

H (V ; D) =
r∑

i=1

H (Vi ; D).
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5.2.4 Philippon’s Upper Bound

The following result is a special case of P. Philippon’s general upper bound for the
function H (Proposition 3.3 of [P 1986a]); it plays a central role in the proof of zero
estimates:

Theorem 5.3. Let U be an equidimensional algebraic subset of K n and let V be the
set of common zeros in U of a family F of polynomials of multidegree≤ D. Assume
that V is not empty. Then, we have

H (V ; D) ≤ H (U ; D).

For the proof, we will need the following lemma:

Lemma 5.4. Let W be an algebraic subvariety of K n of dimension d ≥ 1 and let Z
be the set of zeros in K n of a polynomial P of multidegree≤ D. Assume that W ∩ Z
is not empty and distinct from W . Then, W ∩ Z is an equidimensional algebraic
subset of K n of dimension d − 1, and we have

H (W ∩ Z ; D) ≤ H (W ; D).

Proof. The fact that W ∩ Z is equidimensional of dimension d − 1 follows from
Theorem 1.11A and Exercise 1.8 in Chap. I of [Har 1977]. The inequality involving
the function H follows from Lemma 3.1 of [P 1986a]. It is however simple to give
a direct proof of this inequality. For any k-tuple of integers T = (T1, . . . , Tk) ∈ Nk ,
the restriction map

res W
(
K [X ]≤T +D

) −→ res Z∩W
(
K [X ]≤T +D

)

is linear, surjective and, since P vanishes identically on Z , its kernel contains the
image of res W

(
K [X ]≤T

)
under multiplication by P . Moreover, the multiplication by

P is injective on K [W ] = res W
(
K [X ]

)
because W is irreducible and not contained

in Z . Comparing dimensions, this implies

H
(
Z ∩W ; T + D

)
= dimK

(
res Z∩W

(
K [X ]≤T +D

))

≤ dimK
(
res W

(
K [X ]≤T +D

))− dimK
(
res W

(
K [X ]≤T

))

= H
(
W ; T + D

)− H
(
W ; T

)
.

Now, fix a point C = (C1, . . . ,Ck) ∈ Nk and, for each integer t ≥ 0, define

p(t) = H
(
W ; C + t D

)
and q(t) = H

(
Z ∩W ; C + t D

)
.

Then, assuming that C has sufficiently large positive coordinates, the integers p(t)
and q(t) are given by polynomials in t of degree d and d − 1 respectively and the
preceding observation applied with T = C + (t − 1)D gives
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q(t) ≤ p(t)− p(t − 1).

Moreover, the definition of the function H implies that

H
(
W ; D) = d! lim

t→∞
p(t)

td
and H

(
Z ∩W ; D) = (d − 1)! lim

t→∞
q(t)

td−1
·

Combining these formulas with the above upper bound for q(t) gives finally

H
(
Z ∩W ; D) ≤ (d − 1)! lim

t→∞
p(t)− p(t − 1)

td−1
= H

(
W ; D). ¤

Proof of Theorem 5.3. Let d = dim(U ) and r = d − dim(V ). By induction on the
integer i = 0, . . . , r , we shall construct an equidimensional algebraic subset Vi ⊆ U
of dimension d − i which contains V and satisfies

H (Vi ; D) ≤ H (U ; D). (5.5)

For i = 0, we set V0 = U . Assume that Vi is constructed for an integer i ≥ 0 with
i < r , and let W1, . . . ,Ws be its irreducible components. We have

V ⊆ W1 ∪ · · · ∪Ws .

Since dim(W j ) = d − i > dim(V ), there exists for each j a polynomial Pj in the
family F which does not vanish everywhere on W j ; let Z j be the set of zeros of Pj

in K n . We define
Vi+1 = (W1 ∩ Z1) ∪ · · · ∪ (Ws ∩ Zs).

By construction, Vi+1 contains V , therefore Vi+1 6= ∅. Without loss of generality,
we may assume that there exists an integer t ≥ 1 such that W j ∩ Z j 6= ∅ for
j = 1, . . . , t , and W j ∩ Z j = ∅ for j > t . Then, Lemma 5.4 shows that W j ∩ Z j is
an equidimensional algebraic subset of K n of dimension d − i − 1 for j = 1, . . . , t .
Therefore, Vi+1 is also equidimensional of dimension d − i − 1 and its irreducible
components are the union of those of W j ∩ Z j for j = 1, . . . , t . By virtue of
Proposition 5.2, this gives

H (Vi+1; D) ≤
t∑

j=1

H (W j ∩ Z j ; D).

Since each Pj is of multidegree ≤ D, we also have, by Lemma 5.4,

t∑

j=1

H (W j ∩ Z j ; D) ≤
t∑

j=1

H (W j ; D).

Since W1, . . . ,Wt are among the irreducible components of Vi of dimension d − i ,
Proposition 5.2 gives

t∑

j=1

H (W j ; D) ≤ H (Vi ; D).
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Combining these inequalities with (5.5), we get H (Vi+1; D) ≤ H (U ; D) as required.
This shows the existence of V0, . . . , Vr . Since V and Vr have the same dimension
d−r , the inclusion V ⊆ Vr implies that the irreducible components of V of dimension
d−r are among those of Vr ; therefore applying Proposition 5.2 and using the relation
(5.5) with i = r , we get

H (V ; D) ≤ H (Vr ; D) ≤ H (U ; D).

The proof is complete. ¤

5.3 The Group G and its Algebraic Subgroups

An affine algebraic group is an algebraic subset U of K n which also has a group
structure with the group law (x, y) 7→ x · y and the map x 7→ x−1 given by
polynomials:

x · y = (P1(x, y), . . . , Pn(x, y)) x−1 = (Q1(x), . . . , Qn(x))

with P1, . . . , Pn ∈ K [X , Y ] and Q1, . . . , Qn ∈ K [X ]. An algebraic subgroup of U
is a subgroup of U which, as a set, is also an algebraic subset of K n . When U is a
commutative group, it is common to denote the group law by + and the inverse of an
element g by −g.

Let d0, d1 ≥ 0 be integers not both zero, and let G be the product K d0 × (K×)d1

of d0 copies of the additive group of K with d1 copies of the multiplicative group
K× of all nonzero elements of K . Then, G is a commutative group for the product
structure. Its group law written additively is given by

(x, y) + (x ′, y′) = (x1 + x ′1, . . . , xd0 + x ′d0
, y1 y′1, . . . , yd1 y′d1

).

However, G is not an affine algebraic group in our sense because it is not an algebraic
subset of K d0 × K d1 and the map g 7→ −g is not given by polynomials.

To correct this situation, we put n = d0 + 2d1 and consider the algebraic subset
U of K n given by

U = {(x, y, z) ∈ K d0 × K d1 × K d1 ; y1z1 = · · · = yd1 zd1 = 1}.
This is a subgroup of K d0 × (K×)2d1 and since the inverse of an element (x, y, z) of
U is given by (−x, z, y), we see that U is an affine algebraic group. Moreover, the
projection map π from K d0 × K d1 × K d1 to K d0 × K d1 which sends a point (x, y, z)
to (x, y) induces a group isomorphism π : U → G. We will use it to carry on G the
structures that apply to U .

(i) A polynomial map or simply a polynomial on G will be a map f : G → K
such that f ◦ π : U → K is induced by a polynomial on K n . These maps form a
ring which we will denote K [G]. Since for all (x, y, z) ∈ U we have zi = y−1

i
(i = 1, . . . , d1), this ring is simply the ring of all maps from G to K induced by



                

5.3 The Group G and its Algebraic Subgroups 157

polynomials in X1, . . . , Xd0 , Y1, . . . , Yd1 , Y−1
1 , . . . , Y−1

d1
. Thus K [G] is isomorphic

to K [X , Y±1] and we will identify both rings.

(ii) An algebraic subset of G will be a subset E of G such that π−1(E) is an
algebraic subset of K n . By virtue of (i), an algebraic subset of G is therefore the set
of common zeros in G of a family of polynomials in K [G] = K [X , Y±1]. When
E /= ∅, we will denote by K [E] the ring of all maps from E to K induced by elements
of K [G]. It is isomorphic to K [G]/I where I is the ideal of all elements of K [G]
vanishing identically on E . This ideal I will be called the ideal of E , and denoted
I (E).

A subgroup E of G will be said to be algebraic if it is an algebraic subset of G.
For example, for each vector subspace V of K d0 and each subgroup 8 of Zd1 , the
set V × T8 is an algebraic subgroup of G because it is defined by linear equations
in X and by the equations Y ϕ − 1 = 0 with ϕ ∈ 8 (see the definition of T8 at the
beginning of the chapter). We will show that each algebraic subgroup of G is of this
form.

(iii) Let D0 ∈ N and D = (D1, . . . , Dd1 ) ∈ Nd1 . We introduce new variables
Z = (Z1, . . . , Zd1 ) and say that a polynomial Q ∈ K [X , Y , Z ] has multidegree
≤ (D0, D) if its total degree in X is ≤ D0 and if, for j = 1, . . . , d1, its total
degree in Y j and Z j is ≤ D j . Then, in accordance with § 5.1, a polynomial
P ∈ K [G] = k[X , Y±1] has multidegree ≤ (D0, D) if there exists Q ∈ K [X , Y , Z ]
of multidegree ≤ (D0, D) such that

P = Q(X1, . . . , Xd0 , Y1, . . . , Yd1 , Y−1
1 , . . . , Y−1

d1
).

Given an algebraic subset E /= ∅ of G, we define its Hilbert function H (E ; D0, D) in
two equivalent ways either as H (π−1(E); D0, D) or as the dimension over K of the
space of maps f : E → K induced by elements of K [G] of multidegree ≤ (D0, D).
We also define the dimension of E as the dimension of π−1(E). When this dimension
is m, we define H (E ; D0, D) as the product by m! of the homogeneous part of degree
m of the polynomial in D0, D1, . . . , Dd1 which coincides with H (E ; D0, D) for large
integral values of the parameters.

5.3.1 Structure of the Algebraic Subgroups

Proposition 5.6. Let G∗ be an algebraic subgroup of G. Then there exist a subspace
V of K d0 and a subgroup 8 of Zd1 such that

G∗ = V × T8.

The ideal of G∗ is generated by the homogeneous linear forms a1 X1 + · · · + ad0 Xd0

vanishing identically on V and by the elements Y ϕ − 1 with ϕ ∈ 8.

Proof. Let 8 be the set of all ϕ ∈ Zd1 such that Y ϕ − 1 vanishes identically on G∗
and let M be the set of all homogeneous linear forms in K [X ]1 = K X1 + . . .+ K Xd0
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which vanish identically on G∗. Then, 8 is a subgroup of Zd1 and M is a subspace
of K [X ]1. Consider the ideal I of K [G] generated by all elements of M and by all
polynomials Y ϕ − 1 with ϕ ∈ 8. As we previously observed, the zero set of I is an
algebraic subgroup of G in the form of a product

V × T8

where V is the subspace of K d0 defined by the linear forms of M . Since I ⊆ I (G∗),
we have G∗ ⊆ V × T8. We will show that the two groups are equal.

Choose a subspace N of K [X ]1 such that K [X ]1 = M ⊕ N . Choose also a basis
L1, . . . , Ls of N and a set S of representatives of the classes of Zd1 modulo 8.
Consider the subspace F of K [G] consisting of all expressions of the form

∑

α∈S

Aα(L1(X ), . . . , Ls(X ))Y α

where Aα ∈ K [T1, . . . , Ts] are polynomials. Since K [X ]1 = M ⊕ N , every element
of K [X ]1 is congruent modulo I to an element of N and so, every element of K [X ]
is congruent modulo I to a polynomial in L1, . . . , Ls . Moreover, for every β ∈ Zd1 ,

there is an α ∈ S such that ϕ = β−α ∈ 8 and so, Y β = Y α +Y α(Y ϕ−1) is congruent
to Y α modulo I . This shows that every element of K [G] is congruent modulo I to
an element of F . Now, consider the restriction map from K [G] to K [G∗]. We will
prove that it is injective on F . If we take this for granted, we get I = I (G∗) because
K [G] = I + F and I is contained in the kernel I (G∗) of the restriction map. Since
G∗ is the zero set of I (G∗), this will show G∗ = V × T8.

Assume on the contrary that the restriction map from K [G] to K [G∗] is not
injective on F . Then, there exist distinct elements α1, . . . , αr of S and nonzero
polynomials A1, . . . , Ar ∈ K [T1, . . . , Ts] such that

P(X , Y ) =
r∑

i=1

Ai (L1(X ), . . . , Ls(X ))Y αi

vanishes identically on G∗. Choose them such that

r∑

i=1

(deg(Ai ) + 1)

is minimal. Take any point (x, y) ∈ G∗ and consider the polynomial

yα1 P(X , Y )− P(X + x, yY ).

By construction, it vanishes identically on G∗. On the other hand, it can be written
in the form

r∑

i=1

Bi (L1(X ), . . . , Ls(X ))Y αi

with
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Bi (T1, . . . , Ts) = yα1 Ai (T1, . . . , Ts)− yαi Ai (T1 + L1(x), . . . , Ts + Ls(x))

for i = 1, . . . r . If B1, . . . , Br are not all zero, we get the expected contradiction
because deg(Bi ) = deg(Ai ) when yαi /= yα1 and because either Bi = 0 or
deg(Bi ) < deg(Ai ) when yαi = yα1 . It thus remains to show that (x, y) can be
chosen so that at least one Bi is /= 0. If r ≥ 2, the polynomial Y α2 − Y α1 does not
vanish identically on G∗ because α2 − α1 /∈ 8. Then, we get B2 /= 0 by choosing
(x, y) ∈ G∗ such that yα2 /= yα1 . If r = 1, the polynomial A1 has a positive degree m
and the homogeneous part of B1 of degree m − 1 is

−yα1

s∑

i=1

L i (x)
∂A

∂Ti
(T1, . . . , Ts)

where A denotes the homogeneous part of A1 of degree m. Since the characteristic of
K is zero, the derivatives ∂A/∂T1, . . . , ∂A/∂Ts are not all zero. So, there is at least
one coefficient of B1 of the form L(x) where L is a nonzero element of N . Since L
does not vanish identically on G∗, we get B1 /= 0 by choosing (x, y) ∈ G∗ such that
L(x) /= 0. ¤

Looking more closely at the above argument, one gets a formula for the Hilbert
function of G∗ = V × T8 in terms of V and 8:

Proposition 5.7. Let V be a subspace of K d0 , let 8 be a subgroup of Zd1 and let
G∗ = V × T8. Then, the Hilbert function of G∗ is

H (G∗; D0, D) =

(
D0 + d∗0

d∗0

)
χ (D)

where d∗0 = dimK V and where χ (D) denotes the number of cosets of 8 of the form
α +8 with α = (α1, . . . , αd1 ) ∈ Zd1 satisfying |αi | ≤ Di for i = 1, . . . , d1.

The details of the proof are left to the reader. In the case where V = K d0 and
8 = {0}, this result gives

H (G; D0, D) =

(
D0 + d0

d0

)
(2D1 + 1) · · · (2Dd1 + 1),

so G has dimension d and

H (G; D0, D) =
d!

d0!
2d1 Dd0

0 D1 · · · Dd1 . (5.8)
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5.3.2 Translations and Automorphisms

For each g ∈ G, we denote by τg: G → G, the operator of translation by g in G:

τg(x) = g + x for all x ∈ G.

Looking at the addition law in G, we see that each τg is given in coordinates by
polynomials of degree 1. We will need these operators in the proofs of the next three
lemmas.

Lemma 5.9. Let V be a nonempty algebraic subset of G and let g ∈ G. Then, g + V
is an algebraic subset of G with the same dimension as V and we have

H (g + V ; D0, D) = H (V ; D0, D)

for all (D0, D) ∈ N1+d1 . Moreover, g + V is irreducible if V is irreducible.

Proof. By hypothesis, V is the set of common zeros in G of a family of polynomials
{Pj } j∈J . Therefore, g+V = τg(V ) is the set of common zeros in G of the polynomials
Pj ◦ τ−g with j ∈ J . This proves that g + V is an algebraic subset of G.

The vector space of functions from g + V to K is isomorphic to the vector space
of functions from V to K under the map which sends a function f : g + V → K
to the composite f ◦ τg: V → K . If f is induced by a polynomial of multidegree
≤ (D0, D), then f ◦ τg is also induced by a polynomial of multidegree ≤ (D0, D),
and conversely. We therefore have

H (g + V ; D0, D) = H (V ; D0, D)

for all (D0, D) ∈ N1+d1 . This shows that V and g + V have the same Hilbert-Samuel
polynomial. Consequently, they have the same dimension, and the polynomials
H (g + V ; D0, D) and H (V ; D0, D) coincide.

Finally, assume that V is irreducible. If g + V were not irreducible, it could be
written as the union of two algebraic subsets V1, V2 of G both distinct from g + V ;
then V would be the union of −g + V1 and −g + V2, and this is a contradiction
since both are algebraic subsets of G which are distinct from V . Therefore g + V is
irreducible. ¤

Lemma 5.10. Let G∗ be an algebraic subgroup of G, and let E be a finite and
nonempty union of translates of G∗ in G. Then, E is an algebraic subset of G and,
for all (D0, D) ∈ N1+d1 , we have

H (E ; D0, D) = Card(E/G∗)H (G∗; D0, D).

Proof. Let d∗ be the dimension of G∗. Lemma 5.9 shows that each translate g + G∗
of G∗ is an algebraic subset of G of dimension d∗ and that the polynomials
H (g+G∗; D0, D) and H (G∗; D0, D) coincide. Since E is a finite union of translates



                  

5.3 The Group G and its Algebraic Subgroups 161

of G∗, E is therefore an algebraic subset of G of dimension d∗, and the conclusion
follows from Proposition 5.2. ¤

Lemma 5.11. Let V and X be algebraic subsets of G. Define

E = {g ∈ G ; g + V ⊆ X}.
Then E is an algebraic subset of G. Moreover, if X is defined in G by polynomials of
multidegree ≤ (D0, D), then E is also defined in G by polynomials of multidegree
≤ (D0, D).

Proof. Let {Pj } j∈J be a family of polynomials whose set of common zeros in G is
X . We have

E = {g ∈ G ; g + v ∈ X for all v ∈ V }
= {g ∈ G ; Pj (g + v) = 0 for all j ∈ J and v ∈ V }.

This shows that E is the set of common zeros in G of the polynomials Pj ◦ τv
with j ∈ J and v ∈ V . Therefore E is an algebraic subset of G. Furthermore,
if the polynomials Pj are of multidegree ≤ (D0, D), then the same holds for the
polynomials Pj ◦ τv . This proves the second part of the lemma. ¤

We define an endomorphism of G as a group homomorphism ψ : G → G which
satisfies f ◦ ψ ∈ K [G] for all f ∈ K [G]. It can be shown that such a map has the
form

ψ(x, y) = (L(x), yα1 , . . . , yαd1 ) (5.12)

for a linear map L: K d0 → K d0 and elements α1, . . . , αd1
of Zd1 . Moreover, ψ is

invertible if and only if L is invertible and {α1, . . . , αd1
} is a basis of Zd1 . In this

case, ψ−1 is also an endomorphism of G; we say that ψ is an automorphism of G.
An automorphismψ of G maps an algebraic subset E of G into an algebraic sub-

set ψ(E) of G. It also preserves irreducibility and maps the irreducible components
of E into those ofψ(E). This uses the same arguments as in the proof of Lemma 5.9.
Finally, it preserves dimension because if V0 ⊂ . . . ⊂ Vd ⊆ E is a maximal chain
of subvarieties of G contained in E then ψ(V0) ⊂ . . . ⊂ ψ(Vd ) ⊆ ψ(E) is another
one contained in ψ(E), so E and ψ(E) have the same dimension d.

Theorem 5.13. Let G∗ be an algebraic subgroup of G. Then, there is one and only
one pair (V,8) consisting of a subspace V of K d0 and a subgroup 8 of Zd1 such
that

G∗ = V × T8.

Let 8 be the largest subgroup of Zd1 containing 8 with the same rank as 8. Then,
G∗0 = V × T8 is an irreducible component of G∗ and the other ones are translates
of G∗0. Their number is

[G∗ : G∗0] = [8 : 8].
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Moreover, G∗ is equidimensional and its dimension is

dim(G∗) = dim(V) + (d1 − rank(8)).

The group G∗0 is called the neutral component of G∗. The theorem shows that
the irreducible components of an algebraic subgroup of G are disjoint. Therefore, it
is equivalent to say that an algebraic subgroup of G is irreducible or connected (see
also Exercise 5.5).

Proof. By Proposition 5.6, we know that there exist a subspace V of K d0 and a
subgroup 8 of Zd1 such that G∗ = V × T8. Let r = d0 − dim(V) and s = rank(8).
The theorem of elementary divisors shows that there are a basis {α1, . . . , αd1

} of Zd1

and nonzero integers m1, . . . ,ms such that {m1α1, . . . ,msαs} is a basis of 8 (see
Theorem 7.8, Chap. III of [L 1993]). Then, 8 is the subgroup of Zd1 generated by
α1, . . . , αs . Choose an invertible linear map L: K d0 → K d0 such that L(V) is the
subspace of K d0 defined by X1 = . . . = Xr = 0 and consider the automorphism ψ of
G given by (5.12). By construction, ψ maps G∗ to the subgroup of G defined by

X1 = . . . = Xr = 0 and Y m1
1 = . . . = Y ms

s = 1.

It also maps G∗0 = V × T8 to the subgroup of G defined by

X1 = . . . = Xr = 0 and Y1 = . . . = Ys = 1.

This shows that ψ(G∗0) is a subgroup of ψ(G∗) of index m1 · · ·ms = [8 : 8] and
therefore [G∗ : G∗0] = [8 : 8]. It also implies that the ideal of ψ(G∗0) is the kernel of
the surjective ring homomorphism

K [X1, . . . , Xd0 , Y±1
1 , . . . , Y±1

d1
] −→ K [Xr+1, . . . , Xd0 , Y±1

s+1, . . . , Y±1
d1

]

P(X1, . . . , Xd0 , Y1, . . . , Yd1 ) 7−→
P(0, . . . , 0, Xr+1, . . . , Xd0 , 1, . . . , 1, Ys+1, . . . , Yd1 ).

Since the image ring has no zero divisor other than 0, the ideal of ψ(G∗0) is prime.
Therefore, ψ(G∗0) is irreducible and so G∗0 is irreducible. Since G∗ is a finite union
of translates of G∗0 and since these are disjoint and irreducible, we conclude that the
translates of G∗0 in G∗ are all the irreducible components of G∗. In particular, G∗ is
equidimensional. To compute dim G∗ = dim G∗0 = dimψ(G∗0), we use Proposition
5.7. It gives

H (ψ(G∗0); D0, D) =
1

(d0 − r )!
(D0 + 1) · · · (D0 + d0 − r )(2Ds+1 + 1) · · · (2Dd1 + 1),

and so, ψ(G∗0) has dimension (d0 − r ) + (d1 − s) = dim(V) + (d1 − rank(8))
It remains to show that if V ′ is a subspace of K d0 and if 8′ is a subgroup of Zd1

such that G∗ = V ′×T8′ , then V ′ = V and8′ = 8. In this case, we get G∗ = V ′′×T8′′
where V ′′ = V ∩ V ′ and 8′′ = 8 +8′. By the formula for dim G∗, this implies
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dim(V) = dim(V ′) = dim(V ′′) and rank(8) = rank(8′) = rank(8′′).

So, V = V ′ and 8 = 8
′

= 8
′′
. The indices of 8, 8′ and 8′′ in 8

′′
are

thus finite and equal to the number of irreducible components of G∗. This gives
[8′′ : 8] = [8′′ : 8′] = 1, so 8 = 8′ = 8′′. ¤

5.3.3 An Explicit Formula for H (G∗; D0, D)

Proposition 5.14. Let V be a subspace of K d0 of dimension d∗0 and let 8 be a
subgroup ofZd1 of rank r generated by the rows of an r×d1 matrix M with coefficients
in Z. Put d∗ = d∗0 + d∗1 where d∗1 = d1− r and denote by G∗ the group V× T8. Then,
we have

H (G∗, D0, D) =
d∗!
d∗0 !

2d∗1 D
d∗0
0

∑
| det(Mi1,...,ir )|D j1 · · · D jd∗

1

where the summation extends to all partitions of {1, . . . , d1} into disjoint subsets
{i1, . . . , ir } and { j1, . . . , jd∗1 } with i1 < . . . < ir and j1 < . . . < jd∗1 and where
Mi1,...,ir denotes the r × r matrix formed by the columns of M of indices i1, . . . , ir .

Proof. When r = 0, the formula reduces to (5.8) because of our convention that an
empty matrix has determinant 1 (see § 5.1). Hence, we may assume r ≥ 1.

Since G∗ ⊆ G, we have H (G∗; D0, D) ≤ H (G; D0, D) for all (D0, D) ∈
Nd1+1. Therefore, (5.8) shows that the degree of H (G∗; D0, D) in D j is ≤ 1 for
j = 1, . . . , d1. On the other hand, Proposition 5.7 implies that H (G∗; D0, D) is the

product of D
d∗0
0 by a homogeneous polynomial in D. Since dim G∗ = d∗, this gives

H (G∗; D0, D) =
d∗!
d∗0 !

D
d∗0
0

∑

1≤ j1<...< jd∗
1
≤d1

c j1,..., jd∗
1

D j1 · · · D jd∗
1

where c j1,..., jd∗
1

denotes the largest integer c for which there exists an affine linear

subvariety L of K n defined by d∗0 inhomogeneous linear forms in X and by one
inhomogeneous linear form in Y jk and Z jk for each k = 1, . . . , d∗1 such that
π−1(G∗) ∩ L is finite with cardinality c.

For simplicity, let us compute c j1,..., jd∗
1

when j1 = r + 1, . . . , jd∗1 = d1. It is always

possible to reduce to that case by permuting the coordinates in K n . We have

Card(π−1(G∗) ∩ L) = Card(G∗ ∩ π (L ∩U )).

The set π (L ∩ U ) is defined in G by d∗0 inhomogeneous linear forms of K [X ] and
by polynomials of the form

a j Y j + b j Y
−1
j + c j

for j = r + 1, . . . , d1. It is therefore a product

π (L ∩U ) = L0 × L1 × · · · × Ld1
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where L0 is an affine linear subvariety of K d0 of codimension ≤ d∗0 , where
L1 = . . . = Lr = K× and where, for j = r + 1, . . . , d1, L j is either K× or a
subset of K× of cardinality at most 2. We get

Card(G∗ ∩ π (L ∩U )) = Card(V ∩ L0)Card(T8 ∩ (L1 × . . .× Ld1 )).

The set V ∩ L0 either contains one point or is empty or infinite. Assume M = (mi, j ).
For each (ar+1, . . . , ad1 ) ∈ Lr+1 × . . . × Ld1 , the number of points of T8 in
(K×)r×{ar+1}× . . .×{ad1} is equal to the number of solutions (y1, . . . , yr ) ∈ (K×)r

of the system 



ym1,1

1 · · · ym1,r
r = a−m1,r+1

r+1 · · · a−m1,d1
d1

· · ·
ymr,1

1 · · · ymr,r
r = a−mr,r+1

r+1 · · · a−mr,d1
d1

If det M1,...,r /= 0, this is a set of cardinality | det M1,...,r | independent of the choice
of (ar+1, . . . , ad1 ) (see Exercise 5.6). In this case, we get that G∗ ∩ π (L ∩U ) either
is infinite or consists of at most 2d∗1 | det M1,...,r | points. Since this upper bound is
achieved for a suitable choice of equations defining L , we obtain

cr+1,...,d1 = 2d∗1 | det M1,...,r |.
If det M1,...,r = 0, the above system has either no solutions or an infinite number of
solutions (see Exercise 5.6). So, G∗ ∩ π (L ∩ U ) is either empty or infinite and the
above formula for cr+1,...,d1 still holds. ¤

5.4 Proof of the Main Result

Let the notation be as in the statement of Theorem 5.1 and let X1 be the set of zeros
of P in G. For each integer r ≥ 2, we define

Xr =
⋂

(σ1,...,σr−1)∈6r−1

(−σ1 − · · · − σr−1 + X1
)
.

Alternatively, Xr is the set of common zeros in G of the polynomials P ◦ τσ1+···+σr−1

with (σ1, . . . , σr−1) ∈ 6r−1. Therefore, it is defined in G by polynomials of
multidegree ≤ (D0, D).

The sets X1, X2, . . . are related by the formulas

Xr+1 =
⋂

σ∈6

(−σ + Xr
)
, (r ≥ 1). (5.15)

Since e ∈ 6, this implies

X1 ⊇ X2 ⊇ · · · ⊇ Xd+1 ⊇ · · ·
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Since P vanishes on 6[d], Xd+1 contains e ; therefore this set is not empty. On the
other hand, since P is not identically zero on G, Lemma 5.4 gives dim(X1) = d − 1.
Consequently, there exists a positive integer r ≤ d such that

dim(Xr ) = dim(Xr+1).

Let m be the common dimension of Xr and Xr+1, and let V be an irreducible
component of dimension m of Xr+1. Using (5.15), we get

V ⊆
⋂

σ∈6

(−σ + Xr
)
;

hence for all σ ∈ 6, σ + V is contained in Xr . We set

E = {g ∈ G ; g + V ⊆ Xr }.
We just showed 6 ⊆ E . We also set

G∗ = {g ∈ G ; g + V = V }
and

R = {g + V ; g ∈ E}.
From Lemma 5.9 we deduce that the elements in the set R are, like V , algebraic
subvarieties of G of dimension m. Since they are contained in Xr , and since Xr has
dimension m, R is a finite set. We also notice that G∗ is a subgroup of G, that E is
stable under translation by the elements of G∗, and that there is a bijection

E/G∗ −→ R.

Therefore E is a finite union of translates of G∗. Now recall that, by Lemma 5.9, the
translates of V are irreducible subsets of G of the same dimension as V . So, for any
g ∈ G, the condition g + V ⊆ V is equivalent to g + V = V . Then Lemma 5.11, with
X = V , shows that G∗ is an algebraic subset of G. Hence G∗ is an algebraic subgroup
of G. Since it is contained in −v + V for any v ∈ V , its dimension is ≤ m < d .
Applying again Lemma 5.11, but with X = Xr , shows that E is an algebraic subset
of G which is defined, like Xr , by polynomials of multidegree ≤ (D0, D). Since E
is a finite union of translates of G∗, Lemma 5.10 gives

H (E ; D0, D) = Card(E/G∗)H (G∗; D0, D).

Since E is defined in G by polynomials of multidegree ≤ (D0, D), Theorem 5.3
provides an upper bound for the left hand side of the previous equality:

H (E ; D0, D) ≤ H (G; D0, D).

Finally, since 6 ⊆ E , we have

Card(E/G∗) ≥ Card

(
6 + G∗

G∗

)
·
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This implies

Card

(
6 + G∗

G∗

)
H (G∗; D0, D) ≤ H (G; D0, D).

This inequality also holds with the neutral component G∗0 of G∗ instead of G∗ because

Card

(
6 + G∗0

G∗0

)
≤ [G∗ : G∗0] Card

(
6 + G∗

G∗

)

and because by Lemma 5.10 and Theorem 5.13 we have

H (G∗; D0, D) = [G∗ : G∗0] H (G∗0; D0, D).

¤

Exercises

Exercise 5.1. Let β1, β2 be elements of K such that 1, β1, β2 are linearly independent over
Q . Let S be a positive integer, and consider the subset 6 of G = G2

a given by

6 =
{
(s1 + s3β1, s2 + s3β2) ; s = (s1, s2, s3) ∈ Z3, |s| ≤ S

}
.

Show that if a nonzero polynomial P ∈ K [G] = K [X1, X2] vanishes at each point of 6[2],
then its degree D satisfies D ≥ (2S +1)3/2. Conversely, show that, if an integer D ≥ 1 satisfies
D ≥ 4(2S + 1)3/2, then there exists a nonzero polynomial P ∈ K [G] of degree ≤ D which
vanishes at each point of 6[2].

Exercise 5.2. Let k be a subfield of K . An algebraic subgroup of G is said to be defined over
k if it is of the form V × T8 for a subspace V of K d0 defined over k.

(a) Show that if an algebraic subgroup G∗ of G is defined over k, then it is the set of common
zeros in G of a family of elements of k[X , Y±1].

(b) Show that if the set6 of Theorem 5.1 is contained in kd0 × (k×)d1 then, in the conclusion
of the theorem, one can assume that the group G∗ is defined over k.

Hint. Let G∗ = V × T8 and let Vk be the largest subspace of V defined over k. Show that the
group G∗k = Vk × T8 is connected and that one has

Card

(
6 + G∗k

G∗k

)
= Card

(
6 + G∗

G∗

)

and
H (G∗k ; D0, D) ≤ H (G∗; D0, D).

Exercise 5.3. (A converse to Theorem 5.1) Let G∗ be a connected algebraic subgroup of G
with G∗ /= G and let6 be a finite subset of G. Show that for any (D0, D) ∈ N×Nd1 satisfying
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Card

(
6 + G∗

G∗

)
H (G∗; D0, D) < H (G; D0, D) (5.16)

there exists a nonzero polynomial P ∈ K [X , Y±1] of multidegree ≤ (D0, D) which vanishes
at each point of 6.

Hint. Let E = ∪σ∈6(σ + G∗). Show that the left hand side of (5.16) is ≥ H (E ; D0, D).

Exercise 5.4. Use Theorem 5.3 with d0 = n and d1 = 0 to prove that if F is a finite algebraic
subset of K n defined by polynomials of K [X1, . . . , Xn] of degree ≤ D, then the cardinality
of F is ≤ Dn .

Hint. Show that for a finite algebraic subset F of K n , the polynomial H (F ; X ) is constant,
equal to the cardinality of F .

Exercise 5.5. Let H be an algebraic subgroup of G of dimension m and let V be an irreducible
component of H of the same dimension. Define

H0 = {g ∈ G ; g + V = V } and R = {g + V ; g ∈ H}.

(a) Show that H0 is an algebraic subgroup of H , that R is the set of all irreducible components
of H and that the quotient H/H0 is in bijection with R.

(b) Deduce from (a) that H is equidimensional, that its irreducible components are disjoint
and that the one which contains e is an algebraic subgroup of H .

Exercise 5.6. Let M = (mi j ) be an r × r matrix with coefficients in Z. Consider the
endomorphism ψ of (K×)r given by

ψ(y1, . . . , yr ) = (ym11
1 · · · ym1r

r , . . . , ymr1
1 · · · ymrr

r ).

(a) Show that the kernel of ψ is infinite if det M = 0 and that otherwise its cardinality is
| det M|.

(b) Show that ψ is surjective if and only if det M /= 0.
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6. Linear Independence of Logarithms of Algebraic
Numbers

In Chap. 4, we proved Baker’s homogeneous Theorem 1.5: if logarithms of algebraic
numbers are linearly independent over Q, then they are linearly independent over
Q. The proof was an extension of Gel’fond’s solution to Hilbert’s seventh problem.
Here we give a second proof of the same theorem, using an extension of Schneider’s
method. The two main tools are an upper bound for the absolute value of an alternant
in several variables (Proposition 6.6) and the zero estimate (namely Theorem 5.1).

The idea of proof is as follows. Assume there is a relation

λn+1 = β1λ1 + · · · + βnλn

with algebraic coefficients β1, . . . , βn between logarithms of algebraic numbers
λ1, . . . , λn+1. Set α j = eλ j (1 ≤ j ≤ n + 1). We first introduce analytic functions
which take algebraic values in the number field

K = Q
(
β1, . . . , βn, α1, . . . , αn+1

)

at many points. Consider the n + 1 functions in n + 1 variables

z1, . . . , zn, ezn+1 ,

as well as monomials in these functions:

zτ et zn+1 = zτ1
1 · · · zτn

n et zn+1

for τ = (τ1, . . . , τn) ∈ Nn and t ∈ Z. The corresponding algebraic group (needed for
using the zero estimate of Chap. 5) is G = Gn

a ×Gm. We estimate these functions at
the points

η
j

=
(
δ j1, . . . , δ jn, λ j

)
(1 ≤ j ≤ n) and η

n+1
=
(
β1, . . . , βn, λn+1

)

inCn+1 (where δ j i is Kronecker’s diagonal symbol) as well as at linear combinations
of these points:

sη = s1η1
+ · · · + sn+1ηn+1

=
(
s1 + sn+1β1, . . . , sn + sn+1βn, s1λ1 + · · · + sn+1λn+1

)

for s = (s1, . . . , sn+1) ∈ Zn+1. We have
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(
zτ et zn+1

)
(sη) =

n∏

i=1

(si + sn+1βi )
τi

n+1∏

j=1

α
s j t
j ∈ K .

The given linear dependence relation between λ1, . . . , λn+1 means that these points
sη all belong to the hyperplane W in Cn+1 of equation

λ1z1 + · · · + λnzn = zn+1.

If we prefer we can also consider only functions of n variables, replacing zn+1 by
λ1z1 + · · · + λnzn .

We needed many functions and many points, and we found infinitely many of
them, which is too much! We select finite subsets of these: we introduce large
parameters T0, T1 and S, so that we can deal with only finitely many functions and
points, namely with τ , t and s restricted to13

‖τ‖ ≤ T0, |t | ≤ T1, |s| ≤ S.

With the values of these functions at the given points we build a matrix

M =
((

zτ et zn+1
)
(sη)

)
(τ ,t)

s

like in Chap. 2. The proof now decomposes into three steps, which may be introduced
in any order. The idea is to consider a L × L minor1 of maximal size, namely with

L =

(
T0 + n

n

)
(2T1 + 1).

An analytic estimate yields an upper bound for |1| - this is the step of the proof
where the hyperplane W is required. Since 1 is an algebraic number, Liouville’s
estimate provides a lower bound for |1| provided that it is not zero. Under suitable
conditions for the parameters T0, T1, S, the zero estimate shows that either M has
maximal rank L , or else there is a linear dependence relation over Q between either
λ1, . . . , λn+1 or 1, β1, . . . , βn . Putting all this information together enables one to
deduce Baker’s Theorem.

6.1 Applying the Zero Estimate

In this section, K is an algebraically closed field of zero characteristic. Our aim is to
prove the following result:

Proposition 6.1. Let n be a positive integer, α1, . . . , αn+1 be nonzero elements of
K and β1, . . . , βn be elements of K . Assume the numbers 1, β1, . . . , βn are linearly
independent over Q. Let T0, T1 and S be positive integers satisfying

13 As a matter of fact we shall need to consider all points sη with |s| ≤ (n + 1)S.
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(2S + 1)n+1 > 2(n + 1)T n
0 T1, T0 > 2S and (2S + 1)2 >

n + 1

n
T0·

Assume further:

• either α1, . . . , αn+1 are multiplicatively independent,

• or else α1, . . . , αn+1 generate a multiplicative subgroup of K× of rank n and
(2S + 1)n > 2(n + 1)T n−1

0 T1.

Consider the following matrix

M =

(
(s1 + sn+1β1)τ1 · · · (sn + sn+1βn)τn

(
α

s1
1 · · ·αsn+1

n+1

)t
)

(τ ,t)
s

,

where the index of rows is

(τ , t) = (τ1, . . . , τn, t) ∈ Nn × Z, ‖τ‖ ≤ T0, |t | ≤ T1,

while the index of columns is s = (s1, . . . , sn+1) ∈ Zn+1, |s| ≤ (n + 1)S.
Then the rank of M is (

T0 + n

n

)
(2T1 + 1).

In the special case n = 1, Nesterenko’s zero estimate (Proposition 2.12 of Chap. 2)
provides a slightly stronger result. Such an improvement is useful for sharpening
measures of linear independence of two logarithms by means of Schneider’s method
[LauMiNe 1993].

For the proof of Proposition 6.1, we need one more lemma which explains how the
hypothesis on the linear independence of 1, β1, . . . , βn is related with the conclusion
of Theorem 5.1.

For β = (β1, . . . , βn) ∈ K n , the condition that 1, β1, . . . , βn are linearly
independent overQ is equivalent to say that for each nonzero linear formϕ: K n → K
which mapsZn intoZ, we have ϕ(β) 6∈ Z. We reformulate this condition by replacing
kerϕ by any hyperplane of K n (see Exercise 6.1), and then we extend the property
to any subspace of K n distinct from K n .

Notation. Let M be a finitely generated Z-module given with a set of generators
{x1, . . . , xn}. For any nonnegative integer S we set

M[S] =
{
s1x1 + · · · + sn xn ; (s1, . . . , sn) = s ∈ Zn, |s| ≤ S

}
.

For instance
Zn[S] =

{
(s1, . . . , sn) ∈ Zn ; |s| ≤ S

}

has (2S + 1)n elements. Another example is Y = Zn + Z(β1, . . . , βn) ⊂ K n: then

Y [S] =
{
(s1 + sn+1β1, . . . , sn + sn+1βn) ; (s1, . . . , sn+1) ∈ Zn+1[S]

}
.
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Lemma 6.2. Let β1, . . . , βn be elements of K . Define

Y = Zn + Z(β1, . . . , βn) ⊂ K n

=
{
(s1 + sn+1β1, . . . , sn + sn+1βn) ; (s1, . . . , sn+1) ∈ Zn+1

}
.

Then the following conditions are equivalent.
(i) The numbers 1, β1, . . . , βn are linearly independent over Q.
(ii) For any vector subspace V ⊂ K n of codimension r ≥ 1, we have

rkZ

(
Y + V

V

)
≥ r + 1.

(iii) For any S ≥ 1 and any vector subspace V ⊂ K n of codimension r ≥ 1, we have

Card

(
Y [S] + V

V

)
≥ (2S + 1)r+1.

(ii)′ For any vector subspace W ⊂ K n+1 of codimension r ≥ 1, containing
(β1, . . . , βn,−1), we have

rkZ

(
Zn+1 + W

W

)
≥ r + 1.

(iii)′ For any S ≥ 1 and any vector subspace W ⊂ K n+1 of codimension r ≥ 1,
containing (β1, . . . , βn,−1), we have

Card

(
Zn+1[S] + W

W

)
≥ (2S + 1)r+1.

Proof of Lemma 6.2. The proofs of (ii)⇔ (ii)′ and of (iii)⇔ (iii)′ are easily obtained
by considering the linear surjective map

K n+1 −→ K n

(z1, . . . , zn+1) 7−→ (z1 + zn+1β1, . . . , zn + zn+1βn)

whose kernel is the line K (β1, . . . , βn,−1).

We prove the implication (ii)′ ⇔ (i), using Exercise 1.4, as follows: condition
(i) means that the point (β1, . . . , βn,−1) is not contained in a hyperplane which is
rational overQ. This is equivalent to say that this point is not contained in a subspace
of K n+1, of positive codimension, which is rational over Q.

On the other hand, since Zn+1 contains a basis of K n+1, the inequality

rkZ
(Zn+1 + W

W

)
≥ r

always holds. Equality holds if and only if W is intersection of hyperplanes of K n+1

which are rational over Q (which means that W is rational over Q).
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The fact that (iii)′ ⇒ (ii)′ is easy: denote by e1, . . . , en+1 the canonical basis of
K n+1, and put

% = rkZ
(Zn+1 + W

W

)
·

Let η
1
, . . . , η

%
be elements in Zn+1 whose classes modulo W give a basis of

(Zn+1 + W )/W . Define ki j ∈ Z by

ei −
%∑

j=1

ki jη j
∈ W, (1 ≤ i ≤ n + 1).

Then

Card

(
Zn+1[S] + W

W

)
≤ c(2S + 1)%, with c =

%∑

j=1

n+1∑

i=1

|ki j |.

In particular, if % ≤ r , then c(2S + 1)% < (2S + 1)r+1 as soon as S ≥ c.

Finally we check (ii)′ ⇒ (iii)′. Denote again by e1, . . . , en+1 the canonical basis
of K n+1, and by % the rank over Z of (Zn+1 + W )/W . Let {i1, . . . , i%} be indices in
{1, . . . , n +1} such that the classes modulo W of ei1

, . . . , ei% are linearly independent
over Z. Then the (2S + 1)% classes of

si1 ei1
+ · · · + si%ei% ∈ Zn+1[S], (si1 , . . . , si% ) ∈ Z%[S],

are pairwise distinct. ¤

Proof of Proposition 6.1. We apply Theorem 5.1 with

d0 = n, d1 = 1, d = n + 1, G = Gn
a ×Gm, D0 = T0, D1 = T1

and
6 =

{(
s1 + sn+1β1, . . . , sn + sn+1βn, α

s1
1 · · ·αsn+1

n+1

)
; s ∈ Zn+1[S]

}
.

If the conclusion of Proposition 6.1 does not hold, then there exists a nonzero
polynomial P ∈ K [X1, . . . , Xn, Y±1], of total degree at most T0 in the variables
X1, . . . , Xn and of degree at most T1 in Y , which vanishes at all the points of the
subset 6[n + 1] of K n × K×. We deduce that there exists a connected algebraic
subgroup G∗ of G such that G∗ 6= G and

Card

(
6 + G∗

G∗

)
H (G∗; T0, T1) ≤ H (G; T0, T1).

As explained in § 5.1.1, we have

H (G; T0, T1) = 2(n + 1)T n
0 T1,

and there exists a vector subspace V of K n , of dimension say δ, such that G∗ = V×G∗1,
where G∗1 is either {1} or Gm and
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H (G∗; T0, T1) =

{
T δ

0 if G∗1 = {1},
2(δ + 1)T δ

0 T1 if G∗1 = Gm.

Hence the conclusion of Theorem 5.1 is

Card

(
6 + (V × G∗1)

V × G∗1

)
≤
{

2(n + 1)T n−δ
0 T1 if G∗1 = {1},

n + 1
δ + 1 T n−δ

0 if G∗1 = Gm.

Since each βi is irrational, the elements
(
s1 + sn+1β1, . . . , sn + sn+1βn

) ∈ K n s ∈ Zn+1

are pairwise distinct. From the assumption

(2S + 1)n+1 > 2(n + 1)T n
0 T1

we deduce V 6= {0}, so that we have 1 ≤ δ ≤ n.
Consider firstly the case G∗1 = {1}. In this case we plainly have

Card

(
6 + (V × {1})

V × {1}
)
≥ Card

{
α

s1
1 · · ·αsn+1

n+1 ∈ K× ; s ∈ Zn+1[S]
}
.

If α1, . . . , αn+1 are multiplicatively independent, the right hand side has (2S +
1)n+1 elements, and we get a contradiction as before. If α1, . . . , αn+1 generate a
multiplicative subgroup of K× of rank n, then

Card
{
α

s1
1 · · ·αsn+1

n+1 ∈ K× ; s ∈ Zn+1[S]
}
≥ (2S + 1)n.

Now from the assumption (2S + 1)n > 2(n + 1)T n−1
0 T1 and the inequality δ ≥ 1 we

again derive a contradiction.
Therefore G∗1 = Gm. Since G∗ 6= G, we have δ ≤ n − 1. Define Y =

Zn + Z(β1, . . . , βn) ⊂ K n . The conclusion of Theorem 5.1 becomes

Card

(
Y [S] + V

V

)
≤ n + 1

δ + 1
T n−δ

0 .

Using both assumptions

(2S + 1)n+1 > 2(n + 1)T n
0 T1 and T0 ≥ 2S + 1

we deduce
(2S + 1)n−δ+1 > 2(n + 1)T n−δ

0 .

Again we derive a contradiction, which completes the proof of Proposition 6.1. ¤

Remark. For m ≥ 1 and λ1, . . . , λm in C, define α j = eλ j (1 ≤ j ≤ m). If
λ1, . . . , λm are linearly independent overQ, thenα1, . . . , αm generate a multiplicative
subgroup of C× of rank m or m − 1. The rank is m (which means that α1, . . . , αm

are multiplicatively independent) if and only if the m + 1 numbers λ1, . . . , λm , 2iπ
are Q-linearly independent. Otherwise, when the rank is m − 1, the set of k ∈ Zm
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such that αk1
1 · · ·αkm

m = 1 is a rank one Z-module: there is an element k0 in Zm \ {0},
which is unique up to a multiplicative factor ±1, such that, for k ∈ Zm ,

α
k1
1 · · ·αkm

m = 1 ⇐⇒ k ∈ k0Z.

For instance when

m = 1, λ =
2iπ

k0
, α = e2iπ/k0

with k0 ∈ Z \ {0}, the ideal of k ∈ Z such that αk = 1 is k0Z.

6.2 Upper Bounds for Alternants in Several Variables

In this section we denote by f1, . . . , fL analytic functions in Cn , and by ζ
1
, . . . , ζ

L
elements of Cn . Our aim is to give an upper bound for the absolute value of the
determinant

1 = det

(
fλ(ζµ)

)

1≤λ,µ≤L

,

following Michel Laurent [Lau 1989], [Lau 1992], [Lau 1994]. The case n = 1
has been considered in Lemma 2.5. The estimate for the general case is stated in
Proposition 6.6 below. For the proof, we show that the function of a single complex
variable z

9(z) = det

(
fλ(zζµ)

)

1≤λ,µ≤L

has a zero of high multiplicity at the origin. Then Schwarz’ Lemma provides the
desired upper bound. At the end of this section, we remark that the proofs can be
considered as elementary so far as no complex analysis is required.

6.2.1 Schwarz’ Lemma

We first apply Schwarz’ Lemma in one variable (Lemma 2.4).

Lemma 6.3. Let r > 0 and R > 0 be positive real numbers such that

max
1≤µ≤L

|ζ
µ
| ≤ r and R ≥ r.

Let T be the multiplicity of the zero of the function 9 at the origin. Then

|1| ≤
(

R

r

)−T

L!
L∏

λ=1

| fλ|R .

Proof. Define E = R/r . Since E ≥ 1, we deduce from Lemma 2.4 an upper bound
for the absolute value of the number 1 = 9(1):
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|9(1)| ≤ E−T |9|E .
From |zζ

µ
| ≤ Er = R for |z| ≤ E , we deduce

|9|E ≤ L!
L∏

λ=1

| fλ|R .

This completes the proof of Lemma 6.3. ¤

6.2.2 Estimate for the Multiplicity of 9 at the Origin

The proof (in § 2.3.1) of Lemma 2.5 (dealing with the one dimensional case) involves
the number

21(L) = min {κ1 + · · · + κL}
= 0 + 1 + · · · + (L − 1) =

L(L − 1)

2
,

where the minimum runs over the L-tuples (κ1, . . . , κL ) of nonnegative integers
which are pairwise distinct. In the general case n ≥ 1, we define

2n(L) = min
{‖κ1‖ + · · · + ‖κ L‖

}

where the minimum runs over the L-tuples (κ1, . . . , κ L ) of elements in Nn which
are pairwise distinct.

Lemma 6.4. The function 9 has a zero at z = 0 of multiplicity at least 2n(L).

Proof. Since the determinant is multilinear, by expanding each fλ in Taylor series at
the origin, we may assume that each fλ is a monomial fλ(ζ ) = ζ κλ , with κλ ∈ Nn .
In this case fλ(zζ ) = ζ κλ z‖κλ‖.

In the row indexed by λ, we have a common factor z‖κλ‖:

9(z) = det

(
ζ κλ
µ

)

1≤λ,µ≤L

· z‖κ1‖+···+‖κ L‖.

If9 is not the zero function, then the elements κ1, . . . , κ L inNn are pairwise distinct,
and9 has a zero at 0 of multiplicity ‖κ1‖+ · · ·+ ‖κ L‖, which proves our claim. ¤

6.2.3 Lower Bound for 2n

Here is a lower bound for the number 2n(L):

Lemma 6.5. For any L ≥ 1 and n ≥ 1, we have

2n(L) >
n

n + 1
(n!)1/n L (n+1)/n − n(n + 1)L .
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Moreover for L ≥ (4n)2n , we have

2n(L) >
n

e
L (n+1)/n.

Proof. Let us check the first estimate. One may assume L > (n + 1)2n/n!, otherwise
the result is trivial.

The smallest value for the sum ‖κ1‖ + · · · + ‖κ L‖ is reached by choosing for κµ
successively:

• (0, . . . , 0);

• the n elements of Nn of length 1:

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1);

• the
(n+1

2

)
=
(n+1

n−1

)
elements of length 2:

(2, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1), (0, . . . , 0, 2);

• and so on.

In general, for a a nonnegative integer, the number of elements κ ∈ Nn of length
‖κ‖ = a is the coefficient of za in the series

∑

κ∈Nn

z‖κ‖ =

( ∞∑

k=0

zk

)n

=
1

(1− z)n
=
∑

a≥0

(
n + a − 1

a

)
za,

hence this number is (
n + a − 1

a

)
=

(
n + a − 1

n − 1

)
.

For any positive integer A we have

A−1∑

k=0

(
n + k

n

)
=

(
n + A

n + 1

)
.

This is an easy consequence (by induction) of the formula
(

n + k − 1

n + 1

)
+

(
n + k − 1

n

)
=

(
n + k

n + 1

)
.

Let A be the positive integer such that

A∑

a=0

(
n + a − 1

n − 1

)
=

(
n + A

n

)
≤ L <

(
n + A + 1

n

)
.

We have
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‖κ1‖ + · · · + ‖κ L‖ ≥
A∑

a=0

a

(
n + a − 1

n − 1

)
= n

A∑

a=1

(
n + a − 1

n

)

= n
A−1∑

a=0

(
n + a

n

)
= n

(
n + A

n + 1

)
,

hence

2n(L) ≥ n

(
n + A

n + 1

)
.

We use the estimates
(

n + A + 1

n

)
≤ (n + A + 1)n

n!
and

(
n + A

n + 1

)
≥ An+1

(n + 1)!
·

We get

2n(L) ≥ n

(n + 1)!
· An+1 ≥ n

n + 1
(n!)1/n ·

(
A

A + n + 1

)n+1

· L1+(1/n).

Define ε by the condition
εnn!L = (n + 1)2n.

Then the number c = (n + 1)/ε satisfies

(
1− 1

c

)n+1

> 1− ε.

The inequalities

(A + n + 1)n

n!
≥
(

A + n + 1

n

)
> L ≥ cn

n!
(n + 1)n

yield

A + n + 1 > c(n + 1) and
A

A + n + 1
> 1− 1

c
·

The first estimate in Lemma 6.5 follows. The second inequality is a consequence of
the first one, since

(n!)1/n ≥ n + 1

e
+

(
n + 1

4n

)2

for any n ≥ 1. ¤
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6.2.4 Conclusion

We now combine the preceding lemmas as follows:

Proposition 6.6. Let f1, . . . , fL be analytic functions in Cn , ζ
1
, . . . , ζ

L
elements of

Cn , r , R and E positive real numbers such that

max
1≤µ≤L

|ζ
µ
| ≤ r and E =

R

r
≥ 1.

Then the determinant

1 = det

(
fλ(ζµ)

)

1≤λ,µ≤L

is bounded from above by

log |1| ≤ −2n(L) log E + log(L!) +
L∑

λ=1

log | fλ|R .

Here we shall use only the following consequence of Proposition 6.6:

Corollary 6.7. Let λ1, . . . , λn , β1, . . . , βn be complex numbers. For 1 ≤ i ≤ n
define αi = exp(λi ). There exists a positive constant c, which depends only on
n, λ1, . . . , λn, β1, . . . , βn and which satisfies the following property: let T0, T1, S
be rational integers at least 2 and E a real number at least e. Assume the number
L =

(T0+n
n

)
(2T1 +1) satisfies L ≥ (4n)2n . Let s(1), . . . , s(L) be any elements inZn+1[S].

Consider the L × L determinant 1 of the matrix
(

(s(µ)
1 + s(µ)

n+1β1)τ1 · · · (s(µ)
n + s(µ)

n+1βn)τn

(
α

s(µ)
1 +s(µ)

n+1β1

1 · · ·αs(µ)
n +s(µ)

n+1βn
n

)t
)

with (τ , t) = (τ1, . . . , , τn, t) ∈ Nn+1, τ1 + · · · + τn ≤ T0 and t ≤ T1, and with
1 ≤ µ ≤ L . Then

|1| ≤ exp
{
−n

e
L1+(1/n) log E + cL

(
T0 log(SE) + T1SE

)}
.

Proof. We consider the functions

fτ t (z) = zτ1
1 · · · zτn

n

(
α

z1
1 · · ·αzn

n

)t

and the points
ζ
µ

=
(
s(µ)

1 + s(µ)
n+1β1, . . . , s(µ)

n + s(µ)
n+1βn

) ∈ Cn.

For any R > 0 we plainly have

log | fτ t |R ≤ T0 log R + T1 R
n∑

i=1

|λi |.
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We choose

r = S

(
1 + max

1≤ j≤n
|β j |

)
, R = Er.

From Proposition 6.6 one deduces

log |1| ≤ −2n(L) log E + log L! + LT0 log R + LT1 R
n∑

i=1

|λi |.

Finally we conclude thanks to Lemma 6.5. ¤

6.2.5 Avoiding the Use of Complex Analysis

We conclude this section with the following remark: the proofs we give in these
lectures do not require any complex analysis. From this point of view they are
elementary in the sense of [GLin 1962]. The only point where analysis played any
role so far was in the use of Schwarz’ Lemma 2.4, in the proof of Lemma 6.3. But we
use it only for exponential polynomials in one variable, and in this case the estimate
is quite easy:

Lemma 6.8. Let ai j (for 0 ≤ i ≤ s, 1 ≤ j ≤ t) and w j (for 1 ≤ j ≤ t) be complex
numbers. Assume that the exponential polynomial

F(z) =
s∑

i=0

t∑

j=1

ai j z
i ew j z

has a zero of multiplicity at least T at the origin. Then for z0 ∈ C and R ≥ |z0| we
have

|F(z0)| ≤
(

R

|z0|
)−T s∑

i=0

t∑

j=1

|ai j |Ri e|w j |R .

Proof. We consider the Taylor expansion of F at the origin:

F(z) =
∑

n≥0

αnzn where αn =
min{s,n}∑

i=0

t∑

j=1

ai j

wn−i
j

(n − i)!
·

By assumption α0 = · · · = αT−1 = 0. For n ≥ T we have (R/|z0|)T ≤ (R/|z0|)n

(because R ≥ |z0|), hence

|F(z0)| =
∣∣∣∣∣
∑

n≥T

αnzn
0

∣∣∣∣∣ ≤
∑

n≥T

|αn| |z0|n ≤
(

R

|z0|
)−T ∑

n≥T

|αn| Rn.

We now use the trivial bound

∑

n≥T

|αn| Rn ≤
min{s,n}∑

i=0

t∑

j=1

|ai j |
∑

n≥i

|w j |n−i

(n − i)!
Rn,
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where the right hand side is nothing else than

s∑

i=0

t∑

j=1

|ai j |Ri e|w j |R .

¤

6.3 A Second Proof of Baker’s Homogeneous Theorem

We already gave a proof of Baker’s Theorem (both in the homogeneous and
nonhomogeneous cases) in Chap. 4. The proof which we shall give now is quite
different, and will enable us (in Chap. 7) to get quantitative estimates (measures of
linear independence).

Proposition 6.9. Let λ1, . . . , λn+1 be Q-linearly independent complex numbers and
β1, . . . , βn be complex numbers such that 1, β1, . . . , βn are Q-linearly independent
and

λn+1 = β1λ1 + · · · + βnλn.

For 1 ≤ j ≤ n + 1 define α j = eλ j . There exists a positive constant c0 with the
following property. Let T0, T1, S, L be rational integers and E a real number satisfying

T0 ≥ 2, T1 ≥ 2, S ≥ 2, E ≥ e, L =

(
T0 + n

n

)
(2T1 + 1),

T0 > 2S and (2S + 1)n+1 > 2(n + 1)T n
0 T1.

Then there exists a polynomial f ∈ Z[X±1
1 , . . . ,X±1

n+1,Y1, . . . ,Yn], of degree and
height bounded by

deg f ≤ c0L
(
T0 log(SE) + T1SE

)
and log H( f ) ≤ c0L

(
T0 log(SE) + T1SE

)

such that

0 < | f (α1, . . . , αn+1, β1, . . . , βn)| ≤
exp

{
−n

e
L1+1/n log E + c0L

(
T0 log(SE) + T1SE

)}
.

Proof We shall work with the following n + 1 functions of n variables:

z1, . . . , zn, α
z1
1 · · ·αzn

n ,

where αz1
1 · · ·αzn

n stands for exp(z1λ1 + · · · + znλn). The main fact is that, at all the
points of the form

(s1 + sn+1β1, . . . , sn + sn+1βn), (s1, . . . , sn+1) ∈ Zn+1,
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these functions take values in the ring

Z[α±1
1 , . . . , α±1

n+1, β1, . . . , βn].

Another important property of our functions (which is implicit in the proof - see step
1) is that they are algebraically independent: if P is a nonzero polynomial in n + 1
variables (with, say, complex coefficients), then the function

F(z1, . . . , zn) = P
(
z1, . . . , zn, α

z1
1 · · ·αzn

n

)

does not vanish identically (Exercise 2.5).

Step 1. Using the zero estimate
Consider the L × (2S + 1)n+1 matrix

M =

(
(s1 + sn+1β1)τ1 · · · (sn + sn+1βn)τnα

ts1
1 · · ·αtsn+1

n+1

)

(τ ,t)
s

,

where the index of row is (τ , t) and the index of column is s; (τ , t) runs over the
(n + 1)-tuples (τ1, . . . , τn, t) of elements in Nn+1 satisfying τ1 + · · · + τn ≤ T0 and
t ≤ T1. Hence the number of rows is L . On the other hand s runs over the (n + 1)-
tuples in Zn+1[S], hence there are (2S + 1)n+1 columns. The ordering of the rows or
columns will be irrelevant: we shall be interested only in the rank of M.

Our hypothesis that λ1, . . . , λn+1 are linearly independent over Q implies that
the rank of the multiplicative subgroup of C× generated by α1, . . . , αn+1 is at least
n. The assumptions

T0 ≥ 2S + 1 and (2S + 1)n+1 > 2(n + 1)T n
0 T1

imply

(2S + 1)2 >
n + 1

n
T0 and (2S + 1)n > 2(n + 1)T n−1

0 T1.

This allows us to use Proposition 6.1 (with K = C), and we deduce that the matrix
M has rank L .

Step 2. Definition of 1.
Let s(1), . . . , s(L) be elements inZn+1[S] such that the following L×L determinant

1 = det

(
(s(µ)

1 + s(µ)
n+1β1)τ1 · · · (s(µ)

n + s(µ)
n+1βn)τnα

ts(µ)
1

1 · · ·αts(µ)
n+1

n+1

)

(τ ,t)

1≤µ≤L

is not zero.

Step 3. Upper bound for |1|
For (τ , t) = (τ1, . . . , τn, t) ∈ Zn+1, we define

fτ t = zτ1
1 · · · zτn

n

(
α

z1
1 · · ·αzn

n

)t
.
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Our assumption λn+1 = β1λ1 + · · · + βnλn (this is the only place in the proof where
it is used) enables us to write, for (s1, . . . , sn+1) ∈ Zn+1,

α
s1+sn+1β1
1 · · ·αsn+sn+1βn

n = αs1
1 · · ·αsn+1

n+1 .

Therefore

1 = det

(
fτ t
(
s(µ)

1 + s(µ)
n+1β1, . . . , s(µ)

n + s(µ)
n+1βn

))

(τ ,t)

1≤µ≤L

,

and we can use Corollary 6.7:

1

L
log |1| ≤ −n

e
L1/n log E + c0

(
T0 log(SE) + T1SE

)
.

Step 4. Estimates for degree and height
From Lemma 3.15 we deduce that there exists a polynomial

f ∈ Z[X±1
1 , . . . ,X±1

n+1,Y1, . . . ,Yn]

such that
1 = f (α1, . . . , αn+1, β1, . . . , βn),

deg f ≤ c0L
(
T0 log(SE) + T1SE

)
and log H( f ) ≤ c0L

(
T0 log(SE) + T1SE

)

This completes the proof of Proposition 6.9. ¤

Proof of Theorem 1.5. Let us deduce that one at least of the numbers α1, . . . , αn+1,
β1, . . . , βn is transcendental. Thanks to Lemma 1.7, this will imply Baker’s Theorem
1.5.

By Lemma 2.1, it suffices to show that for any κ > 0, there exist parameters T0,
T1, S and E satisfying the assumptions of Proposition 6.9 as well as

L1/n log E > κ
(
T0 log(SE) + T1SE

)
.

For instance one can take

T1 = [log S]2n, T0 = [S1+1/n(log S)−3] and E = e,

with S sufficiently large. ¤
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Exercises

Exercise 6.1. With the notation of Lemma 6.2, prove that the five conditions (i) to (iii)′ are
also equivalent to the following ones:

(iv) For any hyperplane V of K n which is rational over Q ,

rkZ

(
Y + V

V

)
≥ 2.

(v) For any S ≥ 1 and any hyperplane V ⊂ K n which is rational over Q , we have

Card

(
Y [S] + V

V

)
≥ (2S + 1)2.

Exercise 6.2. Let S be a positive integer and v1, . . . , vm−r be m − r linearly independent
elements in Zm[S]. Show that the vector space V they span in Cm is contained in a hyperplane
of equation b1z1 + · · · + bm zm = 0 with (b1, . . . , bm) ∈ Zm[S′] \ {0} and

S′ = (m − r )!Sm−r .

Hint. The absolute value of a determinant of a N × N matrix with entries of absolute values
≤ X is at most N !X N .

Exercise 6.3. (Quantitative version of the implication (i)⇒ (iii)′ in Lemma 6.2)
Let K be a field of characteristic zero, S be a positive integer and V be a subspace of K m

of codimension r ≥ 1, such that

Card

(
Zm[S] + V

V

)
< (2S + 1)r+1.

Show that
1) There exists a basis (v1, . . . , vm−r ) of V with v j ∈ Zm[2S + 1] for 1 ≤ j ≤ m − r .
2) The vector space V is intersection of r hyperplanes of equations

bi1z1 + · · · + bim zm = 0 (1 ≤ i ≤ r ),

where, for 1 ≤ i ≤ r , bi = (bi1, . . . , bim) is in Zm[2S + 1].

Exercise 6.4. (With the collaboration of D. Roy, W.M. Schmidt and J. Thunder).
Let S ≥ 2 be a positive integer and V a subspace of Rm of codimension r ≥ 1 satisfying the
following condition (the same as in Exercise 6.3)

Card

(
Zm[S] + V

V

)
< (2S + 1)r+1.

a) Show that the intersection V ∩ Zm(2S + 1) contains more than (2S + 1)m−r−1 points and
contains a basis of V .

Hint. See Exercise 7.4.
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Hence 3 = V ∩ Zm is a lattice in V of dimension m − r .
b) Denote by Bm the unit ball in Rm for the Euclidean norm. Define, for X > 0,

Rm(X ) =
{
(x1, . . . , xm) ∈ Rm ; |xi | ≤ X, (1 ≤ i ≤ m)

}
.

Hence Rm(X ) ⊂ √m X Bm . Finally, recall (see § 10.2.4 and [Sc 1991]) that the determinant
det3 of the lattice3 in V is the volume of V/3, i.e. the volume of a fundamental domain of
3 in V . Check

det3 ≤ (2√m
)m−r

vol(Bm−r )(2S + 1),

where vol is the Euclidean volume.

Hint. Choose a basis of V belonging to Zm[2S + 1], and denote by P the corresponding
parallelepiped. Check that P contains a fundamental domain of V/3.

Define K = V ∩ Rm(2S + 1). Check

Card(K ∩3) det3 ≤ vol(K + P).

Here, vol(K + P) is the volume of K + P in V (for the metric induced by the metric of Rm).
Check also

vol(K + P) ≤ (2√m(2S + 1)
)m−r

vol(Bm−r ).

c) Denote by ‖ · ‖2 the Euclidean norm in Rm . Show that there is a basis v1, . . . , vm−r of V ,
where vi ∈ 3 satisfy

‖v1‖2 · · · ‖vm−r‖2 ≤ 2m−r (2
√

m
)m−r

(2S + 1).

Hint. By Minkowski’s Theorem, if λ1 ≤ λ2 ≤ · · · ≤ λm−r are the successive minima of3 with
respect to Bm ∩ V , then

λ1 · · · λm−r ≤ 2m−r det3

vol
(
Bm ∩ V

) .

d) Let V⊥ be the orthogonal complement of V in Rm :

V⊥ = {x ∈ Rm ; 〈x, y〉 = 0 for all y ∈ V },

where 〈 , 〉 denotes the usual scalar product in Rm . Then 3⊥ = Zm ∩ V⊥ is a lattice in V⊥ of
dimension r , with det3⊥ = det3 (see [Sc 1991], Chap. 1). Deduce that V is intersection of
r hyperplanes in Rm of equations

〈bi , z〉 = 0, (1 ≤ i ≤ r ),

where bi = (bi1, . . . , bim) are in Zm and satisfy

‖b1‖2 · · · ‖br‖2 ≤ 4m−r m(m−r )/2(2S + 1).

e) Give better estimates in the special case m = 2 and r = 1.

Exercise 6.5. Let E be a normed vector space of dimension n over R, L a lattice in E , and λ
a positive real number such that there exists a basis for E which consists of vectors of L of
norm ≤ λ. Show that there exists a basis of L which consists of vectors of L of norm ≤ nλ.
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Exercise 6.6. Let K be a field, m a positive integer, and V a vector subspace of K m of
dimension d. The following properties are equivalent.
(i) If πV : K m −→ K m/V is the canonical projection, then

(
πV (e1), . . . , πV (em−d )

)
is a basis

of K m/V .
(i i) For z = (z1, . . . , zm) ∈ V , the conditions zm−d+1 = · · · = zm = 0 imply z = 0.
(i i i) The restriction to V of the projection K m −→ K d on the last d coordinates is injective.
(iv) V is intersection of m − d hyperplanes of equations

z j =
m∑

i=m−d+1

ai j zi , (1 ≤ j ≤ m − d).

Exercise 6.7.
a) Let n be a positive integer, L a sufficiently large integer, f :C2n → C an entire function
of 2n complex variables, x1, . . . , x L , y

1
, . . . , y

L
elements of Cn and r1, r2, R1, R2, E real

numbers which satisfy

R1 ≥ r1 ≥ max
1≤λ≤L

|xλ|, R2 ≥ r2 ≥ max
1≤µ≤L

|y
µ
|, max

{
R1

r1

, R2

r2

}
≥ E ≥ e.

For 1 ≤ λ ≤ L and 1 ≤ µ ≤ L , assume that the number

uλµ = f (xλ, y
µ

)

is in Z. Further assume

log sup
{| f (z, w)| ; |z| ≤ R1, |w| ≤ R2

} ≤ n

3
L1/n log E .

Show that the determinant of the matrix
(
uλµ

)
1≤λ,µ≤L

is zero.

b) Let d, ` be positive integers and ai j (1 ≤ i ≤ d, 1 ≤ j ≤ `) positive rational numbers.
Assume, for any t = (t1, . . . , td ) ∈ Zd \ {0} and any s = (s1, . . . , s`) ∈ Z` \ {0},

d∏

i=1

∏̀

j=1

a
ti s j
i j 6= 1.

Show that the rank n of the matrix
(

log ai j

)
1≤i≤d
1≤ j≤`

is bounded from below by

n ≥ d`

d + `
·

(Compare with Theorems 1.16 and 12.17, where the numbers eλi j are algebraic, while here,
ai j are positive rational numbers).

Hint. Use Exercise 1.9, Theorem 5.1 together with part a) of the present exercise for the
function ezw .



            

7. Homogeneous Measures of Linear Independence

Three chapters (7, 9 and 10) will be devoted to measures of linear independence of
logarithms of algebraic numbers. Here we prove the first of such estimates by using
the method of Chap. 6. The proof is much simpler than the ones in the next chapters,
and nevertheless the estimate is rather sharp.

We state the main result (Theorem 7.1) in § 7.1. In § 7.2 we prove a lower bound
for the order of vanishing of an interpolation determinant which will enable us in
§ 7.3 to give an upper bound for the absolute value of this determinant. Using the zero
estimate, a nonzero determinant is constructed in § 7.4. The transcendence argument
is given in § 7.5, where a more precise result than the general case of Theorem
7.1 is established. We deduce Theorem 7.1 in § 7.6 for the general case (measure
of linear independence of logarithms of algebraic numbers over the field algebraic
numbers), and in § 7.7 for the rational case (measure of linear independence over
the field rational numbers), introducing Fel’dman’s polynomials. Finally in § 7.2 we
remove the hypothesis (occurring in Theorem 7.1) that the logarithms are linearly
independent over Q.

7.1 Statement of the Measure

7.1.1 The Main Result

This chapter is devoted to the proof of the following measure of linear independence
for logarithms of algebraic numbers.

Theorem 7.1. Let λ1, . . . , λm be Q-linearly independent logarithms of algebraic
numbers. For 1 ≤ i ≤ m define αi = exp(λi ). Let β1, . . . , βm be algebraic
numbers, not all of which are zero. Denote by D the degree of the number field
Q(α1, . . . , αm, β1, . . . , βm) over Q. Further, let A1, . . . , Am , B and E be positive
real numbers, which satisfy E ≥ e,

log Ai ≥ max

{
h(αi ),

E |λi |
D

, log E

D

}
(1 ≤ i ≤ m)

and
log B ≥ max

{
h(β1), . . . , h(βm)

}
,
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Furthermore, assume
(i) Either (general case)

B ≥ max

{
E1/D,

D

log E
, 26m4 · D log A

log E

}

where A = max{A1, . . . , Am},
or else
(ii) (rational case) (β1, . . . , βm) ∈ Qm , and

B ≥ max{e, E1/D}.

Then the absolute value of the number

3 = β1λ1 + · · · + βmλm

is bounded from below by

|3| > exp{−C(m)Dm+2(log B)2(log A1) · · · (log Am)(log E)−m−1},
with

C(m) = 22m+7m3m+8

Remark 1. The conclusion of Theorem 7.1 is sharp in terms of each Ai separately:
in the rational case it has the form A−C

i , which is best possible (see Exercise 10.5).
It can be sharpened in terms of B, replacing (log B)2 by log B (see Theorem 9.1).

For small values of m the method of this chapter yields the sharpest known
numerical estimates for C(m). In the special case m = 2, our method is closely
related with Schneider’s solution of Hilbert’s seventh problem (§ 2.3), which has been
developed in [MiW 1978] for producing quantitative measures of linear independence
for two logarithms of algebraic numbers. The sharpest know estimates for two
logarithms are given in [LauMN 1995]; the method of the present chapter in case
m = 2 is very close to the proof given in [LauMN 1995]; the main difference is that
we do not pay so much attention to the numerical value of C(2). Our constant C(2) is
> 8 ·106, while the corresponding constant in [LauMN 1995] (for the homogeneous
rational case) is< 100. Also for m = 3, according to P. Voutier, the conclusion holds
in the homogeneous rational case with C(3) replaced by 1.1 · 107.

Further comments on the different available methods are postponed to §§ 10.4
and 14.4.

Remark 2. Assume that the numbers β1, . . . , βm are rational integers, say βi = bi

(1 ≤ i ≤ m). The number

3 = b1λ1 + · · · + bmλm

satisfies
|3| ≥ ∣∣αb1

1 · · ·αbm
m − 1

∣∣ · e|3|
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(see Exercise 1.1.a and § 9.4.4). From Liouville’s inequality (Exercise 3.7.b), we
deduce

|3| ≥ 2−D A−m DB0 ,

where
A = max

1≤i≤m
Ai and B0 = max{|b1|, . . . , |bm]}.

For simplicity we order λ1, . . . , λm so that A1 ≤ · · · ≤ Am . Hence A = Am , and it
follows that we may assume, without loss of generality,

B0 ≥ C(m)

m

(
D log B

log E

)2

· D log A1

log E
· · · D log Am−1

log E
− log 2

m
·

In particular one may assume that the number

B = max{e, E1/D, B0}
satisfies

B ≥ C(m)

2m
, B ≥ D

log E
and B ≥ D log Am−1

log E
,

but we may not assume that B is greater than D(log Am)/ log E .
Notice also that in the case E = e, the assumption e|λi | ≤ D log Ai cannot be

omitted in Theorem 7.1. For instance take a rational approximation a/b to
√

2, and
choose m = 2, λ1 = 2iπa, λ2 = 2iπb, β1 = 1, β2 = −√2, D = 2, A1 = A2 = e, so
that |3| = 2π |a − b

√
2|.

7.1.2 Sketch of Proof

A nontrivial (but rather weak) measure of linear independence can be deduced from
Proposition 6.9 (where the constant c0 can be explicitly computed). The idea is
the following. We first assume that λ1, . . . , λm are Q-linearly independent, that
1, β1, . . . , βm−1 areQ-linearly independent and that βm = −1. Apply Proposition 6.9
with n = m−1, with λ1, . . . , λn , β1, . . . , βn having the same meaning as in Theorem
7.1, but with λn+1 replaced by λm + 3, so that the hypothesis of Proposition 6.9 is
satisfied. The number αn+1 in Proposition 6.9 is replaced by αme3. From Proposition
6.9 we obtain a polynomial f ∈ Z[X±1

1 , . . . ,X±1
m ,Y1, . . . ,Ym−1], of degree and

height explicitly bounded, such that the number

f (α1, . . . , αm−1, αme3, β1, . . . , βm−1)

is nonzero and has a small absolute value. From Liouville’s inequality, since
α1, . . . , αm , β1, . . . , βm−1 are algebraic, we deduce not only that 3 6= 0, but also
that |3| cannot be too small (see Proposition 15.3).

The estimate which can be reached with this argument is rather weak (compared
with Theorem 7.1 for instance), but is certainly not trivial and would be quite sufficient
for solving several diophantine problems.
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A refinement arises from the observation that not only the values of the polyno-
mial f , but also the values of its first derivatives at the point (α1, . . . , αm−1, αme3,
β1, . . . , βm−1) have small absolute values. This observation arises in the work of
M. Laurent and D. Roy [LauRoy 1999a] (see Exercise 15.4).

Our approach will be slightly different. We repeat the proof of Chap. 6, but
we introduce two matrices: an arithmetic one, involving algebraic numbers, and an
analytic one, involving values of functions of m − 1 variables. In Chap. 6 we had
3 = 0, and the two matrices were the same. Here, the difference between the two
matrices is controlled by |3|.

The entries of the arithmetic matrix are the numbers

γ
(s)
τ t =

m−1∏

i=1

(si + smβi )
τi

m∏

j=1

α
s j t
j

which already occurred in Chap. 6. The entries of the analytic matrix are the values
of the exponential monomials in m − 1 variables

fτ t (z) = zτ et(β1z1+···+βm−1zm−1)

at the points
sη =

(
s1 + smβ1, . . . , sm−1 + smβm−1

) ∈ Cm−1.

The connection between both is

fτ t (sη) = γ
(s)
τ t etsm3;

this amounts to replace αm by αme3 in the definition of γ
(s)
τ t .

The zero estimate shows that the arithmetic matrix has maximal rank; we extract
a nonzero determinant, which is the arithmetic determinant 1an, and we also get
an analytic determinant 1ar which is extracted in the same way from the analytic
matrix.

From Liouville’s inequality we deduce a lower bound for |1ar|, while Schwarz’s
Lemma yields an upper bound for |1an|. The difference |1ar − 1an| can easily be
bounded by a multiple of |3|. A crude estimate for this difference yields a nontrivial
but weaker measure than our Theorem 7.1, namely:

• Under the assumptions of Theorem 7.1 with E = e, define

H = max{e, B, A1, . . . , Am}.
Then

|3| ≥ exp
{−(103m3 D log H )κ(m)

}

with κ(m) = 2m(m!)2.

A complete proof of this estimate is worked out in [W 1992], Chap. 7.
A refinement is due to M. Laurent [Lau 1994]: he writes the expansion of this

difference in powers of |3| and finds that the first coefficients are pretty small,
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essentially as small as |1an| (they are almost interpolation polynomials, again). As
a consequence, a sharp upper bound for |1ar| can be deduced.

A further refinement is the following: in the upper bound for |1an|, we replace
the function 2n(L) (where n = m − 1 is the number of variables) arising in § 6.2.2

by a larger function, which takes into account the fact that our alternant
(

fλ(ζµ)
)

involves functions fλ of the form

zτ1
1 · · · zτn

n ϕt (θ1z1 + · · · + θnzn)

where τ ∈ Nn and ϕt are analytic functions of a single variable (see § 7.2), while
θ1, . . . , θn are fixed complex numbers. The point is that, apart from monomials in
z1, . . . , zn , the functions fλ depend only of one variable. There is a connection (see
§§ 13.7 and 14.4) with the main idea of Baker’s extrapolation argument, where
derivatives are taken (in an n-dimensional space) of an auxiliary function, at several
points which all lie on a complex line (of dimension one).

In the first sketch of proof we gave involving Proposition 6.9, it was necessary
to assume that the numbers λ1, . . . , λm are Q-linearly independent and also that the
numbers 1, β1, . . . , βm−1 are Q-linearly independent. The first assumption on the
λ’s is not a serious restriction: we explain in § 7.8 how an induction can get rid of it
(with a minimal cost). The assumption on the β’s is certainly a more serious one: for
instance it rules out the rational case, which is the most important for diophantine
applications! There is a simple way of dealing with this issue: one does not require
that 1, β1, . . . , βm−1 areQ-linearly independent, but only that there is no small linear
dependence relations between these numbers (see Exercise 7.1).

However if we want to deduce an estimate in the general case from the special
case by means of an induction process, then the estimate we reach at the end is not so
sharp (again the details are given in [W 1992], Lemma 7.4). Here we follow another
way.

The transcendence argument shows that if a nonzero number of the shape

β1λ1 + · · · + βm−1λm−1 − λm

has a sufficiently small absolute value, then the arithmetic matrix has not maximal
rank. We deduce from the zero estimate that there exists a vector subspace V of Cm ,
of codimension r ≥ 1, which contains the point (β1, . . . , βm−1,−1), such that for
some positive integer S the number of elements in

(
Zm[S]+V

)
/V is relatively small.

In particular we can make it smaller than (2S + 1)r+1. By Lemma 6.2, this implies
that 1, β1, . . . , βm−1 satisfy a linear dependence condition over Q, and an explicit
bound for the coefficients can be given (Exercise 6.3).

However this is not very efficient. It is much better to use directly the information

on the upper bound for Card
((
Zm[S]+V

)
/V
)

. Instead of constructing a determinant

with analytic functions in Cm−1 (which we view as Cm/C(β1, . . . , βm−1,−1)), we
take analytic functions in

V/C(β1, . . . , βm−1,−1),
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which involve only d = m − 1− r complex variables. This is explained in § 7.4.

7.2 Lower Bound for a Zero Multiplicity

In this section we show how to improve the analytic upper bound of Proposition 6.6
for the absolute value of an alternant when functions are of a special form, namely
a product of a polynomial by a function of a single variable. At the same time, we
introduce another refinement, which is motivated by the next section: we derive an
upper bound for the absolute value of a determinant which is not exactly an alternant,
but where some of the rows have constant entries. The entries of the other rows are
values of analytic functions.

Let n, T0 and L be positive integers, ζ
1
, . . . , ζ

L
elements of Cn , ϕ1, . . . , ϕL

analytic functions in C, θ1, . . . , θn complex numbers, and p1, . . . , pL polynomials
in C[z1, . . . , zn] of total degree ≤ T0. We define, for 1 ≤ λ ≤ L ,

fλ(z1, . . . , zn) = pλ(z1, . . . , zn)ϕλ(θ1z1 + · · · + θnzn).

Let I be a subset of {1, . . . , L}, and let δλµ (1 ≤ λ ≤ L with λ 6∈ I , and 1 ≤ µ ≤ L)
be complex numbers. For λ ∈ I and 1 ≤ µ ≤ L , we define δλµ = fλ(ζµ). We
consider the matrix (

δλµ

)
1≤λ,µ≤L

,

whose determinant we denote by 1I .
We shall determine an upper bound for |1ar| by expressing1ar as a sum of terms

involving these 1I ’s. For this purpose we need to bound each |1I | from above too.
To do this we consider the following function DI (z) (of a single variable z) which is
closely related to 1I . Let

dλµ(z) =





fλ(ζµz) for λ ∈ I ,

δλµ for λ 6∈ I .

We define
DI (z) = det

(
dλµ(z)

)
1≤λ,µ≤L

.

Our first step will be to bound from below the multiplicity of the zero of DI (z) at
z = 0. A simple application of Schwarz’ Lemma will then give us an upper bound
for |DI (z)|, and hence for |1I | = |DI (1)|.

The upper bound we shall produce depends on the following quantity:

2(n; T0, L) = min
{‖κ1‖ + · · · + ‖κ L‖

}

where the minimum runs over the L-tuples (κ1, . . . , κ L ) of elements of Nn which
are pairwise distinct and satisfy κλ2 + · · ·+ κλn ≤ T0 for 1 ≤ λ ≤ L . The point is that
this sum does not involve the first coordinate κλ1 of
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κλ = (κλ1, . . . , κλn).

For n = 1 we plainly have 2(1; T0, L) = L(L − 1)/2 (compare with Lemma 2.5).

Lemma 7.2. The function DI (z) has a zero at z = 0 of multiplicity at least
2(n; T0, |I |), where |I | is the number of elements in I .

Proof. For n = 1 the argument is the same as in the proof of Lemma 2.5.
For n ≥ 2, we note that the multiplicity of the zero of DI (z) at the origin is

not affected by a change of variables in Cn . Also such a change of variables will
not modify the total degree of polynomials in z1, . . . , zn . Therefore we may assume
θ2 = · · · = θn = 0 as well as

pλ(z1, . . . , zn) = zaλ1
1 · · · zaλn

n (1 ≤ λ ≤ L)

for some aλ ∈ Nn .
Since the determinant is multilinear, by expanding each ϕλ in Taylor series

centered at z1 = 0, we can write DI (z) as a sum of determinants each of which

is a constant times z‖κ1‖+···+‖κ |I |‖ times the determinant of the matrix Mκ =
(

mi j

)

with

mi j =

{
ζ κλ1
µ1
· · · ζ κλn

µn
if λ ∈ I ,

δλµ otherwise

and κλ = (κλ1, . . . , κλn) ∈ Nn . If the elements κ1, . . . , κ |I | are not pairwise distinct,
then det Mκ = 0. In our expression for fλ(ζµ), we had aλ1 + · · · + aλn ≤ T0 and so
aλ2 +· · ·+aλn ≤ T0. Since, by our preliminary reduction, ϕλ(θ1z1 +· · ·+θnzn) depends
only on z1, only the κλ1’s can increase, and κλ2 + · · · + κλn = aλ2 + · · · + aλn ≤ T0

remains valid. Therefore the smallest value of ‖κ1‖ + · · · + ‖κ |I |‖ for which the
determinant of Mκ could be nonzero, is 2(n; T0, |I |). This proves Lemma 7.2. ¤

Here is a lower bound for the number 2(n; T0, L):

Lemma 7.3. For n, T0 and L positive integers with n ≥ 2 we have

2(n; T0, L) ≥ L

2

(
L + 1(T0+n−1

n−1

) − T0

n
− 1

)
·

Notice that this estimate yields a stronger result than Lemma 6.3 only if T0 is
small compared with L1/n . In our case we shall have L =

(T0+n
n

)
(2T1 + 1), the main

term in the final lower bound for (1/L)2(n; T0, L) involves

L

2
(T0+n−1

n−1

) =
(T0 + n)(2T1 + 1)

2n

in place of
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n

e
· L1/n ≤ n

e
· (T0 + n)(2T1 + 1)1/n.

In our application, T1 will be large compared with n.

Proof. Without loss of generality we may assume that the right hand side of the
conclusion is nonnegative, which means L ≥ (T0+n

n

)
.

The smallest value for the sum ‖κ1‖ + · · · + ‖κ L‖ is reached when we choose
successively, for each integer a = 0, 1, . . ., all points in the domain

Da =
{
(x1, . . . , xn) ∈ Nn ; x2 + · · · + xn ≤ T0, x1 + · · · + xn = a

}

and we stop when the total number of points reaches L . For a ≥ T0 the number of
points in Da is

(T0+n−1
n−1

)
(once (x2, . . . , xn) is chosen, there is exactly one value for

x1). For a < T0 the number of points in Da is
(a+n−1

n−1

)
(we just forget the condition

involving T0), hence the number of points we get by varying a between 0 and, say,
A (with A ≥ T0), is

(
A − T0 + 1

)(T0 + n − 1

n − 1

)
+

T0−1∑

a=0

(
a + n − 1

n − 1

)
=

(
A − T0 + 1 +

T0

n

)(
T0 + n − 1

n − 1

)
.

Therefore, if A is such that the above quantity is at most L , then

2(n; T0, L) ≥
A∑

a=T0

(
T0 + n − 1

n − 1

)
a =

1

2

(
T0 + n − 1

n − 1

)
(A − T0 + 1)(A + T0).

We choose for A the largest integer such that the required condition
(

A − T0 + 1 +
T0

n

)(
T0 + n − 1

n − 1

)
≤ L

is satisfied, namely

A =

[
L(T0+n−1

n−1

) + T0 − T0

n
− 1

]
.

Then (
A − T0 +

T0

n
+ 2

)(
T0 + n − 1

n − 1

)
≥ L + 1.

We use this last inequality twice: on one hand we deduce

A − T0 + 1 ≥ L + 1(T0+n−1
n−1

) − T0

n
− 1.

On the other hand, since, for T0 ≥ 1 and n ≥ 2, we have

2T0 − T0

n
− 2 +

1(T0+n−1
n−1

) ≥ 0,
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we deduce

A + T0 ≥ L(T0+n−1
n−1

) ·

Therefore

2(n; T0, L) ≥ L

2
(A − T0 + 1) ≥ L

2

(
L + 1(T0+n−1

n−1

) − T0

n
− 1

)
.

This completes the proof of Lemma 7.3. ¤

7.3 Upper Bound for the Arithmetic Determinant

The basic idea, due to M. Laurent [Lau 1994], is to expand the arithmetic determinant
in order to improve the upper bound.

Lemma 7.4. Let

A =
(

aλµ
)

1≤λ,µ≤L
and B =

(
bλµ

)
1≤λ,µ≤L

be two L × L matrices with complex coefficients, and let ε be a complex number.
Define

1 = det(A + εB).

Moreover, for each subset I of {1, . . . , L}, define

1I = det
(

c(I )
λµ

)
1≤λ,µ≤L

with c(I )
λµ =





aλµ if λ ∈ I

bλµ if λ 6∈ I .

Let r , χ0, χ1, χ2, V be positive real numbers. Assume, for each I ,

log |1I | ≤ −χ0|I |1+1/r + (χ1 − V )|I | + χ2.

Assume also
|ε| ≤ e−V .

Then

log |1| ≤ −LV +

(
r

χ0

)r ( χ1

r + 1

)r+1
+ χ2 + L log 2.

Proof. From the multilinearity of the determinant we have

1 =
∑

I⊂{1,...,L}
εL−|I |1I .

Hence
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log |1| ≤ L log 2 + max
I

{
log |1I | − (L − |I |)V }

≤ −LV + L log 2 + max
I

{
log |1I | + |I |V

}
.

The function
y = x(−χ0x1/r + χ1)

reaches its maximum at x =
(

rχ1/
(
(r + 1)χ0

))r
and the value of this maximum is

(
r

χ0

)r

·
( χ1

r + 1

)r+1 ·

This completes the proof of Lemma 7.4. ¤

Remark. If
r rχ r+1

1

(r + 1)r+1χ r
0

≤ 1

2
LV,

then the conclusion can be written

log |1| ≤ −1

2
LV + χ2 + L log 2.

Lemma 7.5. Let n, T0, L and L ′ be positive integers with L ′ ≤ L , ϕ1, . . . , ϕL ′

be entire functions in C, θ1, . . . , θn be complex numbers, and aλi (for 1 ≤ i ≤ n,
1 ≤ λ ≤ L ′) be nonnegative rational integers with aλ1 + · · · + aλn ≤ T0. We define,
for 1 ≤ λ ≤ L ′,

fλ(z1, . . . , zn) = zaλ1
1 · · · zaλn

n ϕλ(θ1z1 + · · · + θnzn).

Further let ζ
1
, . . . , ζ

L
be elements of Cn . Furthermore, for L ′ + 1 ≤ λ ≤ L and

1 ≤ µ ≤ L let δλµ be a complex number. For 1 ≤ λ ≤ L ′ and 1 ≤ µ ≤ L we
define δλµ = fλ(ζµ). Finally, let E > 1 and M1, . . . ,ML be positive real numbers

satisfying
Mλ ≥ log sup

|z|=E
max

1≤µ≤L
| fλ(zζµ)| 1 ≤ λ ≤ L ′,

Mλ ≥ log max
1≤µ≤L

|δλ,µ| L ′ + 1 ≤ λ ≤ L .

We consider the determinant

1 = det
(
δλµ

)
1≤λ,µ≤L

.

Then we have

log |1| ≤ −2(n; T0, L ′) log E + log(L!) + M1 + · · · + ML .

Proof. In the case L ′ = L , the result follows from Lemmas 6.1 and 7.2. The
general case involves the same arguments. For 1 ≤ µ ≤ L , we define functions
d1µ(z), . . . , dLµ(z) of a single variable z ∈ C by
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dλµ(z) =





fλ(ζµz) for 1 ≤ λ ≤ L ′,

δλµ for L ′ < λ ≤ L .

This means that for λ > L ′ the function dλµ is constant. From Lemma 7.2 we deduce
that the function

D(z) = det
(

dλµ(z)
)

1≤λ,µ≤L

has a zero at the origin of multiplicity ≥ 2(n; T0, L ′). We conclude the proof of
Lemma 7.5 by using Schwarz Lemma like in the proof of Lemma 6.1:

log |1| = log |D(1)| ≤ −2(n; T0, L ′) log E + log sup
|z|=E
|D(z)|.

For |z| = E , we plainly have

log |D(z)| ≤ log(L!) + M1 + · · · + ML .

¤

Here is a consequence of Lemmas 7.4 and 7.5, which will give a sharp upper
bound for the absolute value of the determinant 1ar in the transcendence proof.

Proposition 7.6. Let T0 ≥ 0, T1 > 0 be integers and E > 1 a real number. Define
L =

(T0+n
n

)
(2T1 + 1). Let ϕt (t ∈ Z, |t | ≤ T1) be analytic functions of one variable,

let θ1, . . . , θn be complex numbers and, for (τ , t) = (τ1, . . . , τn, t) ∈ Nn × Z with
τ1 + · · · + τn ≤ T0 and |t | ≤ T1, define

fτ t (z1, . . . , zn) = zτ1
1 · · · zτn

n ϕt (θ1z1 + · · · + θnzn).

For the same (τ , t), let bτ t1, . . . , bτ t L be complex numbers. Further, let ζ
1
, . . . , ζ

L
be elements in Cn . Define

V =
1

2n
(T0 + n)(2T1 + 1) log E .

Assume that, for each (τ , t) as above, we have a positive real number Mτ t for which

Mτ t ≥ log sup
|z|=E

max
1≤µ≤L

| fτ t (zζµ)| Mτ t ≥ log max
1≤µ≤L

|bτ tµ|

and

log(2L) + Mτ t ≤ V

4
·

Finally, let ε be a complex number with

|ε| ≤ e−V .

Then the determinant
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1 = det
(

fτ t (ζµ) + εbτ tµ

)
(τ ,t)

1≤µ≤L

has absolute value bounded by

|1| ≤ e−LV/4.

Proof. The set of (τ , t) ∈ Nn × Z satisfying ‖τ‖ ≤ T0 and |t | ≤ T1 has L elements.
For each subset I , we define 1I = det

(
c(I )
τ tµ

)
(τ ,t)

1≤µ≤L

where

c(I )
τ tµ =





fτ t (ζµ) for (τ , t) ∈ I ,

bτ tµ for (τ , t) 6∈ I .

From Lemmas 7.3 and 7.5, we see that the hypotheses of Lemma 7.4 are satisfied
with r = 1 and

χ0 =
1

2
(log E)

(
T0 + n − 1

n − 1

)−1

,

χ1 = V − χ0 +
1

2n
(T0 + n) log E, χ2 = log(L!) +

∑

‖τ‖≤T0

T1∑

t=−T1

Mτ t .

The assumption log(2L) + Mτ t ≤ V/4 implies χ2 + L log 2 ≤ LV/4. Since T1 ≥ 1
we have

χ1 − V <
1

2n
T0 log E +

1

2
log E ≤ V

3
·

Finally, from χ1 < 4V/3 one deduce

(
r

χ0

)r ( χ1

r + 1

)r+1
<

2

log E

(
T0 + n − 1

n − 1

)
·
(

2V

3

)2

≤ 8nV 2L

9(T0 + n)(2T1 + 1) log E

≤ 4LV

9
<

LV

2
·

The desired result plainly follows from Lemma 7.4. ¤



                    

7.4 Construction of a Nonzero Determinant 199

7.4 Construction of a Nonzero Determinant

Let K be an algebraically closed field of zero characteristic, α1, . . . , αn+1 be nonzero
elements of K , β1, . . . , βn be elements of K , and T0, T1, S1, . . . , Sn+1 be positive
integers.

Let V be a vector subspace of K n+1 over K which contains the point
(β1, . . . , βn,−1). We denote by d + 1 the dimension of V, by πV the canonical
map from K n+1 onto K n+1/V, by (e1, . . . , en+1) the canonical basis of K n+1 and
we assume that πV(e1), . . . , πV(en−d ) is a basis of K n+1/V. This means that if
z = (z1, . . . , zn+1) ∈ V satisfies zn−d+1 = · · · = zn+1 = 0, then z = 0. We use the
notation

V[S] = V ∩ Zn+1[S].

We consider the following matrix

Mar =

( n∏

j=n−d+1

(
s j + sn+1β j

)τ j
n+1∏

i=1

α
si t
i

)

(τ ,t)
s

,

where the index of rows is (τ , t) = (τn−d+1, . . . , τn, t) ∈ Nd×Zwith τn−d+1+· · ·+τn ≤
T0 and |t | ≤ T1, while the index of columns is s ∈ V[2(d + 1)S]. The number of
rows is Ld =

(T0+d
d

)
(2T1 + 1).

Our goal is to deduce from the zero estimate of Chap. 5 the following result:

Proposition 7.7. Assume that α1, . . . , αn+1 generate a multiplicative subgroup of
K×of rank ≥ n and that the parameters T0, T1 and S1, . . . , Sn+1 satisfy

T0 > 4Si (1 ≤ i ≤ n + 1)

and
(2S1 + 1) · · · (2Sn+1 + 1) > 2(n + 1)T n

0 T1.

Assume further that for all s ∈ Z with 0 < s ≤ 4Sn+1, we have (sβ1, . . . , sβn,−s) 6∈
Zn+1[4S]. Finally, assume that

Card

(
Zn+1[S] + V

V

)
≤ n + 1

d + 1
T n−d

0

and that there is no subspace in K n+1, of dimension d ′ + 1 with d ′ < d, containing
(β1, . . . , βn,−1), which satisfies this inequality with d replaced by d ′. Then the
matrix Mar has rank Ld .

The proof of this Proposition requires some preparation. The first auxiliary lemma
is a counting argument which will be used several times later also. It is a substitute,
for the category of sets, of the relation dimK (V/W ) = dimK (V )− dimK (W ) for the
category of K -vector spaces.
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Lemma 7.8. Let C be a finite set and f : C −→ C ′ be a mapping. Then

CardC =
∑

u∈ f (C)

Card f −1(u).

Proof. The map f induces on C an equivalence relation with Card f (C) classes,
namely {

f −1(u) ; u ∈ f (C)
}
.

¤

From Lemma 7.8 one deduces

Card f (C) min
u∈ f (C)

Card f −1(u) ≤ CardC ≤ Card f (C) max
u∈ f (C)

Card f −1(u). (7.9)

When ψ : G1 −→ G2 is a homomorphism of Z-modules and C a finite subset of G1,
if we define C̃ =

{
λ− λ′ ; λ ∈ C, λ′ ∈ C

}
, then

Cardψ(C) · Card
(
C̃ ∩ kerψ

) ≥ CardC.

Indeed, one applies Lemma 7.8 to the restriction f : C −→ ψ(C) of ψ to C.
If λ(1), . . . , λ(t) are distinct elements in the same class f −1(u), then 0, λ(2) −
λ(1), . . . , λ(t) − λ(1) are distinct elements in C̃ ∩ kerψ .

For instance take G1 = Zn+1, C = Zn+1[S], and ψ is the restriction to Zn+1 of the
canonical map K n+1 −→ K n+1/V. Since C̃ is contained in Zn+1[2S], we deduce

Card

(
Zn+1[S] + V

V

)
Card

(
V[2S]

)≥ (2S1 + 1) · · · (2Sn+1 + 1).

Proof of Proposition 7.7. Assume that the rank of Mar is less than Ld : there
exists a nonzero polynomial in K [Xn−d+1, . . . , Xn, Y±1], of total degree ≤ T0 in
Xn−d+1, . . . , Xn and of degree ≤ T1 in Y±1 which vanishes on the set 6[d + 1],
where

6 =
{
(sn−d+1 + sn+1βn−d+1, . . . , sn + sn+1βn, α

s1
1 · · ·αsn+1

n+1) ; s ∈ V[2S]
}
.

We use Theorem 5.1 for the algebraic group G = Gd
a ×Gm, with d0 replaced by d ,

d1 = 1 and D0 = T0, D1 = T1. We deduce the existence of a connected algebraic
subgroup G∗ of G, G∗ 6= G, satisfying the conclusion of Theorem 5.1. We can write
G∗ = V ×G∗1, where V is a vector subspace of K d , of dimension say δ, while G∗1 is
either {1} or Gm. Since

H (G; T ) = 2(d + 1)T d
0 T1 and H (G∗; T ) =

{
T δ

0 if G∗1 = {1},
2(δ + 1)T δ

0 T1 if G∗1 = Gm,

(see § 5.1.1), we have
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Card

(
6 + (V × K×)

V × K×

)
≤




2(d + 1)T d−δ
0 T1 if G∗1 = {1},

d + 1

δ + 1
T d−δ

0 if G∗1 = Gm.

We are going to prove firstly V 6= 0, secondly G∗1 = Gm.
We claim that the elements

{
(sn−d+1 + sn+1βn−d+1, . . . , sn + sn+1βn) ; s ∈ V[2S]

}

are pairwise distinct. Indeed, if this is not true, then there exists s ∈ V[4S] with
s 6= 0, sn+1 ≥ 0 and

si + sn+1βi = 0 for n − d + 1 ≤ i ≤ n.

Therefore the point

(s1, . . . , sn+1) + (sn+1β1, . . . , sn+1βn,−sn+1)

belongs to V and has its d + 1 last components which vanish. Hence the first n − d
components also are zero, and (sn+1β1, . . . , sn+1βn,−sn+1) ∈ V[4S], contrary to our
assumption. This proves our claim.

From this claim we deduce, whether G∗1 is {1} or Gm,

Card

(
6 + (0× G∗1)

0× G∗1

)
= Card

(
V[2S]

)
.

We derive from Lemma 7.8

Card

(
Zn+1[S] + V

V

)
Card

(
V[2S]

)≥ (2S1 + 1) · · · (2Sn+1 + 1).

From our choice of V and our hypothesis on S1, . . . , Sn+1, we deduce

n + 1

d + 1
T n−d

0 Card
(
V[2S]

)≥ (2S1 + 1) · · · (2Sn+1 + 1) > 2(n + 1)T n
0 T1,

hence
Card

(
V[2S]

)
> 2(d + 1)T d

0 T1.

Therefore

Card

(
6 + (0× G∗1)

0× G∗1

)
> 2(d + 1)T d

0 T1,

which implies V 6= {0}.
Assume now G∗1 = {1}. We use the assumption that α1, . . . , αn+1 generate a

multiplicative group of rank≥ n and we apply the counting argument of Lemma 7.8
(see Exercise 7.5.a): the number of distinct points in

{
α

s1
1 · · ·αsn+1

n+1 ; s ∈ V[2S]
}

is at least (4 max{Si } + 1)−1Card
(
V[2S]

)
. The hypothesis T0 ≥ 4Si + 1 shows that

this number is greater than
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2(d + 1)T d−1
0 T1.

Hence

Card

(
6 + (V × {1})

V × {1}
)
> 2(d + 1)T d−1

0 T1.

Since we already know that δ is at least 1, we get a contradiction. From the condition
G∗ 6= G we conclude G∗1 = Gm and δ < d.

Let θ : V → K d be the linear map which sends (z1, . . . , zn+1) onto the point
(zn−d+1 + zn+1βn−d+1, . . . , zn + zn+1βn). Using once more the assumption that
e1, . . . , en−d are linearly independent modulo V, we deduce that θ is surjective with
kernel K (β1, . . . , βn,−1). We define W = θ−1(V ). Hence W is a vector subspace
of V, of dimension δ + 1 < d + 1, containing (β1, . . . , βn,−1), such that

Card

(
V[2S] + W

W

)
≤ d + 1

δ + 1
T d−δ

0 .

We apply Lemma 7.8 to the canonical map

ψ :
K n+1

W
−→ K n+1

V

with

C = πW
(
Zn+1[S]

)
=
Zn+1[S] + W

W
,

ψ(C) = πV

(
Zn+1[S]

)
=
Zn+1[S] + V

V

and

C̃ ∩ kerψ = πW
(
Zn+1[2S]

) ∩ kerψ =
V[2S] + W

W
·

We get

Card

(
Zn+1[S] + W

W

)
≤ Card

(
Zn+1[S] + V

V

)
· Card

(
V[2S] + W

W

)

≤ d + 1

δ + 1
T d−δ

0 · n + 1

d + 1
T n−d

0

≤ n + 1

δ + 1
T n−δ

0 .

Since dimK (W ) = δ + 1 < d + 1, this contradicts the hypothesis on V. ¤
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7.5 The Transcendence Argument — General Case

In this section as well as in § 7.6 we use the following notation.
Let λ1, . . . , λn+1 be logarithms of nonzero algebraic numbers αi = exp(λi )

(1 ≤ i ≤ n+1) andβ1, . . . , βn be algebraic numbers with 0 < max{|β1|, . . . , |βn|} ≤
1. Assume that the numbers λ1, . . . , λn+1 are Q-linearly independent. By Baker’s
Theorem 1.5, the number

3 = β1λ1 + · · · + βnλn − λn+1

is nonzero.
Let D be the degree overQ of the number fieldQ(α1, . . . , αn+1, β1, . . . , βn) and

let A1, . . . , An+1, B1 and E be positive real numbers which satisfy

log Ai ≥ max

{
h(αi ),

E |λi |
D

}
(1 ≤ i ≤ n + 1)

and
h(β1: · · · :βn: 1) ≤ log B1, e ≤ E ≤ B D

1 .

Theorem 7.10. Let T0, T1 and S1, . . . , Sn+1 be n + 3 positive rational integers
satisfying the following conditions:

T0 > 4 max
1≤i≤n+1

Si

and
(2S1 + 1) · · · (2Sn+1 + 1) > 2(n + 1)T n

0 T1. (7.11)

Define

V =
1

2n
(T0 + 1)(2T1 + 1) log E

and assume

V

4
≥ DT0 log

(
4e(n + 1)B1S

)
+ (7.12)

2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai + D log L + log T1

where L :=
(T0+n

n

)
(2T1 + 1) and S = max1≤i≤n+1 Si . Then

|3| > e−nV .

Proof.

Step 1. Liouville’s inequality
We begin with an easy case, when there exists such a rational integer s ∈ Z with

0 < s ≤ 4Sn+1 and
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(sβ1, . . . , sβn,−s) ∈ Zn+1[4S].

In this case we write bi = sβi , (1 ≤ i ≤ n) and bn+1 = −s. Hence s3 =
b1λ1 + · · · + bn+1λn+1 and bi ∈ Z with |bi | ≤ 4Si . We use Liouville’s estimate
(Exercise 3.7.b):

s|3| ≥ 2−D exp

{
−4D

n+1∑

i=1

Si h(αi )

}
.

This gives

log |3| ≥ −D log 2− 4D
n+1∑

i=1

Si log Ai − log(4Sn+1)

> −nV,

which is much stronger than our ultimate goal.
Therefore we shall now assume

(sβ1, . . . , sβn,−s) 6∈ Zn+1[4S]

for 0 < s ≤ 4Sn+1.
This condition will be needed twice. Firstly it occurs in the assumption of

Proposition 7.7. Secondly it enables us to check

Card
{(

s1 + sn+1β1, . . . , sn + sn+1βn
)

; s ∈ Zn+1[S]
}
> 2(n + 1)T n

0 T1

> (n + 1)T n
0 .

Indeed from Dirichlet’s box principle, we deduce that the points
(
s1 + sn+1β1, . . . , sn + sn+1βn

) ∈ Cn
(
s ∈ Zn+1[S]

)

are pairwise distinct. Using the lower bound (7.11) we obtain

Card
(
Zn+1[S]

)
= (2S1 + 1) · · · (2Sn+1 + 1) > 2(n + 1)T n

0 T1.

This fact will be needed to check that some integer d (introduced in step 2) is at least
1. The analytic argument (step 4) will involve complex functions of d variables.

Step 2. Choice of V
We remark that there exist vector subspaces V of Cn+1 which contain the point

(β1, . . . , βn,−1) and also satisfy

Card

(
Zn+1[S] + V

V

)
≤ n + 1

d + 1
T n−d

0

with d = dimC(V) − 1. Indeed V = Cn+1 is such a space. Among them, we choose
one (which we call V) of minimal dimension d + 1. By step 1, the image of Zn+1[S]
under the mapping
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Cn+1 −→ Cn

z 7−→ (
z1 + zn+1β1, . . . , zn + zn+1βn

)

has more than (n + 1)T n
0 elements, hence V 6= C(β1, . . . , βn,−1), which means

d ≥ 1.
Let πV denote the canonical map fromCn+1 ontoCn+1/V and let e1, . . . , en+1 be

the canonical basis of Cn+1. Since V 3 (β1, . . . , βn,−1), we have

πV(en+1) = β1πV(e1) + · · · + βnπV(en),

hence there exists a basis of Cn+1/V of the form
(
πV(ei1

), . . . , πV(ein−d
)
)
, with

1 ≤ i1 < · · · < in−d ≤ n. For ease of notation we shall assume {i1, . . . , in−d} =
{1, . . . , n − d}.

Writing πV(ei ) in terms of πV(e1), . . . , πV(en−d ), we see that there exist

(n − d)(d + 1) complex numbers u( j)
i such that

ei +
n−d∑

j=1

u( j)
i e j ∈ V for n − d + 1 ≤ i ≤ n + 1.

These d + 1 elements of V can be written
(
u(1)

i , . . . , u(n−d)
i , 0, . . . , 0, 1, 0, . . . , 0

)
(n − d + 1 ≤ i ≤ n + 1)

and they form a basis of V. One deduces that V is intersection of n− d hyperplanes

z j =
n+1∑

i=n−d+1

u( j)
i zi (1 ≤ j ≤ n − d).

We define

θi = λi +
n−d∑

j=1

u( j)
i λ j (n − d + 1 ≤ i ≤ n + 1).

Then, for z ∈ V, we have

n+1∑

i=n−d+1

ziθi =
n+1∑

j=1

z jλ j .

In particular, since (β1, . . . , βn,−1) is in V,

n∑

i=n−d+1

βiθi = θn+1 +3.

Let V = V ∩ Zn+1.

Step 3. Lower bound for |1ar|
Thanks to Proposition 7.7, we know that the matrix Mar has rank Ld =(T0+d

d

)
(2T1 + 1). Therefore there exist Ld elements s(1), . . . , s(Ld ) in V[2(n + 1)S]

such that, if we define
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γ
(µ)
τ t =

n∏

j=n−d+1

(
s(µ)

j + s(µ)
n+1β j

)τ j
n+1∏

i=1

α
s(µ)

i t
i

(
1 ≤ µ ≤ Ld

)
,

then the Ld × Ld determinant

1ar = det

(
γ

(µ)
τ t

)

(τ ,t)
µ

is not zero. As in § 7.4 above, (τ , t) runs over the elements (τn−d+1, . . . , τn, t) in
Nd × Z with ‖τ‖ ≤ T0 and |t | ≤ T1, while µ ranges over {1, . . . , Ld}.

From Liouville’s inequality we deduce (see Exercise 3.8, but replace Si by
2(n + 1)Si ):

1

Ld
log |1ar| > −U1

with

U1 = (D − 1)
(
T0 log(4(n + 1)S) + log Ld

)
+

DT0 log B1 + 2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai .

Step 4. Analytic argument
For each (τ , t) = (τn−d+1, . . . , τn, t) in Nd × Z with ‖τ‖ ≤ T0 and |t | ≤ T1, we

define a function fτ t of d complex variables:

fτ t (zn−d+1, . . . , zn) =
n∏

i=n−d+1

(
zτi

i etθi zi
)
.

For s ∈ V ∩ Zn+1, if we set

ξ
s

= (zn−d+1, . . . , zn) =
(
sn−d+1 + sn+1βn−d+1, . . . , sn + sn+1βn

) ∈ Cd ,

we have
n∑

i=n−d+1

θi zi =
n+1∑

j=1

s jλ j + sn+13.

Hence for z ∈ C we have

fτ t (zξ s
) = z‖τ‖

(
n∏

i=n−d+1

(
si + sn+1βi

)τi

)
·
(

n+1∏

j=1

ets jλ j z

)
· etsn+13z .

We define ζ
1
, . . . , ζ

Ld
in Cd by ζ

µ
= ξ

s(µ) :

ζ
µ

=
(
s(µ)

n−d+1 + s(µ)
n+1βn−d+1, . . . , s(µ)

n + s(µ)
n+1βn

)
(1 ≤ µ ≤ Ld ),

so that



              

7.5 The Transcendence Argument — General Case 207

fτ t (ζµ) = γ (µ)
τ t ets(µ)

n+13.

Let us check the hypotheses of Proposition 7.6 with ε = 3, n replaced by d, L by
Ld , V by

Vd =
1

2d
(T0 + d)(2T1 + 1) log E,

with
bτ tµ = γ (µ)

τ t

(
1− et3s(µ)

n+1

)
3−1

and finally with

Mτ t = T0 log(4(n + 1)E S) + 2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai + log
T1

2
·

Since V > log
(
2(n + 1)T1Sn+1 E

)
, without loss of generality we may assume

2(n + 1)|3|T1Sn+1 E < 1.

Recall the assumptions |βi | ≤ 1 and E |λi | ≤ D log Ai . For z ∈ C with |z| ≤ E , we
have

log | fτ t (zζµ)| ≤ T0 log
(
4(n + 1)E S

)
+ 2(n + 1)T1 E

(
n+1∑

i=1

Si |λi | + Sn+1|3|
)

≤ T0 log
(
4(n + 1)E S

)
+ 2(n + 1)T1 E

n+1∑

i=1

Si log Ai + 1

≤ Mτ t .

We use the estimate in Exercise 1.1.a, with r = 1, z1 = ts(µ)
n+13, z2 = 0. Since

|z1| < 1/7 we have
(e − 1)e|z1| < 2,

and we get
|ez1 − 1| ≤ 2|z1|,

which yields
|bτ tµ| ≤ 2

∣∣γ (µ)
τ t ts(µ)

n+1

∣∣.
This enables us to bound |bτ tµ| in the same way as | fτ t (zζµ)|, but with E replaced
by 1. More precisely, using the estimate

log
(
8(n + 1)Sn+1

) ≤ T0 log E + 2(n + 1)Sn+1

as well as the hypothesis
∣∣log |αi |

∣∣ ≤ D log Ai we deduce

log |bτ tµ| ≤ T0 log
(
4(n + 1)S

)
+ 2(n + 1)DT1

n+1∑

i=1

Si log Ai + log
(
4(n + 1)T1Sn+1

)

≤ Mτ t .
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Since D log B1 ≥ log E and V ≤ Vd , from (7.12) we conclude

log(2Ld ) + Mτ t ≤ 1

4
Vd and U1 <

1

4
Vd .

Step 5. Conclusion of the proof
From step 3 we deduce that the conclusion of Proposition 7.6 is not satisfied.

Therefore
|3| > e−Vd ≥ e−nV .

This completes the proof of Theorem 7.10.
¤

7.6 Proof of Theorem 7.1 — General Case

We shall deduce from Theorem 7.10 an intermediate result, from which we shall
then deduce the so-called general case of Theorem 7.1.

7.6.1 A Consequence of Theorem 7.10

Recall the assumptions at the beginning of § 7.5.

Corollary 7.13. Assume further

E ≤ AD
i for 1 ≤ i ≤ n + 1.

Let N0 be a positive integer, N and C0 positive real numbers satisfying the following
conditions:

2 +
2(n + 1)2

N

(
1 +

1

N0

)
+

1

200
+

1

8n
≤ N0

4n

and

C0 ≥ 2−n(n + 1)N n+1 N n+2
0

(
1 +

1

8N0

)
·

Assume also
B1

log B1
≥ 4e(n + 1)C0

(N0 − 1)N
· Dn+1(log A)n

(log E)n+1
·

Then

|3| > exp
{−(N0 + 1)C0 Dn+3(log B1)2(log A1) · · · (log An+1)(log E)−n−2

}
.



           

7.6 Proof of Theorem 7.1 — General Case 209

Proof.

Step 1. The parameters are not too small
As a preliminary remark we deduce from the hypotheses of Corollary 7.13

N0 > 8n, N0 N > 8n(n + 1)2,

hence
C0

N0 N
> 24n+1nn N0 and C0 > 24n+6nn N0.

Step 2. Choice of parameters
Define a real number U by

U = C0 Dn+3(log B1)2(log A1) · · · (log An+1)(log E)−n−2

and rational integers T0, T1, S1, . . . , Sn+1 by

T0 =

[
U

D log B1

]
T1 =

[
N0 D log B1

log E

]
,

Si =

[
U

N DT1 log Ai

]
(1 ≤ i ≤ n + 1).

From the assumptions D log B1 ≥ log E and D log A j ≥ log E we deduce

T0 ≥ C0, T1 ≥ N0 and S j ≥ C0

N0 N
− 1.

Step 3. The conditions T0 > 4S j and T1 > 6 of Theorem 7.11 are clearly satisfied.
Moreover from T1 ≥ N0 we deduce

T1 + 1 ≤
(

1 +
1

N0

)
T1,

T1 >

(
1− 1

N0

)
(T1 + 1) > (N0 − 1)

D log B1

log E

and

2T1 + 1 >

(
2− 1

N0

)
(T1 + 1) >

(2N0 − 1)D log B1

log E
·

In particular the number

V =
1

2n
(T0 + 1)(2T1 + 1) log E

satisfies

V >
2N0 − 1

2n
·U.
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Step 4. We check (7.12)
For 1 ≤ j ≤ n + 1 we have

S j ≤ U

N DT1 log A j

≤ U log E

(N0 − 1)N D2(log B1)(log A j )

≤ C0

(N0 − 1)N
· Dn+1(log A)n(log B1)(log E)−n−1,

hence

4e(n + 1)S j ≤ 4e(n + 1)C0

(N0 − 1)N
· Dn+1(log A)n(log B1)(log E)−n−1 ≤ B1

and
DT0 log

(
4e(n + 1)B1S

) ≤ 2U.

Next we have

D(T1 + 1)
n+1∑

i=1

Si log Ai ≤ (n + 1)

(
1 +

1

N0

)
max

1≤i≤n+1
DT1Si log Ai

≤ (n + 1)

(
1 +

1

N0

)
· U

N
,

hence

2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai ≤ 2(n + 1)2

(
1 +

1

N0

)
· U

N
·

We finally need to estimate D log L + log T1. One easily checks (with A =
max1≤ j≤n+1 A j )

L ≤ (T0 + n)n(2T1 + 1)

≤ 2(n + 1)n+1T n
0 T1

≤ 2(n + 1)n+1 N0 · U n

(D log B1)n−1 log E

≤ 2(n + 1)n+1 N0Cn
0

(
D log B1

log E

)n+1 (D log A

log E

)n

·

On the other hand we have

U

D
≥ C0

(
D log B1

log E

)
and

U

D
≥
(

D log A

log E

)
·

One deduces

D log L + log T1 <
U

200
·
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Step 5. We check (7.11)
We need a lower bound for (2S1 + 1) · · · (2Sn+1 + 1). Since

Si ≥ C0

N0 N
− 1

we have

2Si + 1 > 2(1− η)(Si + 1) >
2(1− η)U

N DT1 log Ai

where

η =
N0 N

C0 − 1
≤ 1

25nn N0 − 1
·

We obtain

(2S1 + 1) · · · (2Sn+1 + 1) >
2n+1(1− η)n+1U n+1

(
N DT1

)n+1
(log A1) · · · (log An+1)

·

Notice the estimate

(1− η)n+1

(
1 +

1

8N0

)
> 1.

On the other hand we have the upper bounds

T n
0 T1 ≤ U nT1

(D log B1)n

and
T1 ≤ N0 D(log B1)(log E)−1.

From our condition on C0 together with the definition of U we deduce

U ≥ (n + 1)N n+1

2n
·
(

1 +
1

8N0

)
· D(log A1) · · · (log An+1)T n+2

1 (log B1)−n

and

(2S1 + 1) · · · (2Sn+1 + 1) >
2n+1U n+1

(
1 + 1

8N0

) (
N DT1

)n+1
(log A1) · · · (log An+1)

≥ 2(n + 1)U nT1

(D log B1)n

≥ 2(n + 1)T n
0 T1.

Obviously (7.11) follows.

Step 6. End of the proof
The conclusion of Corollary 7.13 follows from the estimates

(T0 + 1)(2T1 + 1) ≤ 2

(
1 +

1

C0

)(
1 +

1

2N0

)
T0T1 ≤ 2

(
1 +

1

N0

)
T0T1
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which imply

nV <

(
1 +

1

N0

)
T0T1 log E ≤ (N0 + 1)U.

¤

7.6.2 End of the Proof in the General Case

We complete the proof of the general case of Theorem 7.1. We assume the hypotheses
of that statement are satisfied.

Step 1. Further assumptions
Until step 4 we assume that βm = −1 and that |βi | ≤ 1 for 1 ≤ i ≤ m − 1. We

write n = m − 1 so that

3 = β1λ1 + · · · + βnλn − λn+1.

We shall prove the desired result with a slightly better value for the constant, namely
with the constant C(m) replaced by

C ′(n) = (4n2 + 13n + 1)22n+5(n + 1)3n+9.

Step 2. Choice of parameters
There are many possibilities for the choice of N0 and N . We give an example

without trying to optimize:

N = 2(n + 1), N0 = n(4n + 13), C0 = 22n+5(n + 1)3n+7.

In this case we have

2 +
2(n + 1)2

N

(
1 +

1

N0

)
+

1

200
+

1

8n
= n + 3 +

n + 1

n(4n + 13)
+

1

200
+

1

8n

and
N0

4n
= n + 3 +

1

4
·

One easily checks
n + 1

n(4n + 13)
+

1

200
+

1

8n
<

1

4
·

On the other hand

2−n(n + 1)N n+1 N n+2
0 = 2nn+2(n + 1)n+2(4n + 13)n+2

and

nn+2(4n + 13)n+2

(
1 +

1

8N0

)
≤ 22n+4(n + 1)2n+5.
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Step 3. Choice of B1

We set B1 = Bn+2 (a larger exponent would increase C ′(n) but would enable us
to reduce the value of the number 26(n + 1)4 occurring in the conditions on B in the
general case of Theorem 7.1). The condition B D

1 ≥ E is clearly satisfied. Since

log B ≥ max
1≤i≤n

h(βi ) we have log B1 ≥ h(1:β1: · · · :βn)

(see Exercise 3.3.a). Next using

B ≥ D

log E
and B ≥ 26(n + 1)4 D log A

log E

we deduce

Bn+1 ≥ 26n(n + 1)4n

(
D

log E

)(
D log A

log E

)n

·

On the other hand from N0 − 1 = 4n2 + 13n − 1 ≥ 4(n + 1)2 one deduces

4e(n + 1)C0

(N0 − 1)N
≤ e · 22n+4(n + 1)3n+5.

Hence in order to check the condition

B1

log B1
≥ 4e(n + 1)C0

(N0 − 1)N
· Dn+1(log A)n

(log E)n+1
,

it remains to check
24n−4(n + 1)n−5 B ≥ e(n + 2) log B.

Since B ≥ 26(n + 1)4 it suffices to use

24n+2(n + 1)n−1 ≥ e(n + 2)
(
6 log 2 + 4 log(n + 1)

)
.

Step 4. Conclusion of the proof in the case βm = −1, |βi | ≤ 1
Notice that

(n + 2)2C0(N0 + 1) = (4n2 + 13n + 1)22n+5(n + 1)3n+7(n + 2)2.

Denote this number by C ′(n). Applying Corollary 7.13, we get the conclusion of
Theorem 7.1 with C(m) replaced by C ′(m − 1) (recall m = n + 1). It is useful
for the last step to notice that we have not used the full force of the hypothesis
max h(βi ) ≤ log B, but only the weaker condition h(1:β1: · · · :βn) ≤ n log B.

Step 5 Removing the Extra Assumption of Step 1
The proof of Theorem 7.1 is complete under the extra assumptions βm = −1 and

|βi | ≤ 1 for 1 ≤ i ≤ m − 1 of Step 1, and in this case the constant C(m) can be
replaced by C ′(m). We now remove these assumptions.

Since the result is symmetric in β1, . . . , βm , without loss of generality we may
assume |βm | ≥ max1≤i<m |β j |. Define β ′j = −β j/βm (1 ≤ j ≤ m) and
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3′ = β ′1λ1 + · · · + β ′m−1λm−1 − λm .

The assumption max1≤i≤m h(βi ) ≤ log B implies h(1:β ′1: · · · :β ′m−1) ≤ (m −
1) log B, and since βm 6= 0, Liouville’s inequality (3.13) gives

|βm | ≥ B−D.

Since 3 = −βm3
′, and since 3′ satisfies the conditions β ′m = −1 and |β ′i | ≤ 1, we

deduce from step 4

|3| ≥ |βm3
′| ≥ B−D exp

{−C ′(m − 1)Dm+2(log B)2(log A1) · · · (log Am)
}
.

Since
1 + C ′(m − 1) ≤ 22m+7m3m+8 = C(m),

the conclusion of Theorem 7.1 follows. ¤

7.7 The Rational Case: Fel’dman’s Polynomials

Our goal in this section is to complete the rational case of Theorem 7.1.
We need a variant of Theorem 7.10 related to the rational case. We introduce the

following notation which will be valid for Theorem 7.14 and Corollary 7.17.
Let λ1, . . . , λn+1 be Q-linearly independent logarithms of nonzero algebraic

numbers and b1, . . . , bn+1 be rational integers with bn+1 6= 0. Define αi = exp(λi )
(1 ≤ i ≤ n + 1) and

3 = b1λ1 + · · · + bn+1λn+1.

Denote by D the degree of the number field Q(α1, . . . , αn+1) over Q. Let
A1, . . . , An+1, B1 and E be positive real numbers, which satisfy

log Ai ≥ max

{
h(αi ),

E |λi |
D

}
(1 ≤ i ≤ n + 1) and E ≥ e.

Theorem 7.14. Let T0, T1 and S1, . . . , Sn+1 be positive rational integers satisfying
the following conditions:

T0 > 4Si (1 ≤ i ≤ n + 1)

and
(2S1 + 1) · · · (2Sn+1 + 1) > 2(n + 1)T n

0 T1.

Define

V =
1

2n
(T0 + 1)(2T1 + 1) log E,

L =

(
T0 + n

n

)
(2T1 + 1),
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B1 = E1/D max
1≤ j≤n

{
1 +

2n(n + 1)

T0

(|bn+1|S j + |b j |Sn+1
)}

and assume

V

4
≥ DT0 log(eB1) + 2(n + 1)D(T1 + 1)

n+1∑

i=1

Si log Ai + D log L + log T1.

Then
|3| > e−nV .

In order to omit the condition

B ≥ 26m4 · D log A

log E

which occurred in the general case, the idea, arising in the work of N. I. Fel’dman
(see § 10.4.1), is to replace, in the transcendence part of the proof, the numbers

(s j + sn+1β j )
τ j

by binomial coefficients like
(|s j bn+1 − sn+1b j |

τ j

)
.

More precisely, when τ is a nonnegative integer and z a complex number, we define

4(z; τ ) =
1

τ !
(z + 1) · · · (z + τ ),

with 4(z; 0) = 1. For any m ∈ Z, the number 4(m; τ ) is a rational integer, and for
m ≥ 0 we have

4(m; τ ) =

(
m + τ

τ

)
.

We get a basis of the space of polynomials inC[z1, . . . , zd ] of degree≤ T0 by taking

d∏

i=1

4(zi ; τi ), (τ ∈ Nd , ‖τ‖ ≤ T0).

We shall use the simple estimate (see [Y 1989], I, Lemma 2.4 p.128 and [W 1993],
Lemma 3.3).

Lemma 7.15. Let R, T0 be positive real numbers. For z ∈ Cd and τ ∈ Nd with
|z| ≤ R and ‖τ‖ ≤ T0, we have

d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤

(
d R

T0
+ 1

)T0

e‖τ‖



               

216 7. Homogeneous Measures of Linear Independence

and
d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤

(
d R

T0
+ 1

)‖τ‖
eT0 .

Hence for R > 0 and T0 > 0, we have

max
‖τ‖≤T0

sup
|z|≤R

d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤

(
d R

T0
+ 1

)T0

eT0 .

Proof. Since 4(z; 0) = 1 we may assume that the number t = ‖τ‖ is not 0.
For z ∈ C and τ ∈ N, we have

| 4 (z; τ )| ≤ 1

τ !
(|z| + τ )τ .

Therefore, for z ∈ Cd and τ ∈ Nd ,

d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤ 1

‖τ‖!
(‖τ‖
τ

) d∏

i=1

(|zi | + τi )
τi .

Since
∑

‖τ‖=t

(‖τ‖
τ

) d∏

i=1

(|zi | + τi )
τi = (‖z‖ + ‖τ‖)‖τ‖,

we deduce
∑

‖τ‖=t

d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤ 1

t!
(‖z‖ + t)t .

For any positive integer t , we have
(

1 +
1

t

)t

≤ e

and by induction we deduce
t t ≤ t!et .

Since ‖z‖ ≤ d|z|, for |z| ≤ R and ‖τ‖ = t ≥ 1 we have

d∏

i=1

∣∣4(zi ; τi )
∣∣ ≤

(
d R

t
+ 1

)t

et .

Finally, for 1 ≤ t ≤ T ,

(
1 +

1

t

)t

≤
(

1 +
1

T

)T

and

(
1 +

1

t

)t

et ≤
(

1 +
1

T

)t

eT

(the right hand sides are increasing functions of T ). ¤
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Lemma 7.16. Given positive integers d, T0, T1 and L with

L =

(
T0 + d

d

)
(2T1 + 1),

analytic functions ϕt (t ∈ Z, |t | ≤ T1) in Cd , points ζ
1
, . . . , ζ

L
in Cd and a nonzero

complex number b, define, for τ ∈ Nd with ‖τ‖ ≤ T0, and for t ∈ Z with |t | ≤ T1,

fτ t (z) = zτϕt (z) and f̃τ t (z) =

(
d∏

i=1

4(zi ; τi )

)
ϕt (z).

Then

det
(

f̃τ t (bζµ)
)

(τ ,t)

1≤µ≤L

=


 ∏

‖τ‖≤T0

d∏

j=1

bτ j

τ j !




T1+1

· det
(

fτ t (ζµ)
)

(τ ,t)

1≤µ≤L

.

Proof. Since 4(bX ; τ ) is the product by bτ/τ ! of a monic polynomial of degree
τ in X , we deduce that f̃τ t (bz) is the sum of

(∏
1≤ j≤d bτ j /τ j !

)
fτ t (z) with a linear

combination of fτ ′t (z) for τ ′ ∈ Nd with ‖τ ′‖ < ‖τ‖. The desired result follows by
multilinearity. ¤

Proof. We repeat the proof of Theorem 7.10, with a few modifications.

Step 1. Using Liouville’s inequality
Without loss of generality we may assume that b1, . . . , bn+1 are relatively prime,

and also
(b1, . . . , bn+1) 6∈ Zn+1[4S].

Step 2. Choice of V
Let V be a vector subspace of Cn+1, containing (b1, . . . , bn+1), and of minimal

dimension say d + 1, for which

Card

(
Zn+1[S] + V

V

)
≤ n + 1

d + 1
T n−d

0 .

After a permutation of the coordinates if necessary, we may assume that the first
n−d elements of the canonical basis ofCn , viz. e1, . . . , en−d , taken modulo V, give
a basis of Cn/V.

We define θi , (n − d + 1 ≤ i ≤ n + 1) in the same way as in step 2 of the proof
of Theorem 7.10: let u( j)

i be complex numbers such that

ei −
n−d∑

j=1

u( j)
i e j ∈ V.
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Let

θi = λi +
n−d∑

j=1

u( j)
i λ j .

Then
bn−d+1θn−d+1 + · · · + bn+1θn+1 = 3.

Step 3. Lower bound for |1̃ar|
We define

γ̃
(µ)
τ t =

n∏

j=n−d+1

4(s(µ)
j bn+1 − s(µ)

n+1b j ; τ j
) n+1∏

i=1

α
s(µ)

i t
i (1 ≤ µ ≤ Ld )

and

1̃ar = det

(
γ̃

(µ)
τ t

)

(τ ,t)
µ

.

By Lemma 7.16,

1̃ar = 1ar

∏

‖τ‖≤T0

(
n∏

j=n−d+1

b
τ j

n+1

τ j !

)T1+1

6= 0.

We bound the product of b
τ j

n+1/τ j ! by

n∏

j=n−d+1

b
τ j

n+1

τ j !
≤
( |bn+1|

T0
+ 1

)T0

eT0 .

Since

B1 ≥ e

( |bn+1|
T0

+ 1

)

we deduce

|1̃ar| ≤ 1ar

( |bn+1|
T0

+ 1

)Ld T0

eLd T0 ≤ 1ar BLd T0
1 .

The number 1̃ar is the value at the point α1, . . . , αn+1, α−1
1 , . . . , α−1

n+1, of a
polynomial with coefficients in Z of length at most

Ld !(eB1)T0 Ld .

This estimate follows from the upper bound

1 +
2n(n + 1)

T0

(|bn+1|S j + |b j |Sn+1
) ≤ B1.

We use again Liouville’s inequality: we deduce from Proposition 3.15

1

Ld
log |1̃ar| ≥ −U1
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with

U1 = (D − 1)T0 log(eB1) + (D − 1) log Ld + 2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai .

Therefore
1

Ld
log |1ar| ≥ −Ũ1

with

Ũ1 = U1 + T0 log B1

< DT0 log(eB1) + (D − 1) log Ld + 2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai .

Step 4. Conclusion of the proof
For each (τ , t) as in step 4 of the proof of Theorem 7.10, we define a function

f̃τ t of d complex variables:

f̃τ t (zn−d+1, . . . , zn) =
n∏

i=n−d+1

(4(zi ; τi )e
tθi zi

)
.

For s ∈ V ∩ Zn+1, put

ξ
s

=
(
sn−d+1bn+1 − sn+1bn−d+1, . . . , snbn+1 − sn+1bn

) ∈ Cd .

Since
n∑

i=n−d+1

θi (si bn+1 − sn+1bi ) = −sn+13 + bn+1

n+1∑

j=1

s jλ j ,

for z ∈ C we have

f̃τ t (zξ s
) =

n∏

i=n−d+1

4(z(si bn+1 − sn+1bi ); τi
) ·

n+1∏

j=1

ets jλ j z · e−tsn+13z .

For 1 ≤ µ ≤ Ld let ζ
µ

= ξ
s(µ) . Then

f̃τ t (ζµ) = γ̃ (µ)
τ t e−ts(µ)

n+13.

We use Proposition 7.6 with

Mτ t = DT0 log(eB1) + 2(n + 1)D(T1 + 1)
n+1∑

i=1

Si log Ai + log
T1

2
·

For
R = 2(n + 1)E max

1≤ j≤n+1
{|bn+1|S j + |b j |Sn+1}
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we have (d R/T0) + 1 ≤ B1, because

1 +
2n(n + 1)E

T0

(|bn+1|S j + |b j |Sn+1
) ≤ B D

1 .

The conclusion of Proposition 7.6 is not satisfied, therefore

|3| > e−nV .

This completes the proof of Theorem 7.14. ¤

We shall deduce from Theorem 7.14 the following result, which (as we shall see)
is sharper than the rational case of Theorem 7.1.

Corollary 7.17. Under the assumptions stated before Theorem 7.14, assume

E ≤ AD
i for 1 ≤ i ≤ n + 1 and B1 ≥ max

{
B0, E1/D, e

}
,

where
B0 = max{|b1|, . . . , |bn+1|}.

Let N , N0 and C0 be positive real numbers satisfying the following conditions:

2 +
2(n + 1)2

N

(
1 +

1

N0

)
+

1

200
+

1

8n
≤ N0

4n

and

C0 ≥ 2−n(n + 1)N n+1 N n+2
0

(
1 +

1

8N0

)
·

Then

|3| > exp
{−(N0 + 1)C0 Dn+3(log B1)2(log A1) · · · (log An+1)(log E)−n−2

}
.

Proof. The differences between Theorem 7.14 and Theorem 7.10 are that the
definition of B1 is not the same, and that

DT0 log(eB1) replaces DT0 log
(
4e(n + 1)B1S)

)
.

Also the only difference between Corollary 7.17 and Corollary 7.13 lies in the
conditions involving B1. Therefore we just repeat the proof of Corollary 7.13 (we
define U , T0, S j in the same way) and we only need to check DT0 log(eB1) ≤ 2U .

We claim that the number

E1/D max
1≤ j≤n

{
1 +

2n(n + 1)

T0

(|bn+1|S j + |b j |Sn+1
)}
,

is bounded by B2
1 . Indeed, from the inequalities
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T0 >

(
1− 1

C0

)
U

D log B

and
S j ≤ U

N DT1 log A j
<

U log E

N (N0 − 1)D2(log A j )(log B)

one deduces
S j

T0
<

C0

N (N0 − 1)(C0 − 1)
and

2n(n + 1)

T0

(|bn+1|S j + |b j |Sn+1
)
<

C0 B

2(n + 1)(C0 − 1)
·

Finally the number
1

e
+

C0

2(n + 1)(C0 − 1)
is not greater than 1. ¤

Proof of Theorem 7.1 in the rational case.
We now complete the proof of the rational case of Theorem 7.1. We repeat the

proof of § 7.6.2, until step 3, where we take B1 = B. We deduce that the rational
case of Theorem 7.1 holds in the special case where β1, . . . , βm are relatively prime
rational integers, say βi = bi , with |bi | ≤ B. Moreover in that case we can replace the
constant C(m) by C ′(m − 1)/(m + 1)2, where C ′ is the constant of step 4 in § 7.6.2.
We consider now the general case.

Let (β1, . . . , βm) be a tuple of rational numbers with h(βi ) ≤ log B. Define p/q
as the positive rational number (with relatively prime (p, q)) such that the numbers
bi = (p/q)βi are relatively prime rational integers. So q is the least positive integer
such that qβi ∈ Z for 1 ≤ i ≤ m, and p is the least common denominator to these
integers. We have

h(p: qb1: · · · : qbm) = h(1:β1: · · · :βm) ≤ m log B,

hence
p ≤ Bm and max

1≤i≤m
|bi | ≤ Bm .

Define
3′ =

p

q
3 = b1λ1 + · · · + bmλm .

We have
|3| ≥ p−1|3′| ≥ B−m |3′|

and
B−m > exp{−m Dm+2(log B)2(log A1) · · · (log Am)(log E)−m−1}.

Since

C ′(m − 1) · m2

(m + 1)2
+ m < C(m),

the conclusion of Theorem 7.1 in the rational case follows. ¤
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7.8 Linear Dependence Relations between Logarithms

In this section we prove the following result:

Proposition 7.18. In the statement of Theorem 7.1, we may replace the hypothesis
that the numbers λ1, . . . , λm are linearly independent overQ by the extra hypotheses
3 6= 0 and

D3(log B)2(log Ai ) ≥ (log D)(log E)2

for 1 ≤ i ≤ m.

For instance, under the assumptions of Theorem 7.1, the extra hypothesis of
Proposition 7.18 is satisfied as soon as B ≥ D.

We need the following lemma:

Lemma 7.19. Let λ1, . . . , λm (with m ≥ 2) be Q-linearly dependent logarithms of
algebraic numbers. Define α j = eλ j (1 ≤ j ≤ m). For 1 ≤ j ≤ m, let log A j ≥ 1
be an upper bound for max{h(α j ), |λ j |/D}. Further D be the degree of the number
field K = Q(α1, . . . , αm) over Q. Then there exist rational integers n1, . . . , nm , not
all of which are zero, such that

n1λ1 + · · · + nmλm = 0

and

|nk | ≤
(
11(m − 1)D3

)m−1 (log A1) · · · (log Am)

log Ak

for 1 ≤ k ≤ m.

Remark 1. The need for such a result appeared at an early stage of Baker’s theory.
Baker himself ([B 1966], IV) used his transcendence arguments to establish such an
estimate. Then Stark [St 1973] obtained sharper estimates by means of geometry of
numbers (see also [V 1977], Lemma 9). Since trancendence methods provide weaker
results for this particular problem, they are no more used for it now, and indeed we
shall follow Stark’s approach. However one should mention that for the similar
problem related to elliptic curves or abelian varieties in place of the multiplicative
group, Baker’s transcendence method is still a powerful tool for estimating small
dependence relations between periods (see for instance the work of Masser and
Wüstholz [MaWü 1990] on Faltings’ isogeny Theorem, and [D 1995] for explicit
estimates dealing with elliptic curves).

Remark 2. Let α1, . . . , αm be multiplicatively dependent algebraic numbers. The
set G of n ∈ Zm such that αn1

1 · · · , αnm
m = 1 is a nonzero subgroup of Zm , and from

Lemma 7.19 one deduces an upper bound for |n|, where n is some nonzero element in
G (i.e. an upper bound for the first minimum of the discrete subgroup G inRm). Much
more information on this Z-module G is available: see for instance [Mat 1993b] and
[Bert 1997].
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Remark 3. According to E. M. Matveev, the factor
(
11(m−1)D3

)m−1
can be replaced

by Cm D log D with some absolute constant C > 0.

Proof of Lemma 7.19 (cf. [W 1980], Lemma 4.1, [L 1991] Chap. 9 § 7; see also [Ma
1988]). We assume, as we may without loss of generality, that m ≥ 2, and that any
m−1 elements among λ1, . . . , λm are linearly independent overQ. Thus there exists
a unique (up to a factor ±1) set of relatively prime integers n1, . . . , nm such that

n1λ1 + · · · + nmλm = 0.

Hence
α

n1
1 · · ·αnm

m = 1.

Fix an integer k in the range 1 ≤ k ≤ m. Define c1, . . . , cm by

c j =
(
11(m − 1)D3 log A j )

−1 (1 ≤ j ≤ m, j 6= k)

and
ck =

(
11(m − 1)D3

)m−1 ∏
1≤ j≤m

j 6=k

log A j ,

so that c1 · · · cm = 1. Using Minkowski’s linear form Theorem (e.g. [Sc 1980], p.33
Th. 2C) we deduce that there exist integers ν1, . . . , νm , not all of which are zero,
such that

∣∣∣∣ν j − νkn j

nk

∣∣∣∣ ≤ c j , (1 ≤ j ≤ m, j 6= k) and |νk | ≤ ck .

(one could even ask for strict inequalities |ν j − νkn j/nk | < c j , but this will not be
necessary). We want to prove the relation ν1λ1 + · · · + νmλm = 0. We first show that
the number α = αν1

1 · · ·ανm
m is a root of unity. Using (3.4) and (3.6) for the number

αnk =
m∏

j=1

α
ν j nk

j =
∏

1≤ j≤m

α
ν j nk−νk n j

j ,

we get
|nk |h(α) ≤

∑

1≤ j≤m, j 6=k

|ν j nk − νkn j |h(α j ),

hence

h(α) ≤
∑

j 6=k

c j h(α j ) ≤ 1

11D3
·

So by Theorem 3.16 it follows thatα is a root of unity. Let M be the order ofα. Thenα
is a M-th primitive root of unity, hence of degree [Q(α) : Q] = ϕ(M) ≤ [K : Q] = D
overQ (where ϕ is Euler’s function), therefore M ≤ 2D2 (sharper estimates are valid
- see Exercise 7.2.a) and

M
m∑

j=1

ν jλ j ∈ 2iπZ.
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We observe that
∣∣∣∣∣M

m∑

j=1

ν jλ j

∣∣∣∣∣ =

∣∣∣∣∣M
m∑

j=1

(
ν j − νkn j

nk

)
λ j

∣∣∣∣∣ ≤ M
∑

1≤ j≤m, j 6=k

c j |λ j | < 2π

and we conclude
m∑

i=1

ν jλ j = 0.

Therefore there exists a nonzero integer ` ∈ Z with (ν1, . . . , νm) = (`n1, . . . , `nm)
We deduce the inequality |nk | ≤ |νk |, from which the desired upper bound |nk | ≤ ck

readily follows. ¤

Remark. The coefficient 11 in the conclusion of Lemma 7.19 can be replaced by 9
(see [W 1980]). In fact, as pointed out in § 3.6.3, 11D3 can be replaced by a smaller
function. But for our purpose a much weaker result would already be sufficient.

We deduce from Lemma 7.19 the following result:

Lemma 7.20. Let K be a number field of degree D and λ1, . . . , λm elements of L
such that αi = eλi is in K for 1 ≤ i ≤ m. For 1 ≤ i ≤ m let Ai ≥ e1/D be a real
number such that

log Ai ≥ h(αi ) and log Ai ≥ 1

D
|λi |.

For each nonempty subset I of {1, . . . ,m}, define

AI = max
{
e, max

i∈I
Ai
}
, NI =

[
(11nD3 log AI )n−1

]

and let8I be a nondecreasing positive valued real function satisfying the following
three conditions.
(1) For ∅ 6= I ′ ⊂ I ⊂ {1, . . . ,m} and for any B0 > 0 we have

8I ′ (B0) ≤ 8I (B0).

(2) For any nonempty subset I of {1, . . . ,m} for which the numbers {λi }i∈I are
Q-linearly independent and for any (βi )i∈I ∈ K I \ {0}, the inequality

∣∣∣
∑

i∈I

βiλi

∣∣∣ ≥ exp{−8I (B0)
}

holds with
log B0 = max

i∈I
h(βi ).

(3) For any nonempty subset I of {1, . . . ,m}, the inequality

8I\{k}(2NI B2
0 ) + log NI ≤ 8I (B0)

holds any k ∈ I satisfying AI = max
{
e, Ak

}
.
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Then, for any (β1, . . . , βm) ∈ K m for which the number

3 = β1λ1 + · · · + βmλm

is nonzero, the inequality

|3| ≥ exp{−8{1,...,m}(B0)
}

holds

Proof of Lemma 7.20. The proof is by induction on the number n of elements in the
set

I =
{
i ∈ {1, . . . ,m} ; βi 6= 0

}
.

We start with the case n = 1. Write I = {i1} and 3 = βi1λi1 . Notice that N{i1} = 1.
Since λi1 6= 0 we deduce from assumptions (1) and (2):

|3| ≥ exp
{−8{i1}(B0)

} ≥ exp
{−8{1,...,m}(B0)

}
.

Using the same argument we deduce that the result holds if the numbers λi (i ∈ I )
are Q-linearly independent. Assume n ≥ 2 and assume there is a nontrivial relation

∑

i∈I

aiλi = 0

where (ai )i∈I ∈ ZI \ {0}. Using Lemma 7.19, we deduce that there exists such a
relation, and there exists an index k ∈ I , for which

max
i∈I
|ai | ≤ NI , ak 6= 0 and AI = max

{
e, Ak

}
.

Using Lemma 3.7 with
f (X1,X2) = akX1 − ai X2,

we deduce, for i ∈ I ,

h(akβi − aiβk) ≤ log B ′0 with B ′0 = 2NI B2
0 .

From the induction hypothesis for

ak3 =
∑

i∈I
i 6=k

(akβi − aiβk)λi ,

we conclude
|ak3| ≥ exp

{−8I\{k}(B ′0)
}
.

Lemma 7.20 easily follows from assumptions (1) and (3). ¤

Proof of Proposition 7.18. For I ⊂ {1, . . . ,m}, define

8I (B0) = C(n)Dn+2(log BI )2
(∏

i∈I

log Ai

)
(log E)−n−1,
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where n = |I | and where BI is defined as follows: in the general case,

BI = max

{
B0, E1/D,

D

log E
, 26n4 · D log AI

log E

}

and in the rational case,

BI = max
{

B0, e, E1/D
}
.

Define also B ′I in the same way, but with B0 replaced by B ′0 = 2NI B2
0 .

We check the hypotheses of Lemma 7.20. We start with (1). For I ′ ⊂ I define
n′ = |I ′|, n = |I |. Since BI ′ ≤ BI , C(n′) ≤ C(n) and D log Ai ≥ log E , we have

C(n′)(log BI ′ )
2 ≤ C(n)(log BI )2

∏

i∈I\I ′

D log Ai

log E
,

hence 8I ′ (B0) ≤ 8I (B0).
The assumption (2) follows from Theorem 7.1.
It remains to check (3). Using the inequalities D log BI ≥ log E , D log Ai ≥

log E and
D3(log B)2(log Ai ) ≥ (log D)(log E)2

of Proposition 7.18, we deduce

8I (B0) ≥ C(n) · D3(log BI )2(log AI )

(log E)2

≥ C(n) max
{

D log BI , D log AI , log D},
hence

log NI ≤ (n − 1) log(11nD3 log AI )

≤ 1

2
C(n) · D3(log BI )2(log AI )

(log E)2

≤ 1

2
8I (B0).

Similarly

8I\{k}(B ′0) ≤ 1

2
8I (B0).

The hypotheses of Lemma 7.20 are satisfied, and therefore Proposition 7.18 follows.
Moreover we insist that a loose upper bound for NI suffices: as already pointed out
in the preceding remark, a weaker coefficient than 11D3 in Lemma 7.19 would have
been sufficient. ¤
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Open Problem

Does there exist an absolute constant C > 0 such that, for all p/q ∈ Q with q > 1,
∣∣∣∣eπ −

p

q

∣∣∣∣ > q−C ?

This would mean that the number eπ is not a Liouville number. This problem is
related with the case m = 2 of Theorem 7.1: take λ1 = iπ , λ2 = log(p/q), β1 = i ,
β2 = 1, D = 2, log A1 = eπ , log A2 = log p (without loss of generality we may
assume p > q). The trouble is that β1 is not rational, hence we are in the general
case and we need a condition B ≥ c log p, where c is a positive constant.

Exercises

Exercise 7.1. Let λ1, . . . , λm be logarithms of nonzero algebraic numbers, not all of which
are zero, and β1, . . . , βm algebraic numbers. Assume

β1λ1 + · · · + βmλm = 0.

Deduce that there is a linear dependence relation k1β1 + · · · + kmβm = 0, with (k1, . . . , km) ∈
Zm \ {0} and with an explicit upper bound for |k|.

Hint. Repeat the proof of Theorem 7.1. The upper bound for |k| arises from the zero estimate.

Exercise 7.2. Let K be a number field of degree D, α be an element in K×, λ ∈ L a logarithm
of α and m a positive integer such that eλ/m ∈ K×. Check

m ≤ 11D3 max

{
h(α),

|λ|
D

}
·

Hint. Use Exercise 7.1 and compare with [W 1980], Lemma 4.2.

More precisely,
a) If α is a root of unity, then

|m| ≤ 1

π
D2|λ|.

Hint. Define N = max{n ≥ 1 ; ϕ(n) ≤ D}. Check N ≤ 2D2 and |m| ≤ (N/2π )|λ|.

Remark. Stronger upper bounds for N hold:

N ≤ 4D log log(D + 7) for D ≥ 2

and
N ≤ (eγ + ε)D log log D for D ≥ D0(ε)

where γ is Euler’s constant (eγ = 1.78107 . . .). See [MiW 1978], III, Proposition A3
(Appendix) p.74.
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b) If α is a unit but not a root of unity, then

|m| ≤ 11D3h(α).

Hint. Use Theorem 3.16.

c) If α is not a unit, then

|m| ≤ 1

log 2
log |NK/Q (α · den(α)|

where den(α) ∈ Z is the denominator of α (see § 3.4) and NK/Q is the norm K× → Q×.

Exercise 7.3.
a) Check the following formula for the number 2(n; T0, L): define A and % ∈ N by the
conditions A ≥ T0 and

L = (A − T0 + 1)

(
T0 + n − 1

n − 1

)
+

(
T0 + n − 1

n

)
+ %, with 0 ≤ % <

(
T0 + n − 1

n − 1

)
.

Then

2(n; T0, L) =
T0−1∑

a=1

(
a + n − 1

n − 1

)
a +

1

2

(
T0 + n − 1

n − 1

)
(A − T0 + 1)(A + T0) + (A + 1)%.

b) Show that in the conclusion of Lemma 7.3, strict inequality holds for n ≥ 2:

2(n; T0, L) >
L

2

(
L + 1(T0+n−1

n−1

) − T0

n
− 1

)
.

Hint. For T0 = 1 check

2(n; 1, L) =
1

2
(A + 1)(n A + 2%) ≥ 1

2n
(L + n − 1)(L − 1),

where L = n A + 1 + % with 0 ≤ % < n.

c) Assuming L ≥ (T0+n
n

)
, deduce

2(n; T0, L) >
L2

2
(T0+n−1

n−1

) ·

Exercise 7.4. Let K be a field of characteristic zero, m and S positive integers, and V a vector
subspace of K m .
a) Show that there exists x ∈ Zm[S] such that

Card

(
Zm[S] + V

V

)
Card

(
(x + V) ∩ Zm[S]

) ≥ (2S + 1)m .

Hint. Use Lemma 7.8.

b) Let W be a vector subspace of K m of dimension d. Check the inequality
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Card
(
(x + W ) ∩ Zm[S]

) ≤ (2S + 1)d

for each x ∈ K m .

Hint. Show first that there is no loss of generality to assume x ∈ Zm . After a permutation of
coordinates, one may also assume that the projection K m −→ K d on the first d coordinates
maps W isomorphically onto K d . Then the image of (x + W ) ∩ Zm[S] under this projection
has at most (2S + 1)d elements.

c) Assume

Card

(
Zm[S] + V

V

)
< (2S + 1)r+1

where r ≥ 1 is the codimension ofV. Show thatV∩Zm[2S+1] contains more than (2S+1)m−r−1

points, and that these points span V as a vector space.

Exercise 7.5. Let K be a field, α1, . . . , αm be elements in K× which generate a multiplicative
subgroup of rank ≥ m − 1. Let S be a finite subset of Zm and S a positive real number such
that |s j | ≤ S for any s = (s1, . . . , sm) ∈ S . For s ∈ Zm write αs for αs1

1 · · ·αsm
m .

a) Check

Card
{
αs ; s ∈ S

} ≥ Card(S )

2S + 1
·

Hint. Check that for any s0 ∈ S , the number of s ∈ S such that αs = αs0
is ≤ 2S + 1. Next

apply Lemma 7.8.

b) More precisely, show that the number of elements in the image in K×/K×tors of the set
{
αs ; s ∈ S

}

is at least
Card(S )

2S + 1
·

Hint. If α1, . . . , αm are multiplicatively independent, then the number of elements in this image
is just Card(S ). Otherwise the map

ψ : Zm −→ K×
K×tors

(s1, . . . , sm) 7−→ class of αs

has a kernel which is a subgroup of Zm of rank 1. Check, for a ∈ Zm \ {0},
Card

(
Zm[S] ∩ Za

) ≤ 2S + 1.

Apply Lemma 7.8 with C = S, C ′ = K×/K×tors, and f is the restriction of ψ to C.
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8. Multiplicity Estimate by Damien Roy

This chapter refines the zero estimate of Chapter 5 by taking multiplicities into
account. The main result that we shall present here is again essentially due to
P. Philippon (see [P 1986a]) and again we restrict to commutative linear algebraic
groups. This allows us to be more concrete and brings simplifications in the proof of
the result. For an outline of the zero estimate of P. Philippon on a general commutative
algebraic group, the reader may consult the expository papers [Bert 1987] and [Roy
2000b].

8.1 The Main Result

The notation is the same as in Chapter 5. In particular, we work with the group
G = Gd0

a ×Gd1
m = K d0 × (K×)d1 and the corresponding ring

K [G] = K [X1, . . . , Xd0 , Y1, . . . , Yd1 , Y−1
1 , . . . , Y−1

d1
],

where K denotes an algebraically closed field of characteristic 0. The new feature is
that, for each w = (ξ1, . . . , ξd0 , η1, . . . , ηd1 ) ∈ K d , we introduce a derivation Dw of
K [G] by putting

Dw =
d0∑

h=1

ξh
∂

∂Xh
+

d1∑

i=1

ηi Yi
∂

∂Yi
·

We will discuss these derivations in more details in § 8.3.2. At this point, we simply
need the following definitions.

Given a point g ∈ G, a vector subspace W of K d and an integer N ≥ 0, we say
that an element P of K [G] vanishes to order > N at g with respect to W if

Dw1 · · ·Dws P(g) = 0

for any integer s with 0 ≤ s ≤ N and any w1, . . . , ws ∈ W , this condition being
interpreted as P(g) = 0 when s = 0.

Given an algebraic subgroup G∗ of G, we define the tangent space of G∗ at the
neutral element e to be the subspace Te(G∗) of K d consisting of all points w ∈ K d

such that Dw maps into itself the ideal I (G∗) of all elements of K [G] vanishing
identically on G∗. We will show in § 8.3.2 that, when G∗ is written in the form of a
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product V×T8 where V is a subspace of K d0 and8 a finitely generated subgroup of
Zd1 , then we have Te(G∗) = V × L where L denotes the subspace of K d1 consisting
of the common zeros of the linear forms ϕ1Y1 + · · · + ϕd1 Yd1 with (ϕ1, . . . , ϕd1 ) ∈ 8.
In particular, we have Te(G) = K d .

The following statement deals with a relative situation where we have a pair
of algebraic subgroups G−, G+ of G with G− ⊂ G+, and a polynomial P which
vanishes identically, with multiplicities, on a family of translates of G− inside G+.
It can be thought as a multiplicity estimate on the quotient G+/G− although it does
not require that the polynomial map induced by P on the group G+ factors through
the quotient. It also avoids embedding the quotient as an algebraic subset of some
affine space.

Theorem 8.1. Let G− and G+ be connected algebraic subgroups of G with G− ⊂
G+, let 6 be a subset of G+ containing e, let S0 ≥ 0 be an integer, and let W be
a vector subspace of Te(G+). Denote by d+ the dimension of G+ and assume that,
for given integers D0, D1, . . . , Dd1 ≥ 0 and S0 ≥ 0, there exists a nonzero element
P of K [G] of multidegree ≤ (D0, D) = (D0, D1, . . . , Dd1 ) which does not vanish
identically on G+ but vanishes to order > (d+)S0 with respect to W at each point of
6[d+]+G−. Then there exists a connected algebraic subgroup G∗ of G+ of dimension
< d+, containing G− such that, if we set

`′0 = dimK

(
W + Te(G∗)

Te(G∗)

)
,

then (
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; D0, D) ≤ H (G+; D0, D).

Moreover, we may assume that G∗ is an irreducible component of the set of zeros in
G+ of a family of polynomials of K [G] of multidegree ≤ (D0, D).

The last assertion of the theorem is often expressed in short by saying that G∗ is
incompletely defined in G+ by polynomials of multidegree ≤ (D0, D). If we write
Te(G+) = V+ × L+, this is equivalent to saying that Te(G∗) has the form V∗ × L∗
where V∗ is a subspace of V+ and where L∗ is the intersection of L+ with a subspace
of K d1 defined by linear forms ϕ1Y1 + · · · + ϕd1 Yd1 with (ϕ1, . . . , ϕd1 ) ∈ Zd1 [D] (see
Exercise 8.8).

When G− = {e} and 6 is finite, the above theorem is a special case of Theorem
2.1 of [P 1986a]. As in the proof of Theorem 5.1, there is little additional difficulty
in assuming that 6 may be infinite. We will use this in § 8.4 to deduce the general
case of Theorem 8.1 from the case where G− = {e}. The proof of this special case
will follow essentially the same pattern as the proof of Theorem 5.1. However, the
arguments will be less geometric. In order to handle the multiplicities, we shall need
to concentrate not only on algebraic sets but also on the ideals defining them.

Note that Theorem 5.1 follows from Theorem 8.1 by taking G− = {e}, G+ = G,
S0 = 0 and W = {0}, so that `′0 = 0.
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8.1.1 An Example of Application

We give below a simple example of application of Theorem 8.1 with the group
G = G2

m. Another example, with the group G = Ga ×Gm, is given in Exercise 8.1.

Example. Let G = G2
m = (K×)2 and let (α, β) ∈ G. Assume that α and β are

multiplicatively independent. Choose b ∈ K with b /∈ Q and let W be the subspace
of Te(G) = K 2 generated by the vector w = (1, b). Fix two positive integers S0 and
S1 and consider the subset 6 of G given by

6 =
{
(αs, βs) ; s ∈ Z, |s| ≤ S1

}
.

Suppose that, for some positive integers D1, D2, there exists a nonzero polynomial
P ∈ K [G] = K [Y±1

1 , Y±1
2 ] of bidegree ≤ (D1, D2) which vanishes to order > 2S0

with respect to W at each point of

6[2] =
{
(αs, βs) ; s ∈ Z, |s| ≤ 2S1

}
.

Then all the hypotheses of Theorem 8.1 are satisfied with G− = {e} and G+ = G.
So, there exists a connected algebraic subgroup G∗ of G of dimension< 2 such that

(
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; D1, D2) ≤ 8D1 D2.

where `′0 denotes the dimension over K of the quotient (W + Te(G∗))/Te(G∗). Since
G∗ has dimension at most one, it is of the form G∗ = T8 for some subgroup8 of Z2

of rank at least one. Let (k1, k2) be a nonzero element of8. Then Te(G∗) is contained
in the kernel of the linear form k1Y1 + k2Y2. Since b /∈ Q, we have k1 + k2b /= 0, thus
w /∈ Te(G∗) and therefore `′0 = 1. On the other hand, since α, β are multiplicatively
independent, we have (αs)k1 (βs)k2 /= 1 for any s ∈ Z with s /= 0. Thus the elements
of6 are pairwise incongruent modulo G∗ and therefore (6+G∗)/G∗ has cardinality
2S1 + 1. Since H (G∗; D1, D2) is a positive integer, we deduce that:

8D1 D2 ≥ (S0 + 1)(2S1 + 1).

Conversely, suppose that D1, D2 are positive integers with D1 D2 ≥ (S0+1)(2S1+
1). Then the vector space of polynomials of K [G] of bidegree ≤ (D1, D2) has
dimension (2D1 + 1)(2D2 + 1) > (2S0 + 1)(4S1 + 1). Since the right hand side of
this inequality is the number of linear conditions that a polynomial must satisfy in
order to vanish with multiplicity > 2S0 with respect to W on the set 6[2], there
is a nonzero polynomial of K [G] of bidegree ≤ (D1, D2) which satisfies all these
conditions. Thus the constraint given by the zero estimate is optimal up to the value
of the multiplicative constant.
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8.2 Some Commutative Algebra

The purpose of this section is to extend Philippon’s upper bound for the function
H in § 5.2.4 to a certain class of ideals of K [X ] = K [X1, . . . , Xn] called complete
intersections. We start by recalling some facts and definitions from commutative
algebra.

8.2.1 Primary Decomposition and Rank of an Ideal

Let R be a Noetherian ring. We say that an ideal I of R is proper if I /= R. Fix such
an ideal I . Then, I can be written as an intersection of primary ideals of R:

I = q1 ∩ . . . ∩ qs . (8.2)

Moreover, it is possible to choose q1, . . . , qs in such a way that none of these
primary ideals contains the intersection of the others and that their respective radicals
p1, . . . , ps are distinct prime ideals of R. When this is the case, the decomposition
is said to be irredundant and the prime ideals p1, . . . , ps are uniquely determined
by I . They are called the associated prime ideals of I . These prime ideals are
characterized by the following property: given a homogeneous polynomial P ∈ R,
the multiplication by P in the quotient R/I is an injective map if and only if P
does not belong to any of p1, . . . , ps . However, the corresponding primary ideals
q1, . . . , qs in the decomposition (8.2), called primary components of I , may differ
from one decomposition to another.

By construction, any associated prime ideal of I contains I . Moreover, any prime
ideal p of R containing I must contain an associated prime ideal of I . Therefore the
set of all prime ideals of R containing I and the set of associated prime ideals of I
have the same minimal elements with respect to inclusion. These elements are called
minimal prime ideals of I . Recall that, for these prime ideals, the corresponding
primary ideals are unique: they do not depend on the choice of a particular irredundant
primary decomposition of I (see Theorem 8, § 5, Chap. IV of [ZSa 1958]).

The rank of a prime ideal p of R is the largest integer r for which there exists a
strictly increasing chain of r + 1 prime ideals of R ending with p:

p0 ⊂ p1 ⊂ · · · ⊂ pr = p.

In general, if I is a proper ideal of R, the rank of I is defined as the minimum of
the ranks of the prime ideals of R containing I . It is denoted rank(I ). Equivalently,
rank(I ) is the minimum of the ranks of the minimal prime ideals of I . A theorem of
Krull (see Theorem 30, § 14, Chap. IV of [ZSa 1958]) shows that one has rank(I ) ≤ r
if I is a proper ideal of R generated by r elements. In particular, the rank of a proper
ideal of R is always finite. An ideal of R is said to be unmixed if all its associated
prime ideals have the same rank. In particular, when an ideal I is unmixed, all its
associated prime ideals are minimal prime ideals of I , and thus I admits a unique
irredundant primary decomposition.
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In this section and the next one, we work over the Noetherian ring R =
K [X ] = K [X1, . . . , Xn] for some positive integer n. A theorem of Hilbert (the
“Nullstellensatz”) shows that an ideal I of K [X ] is proper if and only if it admits at
least one zero in K n . Moreover, when I is proper ideal of K [X ], there is a bijection
between the minimal prime ideals of I and the irreducible components of its zero set
in K n . Under this bijection, a minimal prime ideal p of I is mapped to an irreducible
component V of the zero set of I if and only if p = I (V ) is the set of polynomials
vanishing identically on V or, equivalently, if and only if V is the zero set of p. If
I has rank r , its zero set has dimension n − r . Finally, a theorem of Macaulay (see
Theorem 26, § 8, Chap. VII of [ZSa 1958]) shows that, if I is an ideal of K [X ] of
rank r generated by r polynomials P1, . . . , Pr , then I is unmixed. An ideal of this
type is said to be a complete intersection.

8.2.2 Multihomogeneous Hilbert-Samuel Polynomial

As in § 5.2.3, we decompose the set of variables X = (X1, . . . , Xn) into subsets

X (1) = (X (1)
1 , . . . , X (1)

n1
) , . . . , X (k) = (X (k)

1 , . . . , X (k)
nk

)

with n1 + . . .+nk = n. Recall that, for a given k-tuple of integers D = (D1, . . . , Dk) ∈
Nk , we denote by K [X ]≤D the vector space of elements of K [X ] = K [X (1), . . . , X (k)]
consisting of all polynomials of multidegree≤ D, i.e. those polynomials having total
degree≤ Di in the set of variables X (i) for i = 1, . . . , k. We define the Hilbert function
of an ideal I of K [X ] as the map H (I ;−):Nk → N given, for any D ∈ Nk , by

H (I ; D) = dimK
(
(K [X ]≤D + I )/I

)
.

In § 5.2.3, we discussed the case where I is the ideal I (V ) of all polynomials
vanishing identically on some nonempty algebraic subset V of K n . In the more
general situation that we consider here, it can be shown again that H (I ; D) is given
by a polynomial in D1, . . . , Dk for sufficiently large integral values of D1, . . . , Dk .
This polynomial is also called the multihomogeneous Hilbert-Samuel polynomial of
I associated with the above partition of X , and the reason is similar. This polynomial
is clearly 0 if I = K [X ]. Otherwise, one shows that its degree is the dimension d ≥ 0
of the set of zeros of I in K n . Its degree is also given by d = n − r where r denotes
the rank of I . A reference for this is [Vd 1928].

If I is a proper ideal of K [X ] of rank r , we denote by H (I ; D) the product by
(n − r )! of the homogeneous part of degree n − r of its multihomogeneous Hilbert-
Samuel polynomial. Otherwise, if I = K [X ], we define H (I ; D) = 0. In all cases, if
we fix a point C ∈ Nk with sufficiently large coordinates, then H (I ; C + T ) is given
by a polynomial in T for T ∈ Nk and we get

H (I ; D) = (n − r )! lim
t→∞
t∈N

H (I ; C + t D)

tn−r
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for any D ∈ Nk . In accordance with § 5.2.3, when I = I (V ) for some algebraic
subset V /= ∅ of K n , we also write H (V ; D) to denote H (I ; D) and H (V ; D) to
denote H (I ; D).

In the sequel, we shall need the following important fact which generalizes
Proposition 5.2:

Proposition 8.3. Let I be a proper ideal of K [X ] of rank r and let I = q1∩· · ·∩qs be
an irredundant primary decomposition of I . Assume that qi has rank r for i = 1, . . . , t
and rank > r for i = t + 1, . . . , s. Then, we have

H (I ; D) =
t∑

i=1

H (qi ; D).

The easiest way to prove this result is to work over the larger ring

K [X̃
(1)
, . . . , X̃

(k)
]

introduced in § 5.2.3 and to replace I by the corresponding multihomogeneous ideal
Ĩ also defined in § 5.2.3. Then, one shows that Ĩ = q̃1 ∩ · · · ∩ q̃s is a primary
decomposition of Ĩ (see part 9 of Theorem 17, § 5, Chap. VII of [ZSa 1958] for the
homogeneous case; the general case is similar). The conclusion follows by applying
Theorem 8 of [Vd 1928] to this decomposition of Ĩ . An alternative and more direct
approach is suggested by the exercises 8.4 and 8.5.

8.2.3 Philippon’s Upper Bound

The following result is again a special case of P. Philippon’s general upper bound
for the function H (Proposition 3.3 of [P 1986a]):

Theorem 8.4. Let I be an ideal of K [X ] = K [X1, . . . , Xn] which is a complete
intersection and let J be the ideal of K [X ] generated by I and by a family F of
polynomials of multidegree≤ D. Assume that J is a proper ideal of K [X ]. Then, we
have

H (J ; D) ≤ H (I ; D).

For the proof, we will need the following lemma:

Lemma 8.5. Let k ≥ 0 be an integer, let P1, . . . , Pk be elements of K [X ] which
generate an ideal Ik of rank k, and let Pk+1 ∈ K [X ] be a polynomial of multidegree
≤ D which does not belong to any of the associated prime ideals of Ik . Assume
that the ideal Ik+1 generated by P1, . . . , Pk+1 is proper. Then, Ik+1 is a complete
intersection of rank k + 1 and we have

H
(
Ik+1; D

) ≤ H (Ik ; D).
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Proof. Since Ik+1 is proper and generated by k + 1 elements, Krull’s theorem shows
that its rank is at most k + 1 (see § 8.2.1). On the other hand, since Pk+1 does not
belong to any minimal prime ideal of Ik , none of the minimal prime ideals of Ik+1 is
a minimal prime ideal of Ik . The rank of Ik being k, this implies that Ik+1 has rank at
least k + 1 and thus its rank is k + 1. Hence, Ik+1 is a complete intersection and it is
unmixed of rank k + 1.

Since Pk+1 does not belong to any of the associated prime ideals of Ik , the
multiplication by Pk+1 defines an injective endomorphism of the K [X ]-module
K [X ]/Ik . Its image being Ik+1/Ik , we get an exact sequence of K [X ]-modules

0 −→ K [X ]/Ik
×Pk+1−→K [X ]/Ik

ν−→K [X ]/Ik+1 −→ 0,

where ν denotes the canonical map sending a class Q + Ik ∈ K [X ]/Ik to Q + Ik+1 ∈
K [X ]/Ik+1. By restriction, ν induces, for each T ∈ Nk a surjective K -linear map

(
K [X ]≤D+T + Ik

)
/Ik −→

(
K [X ]≤D+T + Ik+1

)
/Ik+1.

Moreover, since Pk+1 has multidegree ≤ D, the multiplication by Pk+1 induces an
injective K -linear map

(
K [X ]≤T + Ik

)
/Ik −→

(
K [X ]≤D+T + Ik

)
/Ik,

whose image is contained in the kernel of the previous map. Comparing dimensions,
this implies

H (Ik+1; D + T ) ≤ H (Ik ; D + T )− H (Ik ; T ).

From this, we conclude as in the last part of the proof of Lemma 5.4. ¤

Proof of Theorem 8.4. Let r and s be the respective ranks of I and J . Since I
is a complete intersection, there exist polynomials P1, . . . , Pr ∈ K [X ] such that
I = (P1, . . . , Pr ). We claim that there also exist polynomials Pr+1, . . . , Ps , all of
multidegree≤ D, such that for k = r, . . . , s, the ideal Ik = (P1, . . . , Pk) is a complete
intersection of rank k with I ⊆ Ik ⊆ J and H (Ik ; D) ≤ H (I ; D).

We proceed by induction on k. For k = r , there is nothing to prove. Assume that
P1, . . . , Pk have been constructed for some integer k with r ≤ k < s and that the
corresponding ideal Ik has the required properties. Let p1, . . . , pt be the associated
prime ideals of Ik . Since they all have rank k < s, none of these prime ideals
contains the set F . So, for each i = 1, . . . , t , there is a polynomial Qi ∈ F which
does not belong to pi . Consider the sequence of polynomials

(∑t
i=1 mi−1 Qi

)
m∈N∗ .

This sequence has the property that any subsequence of t elements span the same
vector subspace of K [X ] as Q1, . . . , Qt . Thus, each of the prime ideals p1, . . . , pt

contains at most t elements of the sequence and, consequently, all but finitely many
polynomials of that sequence do not belong to any of these prime ideals. Let Pk+1 be
one such polynomial, and let Ik+1 = (Ik, Pk+1). By construction, Pk+1 has multidegree
≤ D. Moreover Ik+1 is a proper ideal of K [X ] since it is contained in J . By Lemma
8.5, this implies H (Ik+1; D) ≤ H (Ik ; D), as required.
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For k = s, the above construction provides an ideal Is of K [X ] of the same rank
as J with Is ⊆ J and

H (Is ; D) ≤ H (I ; D).

The fact that Is and J share the same rank and satisfy Is ⊆ J also implies

H (J ; D) ≤ H (Is ; D)

(see Exercise 8.3). The conclusion follows by combining the above two inequalities.
¤

8.3 The Group G and its Invariant Derivations

In this section, we extend the definition of the function H to ideals of K [G]. We
prove an upper bound for the function H when the ideal is generated by the ideal of
an algebraic subgroup of G and by elements of K [G] of bounded multidegree. We
also prove a version of Wüstholz’ lemma which gives a lower bound for H when the
ideal consists of polynomials vanishing with multiplicity on certain components of
its zero set, assuming that these components are translates of an algebraic subgroup
of G.

8.3.1 Intersections on an Algebraic Subgroup

As in § 5.3, we introduce a new set of variables Z = (Z1, . . . , Zd1 ) besides
X = (X1, . . . , Xd0 ) and Y = (Y1, . . . , Yd1 ). These three sets of variables generate over
K a polynomial ring K [X , Y , Z ] in n := d0 + 2d1 variables. Given integers D0 ∈ N
and D = (D1, . . . , Dd1 ) ∈ Nd1 , we say that an element of this ring has multidegree
≤ (D0, D) if it has total degree≤ D0 in the set of variables X and total degree≤ D j

in the variables (Y j , Z j ) for j = 1, . . . , d1. We also denote by K [X , Y , Z ]≤(D0,D) the
subspace of K [X , Y , Z ] consisting of all elements of multidegree ≤ (D0, D).

Consider the surjective map of K -algebras

ψ : K [X , Y , Z ] −→ K [X , Y±1] ' K [G]

which sends Z j to Y−1
j for j = 1, . . . , d1 and sends the remaining variables X , Y to

themselves. His kernel is the ideal

(Y1 Z1 − 1, . . . , Yd1 Zd1 − 1)

and the zero set of this ideal in K n = K d0 × K d1 × K d1 is the algebraic subgroup U
of K d0 × (K×)2d1 defined in § 5.3. Recall also the group isomorphism π : U → G
defined in § 5.3 by sending a point (x, y, z) ∈ U to the point (x, y) ∈ G. This map
is related to ψ by the property that, for any polynomial P ∈ K [X , Y , Z ], we have
ψ(P) = P ◦ π−1. Moreover, if E is an algebraic subset of G, the ideal I (E) of E in
K [G] is related to the ideal I (π−1(E)) of π−1(E) in K [X , Y , Y ] by
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I
(
π−1(E)

)
= ψ−1

(
I (E)

)
. (8.6)

In terms of the mapψ , an element P of K [G] has multidegree≤ (D0, D) if P = ψ(Q)
for some element Q of K [X , Y , Z ] of multidegree ≤ (D0, D) (see § 5.1 and § 5.3).
Accordingly, we put

K [G]≤(D0,D) = ψ
(
K [X , Y , Z ]≤(D0,D)

)
.

Finally, we define the Hilbert function of an ideal I of K [G] as the map H (I ; −):N×
Nd1 → N given by

H (I ; D0, D) = dimK
(
(K [G]≤(D0,D) + I )/I

)

= dimK
(
(K [X , Y , Z ]≤(D0,D) + ψ−1(I ))/ψ−1(I )

)
.

For large values of D0, . . . , Dd1 , this function coincides with a polynomial in
D0, . . . , Dd1 whose degree, say m, is both the dimension of the zero set of ψ−1(I )
in K n and the dimension of the zero set of I in G. We denote by H (I ; D0, D)
the product by m! of the homogeneous part of degree m of this polynomial. When
I = I (E) is the ideal of an algebraic subset E /= ∅ of G, the formula (8.6) shows
that H (I ; D0, D) coincides with the function H (E ; D0, D) defined in § 5.3. Then,
H (I ; D0, D) also coincides with H (E ; D0, D).

Lemma 8.7. Let G∗ be an algebraic subgroup of G and let I = ψ−1
(
I (G∗)

)
. Then,

the ideal I is a complete intersection in K [X , Y , Z ].

Proof. Write G∗ = V × T8 where V is a subspace of K d0 and 8 is a subgroup of
Zd1 . Define V⊥ to be the subspace of K [X ] = K [X1, . . . , Xd0 ] consisting of the
linear forms a1 X1 + · · · + ad0 Xd0 which vanish identically on V. Choose a basis
{L1, . . . , Lr } of V⊥ and a basis {ϕ

1
, . . . , ϕ

s
} of the group 8. Proposition 5.6 shows

that I (G∗) is the ideal of K [G] generated by the r + s elements L1, . . . , Lr and
Y ϕ

1−1, . . . , Y ϕ
s−1. Since the kernel ofψ is generated by d1 elements, we conclude

that I is generated by r +s +d1 polynomials. On the other hand, Theorem 5.13 shows
that G∗ is equidimensional of dimension

dimK (V) + (d1 − rank(8)) = (d0 − r ) + (d1 − s) = n − (r + s + d1).

Since π−1(G∗) is an algebraic subset of K n of the same dimension and since I is the
ideal of all polynomials of K [X , Y , Z ] vanishing on that set, this shows that I is a
complete intersection. ¤

Theorem 8.8. Let G∗ be an algebraic subgroup of G and let A be an ideal of
K [G] generated by the ideal I (G∗) of G∗ and by elements of K [G] of multidegree
≤ (D0, D). Assume that A admits at least one zero in G. Then, we have

H (A; D0, D) ≤ H (G∗; D0, D).



                

240 8. Multiplicity Estimate by Damien Roy

Proof. Put I = ψ−1(I (G∗)) and J = ψ−1(A). Then, J is an ideal of K [X , Y , Z ]
generated by I and by elements of K [X , Y , Z ] of multidegree ≤ (D0, D). Since, by
Lemma 8.7, the ideal I is a complete intersection, Theorem 8.4 gives H (J ; D0, D) ≤
H (I ; D0, D). The conclusion follows. ¤

8.3.2 Invariant Derivations

Recall that a K -derivation of a commutative K -algebra R is a K -linear map
D : R→ R which satisfies

D(P Q) = D(P)Q + PD(Q)

for any P, Q ∈ R (see Chap. VIII, § 5 of [L 1993]). They form an R-module with
the sum of two derivations D1 and D2 defined by (D1 + D2)(P) = D1(P) + D2(P)
for any P ∈ R, and the product of a derivation D by an element a of R defined by
(aD)(P) = aD(P) for any P ∈ R.

We consider here the case where R = K [G] is the K -algebra of polynomial
functions P: G → K on the group G. If we identify K [G] with K [X , Y±1] in the
usual way (see § 5.3), then one sees that the differential operators

d0∑

i=1

Ai
∂

∂X i
+

d1∑

j=1

B j
∂

∂Y j
(8.9)

with A1, . . . , Ad0 , B1, . . . , Bd1 ∈ K [G] are K -derivations of K [G] and that any
K -derivation D of K [G] can be written in this way by taking Ai = D(X i ) for
i = 1, . . . , d0 and B j = D(Y j ) for j = 1, . . . , d1. In the sequel, we use the word
derivation to mean a K -derivation.

We say that a derivation D of K [G] is invariant if it commutes with the operator
τg: G → G of translation by g for any g ∈ G (see the definition of τg in § 5.3.2).
More precisely, a derivation D of K [G] is said to be invariant if it satisfies

D(P) ◦ τg = D(P ◦ τg) (8.10)

for any P ∈ K [G] and any g ∈ G.

Lemma 8.11. The invariant derivations of K [G] are precisely the derivations

Dw =
d0∑

i=1

ξi
∂

∂X i
+

d1∑

j=1

η j Y j
∂

∂Y j

with w = (ξ1, . . . , ξd0 , η1, . . . , ηd1 ) ∈ K d , introduced in § 8.1.

Proof. We first observe that a derivation D is invariant if it satisfies the condition
(8.10) for any g ∈ G and for each of the polynomials X1, . . . , Xd0 , Y1, . . . , Yd1 .
Write a derivation D in the form (8.9) and let g = (x1, . . . , xd0 , y1, . . . , yd1 ) be an
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arbitrary element of G. The condition (8.10) applied respectively with P = X i and
P = Y j reduces to

Ai ◦ τg = D(X i + xi ) = Ai and B j ◦ τg = D(y j Y j ) = y j B j . (8.12)

Evaluating these equalities at the neutral element e of G gives respectively

Ai (g) = Ai (e) and B j (g) = B j (e)y j .

So, if D is an invariant derivation of K [G], we must have Ai = Ai (e) for i = 1, . . . , d0

and B j = B j (e)Y j for j = 1, . . . , d1, and therefore D has the form stated in the
lemma. Conversely, if D is a derivation of this form, then Ai = ξi and B j = η j Y j

clearly satisfy the conditions (8.12), and thus D is invariant. ¤

In § 8.1, we defined the tangent space at the identity of an algebraic subgroup G∗
of G to be the subspace Te(G∗) of K d consisting of all points w ∈ K d for which the
corresponding invariant derivation Dw maps the ideal I (G∗) to itself. When G∗ = G,
we have I (G∗) = 0 and so Te(G) = K d . In general, we have the following description
of Te(G∗):

Lemma 8.13. Let V be a subspace of K d0 , let 8 be a finitely generated subgroup
of Zd1 , and let G∗ = V × T8 be the corresponding algebraic subgroup of G. Then,
Te(G∗) = V ×8⊥ where8⊥ denotes the subspace of K d1 consisting of the common
zeros of the linear forms ϕ1Y1 + · · · + ϕd1 Yd1 with (ϕ1, . . . , ϕd1 ) ∈ 8. Moreover, the
group G∗ and its neutral component G∗0 have the same tangent space at the identity.

Proof. Let {L1, . . . , Lr } be a basis of the space of linear forms in K [X ] which
vanish identically on V, and let {ϕ

1
, . . . , ϕ

s
} be a basis of8. By Proposition 5.6, the

ideal I (G∗) is generated by L1, . . . , Lr and the polynomials Y ϕ
1 − 1, . . . , Y ϕ

s − 1.
Therefore, a pointw = (ξ, η) ∈ K d0×K d1 belongs to Te(G∗) if and only if it satisfies

Dw(L i ) ∈ I (G∗) for i = 1, . . . , r and Dw

(
Y
ϕ

j − 1
) ∈ I (G∗) for j = 1, . . . , s.

Now, we have Dw(L) = L(ξ ) for any linear form L in K [X ]. We also find, for any
ϕ ∈ 8,

Dw

(
Y ϕ − 1

)
= (ϕ, η)Y ϕ ≡ (ϕ, η) mod (I (G∗)),

where (ϕ, η) stands for ϕ1η1 + · · · + ϕd1ηd1 . Thus, the conditions on w amount to
L i (ξ ) = 0 for i = 1, . . . , r and (ϕ

j
, η) = 0 for j = 1, . . . , s. They are satisfied if and

only if w ∈ V ×8⊥. This proves the first assertion of the lemma.
For the second assertion, we use Theorem 5.13. It shows that G∗0 = V×T8 where

8 is the largest subgroup of Zd1 containing8with the same rank as8. Since8 is of

finite index in 8, we have 8⊥ = 8
⊥

and, by the first part of the lemma, we deduce
Te(G∗) = Te(G∗0). ¤

We conclude this section with three lemmas. The first one is essentially Lemma
4.6 of [P 1986a].
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Lemma 8.14. Let G∗ be an algebraic subgroup of G, let W be a subspace of K d ,
and put

` = dimK

(
W + Te(G∗)

Te(G∗)

)
·

Then, there are elements w1, . . . , w` of W and polynomials P1, . . . , P` of I (G∗)
such that

Dwi (Pj ) ≡ δi, j mod I (G∗), for i, j = 1, . . . , `.

Note that, in the above statement, we do not assume that the group G∗ is
connected.

Proof. Write G∗ = V×T8 where V is a subspace of K d0 and8 is a finitely generated
subgroup of Zd1 . As in the proof of Lemma 8.13, choose a basis {L1, . . . , Lr } of the
space of linear forms in K [X ] vanishing identically on V, and a basis {ϕ

1
, . . . , ϕ

s
}

of 8. Consider the vector-subspace of I (G∗)

E =
〈
L1, . . . , Lr , Y ϕ

1 − 1, . . . , Y ϕ
s − 1

〉 ⊆ I (G∗),

spanned over K by L1, . . . , Lr and the polynomials Y
ϕ

j − 1 with j = 1, . . . , s. We
observed in the proof of Lemma 8.13 that, for any point w = (ξ, η) ∈ K d0 × K d1 ,
any L ∈ V⊥ and any ϕ ∈ 8, we have

Dw(L) = L(ξ ) and Dw

(
Y ϕ − 1

) ≡ (ϕ, η) mod I (G∗),

where (ϕ, η) = ϕ1η1 + · · · + ϕd1ηd1 . Thus, for any w ∈ K d and any P ∈ E , there
exists a constant c ∈ K such that Dw(P) ≡ c mod I (G∗). Consider the bilinear map

b : K d × E −→ K

which maps a point (w, P) ∈ K d × E to the unique element c of K satisfying the
above condition. Since, I (G∗) is generated by E as an ideal, it is clear that the left
kernel of b is E⊥ = Te(G∗). Thus, ifw1, . . . , w` are elements of W whose images in
K d/Te(G∗) are linearly independent over K , then there exist P1, . . . , P` ∈ E such
that b(wi , Pj ) = δi, j for i, j = 1, . . . , `. ¤

The next lemma extends the validity of Lemma 8.14 to a finite union of translates
of an algebraic subgroup of G.

Lemma 8.15. Let G∗ be an algebraic subgroup of G, let6 be a subset of G, and let
W be a subspace of K d . Assume that 6 + G∗ consists of a finite union of translates
of G∗. Denote by J the ideal I (6 + G∗) and define ` as in Lemma 8.14. Then, there
are elements w1, . . . , w` of W and polynomials Q1, . . . , Q` of J such that

Dwi (Q j ) ≡ δi, j mod J, for i, j = 1, . . . , `.
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Proof. Proposition 5.6 shows that the ideal I (G∗) of G∗ is generated by elements
of K [G] which are constant on each translate of G∗. Thus, for each σ ∈ G with
σ /∈ G∗, there is an element Aσ of I (G∗) which induces the constant function 1 on
σ + G∗.

Let {σ1, . . . , σs} be a maximal subset of 6 consisting of elements which are
pairwise incongruent modulo G∗. For each i = 1, . . . , s, define

Bi =
∏

j /=i

Aσi−σ j ◦ τ−σ j .

Then, Bi is identically 1 on σi + G∗ and identically 0 on each of the other translates
σ j + G∗ with j /= i .

Let w1, . . . , w` and P1, . . . , P` be as in Lemma 8.14, and consider the polyno-
mials Q1, . . . , Q` given by

Q j =
s∑

k=1

B2
k

(
Pj ◦ τ−σk

)
, (1 ≤ j ≤ `).

Since Pj ◦ τ−σk is identically 0 on σk + G∗, the product B2
k

(
Pj ◦ τ−σk

)
is identically

0 on 6 + G∗ and thus belongs to the ideal J for any choice of k and j . This implies
that Q1, . . . , Q` all belong to J . Moreover, the function

B2
k Dwi

(
Pj ◦ τ−σk

)
= B2

k

(
Dwi (Pj ) ◦ τ−σk

)

is, by construction, constant equal to δi, j on σk + G∗. It is also identically 0 on the
other translates of G∗ contained in 6 + G∗. Therefore, we find that

Dwi (Q j ) =
s∑

k=1

(
2BkDwi (Bk)

(
Pj ◦ τ−σk

)
+ B2

k Dwi

(
Pj ◦ τ−σk

))

is constant equal to δi, j on 6 + G∗. This means simply Dwi (Q j ) ≡ δi, j mod J , as
required. ¤

Lemma 8.16. Let J be an ideal of K [G]. Assume that there exist elementsw1, . . . , w`
of K d and polynomials Q1, . . . , Q` in J such that Dwi (Q j ) ≡ δi, j mod J for
i, j = 1, . . . , `. Then, for any α, β ∈ N` with |β| ≤ |α|, we have, modulo J ,

(
Dβ1
w1
· · ·Dβ`

w`

) (
P Qα1

1 · · · Qα`
`

) ≡
{

0 if β /= α,
α1! · · ·α`!P if β = α. (8.17)

Proof. We first observe that, for any derivation D of K [G] and any integer t ≥ 2,
we have

D(J t ) ⊆ J t−1.

By induction on s, this implies that, for any derivations D1, . . . ,Ds of K [G] and
any integer t > s, we have

(
D1 · · ·Ds

)
(J t ) ⊆ J t−s .
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Note also that the invariant derivations of K [G] commute (see Exercise 8.6).
We are now ready to prove the lemma by induction on |β|. If |β| = 0, the

conclusion is clear. Assume that |β| = t for some integer t > 0 and that the lemma
holds for differential operators of order < t . Choose an index i such that βi /= 0.
Then, for any α ∈ N` with |α| ≥ t , we find, modulo J t ,

Dwi

(
P Qα1

1 · · · Qα`
`

) ≡
{

0 if αi = 0,
αi P Qα1

1 · · · Qαi−1
i · · · Qα`

` if αi ≥ 1.

Applying Dβ1
w1
· · ·Dβi−1

wi
· · ·Dβ`

w`
on both sides of this congruence and using the

previous observations, we deduce that the left hand side of (8.17) is congruent to 0
modulo J if αi = 0 and that it is congruent to

αi
(
Dβ1
w1
· · ·Dβi−1

wi
· · ·Dβ`

w`

) (
P Qα1

1 · · · Qαi−1
i · · · Qα`

`

)

modulo J if αi ≥ 1. The conclusion then follows from the induction hypothesis. ¤

8.3.3 Wüstholz’ Lemma

We now prove the following special case of Wüstholz’ lemma (see [Wü 1989]):

Theorem 8.18. Let A be an ideal of K [G] and let W be a subspace of K d . Assume
that there exist a subset 6 of G, an algebraic subgroup G∗ of G, and an integer
S0 ≥ 0 such that each element Q of A vanishes to order> S0 at each point of6+ G∗
with respect to W . Assume moreover that 6 + G∗ is a finite union of translates of
G∗ and that the set of zeros of A in G has the same dimension as G∗. Then, for any
(D0, D) ∈ N× Nd1 , we have

H (A; D0, D) ≥
(

S0 + `′0
`′0

)
H (6 + G∗; D0, D) (8.19)

where `′0 = dimK ((W + Te(G∗))/Te(G∗)).

Note that the condition that the zero set of A have the same dimension as G∗ is
satisfied when this zero set is a union of translates of G∗. In general, the hypotheses
of the theorem imply that 6 + G∗ is a union of irreducible components of this zero
set.

Proof. For simplicity, put ` = `′0 and J = I (6 + G∗). By Lemma 8.15, there
exist elements w1, . . . , w` of W and polynomials Q1, . . . , Q` ∈ J such that
Dwi (Q j ) ≡ δi, j mod J for i, j = 1, . . . , `. Choose an upper bound (C0,C) ∈ N×Nd1

for the multidegrees of Q1, . . . , Q`, and put (T0, T ) = S0(C0,C). We will show that,
for each (D0, D) ∈ N× Nd1 , we have

H (A; D0 + T0, D + T ) ≥
(

S0 + `

`

)
H (J ; D0, D). (8.20)



                    

8.4 Proof of the Main Result 245

Since, for large values of D0, . . . , Dd1 , the functions H (A; D0 + T0, D + T ) and
H (A; D0, D) coincide with polynomials in D0, . . . , Dd1 with the same homogeneous
part of largest degree, this will imply (8.19) independently of the choice of (D0, D).

Fix (D0, D) ∈ N × Nd1 and choose a subspace E of K [G]≤(D0,D) of maximal
dimension such that E ∩ J = 0. By definition, the dimension of E is N =
H (J ; D0, D). Let {P1, . . . , PN } be a basis of E . We claim that the products

Pi Qα1
1 · · · Qα`

`

with 1 ≤ i ≤ N , α ∈ N` and |α| ≤ S0 are linearly independent modulo A. Since
these polynomials have multidegree ≤ (D0 + T0, D + T ) and since their number is(S0+`
`

)
N , this will imply (8.20).

Assume on the contrary that there exist elements Pα of E , not all zero, such that
∑

|α|≤S0

PαQα1
1 · · · Qα`

` ∈ A.

Among the `-tuples α with Pα /= 0, choose one, say β, of minimal length |β|. Since
|β| ≤ S0, the hypothesis of the theorem gives

(
Dβ1
w1
· · ·Dβ`

w`

) ( ∑

|α|≤S0

PαQα1
1 · · · Qα`

`

)
∈ J.

By Lemma 8.16, this is impossible since the above polynomial is congruent to
β1! · · ·β`!Pβ modulo J . The proof is complete. ¤

8.4 Proof of the Main Result

8.4.1 Case where G− = {e}

In the case where G− = {e}, the hypotheses of Theorem 8.1 are that P /∈ I (G+) and
that P vanishes to order > (d+)S0 along W at each point of 6[d+].

Let I1 be the ideal of K [G] generated by I (G+) and P . For each integer r ≥ 2,
define also Ir to be the ideal of K [G] generated by I (G+) and the polynomials

Dw1 · · ·Dwt

(
P ◦ τγ

)
=
(
Dw1 · · ·Dwt P

) ◦ τγ
where γ ∈ 6[r − 1], 0 ≤ t ≤ (r − 1)S0 and w1, . . . , wt ∈ W . By construction,
these ideals form an increasing sequence

I (G+) ⊆ I1 ⊆ I2 ⊆ · · · ⊆ I1+d+ ⊆ · · ·
Let Xr be the set of zeros of Ir in G for r = 1, 2, . . . These algebraic subsets of

G form in turn a decreasing sequence

G+ ⊇ X1 ⊇ · · · ⊇ X1+d+ ⊇ · · ·
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By hypothesis, X1 is a proper algebraic subset of G+ and we have e ∈ X1+d+ . This
means dim(X1+d+ ) ≥ 0 and dim(X1) < d+. Therefore, there is an index r with
1 ≤ r ≤ d+ such that Xr and Xr+1 have the same dimension. Let V be a common
irreducible component of Xr and Xr+1 of this dimension. As in the proof of Theorem
5.1, we consider the sets

E = {g ∈ G ; g + V ⊆ Xr } and G∗ = {g ∈ G ; g + V = V } .
The same reasoning as in § 5.4 shows that G∗ is an algebraic subgroup of G and that
E is a finite union of translates of G∗. Moreover G∗ is a proper algebraic subgroup
of G+ because V ⊆ Xr ⊂ G+. Since

E =
⋂

v∈V

(− v + Xr
)
,

we may also describe E as the set of zeros in G of the ideal A generated by I (G+)
and the polynomials Q ◦ τv with Q ∈ Ir and v ∈ V . Since V ⊂ G+, the ideal A is
also generated by I (G+) and the family F consisting of all polynomials of the form

(
Dw1 · · ·Dwt P

) ◦ τγ+v

with γ ∈ 6[r−1], v ∈ V , 0 ≤ t ≤ (r−1)S0 andw1, . . . , wt ∈ W . The polynomials
of this family having multidegree ≤ (D0, D), Theorem 8.8 gives

H (A; D0, D) ≤ H (G+; D0, D). (8.21)

We claim that each element Q of A vanishes to order > S0 at each point of 6 + G∗
with respect to W .

It suffices to prove this claim for a set of generators of A, namely for Q ∈ I (G+)
and Q ∈ F . Since W ⊆ Te(G+), we have Dw(Q) ∈ I (G+) for each w ∈ W
and each Q ∈ I (G+). Thus, for any w1, . . . , ws ∈ W and any Q ∈ I (G+), the
polynomial Dw1 · · ·Dws Q vanishes identically on G+. Since 6 + G∗ is contained
in G+, this proves the claim when Q ∈ I (G+). For the elements of F , the claim
amounts to showing that P vanishes to order > r S0 with respect to W at each point
of v + γ +6 + G∗, for any v ∈ V and any γ ∈ 6[r − 1]. Fix such a choice of v and
γ . Since V is a component of Xr+1, the definition of Ir+1 shows that P vanishes to
order > r S0 with respect to W on each translate of V by an element of 6[r ]. Since
v + G∗ ⊆ V and γ + 6 ⊆ 6[r ], this implies in particular that P vanishes to order
> r S0 with respect to W on γ + v +6 + G∗.

Recall that the set E of zeros of A in G is a finite union of translates of G∗. By
Theorem 8.18, this fact together with the above claim imply

H (A; D0, D) ≥
(

S0 + `′0
`′0

)
H (6 + G∗; D0, D),

where

`′0 = dimK

(
W + Te(G∗)

Te(G∗)

)
·
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By Lemma 5.10, we also have

H (6 + G∗; D0, D) = Card

(
6 + G∗

G∗

)
H (G∗; D0, D)

Combining (8.21) with the above two relations gives
(

S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; D0, D) ≤ H (G+; D0, D).

The argument at the end of § 5.4 shows that this inequality stays valid if G∗ is
replaced by its neutral component G∗0. Moreover, Lemma 8.13 shows that G∗ and
G∗0 have the same tangent space at the identity. So, in the formula for `′0, we may
as well replace G∗ by G∗0: this does not affect the value of this expression. The last
assertion of the theorem is also verified since G∗0 is an irreducible component of E ,
since E is the set of zeros of F in G+, and since the elements of F have multidegree
≤ (D0, D). ¤

8.4.2 General Case

Define
6′ =

⋃

γ∈6
γ + G−.

By hypothesis, the polynomial P vanishes to order > (d+)S0 with respect to W
at each point of 6′[d+]. By virtue of the special case of Theorem 8.1 established
above, there exists a proper connected algebraic subgroup G∗ of G+ such that 6′ is
contained in a finite union of translates of G∗ and such that

(
S0 + `′0
`′0

)
Card

(
6′ + G∗

G∗

)
H (G∗; D0, D) ≤ H (G+; D0, D),

where `′0 = dimK
(
(W + Te(G∗))/Te(G∗)

)
. We may also assume that G∗ is

incompletely defined in G+ by polynomials of multidegree≤ (D0, D). Since e ∈ 6,
we have G− ⊆ 6′ and therefore G− is contained in a finite union of translates of G∗.
Since these translates are disjoint algebraic subsets of G and since G− is connected,
this implies G− ⊆ G∗. We deduce (6′ + G∗)/G∗ = (6 + G∗)/G∗ and the proof is
complete. ¤

Exercises

Exercise 8.1. Let G = Ga×Gm = K ×K×, and let (β, α) ∈ G. Assume that β is nonzero and
that α is not a root of unity. Fix two positive integers S0 and S1. Denote by W the subspace of
Te(G) = K 2 generated by the vector w = (1, 1), and consider the subset 6 of G given by

6 =
{
(sβ, αs) ; s ∈ Z2, |s| ≤ S1

}
.
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Suppose that, for some positive integers D0, D1, there exists a nonzero polynomial P ∈
K [G] = K [X, Y, Y−1] of bidegree ≤ (D0, D1) which vanishes to order > 2S0 at each point
of 6[2]. Show that this implies 4D0 D1 ≥ (S0 + 1)(2S1 + 1). Conversely, find a condition on
D0 and D1 which ensures the existence of such a polynomial.

Exercise 8.2. Produce alternative proofs for Theorem 4.1, either with an auxiliary function
(like in Chapter 4), but without Schwarz lemma (Proposition 4.6), or else with an interpolation
determinant.

Hint. Use Theorem 8.1 for the subspace W of K d generated byw1, . . . , wn , with d0 = n, where
the coordinates in K d of w1, . . . , wn are given by the rows of the n × d matrix

(
In x1 · · · xd1

)
,

where In is the n × n identity matrix.

Exercise 8.3. Let k[X ] = K [X (1), . . . , X (k)], as in § 8.2.2. Show that if I, J are proper ideals
of k[X ] of the same rank with I ⊆ J , then

H (J ; D) ≤ H (I ; D)

for any D ∈ Nk .

The next two exercises provide a proof of Proposition 8.3. Again we assume

K [X ] = K [X (1), . . . , X (k)],

as in § 8.2.2.

Exercise 8.4. Let I be a proper ideal of rank r of K [X ] and let I = q1 ∩ · · · ∩ qs be an
irredundant primary decomposition of I .

(a) Show that, for each D ∈ Nk , there is an injective K -linear map

(
K [X ]≤D + I

)
/I −→

s∏

i=1

( (
K [X ]≤D + q i

)
/q i

)
.

(b) Suppose that q i has rank r for i = 1, . . . , t and rank > r for i = t + 1, . . . , s. Deduce that
we have

H(I ; D) ≤
t∑

i=1

H (q i ; D)

for any D ∈ Nk .

Exercise 8.5. Let the notation be as in Exercise 8.4.b. For each i = 1, . . . , t , denote by p i the
radical of q i and choose a polynomial Pi such that

Pi ∈
⋂

j /=i

q j and Pi /∈ p i .

Choose also C ∈ Nk such that Pi ∈ K [X ]≤C for i = 1, . . . , t .
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(a) Show that, for any D ∈ Nk , there is an injective K -linear map

t∏

i=1

( (
K [X ]≤D + q i

)
/q i

)
−→ (

K [X ]≤(D+C) + I
)
/I

(
Ai + q i

)
1≤i≤t

7−→
( t∑

i=1

Ai Pi

)
+ I

(b) Deduce that we have
t∑

i=1

H (q i ; D) ≤ H (I ; D)

for any D ∈ Nk .

Exercise 8.6. Let D1 and D2 be invariant derivations of K [G]. Show that, for any P ∈ K [G],
we have D1D2 P = D2D1 P . This property is expressed by saying that the invariant derivations
of K [G] commute.

Exercise 8.7. Show that the map G∗ 7→ Te(G∗) establishes a bijection between the connected
algebraic subgroups of G = Gd0

a × Gd1
m and the subspaces of Te(G) = K d0 × K d1 of the form

V × L where V is a subspace of K d0 and L a subspace of K d1 defined over Q .

Exercise 8.8. Let G+ be an algebraic subgroup of G = Gd0
a × Gd1

m , let G∗ be a connected
algebraic subgroup of G+, and let (D0, D) ∈ N×Nd1 . Show that the following three conditions
are equivalent:

(i) G∗ is incompletely defined in G+ by polynomials of multidegree ≤ (D0, D);

(ii) if we write G+ = V+×T8+ , then there exist a subspace V of V+ and a subgroup8 of Zd1

generated by 8+ and by elements of Zd1 [D] such that G∗ is of finite index in V × T8;

(iii) if we write Te(G+) = V+× L+, then Te(G∗) has the form V∗× L∗ where V∗ is a subspace
of V+ and where L∗ is the intersection of L+ with a subspace of K d1 defined by linear
forms ϕ1Y1 + · · · + ϕd1 Yd1 with (ϕ1, . . . , ϕd1 ) ∈ Zd1 [D].

Hint. To prove that (i) implies (ii), write G∗ = V × T8∗ , and define 8 to be the subgroup of
8∗ generated by 8+ and 8∗ ∩ Zd1 [D]. Then show that V × T8 is contained both in G+ and
in the zero set of any polynomial P ∈ K [G]≤(D0,D) which vanishes identically on G∗.
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9. Refined Measures

The purpose of this chapter is twofold. On one hand we prove Baker’s nonhomo-
geneous Theorem 1.6. This is the second proof (§ 9.1) of the transcendence result,
after the proof given in Chap. 4. Another proof (akin to Baker’s own argument) will
be given in Chap. 10.

On the other hand we give a sharp measure for linear independence of logarithms,
both in the homogeneous and in the general case. It is a remarkable fact that the same
type of argument which enables one to deal with nonhomogeneous forms also yields
refined estimates, even in the homogeneous situation with β0 = 0.

Dealing with two logarithms, A. O. Gel’fond [G 1952] was using functions of
a single variable, and he could not reach a dependence on the maximal height B of
the coefficients βi better than exp{−C(log B)2}. In the present state of the theory, in
order to achieve the best possible dependence in B, namely B−C = exp{−C log B},
it is necessary to use functions of several variables (m variables when dealing with
m logarithms), together with Fel’dman’s Delta polynomials.

Here is the main result of this chapter.

Theorem 9.1. For each m ≥ 1 there exists a positive number C(m) with the
following property. Letλ1, . . . , λm beQ-linearly independent logarithms of algebraic
numbers; define α j = exp(λ j ) (1 ≤ j ≤ m). Let β0, . . . , βm be algebraic
numbers, not all of which are zero. Denote by D the degree of the number field
Q(α1, . . . , αm, β0, . . . , βm) over Q. Further, let B, E , E∗ be positive real numbers,
each ≥ e and let A1, . . . , Am be positive real numbers. Assume

log A j ≥ max

{
h(α j ),

E |λ j |
D

,
log E

D

}
(1 ≤ j ≤ m),

log E∗ ≥ max

{
1

D
log E, log

(
D

log E

)}

and B ≥ E∗. Further, assume either

(i) (general case)

B ≥ max
1≤i≤m

D log Ai

log E
and log B ≥ max

0≤i≤m
h(βi )

or
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(ii) (homogeneous rational case)

β0 = 0, βi = bi ∈ Z (1 ≤ i ≤ m), bm 6= 0

and

B ≥ max
1≤ j≤m−1

( |bm |
log A j

+
|b j |

log Am

)
· log E

D
·

Then the number
3 = β0 + β1λ1 + · · · + βmλm

is nonzero and has absolute value bounded from below by

|3| > exp{−C(m)Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1}.

Apart from the exact value of C(m), this estimate includes all known results on
this topic (we postpone a discussion of this issue to § 10.4).

In § 9.2 we give a sketch of proof of Theorem 9.1, and establish several auxiliary
results. This proof involves interpolation determinants with one derivative. Another
proof of Theorem 9.1 will be given in Chap. 10, by means of Baker’s method.

In § 9.3 we compute an admissible value for C(m): the conclusion of Theorem
9.1 holds with

C(m) = 226mm3m .

Corollaries and comments on Theorem 9.1 are given in § 9.4.

9.1 Second Proof of Baker’s Nonhomogeneous Theorem

We gave a first proof of Baker’s Theorem 1.6 in Chap. 4. The method was an
extension of Gel’fond’s solution to Hilbert’s seventh problem. Here is an extension
of Schneider’s solution to the same problem.

9.1.1 Idea of the Proof

Let β0, β1, . . . , βm−1 be complex numbers with β0 6= 0. Assume that the m numbers
1, β1, . . . , βm−1 are Q-linearly independent. Further let λ1, . . . , λm be Q-linearly
independent complex numbers with

β0 + β1λ1 + · · · + βm−1λm−1 − λm = 0.

Define α j = exp(λ j ) (1 ≤ j ≤ m). By Lemma 1.7 (with k = Q, K = Q, E = C,
while M is theQ-vector space spanned by 1 and L), Baker’s Theorem will be proved
if we show that one at least of the numbers in the set

{θ1, . . . , θ2m} = {α1, . . . , αm, β0, β1, . . . , βm−1}
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is transcendental.
We consider m + 1 functions

z0, z1, . . . , zm−1, exp{z0 + λ1z1 + · · · + λm−1zm−1}
of m variables z0, . . . , zm−1. In the tangent space Te(G) of the algebraic group
G = Gm

a ×Gm, these functions are the restrictions of

z0, z1, . . . , zm−1, ezm

to the hyperplane
z0 + λ1z1 + · · · + λm−1zm−1 = zm .

We shall take the values of these functions (and of monomials in these functions) at
the m points in Cm :

(0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, . . . , 1) and (β0, β1, . . . , βm−1).

We notice that the values of the function exp{z0 + λ1z1 + · · · + λm−1zm−1} at these m
points are respectively

α1, α2, . . . , αm−1, αm .

We shall also introduce linear combinations of these points: for s = (s1, . . . , sm) ∈ Zm

we denote by ξ
s

the point in Cm of coordinates

(smβ0, s1 + smβ1, . . . , sm−1 + smβm−1).

It is necessary to use somewhere the fact that each of these functions satisfies a partial
differential equation with respect to the differential operator ∂/∂z0 with coefficients
in the ring Z[θ1, . . . , θ2m]. If this information were not used, one could multiply the
variable z0 by a transcendental constant, and the assumption that β0 is in the set
{θ1, . . . , θ2m} would not be used !

For (τ , t) = (τ0, . . . , τm−1, t) ∈ Nm × Z and z = (z0, . . . , zm−1) ∈ Cm , define

fτ t (z) = zτ exp
{
t(z0 + λ1z1 + · · · + λm−1zm−1)

}
.

Then
(
∂

∂z0

)σ
fτ t (z) =

min{τ0,σ }∑

κ=0

σ !

κ!(σ − κ)!
· τ0!

(τ0 − κ)!
tσ−κ zτ0−κ

0 zτ1
1 · · · zτm−1

m−1et(z0+λ1z1+···+λm−1zm−1).

Hence, for τ ∈ Nm , t ∈ Z, s ∈ Zm and σ ∈ N, we have
(
∂

∂z0

)σ
fτ t (ξ s

) =

min{τ0,σ }∑

κ=0

σ !

κ!(σ − κ)!
· τ0!

(τ0 − κ)!
tσ−κ (smβ0)τ0−κ

m−1∏

i=1

(si + smβi )
τi ·

m∏

j=1

α
ts j

j .
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These numbers are all in the ringZ[θ1, . . . , θ2m]. The sketch of proof is now clear: we
consider a matrix M whose entries are among these numbers. Using a zero estimate,
we show that M has maximal rank. We select a nonzero determinant of maximal
size. We estimate from above the absolute value of this interpolation determinant,
using analytic means (Schwarz’ lemma). Finally we choose the parameters in such
a way that the assumptions of Lemma 2.1 are satisfied.

We start with the analytic upper bound (§ 9.1.2), next we deal with the multiplicity
estimate (§ 9.1.3) and then we complete the proof of Theorem 1.6 (§ 9.1.4).

9.1.2 Interpolation Determinants with Derivatives

We extend Lemma 6.4 by introducing multiplicities.

Lemma 9.2. Let L be a positive integer. Let f1, . . . , fL be entire functions in Cn .
For 1 ≤ µ ≤ L , let ζ

µ
be an element of Cn , σµ a nonnegative integer and D (µ) a

derivative operator of order σµ. The function of one variable

9(z) = det
(
D (µ) fλ(zζµ)

)
1≤λ,µ≤L

has a zero at the origin of multiplicity

≥ 2n(L)− σ1 − · · · − σL .

Proof. By multilinearity we may assume fλ(z) = zκλ for some κλ = (κλ1, . . . , κλn) ∈
Nn (1 ≤ λ ≤ L).

By means of Leibniz formula for the derivative of a product, we deduce that for
any µ = 1, . . . , L , there exists a family cµι of complex numbers such that, for any
κ = (κ1, . . . , κn) ∈ Nn ,

D (µ)zκ =
∑

ι

cµι

(
κ

ι

)
zκ−ι,

where ι ranges over the set of elements (ι1, . . . , ιn) ∈ Nn such that

ι1 + · · · + ιn = σµ,

and where we agree that (
κ

ι

)
=

(
κ1

ι1

)
· · ·
(
κn

ιn

)

vanishes if there is an index i (1 ≤ i ≤ n) such that ιi > κi . Accordingly we have

9(z) =
∑

ι

c1ι1
· · · cLιL

9ι(z)

where

9ι(z) = det

((
κλ
ιµ

)
(zζ

µ
)κλ−ιµ

)

1≤λ,µ≤L

,
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and where ι runs over the set of (ι1, . . . , ιL ) ∈ (Nn)L whose components ιµ =
(ιµ1, . . . , ιµn) ∈ Nn satisfy

ιµ1 + · · · + ιµn = σµ (1 ≤ µ ≤ L).

For each such ι we have

9ι(z)zσ1+···+σL = z‖κ1‖+···+‖κ L‖ det

((
κλ
ιµ

)
ζ
κ
λ
−ι

µ

µ

)

1≤λ,µ≤L

.

Notice that the right hand side vanishes as soon as there are two indices λ′ 6= λ′′ with
κλ′ = κλ′′ . Moreover this formula shows that the multiplicity at the origin of 9ι is at
least

‖κ1‖ + · · · + ‖κ L‖ − (σ1 + · · · + σL ).

Lemma 9.2 now follows from the definition of 2n(L) (see § 6.1.2). ¤

9.1.3 Multiplicity Estimate

For P ∈ C[X0, . . . , Xm−1, Y±1], define F ∈ C[z, X0, . . . , Xm−1, Y±1] by

F(z) = P
(
z + X0, X1, . . . , Xm−1, ezY

)
.

Then
∂

∂z
F(z) = (D P)

(
z + X0, X1, . . . , Xm−1, ezY

)
,

where D denotes the derivative operator

∂

∂X0
+ Y

∂

∂Y

on the ring of polynomials in the variables X0, . . . , Xm−1, Y±1 with coefficients in
the field C(z).

We use the multiplicity estimate of Chap. 8 in a special case: here, there is a
single derivative and also a single multiplicative factor.

Let K be an algebraically closed field of zero characteristic and m ≥ 1 a positive
integer. Again we denote by D the derivative operator (∂/∂X0)+Y (∂/∂Y ) on the ring
K [X0, . . . , Xm−1, Y±1]. Let α1, . . . , αm be nonzero elements of K and β0, . . . , βm−1

be elements of K . For s ∈ Zm , define

ξ
s

=
(
smβ0, s1 + smβ1, . . . , sm−1 + smβm−1

) ∈ K m .

Proposition 9.3. Assume α1, . . . , αm generate a multiplicative subgroup of K× of
rank ≥ m − 1. Assume further 1, β1, . . . , βm−1 are Q-linearly independent and
β0 6= 0. Let T0, T1, S0 and S1 be positive integers satisfying the following conditions:

S0 < 4T0T1, 2S1 < T0
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and
2(m + 1)T m

0 T1 < (S0 + 1)(2S1 + 1)m . (9.4)

For σ ∈ N, τ ∈ Nm , t ∈ Z and s ∈ Zm , define a
(σ s)
τ t as the value, at the point

(
ξ

s
, αs

) ∈ K m × K×,

of the polynomial

Dσ
(
X τ0

0 · · · X τm−1
m−1Y t

) ∈ K [X0, . . . , Xm−1, Y±1].

Consider the following matrix:

M =
(

a
(σ s)
τ t

)
(τ ,t)

(σ,s)

where the index of rows (τ , t) ranges over the elements (τ , t) inNm×Zwith ‖τ‖ ≤ T0

and |t | ≤ T1, while the index of columns (σ, s) runs over the elements of N × Zm

with 0 ≤ σ ≤ (m + 1)S0 and |s j | ≤ (m + 1)S1 (1 ≤ j ≤ m). Then the matrix M has
rank

(T0+m
m

)
(2T1 + 1).

Remark. In case m = 1, Proposition 2.14 yields a slightly sharper result.

Proof. Define
6 =

{(
ξ

s
, αs

)
; s ∈ Zm[S1]

} ⊂ K m × K×

and denote by
E = {ξ

s
; s ∈ Zm[S1]} ⊂ K m

the projection of 6 onto K m .
If the rank of M is not equal to the number of rows, then there is a nonzero

polynomial P ∈ K [X0, . . . , Xm−1, Y±1], of total degree at most T0 in X0, . . . , Xm−1

and of degree at most T1 in Y±1, which vanishes, together with its (m + 1)S0 + 1 first
derivatives Dσ (0 ≤ σ ≤ (m + 1)S0), at all points of the set

6(m + 1) =
{(
ξ

s
, αs

)
; s ∈ Zm[(m + 1)S1]

}
.

The assumptions of Theorem 8.1 are satisfied with d0 = m, d1 = 1, G = G+ =
Gm

a × Gm, G− = {e}, d = m + 1, D0 = T0, D1 = T1 and W = K (1, 0, . . . , 0, 1).
Therefore there exists a connected algebraic subgroup G∗ of G of dimension d∗ < d
which satisfies

(
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; T0, T1) ≤ H (G; T0, T1),

where

`′0 = dimK

(
Te(G∗) + W

Te(G∗)

)
=

{
0 if (1, 0, . . . , 0, 1) ∈ Te(G∗)
1 if (1, 0, . . . , 0, 1) 6∈ Te(G∗).



              

9.1 Second Proof of Baker’s Nonhomogeneous Theorem 257

By Proposition 5.6, the algebraic subgroup G∗ of G can be written G∗0 ×G∗1, where
G∗0 is a vector subspace of K m of dimension say d∗0 while G∗1 is a connected algebraic
subgroup of Gm of dimension d∗1 ∈ {0, 1}. The dimension of G∗ is d∗ = d∗0 + d∗1 .

If d∗1 = 0 we have

G∗1 = {1}, d∗ = d∗0 , G∗ = G∗0 × {1} and 0 ≤ d∗0 ≤ m.

If d∗1 = 1, then

G∗1 = Gm, d∗ = d∗0 + 1, G∗ = G∗0 ×Gm and 0 ≤ d∗0 ≤ m − 1

(recall that d∗ < d).
Notice also that in case `′0 = 0, since (1, 0, . . . , 0, 1) ∈ W ⊂ Te(G∗), we have

(1, 0, . . . , 0) ∈ G∗0 and d∗1 = 1.
Recall (§ 5.1.1) that

H (G; T0, T1) = 2(m + 1)T m
0 T1

and

H (G∗; T0, T1) =





T
d∗0

0 if d∗1 = 0

2(d∗0 + 1)T
d∗0

0 T1 if d∗1 = 1.

We distinguish three cases.

First case: d∗1 = 0 and `′0 = 1
In this case G∗ = G∗0 × {1}, 0 ≤ d∗0 ≤ m and the conclusion of Theorem 8.1

yields

(S0 + 1)Card

(
6 + (G∗0 × {1})

G∗0 × {1}
)
≤ 2(m + 1)T

m−d∗0
0 T1.

If d∗0 = 0 (which means that G∗ = {e} is the trivial subgroup) we deduce from (9.4)
that 6 has less than (2S1 + 1)m elements. Therefore β0 = 0 and each of the numbers
β1, . . . , βm−1 is rational, which is a contradiction.

If d∗0 ≥ 1 we use the assumption that α1, . . . , αm generate a multiplicative group
of rank ≥ m − 1: denote by π the projection from K× onto K×/K×tors. Then (see
Lemma 7.8 and Exercise 7.5)

Card

(
6 + (G∗0 × {1})

G∗0 × {1}
)
≥ Card

{
π
(
αs
)
; s ∈ Zm[S1]

}
≥ (2S1 + 1)m−1.

On the other hand, using (9.4) together with the condition T0 ≥ 2S1 + 1, we deduce

2(m + 1)T m−1
0 T1 < (S0 + 1)(2S1 + 1)m−1,

which shows that the conditions d∗0 ≥ 1, d∗1 = 0 and `′0 = 1 are not compatible.

Second case: d∗1 = 1, `′0 = 1
Here G∗ = G∗0 × K×, G∗0 63 (1, 0, . . . , 0), 0 ≤ d∗0 ≤ m − 1 and
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(S0 + 1)Card
(
πG∗0 (E )

) ≤ m + 1

d∗0 + 1
T

m−d∗0
0 ,

where πG∗0 is the canonical map K d → K d/G∗0.
From (9.4), using the lower bound T1 ≥ 1 we deduce

(m + 1)T m
0 < (S0 + 1)(2S1 + 1)m .

From the condition 2S1 + 1 ≤ T0 we get

m + 1

d∗0 + 1
T

m−d∗0
0 < (S0 + 1)(2S1 + 1)m−d∗0 .

Therefore
Card

(
πG∗0 (E )

)
< (2S1 + 1)m−d∗0 .

This is impossible for β0 6= 0 (see Exercise 9.1.a).

Third case: d∗1 = 1, `′0 = 0
Now we have G∗ = G∗0 × K×, G∗0 3 (1, 0, . . . , 0), 1 ≤ d∗0 ≤ m − 1 and

Card
(
πG∗0 (E )

) ≤ m + 1

d∗0 + 1
T

m−d∗0
0 .

Since S0 + 1 ≤ 4T0T1, (9.4) implies

(m + 1)T m−1
0 < 2(2S1 + 1)m .

From d∗0 ≥ 1, using 2S1 + 1 ≤ T0, we deduce

m + 1

d∗0 + 1
T

m−d∗0
0 < (2S1 + 1)m+1−d∗0

and
Card

(
πG∗0 (E )

)
< (2S1 + 1)m+1−d∗0 .

Since G∗0 3 (1, 0, . . . , 0), Lemma 6.2 shows that the numbers 1, β1, . . . , βm−1 are
linearly dependent over Q (see Exercise 9.1.b). ¤

9.1.4 Completion of the Proof of Baker’s Nonhomogeneous Theorem

Combining the multiplicity estimate with the analytic upper bound, we shall deduce
the following result which generalizes Proposition 2.11.

Proposition 9.5. Let β0, β1, . . . , βm−1, λ1, . . . , λm be complex numbers satisfying

β0 + β1λ1 + · · · + βm−1λm−1 − λm = 0.

Assume firstly that β0 6= 0, secondly that the m numbers 1, β1, . . . , βm−1 are
Q-linearly dependent and thirdly that the numbers λ1, . . . , λm are Q-linearly
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independent. Define α j = exp(λ j ) (1 ≤ j ≤ m). Let T0, T1, S0, S1, L be positive
rational integers. Further let E be a real number with E ≥ e. Assume

T0 ≥ 16m3, 4T0T1 > S0, T0 > 2S1

S0Sm
1 ≥ 2T m

0 T1

and

L =

(
T0 + m

m

)
(2T1 + 1).

Then there exists a polynomial f ∈ Z[X±1
1 , . . . ,X±1

m ,Y0,Y1, . . . ,Ym−1] of degree
and length bounded by

degX±1
i

f ≤ 1

2
(m + 1)L(T1 + 1)S1, degY j

f ≤ LT0,

L( f ) ≤ L!
(
2(m + 1)S1

)LT0 (T1 + T0)(m+1)L S0 ,

such that

0 < | f (α1, . . . , αm, β0, β1, . . . , βm−1)| ≤
E−

1
3 L1+(1/m) · E L

(
(m+1)S0+T0

)(
2(m + 1)S1

)LT0 (T0 + T1)(m+1)L S0 ec0 L(T0+T1 S1 E)

with
c0 = 1 + max

{
(m + 1)

(|λ1| + · · · + |λm |
)
, log

(
1 + max

0≤i≤m−1
|βi |

)}
.

Proof. From the assumptions of Proposition 9.5 we deduce that the matrix M of
Proposition 9.3 (with K = C) has maximal rank. Let

(
σµ, sµ

)
be elements inN×Zm

with
0 ≤ σµ ≤ (m + 1)S0 and max

1≤ j≤m
|sµj | ≤ (m + 1)S1

for 1 ≤ µ ≤ L , such that the determinant 1 of the matrix
((

∂

∂z0

)σµ
fτ t (ξ s

µ

)

)

(τ ,t)

1≤µ≤L

=

(
a

(σµ,sµ)
τ t

)

(τ ,t)

1≤µ≤L

is not zero.
Each entry of this matrix is the value of a polynomial in 3m variables

X±1
1 , . . . ,X±1

m , Y0,Y1, . . . ,Ym−1 at the point
(
α1, . . . , αm, β0, β1, . . . , βm−1

)
.

This polynomial has degree at most (m + 1)|t |S1 in each of the first 2m variables and
total degree at most T0 in the last m ones, its coefficients are rational integers and
from Lemma 4.9 it follows that the length is at most

(
2(m + 1)S1

)T0 (T1 + T0)(m+1)S0 .
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From Lemma 3.15 we deduce

1 = f (α1, . . . , αm, β0, β1, . . . , βm−1)

where f ∈ Z[X±1
1 , . . . ,X±1

m ,Y0,Y1, . . . ,Ym−1] has degree and length bounded as
announced.

Since T0 ≥ 16m3 we have L ≥ (4m
)2m

. By Lemma 9.2, the function of a single
variable z

9(z) = det

(
∂

∂z0

)σµ
fτ t (zξ s

µ

)

)

(τ ,t)

1≤µ≤L

has a zero at the origin of multiplicity at least

2m(L)− (m + 1)L S0 ≥ L

(
1

3
L1/m − (m + 1)S0

)

(the coefficient 1/3 is a lower bound for m/e – see Lemma 6.5). We use Schwarz’
lemma as in the proof of Lemma 6.1:

1

L
log |1| = 1

L
log |9(1)| ≤ −1

3
L1/m log E + (m + 1)S0 log E +

1

L
log |9|E .

From the relation
(
∂

∂z0

)σ
fτ t (zξ s

) =

min{σ,τ0}∑

κ=0

σ !

κ!(σ − κ)!
· τ0!

(τ0 − κ)!
tσ−κ (smβ0)τ0−κ z‖τ‖−κ

m∏

i=1

(si + smβi )
τi ·

m∏

j=1

etλ j s j z

using Lemma 4.9 we deduce, for |z| ≤ E and all (τ , t), µ,
∣∣∣∣
(
∂

∂z0

)σµ
fτ t (zξ s

µ

)

∣∣∣∣ ≤ (T0 + T1)(m+1)S0
(
2(m + 1)S1 E

)T0 ec1T0+c2T1 S1 E

with

c1 = log max{1, |β0|, . . . , |βm−1|} and c2 = (m + 1)
(|λ1| + · · · + |λm |

)
.

We conclude

1

L
log |9|E ≤

log L + (m + 1)S0 log(T0 + T1) + T0 log
(
(2(m + 1)S1 E)

)
+ c1T0 + c2T1S1 E .

Finally we bound log L by T0 + T1S1 E . ¤

Proof of Theorem 1.6. We apply Proposition 9.5 as follows. We want to use Lemma
2.1 with

{θ1, . . . , θ3m} = {α±1
1 , . . . , α±1

m , β0, . . . , βm−1}.
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Let κ > 0. We need to choose the parameters so that L :=
(T0+m

m

)
(2T1 + 1) satisfies

2T m
0 T1 ≤ S0Sm

1

and
L1/m log E > κ

(
S0 log(ET0T1) + T0 log(S1 E) + T1S1 E

)
.

We take E = e and we replace the last inequality by the sharper requirements:

κ ′T0 log S1 ≤ L1/m, κ ′S0 log(T0T1) ≤ L1/m, κ ′T1S1 ≤ L1/m

with κ ′ = 5κ , and T0, T1, S0, S1 are sufficiently large integers.
The condition κ ′S0 log(T0T1) ≤ L1/m implies S0 < 4T0T1, and the condition

κ ′T1S1 ≤ L1/m implies 2S1 < T0.

As a first example of a solution to this system of conditions, we choose a large
integer N and we look for parameters which are powers of N . We replace the
unknowns T0, T1, S0, S1 by

T0 = N t0 , T1 = N t1 , S0 = N s0 , S1 = N s1 .

where t0, t1, s0, s1 are (free) positive integers. The previous requirements can be
summarized as follows:

max{t0, s0, t1 + s1} < t0 +
t1
m
<

s0

m
+ s1.

The conditions on s1 amount to say that s1 lies in the interval

t0 +
t1
m
− s0

m
< s1 < t0 − (m − 1)t1

m
·

We seek for natural integers in order to avoid integral parts (in fact by homogeneity
we could replace N by a power of N ). Hence we shall require that the above interval
has length 2, which gives s0 = m(t1 + 2). Now the remaining conditions just become

t0 > t1

(
m − 1

m

)
+ 2m.

A simple choice is t1 = m, t0 = s0 = m(m + 2), s1 = m(m + 1), which gives the
solution

T0 = N m(m+2), T1 = N m, S0 = T0, S1 = N m(m+1).

Here is another solution: we look for T0 and T1 of the following shape:

T0 =
[
S1(log S1)t0

]
, T1 =

[
(log S1)t1

]

where S1 is a sufficiently large integer, and t0, t1 are positive fixed integers which we
have to choose. The conditions on t0 and t1 are

t1 > m, t0 > (m − 1)
t1
m
·
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For instance t1 = m + 1 and t0 = m will do. The condition on S0 is that it belongs to
an interval

κ(log S1)mt0+t1 < S0 <
1

3κ
S1(log S1)t0−1+(t1/m).

Therefore another admissible choice is

T0 =
[
S1(log S1)m

]
, T1 =

[
(log S1)m+1

]
, S0 = S1,

with S1 a sufficiently large positive integer. With the same values for T0 and T1, but
with S0 =

[
(log S1)m2+m+2

]
, a weaker multiplicity estimate suffices. ¤

9.2 Proof of Theorem 9.1

9.2.1 Sketch of Proof of Theorem 9.1

Consider first the general case of Theorem 9.1. Assume βm = −1:

3 = β0 + β1λ1 + · · · + βm−1λm−1 − λm

where β0, . . . , βm−1 are algebraic numbers and λ1, . . . , λm are logarithms of alge-
braic numbers. Define αi = eλi (1 ≤ i ≤ m).

a) Exponential Polynomials
For τ = (τ0, . . . , τm−1) ∈ Nm , z = (z0, . . . , zm−1) ∈ Cm and t ∈ Z consider the

exponential monomial in m + 1 variables zτ et zm where

zτ = zτ0
0 zτ1

1 · · · zτm−1
m−1.

The restriction of this function to the hyperplane of Cm+1 of equation

z0 + λ1z1 + · · · + λm−1zm−1 = zm

gives rise to a complex function of m variables

fτ t (z) = zτ et(z0+λ1z1+···+λm−1zm−1).

The difference with Chap. 7 is only the appearance of the variable z0 which will be
useful even in the case β0 = 0. The main point is that we can take derivatives with
respect to z0 without introducing transcendental numbers: for σ ∈ N we have

(
∂

∂z0

)σ
fτ t (z) =

(
∂

∂z0

)σ (
zτ0

0 et z0
) · zτ1

1 · · · zτm−1
m−1et(λ1z1+···+λm−1zm−1)

with
(
∂

∂z0

)σ (
zτ0

0 et z0
)

=
min{σ,τ0}∑

κ=0

σ !

κ!(σ − κ)!
· τ0!

(τ0 − κ)!
zτ0−κ

0 tσ−κet z0 .
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Define

y
j

= (0, e j ) (1 ≤ j ≤ m − 1) and y
m

= (β0, β1, . . . , βm−1)

where e1, . . . , em−1 is the canonical basis of Cm−1. For s ∈ Zm define s y ∈ Cm by

s y = s1 y
1

+ · · · + sm y
m

= (smβ0, s1 + smβ1, . . . , sm−1 + smβm−1).

Then (
∂

∂z0

)σ
fτ t (s y) = γ

(σ s)
τ t · etsm3

where γ
(σ s)
τ t is the algebraic number

min{σ,τ0}∑

κ=0

σ !

κ!(σ − κ)!
· τ0!

(τ0 − κ)!
(smβ0)τ0−κ tσ−κ

m−1∏

i=1

(si + smβi )
τi ·

m∏

j=1

α
ts j

j .

There is another expression for γ
(σ s)
τ t . Introduce the derivative operator D on the ring

of entire functions in m + 1 variables z0, . . . , zm by

D =
∂

∂z0
+

∂

∂zm
·

For 1 ≤ j ≤ m, define
η

j
= (y

j
, λ j ) ∈ Cm+1

and for s ∈ Zm , write sη ∈ Cm in place of

s1η1
+ · · · + smηm

= (s y, s1λ1 + · · · + smλm).

Then
γ

(σ s)
τ t = Dσ

(
zτ et zm

)
(sη).

The starting idea is to construct a matrix M having these numbers as entries in order
to prove that the rank of M is less than the number of rows. This will enable us to
use the zero estimate.

The points

η′
j

= η
j

(1 ≤ j ≤ m − 1) and η′
m

= (β0, β1, . . . , βm−1, λm +3m)

belong to the hyperplane of Cm+1 of equation

z0 + λ1z1 + · · · + λm−1zm−1 = zm .

If we set
η′ = s1η

′
1

+ · · · + smη
′
m
,

we have
Dσ

(
zτ et zm

)
(sη′) = γ

(σ s)
τ t · etsm3.



                  

264 9. Refined Measures

This fact will be germane to the analytic upper bound for the absolute value of an

interpolation determinant 1. The expression of the number γ
(σ s)
τ t as a derivative of

an exponential polynomial in m + 1 variables will be pertinent to the zero estimate.

Of course the mere fact that γ
(σ s)
τ t is an algebraic number will be relevant to the

arithmetic lower bound for |1|.
b) Basic Estimates and Choice of Parameters

Introduce parameters T0, T1, S0, S1, . . . , Sm (which are positive integers) and
consider the sets of τ ∈ Nm , t ∈ Z, σ ∈ N and s ∈ Zm which satisfy

‖τ‖ ≤ T0, |t | ≤ T1, 0 ≤ σ ≤ S0, |s j | ≤ S j (1 ≤ j ≤ m).

Define L =
(T0+m

m

)
(2T1 +1) and denote by1 the determinant of some L×L submatrix

of
M =

(
γ

(σ s)
τ t

)
(τ ,t)

(σ,s)

.

Under the assumptions of Theorem 9.1 (in the general case, and with βm = −1), we
deduce from Liouville’s estimate a lower bound for |1| assuming it is not zero. The
main terms in this estimate arise from

(si + smβi )
τi , tσ ,

m∏

j=1

α
ts j

j

which introduce, in the lower bound for log |1|,

T0 log S∗ + T0 max
0≤i≤m

h(βi ), S0 log T1, T1

m∑

j=1

S j h(α j )

respectively, where S∗ = S1 + · · ·+ Sm . Using the definition14 of B, A1, . . . , Am with

log B ≥ max
0≤i≤m

h(βi ), log A j ≥ h(α j ) (1 ≤ j ≤ m),

we deduce that either 1 = 0 or else

1

L
log |1| ≥ −U1

with

U1 = cD
(

T0 log(BS∗) + S0 log T1 + T1

m∑

j=1

S j log A j

)
.

Here (and below), c is a suitable (sufficiently large) positive absolute constant15.
An analytic argument will enable us to deduce an upper bound for |1|, under the

assumption

14 Say, for the general case.
15 We use the same letter c to denote such absolute constants throughout this section. Explicit

computations are carried out in § 9.3 only.
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|3| < e−V where V =
1

2m
(T0 + m)(2T1 + 1) log E .

This value of V already occurred (with m replaced by n) in Proposition 7.6. From
Lemma 9.2 we see that we shall lose S0 log E because of the derivatives. The main
terms in the upper bound will arise from the maximum of an exponential polynomial
on a disc of radius ≥ E(S j + Sm |β j |) involving

|z|τ , |t |σ−κ , et z .

The upper bound for log |1| will involve

S0 log(ET1), T0 log(E S∗), T1

m∑

j=1

S j E |λ j |

respectively. Using the assumption

E |λ j | ≤ D log A j ,

we deduce

log |1| < −1

2
LV + LU2

with

U2 = c
(

S0 log(ET1) + T0 log(E S∗) + T1

m∑

j=1

S j log A j

)
.

With a suitable choice of the parameters for which V ≥ 2(U1 + U2), we conclude
that the arithmetic and the analytic estimates are not compatible, hence1 is zero and
therefore M has rank < L .

Let us introduce B1 and B2 satisfying

B1 ≥ max
{

B, S∗, E1/D
}

and B2 ≥ max
{
T1, E1/D

}

so that each occurrence of T0 involves at most DT0 log B1 and similarly S0 occurs
only with a factor bounded by D log B2.

A natural and simple choice for the parameters is therefore as follows. Introduce
one more parameter U , a suitable value of which will occur as a consequence of the
zero estimate. Then take

T0 =
U

D log B1

, S0 =
U

D log B2

, S j =
U

m DT1 log A j
(1 ≤ j ≤ m).

This is very close to our final choice (however we shall select in § 9.3 integers by
taking integral parts).

The parameter T1 is not yet fixed. We shall need the upper bound cmU ≤ V . The
coefficient m arises for the need, in the zero estimate, to work with 6[m + 1] (m + 1
will be the dimension of the underlying algebraic group G), and not only with 6 –
see Theorem 8.1. Hence a natural choice for T1 is
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T1 =
cm2 D log B1

log E
·

With this sketch of proof one deduces the result with B replaced by B1 and E∗
by B2. In the general case, the conditions B1 ≥ S∗ and B1 ≥ E1/D are not too strong:
one can replace B1 by Bcm . In the homogeneous rational case these conditions can be
relaxed by means of Fel’dman’s polynomials, almost in the same way as in Chap. 7.

The condition B2 ≥ T1 is more serious. If we wish to bound B2 by a power of
E∗, we need to require a further condition on E∗, namely

E∗ ≥ log B. (9.6)

We shall see later (part d of this section) how to avoid this condition (9.6), but right
now we pursue the sketch of proof under this extra assumption.

The matrix M above has L rows and (S0 + 1)(2S1 + 1) · · · (2Sm + 1) columns. We
cannot get any interesting conclusion unless the number of columns is at least L . In
fact the zero estimate requires slightly more: in order to avoid the trivial subgroup
G∗ when we apply Theorem 8.1, we need to assume

(S0 + 1)(2S1 + 1) · · · (2Sm + 1) > 2(m + 1)T m
0 T1.

If we replace the parameters T0, S0 and S j by their values above, we find that U
should satisfy a condition

U > c · 2−mmm+1 D(log A1) · · · (log Am)(log B2) · T m+1
1 (log B1)−m .

We now replace T1 by cm2 D log B1/ log E and deduce that

U = cmm3m Dm+2(log B1)(log A1) · · · (log Am)(log B2)(log E)−m−1

is an admissible value.

c) Consequence of the Zero Estimate
Consider the algebraic group G = G0 × G1 with G0 = Gm

a and G1 = Gm. Once
we know that M has rank < L , the zero estimate produces an algebraic subgroup
G∗ = G∗0 × G∗1 of G, such that G∗0 contains points of the form

s y = (smβ0, s1 + smβ1, . . . , sm−1 + smβm−1) ∈ Cm

for many s ∈ Zm[S].
As we have seen in § 9.1.3, this can happen only when there are linear dependence

relations between β1, . . . , βm−1 and 1. We control these relations by considering the
set of s rather than the set of s y.

The strategy now is to select such an algebraic subgroup G∗0 ofGm
a (call it G+

0) of
minimal dimension which contains many such points s y. Next we repeat the above
construction with G0 replaced by G+

0 . If we prove that the rank of the new matrix is
not maximal, then we shall be able to use the zero estimate again, and to produce
an algebraic subgroup G∗ of G+ which has a similar property as G+ but has smaller
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dimension. This will give a contradiction: hence the assumption |3| < e−cV (which
occurred in the analytic estimate) is not fulfilled and our final goal will be achieved.

Here is the construction of the new matrix. Consider G+
0 as a subspace ofCm and

define another vector subspace V of Cm by

V =
{
z ∈ Cm ; ∃z0 ∈ C, (z0, z1 + zmβ1, . . . , zm−1 + zmβm−1) ∈ G+

0

}
.

Hence V contains the point (β1, . . . , βm−1,−1). Denote by d the dimension of V.
Since V is not contained into Cm−1 × {0}, the restriction to Cm−1 × {0} of the the
canonical map πV from Cm onto Cm/V is surjective. Hence there exists a subset
{e1, . . . , em−d} of the canonical basis ofCm−1×{0} such that πV(e1), . . . , πV(em−d )
is a basis of Cm/V.

Complete into a basis {e1, . . . , em} ofCm with the other elements of the canonical
basis of Cm including em = (0, . . . , 0, 1). If z = z1e1 + · · · + zmem ∈ V satisfies
zm−d+1 = · · · = zm = 0, then z = 0. Hence the linear mapping

V −→ Cd−1

z1e1 + · · · + zmem 7−→ (
zm−d+1 + zmβm−d+1, . . . , zm−1 + zmβm−1

)

is surjective of kernel C(β1, . . . , βm−1,−1).
Define Ld =

(T0+d+1
d+1

)
(2T1 + 1). One repeats the preceding construction, but with

G = Gm
a × Gm replaced by Gd

a × Gm. Now 1 is the determinant of a Ld × Ld

submatrix of M involving only

τ = (τ0, τm−d+1, . . . , τm) ∈ Nd

for the index of rows and s ∈ V for the column index.
To tell the truth we shall not exactly follow this pattern: instead of using twice

the zero estimate (once for Gm
a ×Gm and a second time for Gd

a ×Gm), we shall use
it only once, together with the choice of G+, in order to construct directly a nonzero
determinant 1 (see Proposition 9.16).

d) Fel’dman’s Polynomials
Fel’dman’s polynomials will occur in two ways. Firstly, they are needed (in both

the general and the homogeneous rational case) for removing the extra condition
(9.6) on E∗. Secondly, further 1 polynomials will be required for the refinement
related to the homogeneous rational case.

In the above estimates for γ
(σ s)
τ t , the term S0 log T1 arises from tσ−κ . Since T1

is a multiple of log B1, the previous sketch of proof requires E∗ ≥ log B1, and
the final result following this pattern would include an extra log log B arising from
log E∗. The way to remove this factor is to introduce Fel’dman’s Delta polynomials.
However the situation here is different from Chap. 7, where we just replaced (in the
homogeneous rational case) zτ by 4(z; τ ). Here, tσ−κ comes from the derivative of
et z . More precisely, we want to replace tσ−κ by the value of a Delta polynomial in
the formula (valid for t ∈ C, σ ∈ N and τ ∈ N)

e−t z

(
d

dz

)σ (
zτ et z

)
=

min{σ,τ }∑

κ=0

σ !τ !

κ!(σ − κ)!(τ − κ)!
zτ−κ tσ−κ .
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Both hand sides define a function whose value at a point z0 ∈ C can be written

min{σ,τ }∑

κ=0

1

κ!

((
d

dz

)κ
zτ
)

z=z0

((
d

dz

)κ
zσ
)

z=t

.

This provides the clue: to each polynomial δ(z) ∈ C[z] and each t ∈ C is associated
a derivative operator

Dδt =
∑

κ≥0

1

κ!
δ(κ)(t)

(
d

dz

)κ
,

where

δ(κ) =

(
d

dz

)κ
δ.

Notice that for δ(z) = zσ , we have by construction

(
Dδtϕ

)
(z) = e−t

(
d

dz

)σ (
ϕ(z)et z

)
.

Lemma 9.7. Let S0 be a nonnegative integers, t a complex number, p ∈ C[z] a
polynomial,

{
δ(z; σ ) ; 0 ≤ σ ≤ S0

}
a basis of the space of polynomials in C[z] of

degree≤ S0 and Q ∈ GLS0+1(C) the transition matrix from the basis {1, z, . . . , zS0}:
(
1 z · · · zS0

)
Q =

(
δ(z; 0) δ(z; 1) · · · δ(z; S0)

)
.

Define

9(z) = p(z)et z and 8σ (z) =
min{σ,τ }∑

κ=0

1

κ!
δ(t ; σ, κ)p(κ)(z)et z

for ≤ σ ≤ S0, where

p(κ)(z) =

(
d

dz

)κ
p(z) and δ(z; σ, κ) =

(
d

dz

)κ
δ(z; σ ).

Then
(
9(z)

d

dz
9(z) · · ·

(
d

dz

)S0

9(z)

)
Q =

(
80(z) 81(z) · · · 8S0 (z)

)
.

Proof. For z0 ∈ C and 0 ≤ σ ≤ S0, we have

(
d

dz

)σ
9(z0) =

min{σ,τ }∑

κ=0

1

κ!

((
d

dz

)κ
zσ
)

z=t

p(κ)(z0)et z0 .

This proves Lemma 9.7 in the special case δ(z; σ ) = zσ (where Q = IS0+1). The
general case immediately follows. ¤
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We shall use this lemma with p(z) = zτ . One would be tempted to take for δ(z; σ )
the elements of the basis

{
1(z; σ ); σ ≥ 0

}
given by Delta polynomials. However,

as we shall see, the value 1(t ; σ, κ) of a derivative of 1(z; σ ) at an integer t ∈ Z is
a rational number, and the estimate for the denominator would not be sharp enough
(see Lemma 9.8 and Exercise 9.3.b).

There are several possibilities here. The first one is to split the parameter S0 into
two parts S0 = S′0S′′0 and to consider4(z; σ ′)σ ′′ where 0 ≤ σ ′ < S′0 and 0 ≤ σ ′′ ≤ S′′0 .
The second possibility is a variant of the first one: select the following basis (see
Exercise 9.2):

4(z + σ ′; S′0)σ
′′
, (0 ≤ σ ′ < S′0, 1 ≤ σ ′′ ≤ S′′0 ) and (σ ′, σ ′′) = (0, 0).

Working with interpolation determinants, these two solutions do not make too much
difference. But the first one is not suitable for the classical method involving an
auxiliary function (see § 12.3).

Here, following E. M. Matveev [Mat 1993a], we shall use a third solution.

Definition. Let a ≥ 0 and b > 0 be two integers. Define a polynomial δb(z; a) ∈ Q[z]
of degree a by

δb(z; a) =
(4(z − 1; b)

)q 4 (z − 1; r )

=

(
z(z + 1) · · · (z + b − 1)

b!

)q

·
(

z(z + 1) · · · (z + r − 1)

r !

)
,

where q and r are the quotient and remainder of the division of a by b:

a = bq + r, 0 ≤ r < b.

For c ≥ 0, define

δb(z; a, c) =

(
d

dz

)c

δb(z; a).

From this definition we deduce at once

δb(z; 0) = 1 for any b ≥ 1

and
δ1(z; a) = za for any a ≥ 0.

For b > a we have
δb(z; a) = 4(z − 1; a).

Since δb(z; a) has degree a, for fixed b and A the polynomials {δb(z; a) ; a =
0, 1, . . . , A} constitute a basis of the space of polynomials of degree ≤ A.

The main interest of delta polynomials is that they are integer valued:

δb(m; a) ∈ Z for any m ∈ Z;

indeed, for m ≥ 1, we have



                 

270 9. Refined Measures

δb(m; a) =

(
m + b − 1

b

)q(m + r − 1

r

)
.

We now estimate the denominator of the values of δb(z; a, c) at rational integers. The
following lemma is due to E. M. Matveev [Mat 1993a]. We reproduce his proof (see
also [Mat 1998], Lemma 7.1 and [NeW 1996], Lemma 4).

Lemma 9.8 involves the following arithmetic function: for any positive integer
n, denote by ν(n) the least common multiple of 1, 2, . . . , n.

Lemma 9.8. Let a ≥ 0, b > 0, C ≥ 0 be nonnegative integers. For any integer c in
the interval 0 ≤ c ≤ C and any rational integer m ∈ Z, the number

ν(b)C · 1

c!
δb(m; a, c)

is a rational integer. Moreover, for any complex number z, we have

C∑

c=0

(
C

c

)∣∣δb(z; a, c)
∣∣ ≤ C!ea+b

( |z|
b

+ 1

)a

.

Proof. Let us check that ν(b)C is a common denominator to (1/c!)δb(m; a, c) by
looking at the p-adic valuation of both numbers (recall the notation vp from § 3.1.a).
So we fix a prime number p.

We start with a well known estimate (see [HaWr 1938], Th. 416):

vp(n!) =
∞∑

`=1

[
n

p`

]
·

This relation is proved as follows:

vp(n!) =
n∑

m=1

vp(m) =
n∑

m=1

vp(m)∑

`=1

1 =
∞∑

`=1

∑
m≤n

vp (m)≥`

1

and ∑
m≤n

vp (m)≥`

1 =

[
n

p`

]
·

Therefore, for b ≥ 1 and 0 ≤ r < b,

vp
(
b!qr !

)
=
∞∑

`=1

(
q

[
b

p`

]
+

[
r

p`

])
·

On the right hand side one can restrict the sum over ` to p` ≤ b since the other terms
vanish.

It is well known and easy to check that the p-adic valuation of ν(n) is
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vp
(
ν(n)

)
=

[
log n

log p

]
=
∑

p`≤n

1.

Consider a product P = b1 · · · ba of a rational integers. For any positive integer `
denote by %` the number of bi ’s which are multiple of p`. Then

vp(P) =
∑

`≥1

%`.

If we delete any c numbers from b1, . . . , ba and if P ′ denote the product of the
remaining a − c numbers, we derive

vp(P ′) ≥
∑

`≥1

max(%` − c, 0).

The derivative δb(z; a, c) of δb(z; a) is given by the formula

δb(z; a, c) = c! · δb(z; a) ·
∑

(z + b1)−1 · · · (z + bc)−1,

where (b1, . . . , bc) runs over the tuples of c elements in {0, . . . , b− 1} such that the
polynomial (z + b1) · · · (z + bc) divides δb(z; a).

Denote by b1, . . . , ba the a factors in the product

P =
(
m(m − 1) · · · (m − b + 1)

)q
m(m − 1) · · · (m − r + 1);

the value of this product P is nothing else than b!qr !δb(m; a). Since δb(m; a) ∈ Z,
for any positive integer ` the number %` of bi ’s which are multiple of p` satisfies

%` ≥ q

[
b

p`

]
+

[
r

p`

]
for any ` ≥ 1.

Therefore

vp

(
1

c!
b!qr !δb(m; a, c)

)
≥
∑

p`≤b

max

{
q

[
b

p`

]
+

[
r

p`

]
− c ; 0

}
.

Define d = ν(b)C . Then

vp

(
d

1

c!
δb(m; a, c)

)
≥
∑

p`≤b

max

(
C − c ; C − q

[
b

p`

]
−
[

r

p`

])
≥ 0.

This proves the assertion (d/c!)δb(m; a, c) ∈ Z for 0 ≤ c ≤ C and m ∈ Z.
Using the estimate

1

b!qr !
≤ 1

ba
ea+b,

we obtain, for any z ∈ C,
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∣∣δb(z; a, c)
∣∣ ≤ c!

(
a

c

)(|z| + b − 1
)a−c 1

b!qr !

≤ a!

(a − c)!
·
(|z| + b − 1

)a−c

ba
· ea+b.

This completes the proof of Lemma 9.8. ¤

We need an upper bound for ν(n). Since vp(ν(n)) ≤ (log n)/(log p), we have for
any n ≥ 1

ν(n) =
∏

p≤n

pvp(ν(n)) ≤ nπ (n),

where π (n) is the counting function of prime numbers:

π (n) =
∑

p≤n

1.

From the prime number Theorem ([HaWr 1938], [GLin 1962]), we deduce that for
any ε > 0 we have

ν(n) ≤ e(1+ε)n

for n ≥ n0(ε). We need an estimate valid for any n ≥ 1. We shall use ν(n) ≤ 3n ,
which is elementary (see for instance Th. 7.5 of [Duv 1998]), but in fact the sharper
inequality

ν(n) ≤ e107n/103

holds uniformly for n ≥ 1 (see [Y 1989], Lemma 2.3 p. 127).
We shall use Lemma 9.8 with

m = t, a = σ (0 ≤ σ ≤ S0), b = S]0, C = τ0, c = κ.

For any z ∈ C we have

τ0∑

κ=0

(
τ0

κ

)
|δS]0

(z; σ, κ)| ≤ τ0!

(
|z|
S]0

+ 1

)σ
eσ+S]0 .

The estimate for the common denominator of the rational numbers δS]0
(t ; σ, κ)

involves
ν(S]0)τ0 ≤ 3τ0 S]0 ≤ 3S]0 T0 .

For this reason, one cannot take for S]0 a too large integer, and this is why the
polynomials δS]0

(z; σ ) are sometimes better than 4(z; σ ) (which corresponds to

S]0 = S0).

Definition 9.9. In the general case, for

τ ∈ Nd , t ∈ Z, σ ∈ N and s ∈ Zm,

we introduce the numbers
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γ̃
(σ s)
τ t =

τ0∑

κ=0

(
τ0

κ

)
δS]0

(t ; σ, κ)(smβ0)τ0−κ
m−1∏

i=m−d+1

(si + smβi )
τi ·

m∏

j=1

α
ts j

j .

In the homogeneous case β0 = 0, the only non-vanishing term in the sum occurs
for κ = τ0 and the formula is simpler:

γ̃
(σ s)
τ t = δS]0

(t ; σ, τ0)
m−1∏

i=m−d+1

(si + smβi )
τi ·

m∏

j=1

α
ts j

j .

Ifβ1, . . . , βm−1 are all rational numbers, we define bm as their least (positive) common
denominator, so that the rational integers bi = −bmβi ∈ Z (1 ≤ i ≤ m − 1) satisfy
gcd(b1, . . . , bm) = 1.

As already mentioned, further 1 polynomials are needed in the homogeneous
rational case

Definition 9.10. For the homogeneous rational case, we define

γ̃
(σ s)
τ t =

1

τ0!
δS]0

(t ; σ, τ0)
m−1∏

i=m−d+1

4(si bm − smbi ; τi ) ·
m∏

j=1

α
ts j

j .

In the transcendence proof, analytic as well as arithmetic estimates related to

these numbers γ̃
(σ s)
τ t will rest on the following result.

Lemma 9.11.
a) (General case)

τ0∑

κ=0

(
τ0

κ

)
δS]0

(t ; σ, κ)(smY0)τ0−κ
m−1∏

i=m−d+1

(si + smYi )
τi

is a polynomial in Y0, Ym−d+1, . . . , Ym−1 with rational coefficients. The total degree
of this polynomial is ≤ T0. The length is bounded by

T0!eS0+S]0

(
T1

S]0
+ 1

)S0

(S∗)T0 ,

where S∗ = S1 + · · · + Sm . Moreover the product of this polynomial by ν(S]0)τ0 has
integer coefficients.
b) (Homogeneous rational case).

1

τ0!
δS]0

(t ; σ, τ0)
m−1∏

i=m−d+1

4(si bm − smbi ; τi )

is a rational number of absolute value bounded by
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eS0+S]0+T0

(
T1

S]0
+ 1

)S0

max
1≤i≤m−1

(
Si |bm | + Sm |bi |

T0
+ 1

)T0

.

A denominator is
ν(S]0)τ0 ≤ 3T0 S]0 .

Proof. This follows easily from Lemma 9.8. In the general case, since

δS]0
(t ; σ, κ) ≤ κ!eσ+S]0

(
|t |
S]0

+ 1

)σ

the length of the polynomial is bounded by

τ0∑

κ=0

(
τ0

κ

)
κ!eσ+S]0

(
|t |
S]0

+ 1

)σ
Sτ0−κ

m

m−1∏

i=m−d+1

(Si + Sm)τi

and we have

max
{
1 + Sm, Sm−d+1 + Sm, . . . , Sm−1 + Sm

} ≤ S∗.

In the homogeneous rational case, we use the estimates

1

τ0!

∣∣δS]0
(t ; σ, τ0)

∣∣ ≤ eσ+S]0

(
T1

S]0
+ 1

)S0

and

m−1∏

i=m−d+1

∣∣4(si bm − smbi ; τi )
∣∣ ≤ max

1≤i≤m−1

(
Si |bm | + Sm |bi |

T0
+ 1

)T0

eT0 .

¤

Remark. The first idea of eliminating the factorials from the derivatives of auxiliary
functions with the help of such polynomials is due to Feldman [F 1960a], [F 1960b].
In order to improve the transcendence measure of π and of logarithms of algebraic
numbers, he introduced the polynomials Fa(z) = z(z−1) · · · (z−a + 1) and proved a
lower bound for the greatest common divisor of the values of its derivatives (d/dz)c Fa

at integers m. This estimate was uniform in m, polynomial in c, but only for fixed
a (see Lemma 10.7 of [F 1982]). This was not a common factor for a = 0, 1, . . . A.
Later, to avoid this difficulty, he used (A − a)!Fa for a = 0, 1, . . . A. Other authors
used 4(z; a) = Fa(z)/a! with the corresponding upper bound for a denominator.
Since this estimate is valid only for fixed a, it was necessary to introduce4(z + a; A)
for 0 ≤ a ≤ A where the polynomials have the same degree A.

These Delta polynomials were one of the key tools of Fel’dman [F 1968] when
he achieved a best possible dependence for the estimate in terms of the heights of the
coefficients βi in lower bounds for linear combinations β0 +β1 logα1 +· · ·+βn logαn .
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In turn, such an optimal estimate has dramatic consequences: in particular it yields the
first effective improvement to Liouville’s inequality. The introduction of polynomials
4(z; a)b into transcendence theory is due to A. Baker [B 1972], who improved in
this way the dependence of lower bounds for linear forms in logarithms in terms of
the heights of the αi .

The polynomials
(

z(z + 1) · · · (z + b − 1)

b!

)q

·
(

z(z + 1) · · · (z + r − 1)

r !

)

for a = bq+r and 0 ≤ r ≤ b were introduced in [Mat 1993a] (for a = (b+1)q = bq+q
one can choose either r = 0 or r = b, the result is the same; so there is no jump in
the sequence).

e) Sketch of Proof (Conclusion)

The sketch of proof of Theorem 9.1 is now the usual one: with the numbers γ̃
(σ s)
τ t

we build a matrix M, we use a zero estimate to show that it has maximal rank, we
take a maximal square submatrix with non-vanishing determinant 1, we produce a
lower bound for |1| by means of Liouville’s estimate and an upper bound by means
of Schwarz’ Lemma, and the conclusion will follow.

In the next section we investigate the consequences of our change of basis
(introducing delta polynomials) in the main analytic upper bound for the absolute
value of the interpolation determinant.

9.2.2 Analytic Estimates

Recall the derivative operator D on the ring of entire functions in m + 1 variables
z0, . . . , zm :

D =
∂

∂z0
+

∂

∂zm
·

We shall work here with only d + 1 variables z = (z0, zm−d+1, . . . , zm). Let
δ(1)(z; τ ) 1 ≤ τ ≤ (T0+d

d

)
be a basis of the space of polynomials in d variables

z0, zm−d+1, . . . , zm−1 of total degree ≤ T0 (and degree 0 in zm). In our applications
later this basis will be either

zτ0
0 zτm−d+1

m−d+1 · · · zτm−1
m−1

or else
zτ0

0 4 (zm−d+1; τm−d+1) · · · 4 (zm−1; τm−1)

with τ ∈ Nd , ‖τ‖ ≤ T0.
For κ ∈ N define

δ(1)(z; τ, κ) =

(
∂

∂z0

)κ
δ(1)(z; τ ).

Denote by M the matrix with Ld =
(T0+d

d

)
(2T1 + 1) rows and
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(S0 + 1)(2S1 + 1) · · · (2Sm + 1)

columns:
M =

(
Dσ

(
δ(1)(z; τ )et zm

)
(sη)

)
(τ,t)
(σ,s)

,

where sη stands now for

(smβ0, sm−d+1 + smβm−d+1, . . . , sm−1 + smβm−1, s1λ1 + · · · + smλm) ∈ Cd+1.

The index of rows (τ, t) ranges over the set of pairs inN×Zwith 1 ≤ τ ≤ (T0+d
d

)
and

|t | ≤ T1, while the index of columns (σ, s) runs over the set of tuples inN×Zm with
0 ≤ σ ≤ S0 and |s j | ≤ S j . We select an ordering for the tuples (σ, s) and we order
accordingly the columns of M so that the tuples with the same s are consecutive in
order

(0, s), (1, s), . . . , (S0, s).

This yields (2S1 + 1) · · · (2Sm + 1) blocs of Ld × (S0 + 1) matrices.
Consider now a basis

{
δ(2)(z; σ ) ; 0 ≤ σ ≤ S0

}
of the space of polynomials in a

single variable of degree ≤ S0. Later we shall select the basis

δS]0
(z; σ ) (0 ≤ σ ≤ S0).

Denote by Q the regular square (S0 + 1) × (S0 + 1) matrix occurring in Lemma
9.7 and by Q̃ the regular square matrix which is a diagonal bloc consisting of
(2S1 + 1) · · · (2Sm + 1) blocs Q:

Q̃ = diag
(

Q · · · Q
)
.

Define

8
(σ )
τ t (z) =

τ0∑

κ=0

1

κ!
δ(2)(t ; σ, κ)δ(1)(z; τ, κ)et zm .

Let M̃ be the matrix
M̃ =

(
8

(σ )
τ t (sη)

)
(τ,t)
(σ,s)

with the same size as M. Then we deduce from Lemma 9.7

M Q̃ = M̃. (9.12)

Let
1 = det

(
8

(σµ)
τ t (sµη)

)
(τ,t)

1≤µ≤Ld

be a Ld × Ld minor of M̃. We want an upper bound for |1|. Write

sη′ =
(
smβ0, s1 + smβ1, . . . , sm−1 + smβm−1, s1λ1 + · · · + smλm + sm3)

and ζ
µ

= sµη
′. Let ε and bτ tµ be complex numbers satisfying

8
(σµ)
τ t (sµη) = 8

(σµ)
τ t (sµη

′) + εbτ tµ
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so that
1 = det

(
8

(σµ)
τ t (ζ

µ
) + εbτ tµ

)
(τ,t)

1≤µ≤Ld

.

Proposition 9.13. Define

Vd =
1

2d
(T0 + d)(2T1 + 1) log E

and assume |ε| ≤ e−Vd . For each (τ, t), let Mτ t be a positive real number such that

Mτ t ≥ log sup
|z|=E

max
1≤µ≤Ld

|8(σµ)
τ t (zζ

µ
)| and Mτ t ≥ log max

1≤µ≤Ld

|bτ tµ|.

Then

log |1| ≤ −1

2
Ld Vd + Ld S0 log E + Ld log(2Ld ) +

(T0+d
d )∑

τ=1

T1∑

t=−T1

Mτ t .

Proposition 9.13 rests on a lower bound for the order of vanishing at the origin
of some interpolation determinant.

Let I be a subset of {(τ, t) ; 1 ≤ τ ≤ (T0+d
d

)
, |t | ≤ T1}. For z ∈ C define

dτ tµ(z) =

{
8

(σµ)
τ t (zζ

µ
) for (τ, t) ∈ I ,

bτ tµ for (τ, t) 6∈ I

and
DI (z) = det

(
dτ tµ(z)

)
(τ,t)

1≤µ≤Ld

.

Lemma 9.14. The function DI has a zero of multiplicity

≥ 2(d; T0, |I |)− Ld S0

at the origin.

Lemma 9.14 is a special case of the following more general result, which extends
at the same time Lemmas 6.2, 7.2 and 9.2.

Lemma 9.15. Let n, T0, S0, L and L ′ be positive integers, ξ
1
, . . . , ξ

L ′
elements of

Cn , ϕ1, . . . , ϕL analytic functions in C, θ1, . . . , θn complex numbers, p1, . . . , pL

polynomials in C[z1, . . . , zn] of total degree ≤ T0 and D (1), . . . ,D (L ′) derivative
operators (acting on functions of n variables) of order ≤ S0. For 1 ≤ λ ≤ L , define,

fλ(z1, . . . , zn) = pλ(z1, . . . , zn)ϕλ(θ1z1 + · · · + θnzn).

Let I be a subset of {1, . . . , L}, and let δλµ (1 ≤ λ ≤ L with λ 6∈ I , and 1 ≤ µ ≤ L ′)
be complex numbers. Define, for 1 ≤ λ ≤ L , 1 ≤ µ ≤ L ′ and z ∈ C,



                   

278 9. Refined Measures

dλµ(z) =

{ (
D (µ) fλ

)
(zζ

µ
) for λ ∈ I ,

δλµ for λ 6∈ I .

Let Q be a L ′ × L matrix with constant coefficients in C and D(z) the determinant
of the product (

dλµ(z)
)

1≤λ≤L
1≤µ≤L′

· Q.

Then D has a zero at the origin of multiplicity ≥ 2(n; T0, |I |)− L S0.

Proof of Lemma 9.15. After a change of coordinates we may assume

θ1 = 1, θ2 = · · · = θn = 0.

Also, expanding each ϕλ in power series at the origin, without loss of generality we
may assume

fλ(z) = zκλ where κλ2 + · · · + κλn ≤ T0.

Finally we may also assume I = {1, . . . , |I |}.
Like in the proof of Lemma 9.2, we can write

D (µ)zκ =
∑

‖ι‖≤S0

cµι

(
κ

ι

)
zκ−ι,

hence (
dλµ(z)

)
1≤λ≤L

1≤µ≤L′
= P(z)M̃(z),

where P(z) is the diagonal L × L matrix

P(z) = diag
(

z‖κ1‖−S0 · · · z‖κ |I |‖−S0 1 · · · 1
)

and where the first |I | rows of the L × L ′ matrix M̃(z) are

 ∑

‖ι‖≤S0

cµι

(
κλ
ι

)
zS0−‖ι‖ζ κλ−ι

µ




1≤µ≤L ′

(1 ≤ λ ≤ |I |)

while the last L − |I | rows of M̃(z) are
(
δλ1 · · · δλL ′

)
(|I | < λ ≤ L).

The L × L matrix M̃(z) · Q has entries in C[z]; it has rank < L as soon as there
exists λ 6= λ′ with κλ = κλ′ . The conclusion of Lemma 9.15 plainly follows. ¤

Proof of Proposition 9.13. Let I be a subset of

{
(τ, t) ∈ N× Z, 1 ≤ τ ≤

(
T0 + d

d

)
, |t | ≤ T1}.
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From Lemma 9.14, using Schwarz Lemma 2.4, we deduce

log |DI (1)| ≤ −2(d; T0, |I |) log E + Ld S0 log E + log sup
|z|=E
|D(z)|.

For |z| = E , we have

log |DI (z)| ≤ log(Ld !) +
(T0+d

d )∑

τ=1

T1∑

t=−T1

Mτ t .

Define
1I = det

(
c(I )
τ tµ

)
(τ,t)

1≤µ≤Ld

where

c(I )
τ tµ =




8

(σµ)
τ t (ζ

µ
) for (τ, t) ∈ I ,

bτ tµ for (τ, t) 6∈ I .

From Lemmas 9.15 and 7.3, we see that the hypotheses of Lemma 7.4 are satisfied
with r = 1, V = Vd and

χ0 =
1

2
(log E)

(
T0 + d − 1

d − 1

)−1

,

χ1 = Vd − χ0 +
1

2d
(T0 + d) log E ≤ 4

3
Vd

and

χ2 = Ld S0 log E + log(Ld !) +
(T0+d

d )∑

τ=1

T1∑

t=−T1

Mτ t .

Proposition 9.13 follows with the same estimates as in the proof of Proposition 7.6.
¤

9.2.3 The Zero Estimate

Here is the zero estimate needed for the proof of Theorem 9.1. Let K be an
algebraically closed field of zero characteristic, m and d positive integers with
1 ≤ d ≤ m. We denote by (e1, . . . , em) the canonical basis of K m .

Let α1, . . . , αm be elements of K×, β0, β1, . . . , βm−1 elements of K , T0, T1, S0

positive integers and S a subset of Zm . Define

Ld =

(
T0 + d

d

)
(2T1 + 1).

Let

δ(1)(z; τ ) 1 ≤ τ ≤
(

T0 + d

d

)
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be a basis of the space of polynomials in d variables z0, zm−d+1, . . . , zm−1 of total
degree ≤ T0. For κ ∈ N define

δ(1)(z; τ, κ) =

(
∂

∂z0

)κ
δ(1)(z; τ ).

Further, let
δ(2)(z; σ ) 0 ≤ σ ≤ (m + 1)S0

be a basis of the space of polynomials in a single variable of degree ≤ (m + 1)S0.
Again, for κ ∈ N, we define

δ(2)(z; σ, κ) =

(
d

dz

)κ
δ(2)(z; σ ).

Denote by y
m−d+1

, . . . , y
m

the column vectors of the d × d matrix




0 · · · β0

βm−d+1

Id−1
...

βm−1


 .

For s ∈ Zm , define s y ∈ K d by

s y =
(
smβ0, sm−d+1 + smβm−d+1, . . . , sm−1 + smβm−1

)
.

For τ ∈ N, t ∈ Z, σ ∈ N and s ∈ Zm , define

γ̃
(σ s)
τ t =

τ0∑

κ=0

1

κ!
δ(2)(t ; σ, κ)δ(1)(s y; τ, κ)

m∏

j=1

α
ts j

j .

Let V a subspace of K m of dimension d containing the point

(β1, . . . , βm−1,−1)

and such that πV(e1), . . . , πV(em−d ) is a basis of K m/V, where πV denotes the
linear canonical map K m → K m/V. Define S̃ =

{
s ′ − s ′′ ; s ′ ∈ S, s ′′ ∈ S

}
and

S̃V = S̃ ∩ V. For any n ≥ 1, denote

S̃[n] =
{
s1 + · · · + sn ; si ∈ S̃ (1 ≤ i ≤ n)

}
.

Let M be the matrix
M =

(
γ̃

(σ s)
τ t

)
(τ,t)
(σ,s)

,

with Ld rows indexed by (τ, t) ∈ N× Z,

1 ≤ τ ≤
(

T0 + d

d

)
and |t | ≤ T1,

while the index of columns is (σ, s) ∈ N× Zm , running in the range
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0 ≤ σ ≤ (m + 1)S0, s ∈ S̃V[m + 1].

For Proposition 9.16 as well as for Lemma 9.17, we assume that α1, . . . , αm generate
a multiplicative subgroup of K× of rank ≥ m − 1. We assume further S0 + 1 ≥ 2T0,
and |s| < T0/4 for any s ∈ S. Furthermore, assume

either β0 6= 0 or else S̃[2] ∩ K (β1, . . . , βm−1,−1) = {0}.

Proposition 9.16. Assume also

(S0 + 1)Card(S) > 2(m + 1)T m
0 T1,

Card
(
πV(S)

) ≤ m + 1

d + 1
T m−d

0 ,

and that there is no subspace V ′ of V, other than V itself, containing

(β1, . . . , βm−1,−1),

which satisfies this inequality with d replaced by d ′ = dimK (V ′).
Then M has rank Ld .

The proof of Proposition 9.16 combines the arguments of the proofs of Propo-
sitions 7.7 and 9.3. The main tool is the following auxiliary result (see [W 1993],
Corollaire 5.4 for the case β0 = 0).

Lemma 9.17. Assume M has rank < Ld . Assume also

(S0 + 1)Card
(
S̃V

)
> 2(d + 1)T d

0 T1.

Then there exists a vector subspace V ′ of V, containing (β1, . . . , βm−1,−1), of
dimension d ′ with 1 ≤ d ′ ≤ d − 1, such that

Card
(
πV ′

(
S̃V

)) ≤ d + 1

d ′ + 1
· T d−d ′

0 .

Proof of Lemma 9.17. Define

E =
{

s y ; s ∈ S̃V

} ⊂ K d .

Step 1.
We first check that the elements s y, for s ∈ S̃V , are pairwise distinct.
For s ′ and s ′′ in S̃V the difference s ′ − s ′′ is in S̃V[2]. So it is sufficient to prove

that if s ∈ S̃V[2] satisfies s y = 0:

smβ0 = sm−d+1 + smβm−d+1 = · · · = sm−1 + smβm−1 = 0,

then s 6= 0.
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If β0 6= 0, then we have sm = 0, sm−d+1 = · · · = sm−1 = 0. Since s = (s1, . . . , sm)
is in V, and since πV(e1), . . . , πV(em−d ) is a basis of K m/V, this implies s = 0.

If β0 = 0 we deduce from the conditions s ∈ V and (β1, . . . , βm−1,−1) ∈ V

(s1 + smβ1, . . . , sm−1 + smβm−1, 0) ∈ V.

Since the last d components are zero, we also have s j + smβ j = 0 for 1 ≤ j ≤ m,
hence sm(β1, . . . , βm−1,−1) ∈ S̃[2]. By assumption this is possible only for sm = 0,
and therefore s j = 0 for 1 ≤ j ≤ m.

Step 2.
Ifα1, . . . , αm are multiplicatively dependent, they generate a multiplicative group

of rank m − 1. In this case, among the tuples (a1, . . . , am) ∈ Zm \ {0} for which

α
a1
1 · · ·αam

m = 1,

there is one (which is unique, up to sign) for which max{|a1|, . . . , |am |} is minimal.
Recall that for any s ∈ S̃ we have |s| < T0/2. It follows that for each γ ∈ K× the
number of elements s ∈ S̃V such that αs = γ is ≤ T0. Of course this is true also if
α1, . . . , αm are multiplicatively independent (!). Using Lemma 7.8 for the mapping

S̃V −→ K×
s 7−→ αs

we derive

Card
{
αs ; s ∈ S̃V

}
≥ 1

T0
Card

(
S̃V

)
.

Step 3.
We already introduced the derivative operator

D =
∂

∂X0
+ Y

∂

∂Y
·

Using Lemma 9.7 (compare with (9.12)), we deduce from the assumption rank(M) <
Ld that there exists a nonzero polynomial P in the ring

K [X0, Xm−d+1, . . . , Xm−1, Y±1],

of total degree ≤ T0 with respect to X0, Xm−d+1, . . . , Xm−1, of degree ≤ T1 with
respect to Y±1, which satisfies

Dσ P
(
s y, αs

)
= 0

for 0 ≤ σ ≤ (m + 1)S0 and s ∈ S̃V[m + 1].
The assumptions of Theorem 8.1 are satisfied with d replaced by d + 1,

G0 = Gd
a , G1 = Gm, G+ = G = G0 × G1, G− = {e},

W = K (1, 0, . . . , 0) ⊂ K d+1
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and
6 =

{(
s y, αs

)
; s ∈ S̃V

} ⊂ G(K ).

We deduce that there exists a connected algebraic subgroup G∗ = G∗0 × G∗1 of G
(where G∗i is an algebraic subgroup of G i for i = 0, 1) such that the conclusion of
Theorem 8.1 holds:

(
S0 + `′0
`′0

)
Card

(
6 + G∗)

G∗

)
H (G∗; T ) ≤ H (G; T )

where T = (T0; T1) and

`′0 =

{
0 if (1, 0, . . . , 0, 1) ∈ Te(G∗)
1 if (1, 0, . . . , 0, 1) 6∈ Te(G∗).

Denote by d∗i the dimension of G∗i . We have (see § 5.1.1)

H (G; T ) = 2(d + 1)T d
0 T1

and

H (G∗; T ) =





T
d∗0

0 if d∗1 = 0

2(d∗0 + 1)T
d∗0

0 T1 if d∗1 = 1.

Step 4
We claim d∗0 ≥ 1. Indeed for d∗0 = 0 we have (1, 0, . . . , 0, 1) 6∈ Te(G∗) hence

`′0 = 1 and

Card

(
6 + G∗

G∗

)
≥ Card(E ).

From step 1 we deduce Card(E ) = Card
(
S̃V

)
, and therefore the assumption of

Lemma 9.17 implies

(S0 + 1)Card(E ) > 2(d + 1)T d
0 T1.

Step 5.
We claim G∗1 = G1. Indeed, for G∗1 = {1} we have d∗1 = 0 and `′0 = 1. On the

other hand we deduce from step 2:

Card
{
αs ; s ∈ S̃V

}
≥ 1

T0
Card

(
S̃V

)
>

2(d + 1)T d−1
0 T1

S0 + 1
,

and therefore, since d∗0 ≥ 1 (cf. step 4),

(S0 + 1)Card

(
6 + (G∗0 × {1})

G∗0 × {1}
)
> 2(d + 1)T d−1

0 T1

≥ 2(d + 1)T
d−d∗0

0 T1.
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Step 6.
From steps 3 and 5 we deduce d∗1 = 1 and

(S0 + 1)`
′
0 Card

(
πG∗0 (E )

) ≤ d + 1

d∗0 + 1
T

d−d∗0
0 ,

where πG∗0 is the canonical map K d → K d/G∗0. Since G∗ 6= G we also have
d∗0 ≤ d − 1.

Define a vector subspace V ′ of V by

V ′ =
{
z ∈ V ; ∃z0 ∈ K , (z0, zm−d+1 + zmβm−d+1, . . . , zm−1 + zmβm−1) ∈ G∗0

}
.

Hence V ′ contains the point (β1, . . . , βm−1,−1). We denote by d ′ the dimension of
V ′.

The linear map

ψ : V −→ K d−1

z 7−→ (
zm−d+1 + zmβm−d+1, . . . , zm−1 + zmβm−1

)

is surjective with kernel K (β1, . . . , βm−1,−1).
Let π : K d → K d−1 denote the projection of kernel K (1, 0, . . . , 0) and U be the

image of G∗0 under π . Plainly we have

V ′ = ψ−1(U),

hence dim(U) = d ′ − 1. Since

π (E ) = ψ
(
S̃V

)
,

we deduce from the diagram

E π (E ) S̃V

∩ ∩ ∩
K d

π−−−−→ K d−1
ψ←−−−− V

πG∗
0

y πU

y πV′

y

K d

G∗0
−−−−→ K d−1

U

∼←−−−− V
V ′

∪ ∪ ∪
πG∗0 (E ) πU

(
π (E )

)
πV ′

(
S̃V

)

the inequality



                 

9.2 Proof of Theorem 9.1 285

Card
(
πV ′

(
S̃V

)) ≤ Card
(
πG∗0 (E )

)
.

Notice that the map K d/G∗0 −→ K d−1/U is surjective with kernel πG∗0 (K ×U),
while V/V ′ −→ K d−1/U is an isomorphism.

The surjective linear map G∗0 → U which maps x onto π (x) has kernel
G∗0 ∩ K (1, 0, . . . , 0). We distinguish two cases.

Case a): `′0 = 1
In this case G∗0∩K (1, 0, . . . , 0) = {0}, hence U has dimension d∗0 and d ′ = d∗0 +1.

From 1 ≤ d∗0 ≤ d − 1 we deduce 2 ≤ d ′ ≤ d. From the condition S0 + 1 ≥ 2T0 we
deduce

Card
(
πV ′

(
S̃V

)) ≤ Card
(
πG∗0 (E )

) ≤ d + 1

2d ′
T d−d ′

0 .

Moreover the inequality Card
(
πG∗0 (E )

) ≥ 1 implies d ′ < d, hence we have
2 ≤ d ′ ≤ d − 1.

Case b): `′0 = 0
Now we have G∗0 3 (1, 0, . . . , 0), hence G∗0 = K × U and U has dimension

d∗0 − 1. Therefore d ′ = d∗0 with 1 ≤ d ′ ≤ d − 1, and

Card
(
πV ′

(
S̃V

))
= Card

(
πG∗0 (E )

) ≤ d + 1

d ′ + 1
T d−d ′

0 .

¤

Proof of Proposition 9.16. We shall use Lemma 7.8 twice. First we consider the
restriction of πV to S and get

Card
(
S̃V

) · Card
(
πV

(
S
)) ≥ Card(S).

Hence from the assumption of Proposition 9.16 we obtain

(S0 + 1)Card
(
S̃V

) ≥ (S0 + 1)Card(S) · d + 1

m + 1
· T d−m

0

> 2(d + 1)T d
0 T1.

Assume the conclusion of Proposition 9.16 does not hold: rank(M) < Ld . We use
Lemma 9.17: there exists a vector subspace V ′ of V, containing (β1, . . . , βm−1,−1),
of dimension d ′ with 1 ≤ d ′ ≤ d − 1, such that

Card
(
πV ′

(
S̃V

)) ≤ d + 1

d ′ + 1
· T d−d ′

0 .

We use Lemma 7.8 again for the canonical mapping

ψ :
K m

V ′
−→ K m

V

with (using the notation after (7.9))
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C = πV ′ (S), ψ(C) = πV(S), C̃ ∩ kerψ = πV ′
(
S̃V

)
,

Card
(
C̃ ∩ kerψ

)
≤ d + 1

d ′ + 1
· T d−d ′

0 ,

Card
(
ψ(C)

) ≤ m + 1

d + 1
· T m−d

0

and we conclude

Card
(
πV ′ (S)

) ≤ m + 1

d ′ + 1
· T m−d ′

0 .

This contradicts the minimality of V. ¤

Remark. Under the assumptions of Proposition 9.16, assume 4T0T1 ≥ S0 + 1 and
d = 1. In this case V = K (β1, . . . , βm−1,−1). Using Lemma 7.8 we deduce

Card
(
S̃V

)
Card

(
πV(S)

) ≥ Card(S) >
2(m + 1)T m

0 T1

S0 + 1
≥ m + 1

2
T m−1

0 .

Therefore Card
(
S̃V

)
> 1 and

S̃ ∩ K (β1, . . . , βm−1,−1) 6= {0}.
Notice that this has been excluded when β0 6= 0.

9.3 Value of C(m)

We prove Theorem 9.1 with an explicit value for C(m). Our goal is only to show that
everything can be explicitly computed, not to seek for a sharp numerical value.

Proposition 9.18. The conclusion of Theorem 9.1 holds with

C(m) = 2m+25m3m+9.

Moreover if E = e, m ≥ 10 and log A j ≥ m/(2D) for 1 ≤ j ≤ m, then the
conclusion holds with

C(m) = 25m+21m2m+8.

We shall prove both estimates at the same time. For this we introduce a real
number M ≥ 1 and define

M∗ =
{

1 if M = 1,
2m+3 M2 if M > 1.

We shall prove the conclusion of Theorem 9.1 with C(m)(log E)−m−1 replaced by

2m+25m3m+9 M∗
(
log(M E)

)−m−1
.
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Choosing M = M∗ = 1 we get the first part of Proposition 9.18. For the second part
where E = e, we choose M = e(m/2)−1 so that

2m+3 M2
(
log(M E)

)−m−1
= 22m+4em−2m−m−1,

which is < 1 exactly when m ≥ 10.
This parameter M arises as follows. In § 9.2, from

E |λ j | ≤ D log A j and S j ≤ U

m DT1 log A j

we have derived the crude estimate

E |s1λ1 + · · · + smλm | ≤ E
m∑

j=1

S j |λ j | ≤
m∑

j=1

DS j log A j ≤ U

T1

for any s ∈ Zm[S]. A preliminary remark is that we can replace the assumption

E |λ j | ≤ D log A j (1 ≤ j ≤ m)

by the weaker requirement
m∑

j=1

|λ j |
log A j

≤ D

E
·

This is relevant only as far as we are interested in the dependence of C(m) with
respect to m. Next the main point is the following trick which we borrow from
E. M. Matveev [Mat 1998]: if we restrict the range of s to the subset S of

Zm[S] =
{
s ∈ Zm ; |s j | ≤ S j (1 ≤ j ≤ m)

}

for which

|s1λ1 + · · · + smλm | ≤ U

M ET1

,

then we are able to use a larger radius for the analytic estimate, namely with E
replaced by M E . This is why in the conclusion we can replace log E by log(M E).
There will be a cost in counting Card(S), which is needed to apply the zero estimate.
Matveev [Mat 1998] gives a sharp lower bound for this number (see Exercise 9.5),
but we shall simply use Dirichlet’s box principle (step 2 of § 9.3.3; compare with [Y
1998], II).

9.3.1 Main Estimate

For the results of § 9.3.1 and § 9.3.3 we introduce some data and assume the following
conditions are satisfied.

Let λ1, . . . , λm be logarithms of nonzero algebraic numbers. Define αi = exp(λi )
for 1 ≤ i ≤ m and assume that α1, . . . , αm span a multiplicative group of rank
≥ m − 1. Let β0, . . . , βm−1 be algebraic numbers. Set
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D = [Q(α1, . . . , αm, β0, . . . , βm−1):Q]

and
3 = β0 + β1λ1 + · · · + βm−1λm−1 − λm .

Assume 3 6= 0. Let A1, . . . , Am , B1, B2, E and M be positive real numbers with
B1 ≥ e, B2 ≥ e, E ≥ e, M ≥ 1, which satisfy

log Ai ≥ h(αi ), D log Ai ≥ 1 (1 ≤ i ≤ m),

m∑

i=1

|λi |
log Ai

≤ D

E
,

B D
1 ≥ M E and B D

2 ≥ M E .

Our main estimate is the following.

Theorem 9.19. Let T0, T1, S]0, S0, S1, . . . , Sm be positive rational integers, U a
positive real number and S a subset of Zm[S] satisfying the following conditions:

S0 + 1 ≥ 2T0, T0 > 4Si (1 ≤ i ≤ m),

∣∣s1λ1 + · + smλm

∣∣ ≤ U

M E(T1 + 1)
for any s ∈ S,

and
(S0 + 1)Card(S) > 2(m + 1)T m

0 T1.

Assume also

B2 ≥ e2

(
1 +

T1

S]0

)
·

Define

V =
1

2m
(T0 + 1)(2T1 + 1) log(M E),

L =

(
T0 + m

m

)
(2T1 + 1)

and assume

V

2
≥ 4DT0 log B1 + 2(m + 1)DS0 log B2 + DS]0

+D log(2L) + (m + 1)U + 2(m + 1)D(T1 + 1)
m∑

j=1

S j log A j .

Finally, assume

• Either (general case)

log B1 ≥ h(1:β0: · · · :βm−1) and B1 ≥ 2(m + 1)T03S]0 (S1 + · · · + Sm).
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• Or else (homogeneous rational case)

β0 = 0, βi = − bi

bm
(1 ≤ i ≤ m) with (b1, . . . , bm) ∈ Zm,

B1 ≥ e +
2e(m + 1)

T0
max

1≤ j<m

(|bm |S j + |b j |Sm
)

and B1 ≥ 3S]0 .

Then
|3| > e−mV .

For practical applications (for instance for solving diophantine equations) it is
much more efficient to use Theorem 9.19 than Proposition 9.18.

9.3.2 Proof of the Main Estimate

Proof of Theorem 9.19.
We assume that the hypotheses of Theorem 9.19 are satisfied. We split the proof

into several steps.

Step 1. Liouville’s lower bound for |3|
Ifβ0 = 0 and at the same time s(β1, . . . , βm−1,−1) ∈ Zm[4S] for some s 6= 0, then

Liouville’s estimate readily provides the conclusion of Theorem 9.1 (the argument
is the same as in the first step of the proof of Theorem 7.10; notice also that this is
the only place in the proof where we need the assumption3 6= 0 – see Exercice 7.1).

Therefore we may assume, without loss of generality, that either β0 6= 0 or else
s(β1, . . . , βm−1,−1) 6∈ Zm[4S] for any s 6= 0. This condition will be needed to apply
Proposition 9.16 in the next step.

Step 2. The Matrix M and the Determinant 1ar

Let V a subspace of Cm containing the point

(β1, . . . , βm−1,−1)

and such that

Card
(
πV(S)

) ≤ m + 1

d + 1
T m−d

0

where d is the dimension of V and πV :Cm → Cm/V the canonical surjection. Such
subspaces V exist: an example is Cm itself. We select V of minimal dimension for
this property and we define SV = S ∩ V, S̃V = S[2] ∩ V.

Since we shall work with functions of d variables, it suffices to know d ≥ 1;
hence there is no need here to prove V 6= C(β1, . . . , βm−1,−1) (compare with step
1 of § 7.5 and with the remark at the end of § 9.2).

We permute, if necessary, the elements of the canonical basis of Cm , so that
πV(e1), . . . , πV(em−d ) is a basis of Cm/V.
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For τ ∈ Nd , t ∈ Z, σ ∈ N and s ∈ Zm , define γ̃
(σ s)
τ t as in (9.9) and (9.10). Let M

be the matrix
M =

(
γ̃

(σ s)
τ t

)
(τ ,t)

(σ,s)

where the index of rows (τ , t) ranges over the elements in Nd × Z with ‖τ‖ ≤ T0

and |t | ≤ T1, while the index of columns (σ, s) runs over the elements of N × Zm

with
0 ≤ σ ≤ (m + 1)S0 and s ∈ S̃V[m + 1].

The number of rows is

Ld =

(
T0 + d

d

)
(2T1 + 1).

Let us check the hypotheses of Proposition 9.16.
The first step as well as the assumptions

S0 + 1 ≥ 2T0, T0 > 4 max
1≤i≤m

Si

and
(S0 + 1)Card(S) > 2(m + 1)T m

0 T1

are needed here.
For 0 ≤ σ ≤ S0 we set

δ(2)(z; σ ) = δS]0
(z; σ ) ∈ C[z].

For τ ∈ Nd with ‖τ‖ ≤ T0 we define a polynomial δ(1)(z, τ ) ∈ C[z] in d variables
as 




zτ0
0 zτm−d+1

m−d+1 · · · zτm−1
m−1,

1

τ0!
b
‖τ‖−τ0
m zτ0

0 4 (zm−d+1; τm−d+1) · · · 4 (zm−1; τm−1)

in the general case and in the homogeneous rational case respectively.
By Proposition 9.16 the matrix M has rank Ld . Let1ar be a nonzero determinant

of a square Ld × Ld submatrix of M:

1ar =
(
γ̃

(µ)
τ t

)
(τ ,t)

1≤µ≤Ld

where γ̃ (µ)
τ t stands for γ̃

(σµs
µ

)
τ t .

Step 3. Arithmetic Lower Bound
Recall the crucial fact that1ar 6= 0, which follows from our construction together

with the zero estimate. Our goal is to show

log |1ar| ≥ −LdU1

where
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U1 = (2D − 1)T0 log B1 + (m + 1)(D − 1)S0 log B2 + (D − 1)S]0

+(D − 1) log Ld + 2(m + 1)D(T1 + 1)
m∑

j=1

S j log A j .

We check this inequality as follows.
Consider first the general case. Each entry γ̃ (µ)

τ t of the matrix whose determinant
in 1ar is the value at the point (α1, · · · , αm , β0, . . . , βm−1) of a polynomial with
rational coefficients in the 3m variables X±1

1 , . . . ,X±1
m , Y0, . . . ,Ym−1. We multiply

this polynomial byν(S]0)T0 and get a polynomial p(µ)
τ t with rational integer coefficients.

Lemma 9.11, with S0 replaced by (m + 1)S0 and S j by 2(m + 1)S j for 1 ≤ j ≤ m,
shows that the degrees and length of this polynomial are bounded as follows:

degX±1
j

(
p(µ)
τ t

) ≤ 2(m + 1)|t |S j (1 ≤ j ≤ m),

degY

(
p(µ)
τ t

) ≤ T0

and

L
(

p(µ)
τ t

) ≤ (ν(S]0)S
)T0 T0!e(m+1)S0+S]0

(
T1

S]0
+ 1

)(m+1)S0

with
S = 2(m + 1)(S1 + · · · + Sm).

Hence
L
(

p(µ)
τ t

) ≤ eS]0 BT0
1 B(m+1)S0

2 .

We apply Lemma 3.15 and find that ν(S]0)Ld T01ar is the value, at the point
(
α1, · · · , αm, β0, . . . , βm−1

)
,

of a polynomial P ∈ Z[X±1
1 , . . . ,X±1

m ,Y0, . . . ,Ym−1], with

degX±1
j

P ≤ (m + 1)(T1 + 1)Ld S j (1 ≤ j ≤ m),

degY P ≤ Ld T0,

and
L(P) ≤ Ld !eLd S]0 BLd T0

1 B(m+1)Ld S0
2 .

We conclude by means of Proposition 3.14 with

` = 2m + 1, ν1 = · · · = ν2m = 1, ν2m+1 = m

and the 3m variables X1, . . . ,Xm,X−1
1 , . . . ,X−1

m ,Y0, . . . ,Ym−1. We bound from
above

h(1:β0: · · · :βm−1) by log B1.

In the homogeneous rational case, each ν(S]0)T0 γ̃
(µ)
τ t can be written as the value,

at the point (α1, · · · , αm), of a polynomial p(µ)
τ t in Z[X±1

1 , . . . ,X±1
m ], whose degree

with respect to X±1
j is
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degX±1
j

(
p(µ)
τ t

) ≤ 2(m + 1)|t |S j

and whose length is bounded by

L
(

p(µ)
τ t

) ≤ ν(S]0)T0 e(m+1)S0+S]0+T0

(
T1

S]0
+ 1

)(m+1)S0

·

max
1≤i≤m−1

(
2(m + 1) · Si |bm | + Sm |bi |

T0
+ 1

)T0

≤ B2T0
1 B(m+1)S0

2 eS]0 .

Hence ν(S]0)Ld T01ar itself can be written as the value of a polynomial P in
Z[X±1

1 , . . . ,X±1
m ] at the point (α1, . . . , αm), where

degX±1
j

P ≤ (m + 1)(T1 + 1)Ld S j (1 ≤ j ≤ m)

and
L(P) ≤ Ld !B2Ld T0

1 B(m+1)Ld S0
2 eLd S]0 .

Step 4. Analytic Upper Bound
Assume |3| ≤ e−Vd with

Vd =
1

2d
(T0 + d)(2T1 + 1) log(M E).

Our goal is to deduce

log |1ar| < −1

2
Ld Vd + LdU2

with

U2 = T0 log(B D+1
1 M E) + (m + 1)S0 log(B2 M E) + S]0 + log(2Ld ) + (m + 1)U.

We use Proposition 9.13 with S0 replaced by (m+1)S0, with S j replaced by 2(m+1)S j

(1 ≤ j ≤ m) and with E replaced by M E . We set ε = 3,

Mτ t = T0 log(B D+1
1 M E) + (m + 1)S0 log B2 + S]0 +

2(m + 1)U |t |
T1 + 1

and we take the same polynomials δ(1)(z; τ ) and δ(2)(z; σ ) as in step 2.
We need to bound

sup
|z|=M E

∣∣8(σ )
τ t (zsη′)

∣∣

which is related to 1ar by

γ̃
(µ)
τ t = 8

(σµ)
τ t (sµη) = 8

(σµ)
τ t (sµη

′)ets(µ)
m 3.

In the general case we have
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8
(σ )
τ t (zsη′) =

τ0∑

κ=0

(
τ0

κ

)
δS]0

(t ; σ, κ) · (smβ0)τ0−κ
(

m−1∏

i=m−d+1

(si + smβi )
τi

)
z‖τ‖−κet z(s1λ1+···+smλm +sm3).

Recall
max

{
1, |β0|, . . . , |βm−1|

} ≤ B D
1 .

By Lemma 9.11,

τ0∑

κ=0

(
τ0

κ

)
|δS]0

(t ; σ, κ)| · |smβ0|τ0−κ
m−1∏

i=m−d+1

|si + smβi |τi

≤ T0!(SB D
1 )T0 e(m+1)S0+S]0

(
T1

S]0
+ 1

)(m+1)S0

≤ B(D+1)T0
1 B(m+1)S0

2 eS]0 .

Hence sup|z|=M E

∣∣8(σ )
τ t (zsη′)

∣∣ is bounded by

(B D+1
1 M E)T0 B(m+1)S0

2 eS]0 exp
{

M E
∣∣t(s1λ1 + · · · + smλm + sm3)

∣∣}.

By our condition on S we have, for |t | ≤ T1 and s ∈ S̃[m + 1],

∣∣t(s1λ1 + · · · + smλm)
∣∣ ≤ 2(m + 1)U |t |

M E(T1 + 1)
·

Hence
log sup
|z|=M E

∣∣8(σ )
τ t (zsη′)

∣∣ ≤ Mτ t .

The numbers b(µ)
τ t which occur in Proposition 9.13 satisfy

γ̃
(µ)
τ t = γ̃ (µ)

τ t ets(µ)
m 3 + εb(µ)

τ t .

Here ε = 3. Hence (recall Exercise 1.1.a)

|b(µ)
τ t | ≤ 2

∣∣ts(µ)
m γ̃

(µ)
τ t

∣∣ ≤ 2
∣∣ts(µ)

m 8
(σµ)
τ t (sµη)

∣∣.

Here we use very crude estimates. From the assumptions 4S j < T0 and

2(m + 1)T m
0 T1 < (S0 + 1)(2S1 + 1) · · · (2Sm + 1)

we deduce 2S j + 1 < T0, T1 < S0 + 1 and

2T1Sm < T0(S0 + 1) < ET0+(m+1)S0 .

The estimate
|b(µ)
τ t | ≤ eMτ t

follows.
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In the homogeneous rational case we have

8
(σ )
τ t (zsη) =

1

τ0!
δS]0

(t ; σ, τ0)

(
m−1∏

i=m−d+1

4(si bm − smbi ; τi )

)
z‖τ‖et z(s1λ1+···+smλm )

and we use Lemma 9.11:

1

τ0!
|δS]0

(t ; σ, τ0)|
m−1∏

i=m−d+1

| 4 (si bm − smbi ; τi )| ≤ B(m+1)S0
2 eS]0 BT0

1 ,

while
sup
|z|=M E

∣∣z‖τ‖
∣∣ ≤ (M E)T0 .

The rest of the proof is just the same as in the general case.

Step 5. Conclusion: Lower Bound for |3|
Since

U1 + U2 ≤ V

2
≤ Vd

2
,

the conclusions of steps 3 and 4 are not compatible, and the assumption |3| ≤ e−Vd

in step 4 is not satisfied. Therefore

|3| ≥ e−Vd ≥ e−mV .

¤

9.3.3 Consequence of the Main Estimate

Recall the assumptions in § 9.3.1 before the statement of Theorem 9.19.

Corollary 9.20. Let N0 = 8(m + 1)3,

C0 = (m + 1)2−2m+1(N0 + 1)m+1, C1 =
1

4
(2N0 + 1)(C0 + 2)

and

M∗ =

{
1 if M = 1,
2m+3 M2 if M > 1.

Assume B1 ≥ B2,

log B2 ≥ 1

D
log(M E), log A j ≥ 1

D
log(M E) (1 ≤ j ≤ m)

and

B2 ≥ 71N0

m + 1

(
1 +

D

log(M E)

)
·

Assume further
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• Either (general case)

log B1 ≥ h(1:β0: · · · :βm−1)

and

B1 ≥ C3
0 M5

(
D log A

log(M E)

)2m+2

(log B2)3.

• Or else (homogeneous rational case)

β0 = 0, βi = − bi

bm
(1 ≤ i ≤ m) with (b1, . . . , bm) ∈ Zm,

and

B1 ≥ e +
4e(m + 1) log(M E)

N0 D
max

1≤ j≤m−1

{
1 +
|bm |

log A j
+
|b j |

log Am

}
·

Then

|3| > exp
{
−C1 Dm+2(log B1)(log B2)(log A1) · · · (log Am)M∗

(
log(M E)

)−m−1
}
.

Proof of Corollary 9.20. We deduce Corollary 9.20 from Theorem 9.19.

Step 1. Choice of Parameters
Define U , T0, T1, S]0, S0, S1, . . . , Sm as follows:

U = C0 Dm+2(log B1)(log A1) · · · (log Am)(log B2)M∗
(
log(M E)

)−m−1
,

T0 =

[
U

2D log B1

]
, T1 =

[
N0 D log B1

log(M E)

]
,

S0 =

[
U

D log B2

]
,

S]0 =





[
log B1

6m

]
in the general case,

[
log B1

log 3

]
in the homogeneous rational case,

S j =

[
U

D(T1 + 1) log A j

]
(1 ≤ j ≤ m).

Other options may lead to better numerical values (the coefficients 2 in T0, 6m and
log 3 in S]0,. . . and 1 at many places!), but we just want to give an explicit result
without trying to optimize the final estimate.

It will be useful to know that these parameters are somewhat large. Notice for
instance that our assumptions imply S]0 ≥ 2.

Using the hypotheses
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log B1 ≥ log B2 ≥ 1

D
log(M E) and log A j ≥ 1

D
log(M E)

we deduce

T0 >
C0

2
− 1, T1 ≥ N0, S0 > C0 − 1, S j >

C0

N0
− 1.

We shall use repeatedly estimates like

T1 + 1 ≤
(

1 +
1

N0

)
T1 ≤ (N0 + 1)D log B1

log(M E)
·

The following inequalities, occurring in the hypotheses of Theorem 9.19, are plain:

S0 + 1 ≥ 2T0, T0 > 4Si (1 ≤ i ≤ m).

Step 2. Choice of S
We show that there exists a subset S of Zm[S] satisfying

(S0 + 1)Card(S) > 2(m + 1)T m
0 T1

such that, for any s ∈ S,

|s1λ1 + · · · + smλm | ≤ U

M E(T1 + 1)
·

a) Consider first the case M = M∗ = 1. We take S = Zm[S]. For s ∈ Zm[S] it suffices
to use the trivial estimate

∣∣∣∣∣
m∑

j=1

s jλ j

∣∣∣∣∣ ≤
m∑

j=1

|s jλ j | ≤
m∑

j=1

S j |λ j | ≤ U

D(T1 + 1)

m∑

j=1

|λ j |
log A j

≤ U

E(T1 + 1)
·

We also need to check

(S0 + 1)(2S1 + 1) · · · (2Sm + 1) > 2(m + 1)T m
0 T1.

Indeed we have

S0 + 1 >
U

D log B2

,

2S j + 1 >

(
2− N0

C0

)
(S j + 1) >

(
1− N0

2C0

)
2U

D(T1 + 1) log A j
(1 ≤ j ≤ m),

T0 ≤ U

2D log B1
and T1 + 1 ≤

(
1 +

1

N0

)
T1·

Moreover (
1− N0

2C0

)m (
1 +

1

N0

)
> 1,

so the inequality we want to check is a consequence of
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22m−1U ≥ (m + 1)

(
1 +

1

N0

)m+1

D(log B2)(log A1) · · · (log Am) · T1

(
T1

log B1

)m

·

Given the definitions of U and T1, this explains the choice of C0 (at least in case
M = M∗ = 1).

b) Assume now M > 1 and M∗ = 2m+4 M2. Define S′j = [S j/2] (1 ≤ j ≤ m). We
use Dirichlet’s box principle: the image of the map

f : Zm[S′] −→ C
s 7−→ s1λ1 + · · · + smλm

is contained in a disc of radius ≤ U/
(
2E(T1 + 1)

)
. Since M ≥ 1 and

√
6 > 1 +

√
2,

there is an integer ` in the range
√

2M ≤ ` ≤ √6M . We decompose the square
{

x + iy ; |x | ≤ U

2E(T1 + 1)
, |y| ≤ U

2E(T1 + 1)

}

into `2 small squares of sides ≤ U/
(
E(T1 + 1)

)
`. One at least of the small squares

contains elements f (s) for s in a subset of Zm[S′] of cardinal

≥ 1

`2
Card

(
Zm[S′]

) ≥ 1

`2
S1 · · · Sm

(notice the inequalities 2S′j + 1 ≥ S j ).
We fix one such small square, and one s ′ ∈ Zm[S′] for which f (s ′) falls in this

small box. Then for any s ′′ ∈ Zm[S′] for which f (s ′′) we have

| f (s ′)− f (s ′′) = | f (s ′ − s ′′)| ≤
√

2U

E(T1 + 1)`
≤ U

M E(T1 + 1)
·

We let S be the set of these s ′ − s ′′. Then by construction S ⊂ Zm[S] and

|s1λ1 + · · · + smλm | ≤ U

M E(T1 + 1)

for any s ∈ S.
Let us check

1

`2
(S0 + 1)S1 · · · Sm > 2(m + 1)T m

0 T1.

From

S j >

(
1− N0

C0

)
(S j + 1),

(
1− N0

C0

)m

>
3

4
and `2 < 6M2

one deduces

1

`2
(S0 + 1)S1 · · · Sm >

3

4
· U

D log B2
· 1

6M2
·
(

U

D(T1 + 1)

)m

· 1

(log A1) · · · (log Am)
·
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On the other hand we have

2(m + 1)T0T m
1 ≤ 2(m + 1)

(
U

2D log B1

)m

T1 and T1 + 1 ≤
(

1 +
1

N0

)
T1,

so it suffices to check

2m−4U ≥
(m + 1)

(
1 +

1

N0

)m

M2 D(log B2)(log A1) · · · (log Am) · T1

(
T1

log B1

)m

·

This explains the choice of M∗ in case M > 1.

Step 3. Estimate Involving B1

In the homogeneous rational case the inequality B1 ≥ 3S]0 is plain.
In the general case we need to check

B1 ≥ 2(m + 1)T0S∗3S]0 .

Indeed from

T0 ≤ U

2D log B1
and S j <

U log(M E)

N0 D2(log A j )(log B1)
,

we deduce

T0S∗ ≤ mC2
0

2N0
(M∗)2 D2m+1(log A)2m−1(log B2)2

(
log(M E)

)−2m−1
.

Further we have

3S]0 ≤ B1/(5m)
1 , M4 ≤ (M5)1−(1/5m), 2m + 1 < (2m + 2)

(
1− 1

5m

)

and
m(m + 1)C2

0

N0
·
(

M∗

M

)2

< (C3
0 )1−(1/5m).

Step 4. Estimate Involving B2

We check

B2 ≥ e2

(
1 +

T1

S]0

)
·

Since

S]0 ≥
log B1

9.6(m + 1)

we have
e2T1

S]0
≤ 71N0 D

(m + 1) log(M E)
·
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Step 5. End of the Proof of Corollary 9.20
We first check the (weak) bounds

DS]0 <
1

2
U and D log(2L) ≤ 1

2
U.

The first one is plain. For the second one, we start with

2L ≤ 2(T0 + m)m(2T1 + 1) ≤ 4

(
1 +

3m

C0

)(
1 +

1

N0

)
T m

0 T1 < 5T m
0 T1.

We deduce

2L ≤ 5N0Cm
0

(
D log B1

log E

)(
D log B2

log E

)m (D log A

log E

)m2

with A = max1≤i≤m Ai . On the other hand the inequalities

U

C0 D
≥ D log B1

log E
,

U

C0 D
≥ D log B2

log E
and

U

C0 D
≥ D log A

log E

give

D log(2L) ≤ (m2 + m + 1)
U

C0
+ D log(5N0Cm

0 ).

Our claim D log(2L) ≤ 1
2U then follows from U ≥ C0 D.

One deduces that the number

4DT0 log B1 + 2(m + 1)DS0 log B2 + DS]0

+D log(2L) + (m + 1)U + 2(m + 1)D(T1 + 1)
m∑

j=1

S j log A j

is at most
(
2 + 2(m + 1) + 1 + (m + 1) + 2m(m + 1)

)
U = (2m2 + 5m + 6)U.

On the other hand since

T0 + 1 >
U

D log B1
and 2T1 + 1 >

(2N0 − 1)D log B1

log(M E)

the number

V =
1

2m
(T0 + 1)(2T1 + 1) log(M E)

satisfies

V >
(2N0 − 1)U

4m
·

Hence our choice of N0 yields

V

2
> 2(m2 + 3m + 3)U.
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Finally the choice of C1 arises from the estimates

T0 + 1 ≤
(

1 +
2

C0

)
U

2D log B1

, 2T1 + 1 ≤ (2N0 + 1)D log B1

log(M E)

and

mV ≤ 1

4

(
1 +

2

C0

)
(2N0 + 1)U ≤ C1

C0
U.

Corollary 9.20 follows. ¤

9.3.4 Proof of Proposition 9.18

Here, we deduce Proposition 9.18 from Corollary 9.20.

Proof of Proposition 9.18. The condition on linear independence of λ1, . . . , λm

ensures that the rank of the multiplicative subgroup of C× generated by α1, . . . , αm

is at least m − 1. We apply Corollary 9.20 with

log B1 = 37m3/2 log B, and log B2 = 10
√

m log E∗.

Since M ≤ e(m/2)−1 and E ≥ e we have

log(M E) ≤ m

2
log E .

In case M = e(m/2)−1 and E = e, we check

log A j ≥ 1

D
log(M E) (1 ≤ j ≤ m)

thanks to the extra assumption log A j ≥ m/(2D) in Proposition 9.18.
We wish to check that the assumptions on B1 and B2 in Corollary 9.20 follow

from the hypotheses of Proposition 9.18. We start with B2.
From E∗ ≥ D/ log E , E∗ ≥ e and M ≥ 1 we deduce

E∗ ≥ e

e + 1

(
1 +

D

log E

)
≥ e

e + 1

(
1 +

D

log(M E)

)
·

From the estimate
(m + 1)e10

√
m ≥ 71(e + 1)N0

we deduce

B2 ≥ e10
√

m−1 e

e + 1

(
1 +

D

log(M E)

)
≥ 71N0

m + 1

(
1 +

D

log(M E)

)
·

Now we deal with B1. To start with, we consider the general case. From
B ≥ D(log A)(log E)−1, B ≥ E∗ ≥ e and M ≥ 1 we deduce B ≥ (e3/27)(log E∗)3

and
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B1 ≥ 1

27
e37m3/2−2m

(
D log A

log(M E)

)2m+2

(log E∗)3.

The inequality

B1 ≥ C3
0 M5

(
D log A

log(M E)

)2m+2

(log B2)3

follows from the estimate

303m3/2C3
0 M5 < e37m3/2−2m .

In the homogeneous rational case the inequality

B1 ≥ e +
4e(m + 1) log(M E)

N0 D
max

1≤ j≤m−1

{
1 +
|bm |

log A j
+
|b j |

log Am

}

is a consequence of

Bm+1 ≥ max
1≤ j≤m−1

(
1 +
|bm |

log A j
+
|b j |

log Am

)
· log(M E)

D
·

and

B3 ≥ 4e(m + 1)

N0
+

eD

log(M E)
·

We deduce that Proposition 9.18 holds (under the extra assumption βm = −1 in the
general case), with the constant C(m) replaced by

{
370m2C1 if M = 1,
370m2C122m+4em−2m−m−1 if M 6= 1.

In any case this constant is < C(m) − 1, where C(m) is the constant given in
Proposition 9.18. It should be noticed here that in the general case with βm = −1,
since B1 > Bm+1, we have used only the weaker assumption

h(1:β0: · · · :βm−1) ≤ (m + 1) log B

in place of max0≤i≤m−1 h(βi ) ≤ log B.
In the general case we remove the restriction βm = −1 by means of Liouville’s

inequality like in step 5 of § 7.6: assume (as we may without loss of generality)
βm 6= 0, so that

|βm | ≥ B−D.

Define β ′j = −β j/βm (0 ≤ j ≤ m) and

3′ = β ′0 + β ′1λ1 + · · · + β ′m−1λm−1 − λm .

Hence 3 = −βm3
′. From the assumption max0≤i≤m h(β j ) ≤ log B we deduce

h(1:β ′0: · · · :β ′m−1) = h(β0: · · · :βm) ≤ (m + 1) log B.

Since
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|3′| ≥ exp
{−(C(m)− 1

)
Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1

}

and
D log B ≤ Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1,

Theorem 9.1 follows. ¤

9.4 Corollaries

To conclude this chapter, we give a few comments on Theorem 9.1, we remove
the condition of linear independence on the λ’s, and we state and prove some
consequences.

9.4.1 Comments on Theorem 9.1

Remark 1. Let us compare Theorem 7.1 with Theorem 9.1. The two main differences
are the following:

1. We have replaced the factor (log B)2 which occurred in Chap. 7 by the product
(log B)(log E∗).

2. The condition on B in the homogeneous rational case is weaker in Theorem 9.1.

The second refinement could have easily been included in Chap. 7: Theorem 7.16
suffices. But the first refinement requires the introduction simultaneously of the extra
factor Ga and of one derivative.

In § 9.3 we had two parameters B1 and B2. The assumptions of Theorem 9.19
involve DT0 log B1 and DS0 log B2. In § 9.3.4 we replaced log B1 by a multiple of
log B and log B2 by a multiple of log E∗. In the next chapter (§ 10.2) again the
quantities DT0 log B1 and DS0 log B2 will occur, but, in § 10.2.6, B1 and B2 will be
related to E∗ and B respectively. In § 14.4 we shall explain what is going on.

Let us come back to the hypotheses of Theorem 9.1. The assumptions

log A j ≥ h(α j ) and log A j ≥ E |λ j |
D

arise in a natural way from the arithmetic and analytic estimates respectively,
as we saw in § 9.2.1. At the same place we explained how the condition B ≥
D(log Ai )/ log E in the general case occurs from the estimates for

(s j + smβ j )
τ j ,

which involve (S∗)T0 : in order to bound DT0 log S∗ by U we need S∗ to be less than
B1.

The conditions E∗ ≥ E1/D and B ≥ E1/D arise from the analytic estimates:
in step 4 of the proof of Theorem 9.19 in § 9.3.2, the definition of U2 involves
T0 log(M E) and S0 log(M E), which we want to bound from above by U .
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The origin of the requirement E∗ ≥ D/ log E is the following: using Lemma 9.8
to estimate δS]0

(t ; σ, κ), we get a factor

(
|t |
S]0

+ 1

)σ
,

which is responsible for the factor

(
T1

S]0
+ 1

)S0

occurring in Lemma 9.11. This is why we need to impose B2 ≥ T1/S]0.
The condition B ≥ D/ log E is easy to explain: the hypothesis S0 + 1 ≥ 2T0 in

Proposition 9.16 leads us to require B ≥ E∗.
Finally the condition D log A j ≥ log E does not occur in the hypotheses of

Theorem 9.19 where we only required D log A j ≥ 1, but it has been used several
times in the proof of Corollary 9.20.

Remark 2. In the special case m = 1, apart from the explicit value of the absolute
constant C(1), Theorem 9.1 is slightly stronger than Theorem 5 of [NeW 1996],
where the extra hypotheses

B ≥ E, B ≥ log A1 and E∗ ≥ D

are required. A close look at the proof of [NeW 1996] shows that these conditions
may be dispensed with: our hypotheses are sufficient to imply

E max{1, |β|} ≤ B2D and D2(log A1)(log E∗)(log E)−2 ≤ B2 log B.

Remark 3. From the assumptions B ≥ E∗ and

log E∗ ≥ max

{
1

D
log E, log

(
D

log E

)}

we deduce

B ≥ E1/D ≥ log E

D
·

In the homogeneous rational case, if B ′ is a positive real number satisfying B ′ ≥ E∗
and

B ′ ≥ max
1≤ j≤m−1

( |bm |
log A j

+
|b j |

log Am

)
,

then

(B ′)2 ≥ max
1≤ j≤m−1

( |bm |
log A j

+
|b j |

log Am

)
· log E

D
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and we may apply Theorem 9.1 with B = (B ′)2 (which means that we get the
conclusion with the factor log B replaced by log B ′ and also C(m) by 2C(m)).

Similarly, if B ′′ satisfies B ′′ ≥ D/ log E , B ′′ ≥ log E and

B ′′ ≥ max
1≤ j≤m−1

( |bm |
D log A j

+
|b j |

D log Am

)
,

again we may apply Theorem 9.1 with B = (B ′′)2.

Remark 4. In the homogeneous rational case, one deduces from the hypotheses

B ≥ e, log Ai ≥ D log E and log E∗ ≥ D log E

that the conclusion of Theorem 9.1 is stronger than Liouville’s estimate only when

max
1≤i≤m

|bi | ≥ C(m)

2m
· D2 log A

(log E)2

with A = max{A1, . . . , Am} (see for instance Remark 2 in § 7.1.1). Therefore the
homogeneous rational case of Theorem 9.1 is interesting only if

max
1≤ j≤m−1

( |bm |
log A j

+
|b j |

log Am

)
· log E

D
≥ C(m)

2m
· D

log E
·

Hence the condition B ≥ D/ log E (which follows from our hypothesis B ≥ E∗)
could be omitted in the homogeneous rational case (it does not occur explicitly in
Corollary 3 of [LauMN 1995]).

9.4.2 Relaxing the Hypothesis of Linear Independence of Logarithms

Let us first replace the assumption that the numbers λ1, . . . , λm in Theorem 9.1 are
Q-linearly independent by a further (mild) condition on the parameters.

Proposition 9.21. Theorem 9.1 still holds if we replace the hypothesis that the
numbers λ1, . . . , λm are linearly independent overQ by the extra assumptions3 6= 0
and

D3(log B)(log Ai )(log E∗) ≥ (log D)(log E)2

for 1 ≤ i ≤ m.

Proof.

We start with the general case. For ∅ 6= I ⊂ {1, . . . ,m}, define

8I (B0) = C(n)Dn+2(log BI )

(∏

i∈I

log Ai

)
(log E∗)(log E)−n−1,

where n = |I |,
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BI = max

{
B0, E∗,

D log AI

log E

}

and AI = max
{
e, maxi∈I Ai

}
. Define also

B ′I = max

{
2NI B2

0 , E∗,
D log AI

log E

}

with
NI =

[
(11nD3 log AI )n−1

]
.

From the assumption

D(log B)(log Ai ) ≥ (log D)(log E) (1 ≤ i ≤ m)

we deduce

C(n′) log BI ′ ≤ C(n)(log BI )
∏

i∈I\I ′

D log Ai

log E

for I ′ ⊂ I ,

log NI ≤ 1

2
8I (B)

and

C(n − 1) log B ′I ≤
1

2
C(n)(log BI ) · D log AI

log E
·

Hence Lemma 7.20 provides the conclusion in the general case.

Finally we consider the homogeneous rational case. We follow [W 1993], § 10,
proof of Corollaire 10.1.

By induction on m we may assume, without loss of generality, that the Q-vector
space spanned by λ1, . . . , λm has dimension m − 1. There is a unique (up to a
multiplicative coefficient ±1) linear dependence relation

a1λ1 + · · · + amλm = 0

with relatively prime rational integers a1, . . . , am satisfying, by Lemma 7.19,

0 < max{|a1|, . . . , |am |} ≤ N ,

where
N =

[
(11m D3 max

i
log Ai )

m−1
]

and i runs over the set of indices in {1, . . . ,m} for which ai 6= 0.
We distinguish three cases.

Case 1. Assume am 6= 0 and N ≤ (11m D3 log Am)m−1.
We eliminate bm . Set

b′i = ambi − ai bm (1 ≤ i ≤ m − 1),

so that
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am3 = b′1λ1 + · · · + b′m−1λm−1.

Define

B ′′ = max
1≤i≤m−2

( |b′m−1|
log Ai

+
|b′i |

log Am−1

)
· log E

D

and B ′ = max{E∗ , B ′′}. We first estimate B ′. Since
( |bm |

log Ai
+
|bi |

log Am

)
· log E

D
≤ B

for 1 ≤ i ≤ m − 1, we deduce

|bi |
log Ai

· log E

D
≤ |bi | ≤ B · D log Am

log E
(2 ≤ i ≤ m − 1),

|bm |
log Ai

· log E

D
≤ B,

and similarly

|bi |
log Am−1

· log E

D
≤ |bi | ≤ B · D log Am

log E
(2 ≤ i ≤ m − 1),

|bm |
log Am−1

· log E

D
≤ B.

Therefore

B ′ ≤ 2N B

(
1 +

D log Am

log E

)
≤ 4N B D log Am ≤ (11m D3 log Am)m B.

Since am 6= 0, the numbers λ1, . . . , λm−1 are Q-linearly independent. From the
inductive hypothesis we deduce

|am3| ≥ e−8m−1 ,

where

8m−1 = C(m − 1)Dm+1(log B ′)(log A1) · · · (log Am−1)(log E∗)(log E)−m .

Notice that the number

8m = C(m)Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1

satisfies
8m ≥ C(m) · max

1≤i≤m
D3(log B)(log Ai )(log E∗)(log E)−2

≥ C(m) max
{

D log B, D log Am, log D
}
,

thanks to the extra assumption of Proposition 9.21

D3(log B)(log Ai )(log E∗) ≥ (log D)(log E)2.

We deduce
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log |am | ≤ log N ≤ 1

2
8m

and

C(m − 1)(log B ′) ≤ 1

2
C(m)(log B) · D log Am

log E
·

We conclude
|3| ≥ e−8m ,

which is what we wanted.

Case 2. After renumbering the λ′s if necessary, we may assume a1 6= 0, and we may
also assume that A1 is the maximum of the numbers A j where j ranges over the
integers in {1, . . . ,m} for which a j 6= 0. In this second case, we have either am = 0
or else Am ≤ A1; hence

N ≤ (11m D3 log A1)m−1.

Let us eliminate b1. Define

b′j = a1b j − a j b1 (2 ≤ j ≤ m),

so that
a13 = b′2λ2 + · · · + b′mλm .

From the inductive hypothesis we deduce

|a13| ≥ e−8m−1 ,

where

8m−1 = C(m − 1)Dm+1(log B ′)(log A2) · · · (log Am)(log E∗)(log E)−m

and B ′ = max{E∗ , B ′′}. We need to define B ′′ and estimate it from above. Again
we distinguish two cases

a) If b′m 6= 0, we set

B ′′ = max
2≤i≤m−1

( |b′m |
log Ai

+
|b′i |

log Am

)
· log E

D

and we have

B ′′ ≤ N max
2≤i≤m−1

( |bm |
log Ai

+
|b1|

log Ai
+
|bi |

log Am
+
|b1|

log Am

)
· log E

D

≤ N B

(
2 +

D log A1

log E

)
,

because

|b1|
log Ai

· log E

D
≤ |b1| ≤ B · D log A1

log E
(2 ≤ i ≤ m − 1).
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b) If b′m = 0, we select an integer n in the range 2 ≤ n ≤ m − 1 for which b′n 6= 0
and we set

B ′′ = max
2≤i≤m

i 6=n

( |b′n|
log Ai

+
|b′i |

log An

)
· log E

D
·

Hence
B ′′ ≤ 4N max{|b1|, . . . , |bm−1|}.

For 1 ≤ i ≤ m − 1 we have

|bi | ≤ B · D log Am

log E
≤ B · D log A1

log E
,

because the condition b′m = 0 implies am 6= 0.

We deduce that in each of the two cases a) and b), we have

B ′ ≤ (11m D3 log A1)m B.

We conclude, like in case 1,

C(m − 1) log B ′ ≤ 1

2
C(m)(log B) · D log A1

log E
·

This completes the proof of Proposition 9.21. ¤

9.4.3 Statements of Corollaries

For the next four corollaries we use the following notation: α1, . . . , αm are nonzero
algebraic numbers in a number field of degree ≤ D over Q and b1, . . . , bm are
rational integers such that

α
b1
1 · · ·αbm

m 6= 1.

We define A1, . . . , Am , B0 by

B0 = max
{
e, |b1|, . . . , |bm |

}

and

log A j = max

{
1

D
, h(α j )

}
(1 ≤ j ≤ m).

We denote by C(m) the constant occurring in Theorem 9.1 (and Proposition 9.21).
We do not need to know the exact value of C(m) given in § 9.3. All we shall need is

C(m) ≥ e11 and C(m) ≥ m2 + log 2.

Here is a lower bound for
∣∣αb1

1 · · ·αbm
m − 1

∣∣. The importance of such estimates
has been stressed in § 1.2.

Corollary 9.22. We have
∣∣αb1

1 · · ·αbm
m − 1

∣∣ ≥ exp
{−C1(m)(log B0)(log A1) · · · (log Am)Dm+2 max{1, log D}},

where
C1(m) = 2 · 32m+2C(m + 1).
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This estimate is best possible with respect to the parameter B0, namely it is of the
shape B−C

0 where C does not depend on b1, . . . , bm , but only on α1, . . . , αm . This
result, as pointed out in S 1.2, is due to N. I. Feldman [F 1968] and has important
consequences.

In Corollary 9.22 the value of C(m) requires only E = e, hence the sharper
estimate provided by the second part of Proposition 9.18 applies.

We state the next corollaries in terms of lower bounds for linear combinations
of logarithms, but similar statements hold in terms of lower bounds for the distance
between two products of algebraic numbers, like in Corollary 9.22 (see Exercise 9.8
for the simpler case of real positive algebraic numbers).

For 1 ≤ j ≤ m, let λ j ∈ L satisfy eλ j = α j . Assume log A j ≥ (e/D)|λ j |
(1 ≤ j ≤ m). Further, let E ≥ e satisfy

m∑

j=1

|λ j |
log A j

≤ D

E
and log E ≤ D log A j (1 ≤ j ≤ m).

Assume also bm > 0. Let B ≥ e be a real number satisfying

B ≥ max
1≤i≤m−1

{
bm

log Ai
+
|bi |

log Am

}
·

Let E1 ≥ e and E2 ≥ e satisfy

E1 ≥ max

{
E1/D, D

log E

}
and E2 ≥ max{D, E1}.

Define

X = C(m)Dm+2(log A1) · · · (log Am)(log E1)(log E2)(log E)−m−1.

Corollary 9.23. Then ∣∣b1λ1 + · · · + bmλm

∣∣ ≥ B−X .

Finally define
B ′ = max

{
2, |b1|, . . . , |bm−1

}

and

Y = 2X log

(
X

log Am

)
·

Corollary 9.24. For any δ in the range 0 < δ ≤ 1/2,

∣∣b1λ1 + · · · + bmλm

∣∣ ≥ e−δB ′
(
δ

bm

)Y

·

An easy consequence of Corollary 9.24 reads as follows (compare with [B 1972],
II):



                

310 9. Refined Measures

Corollary 9.25. Let ε satisfy 0 < ε < 1 and
∣∣b1λ1 + · · · + bmλm

∣∣ < e−εB ′ .

Then

B ′ ≤ 2Y

ε
log

(
2bm

ε

)
·

A further discussion of this topic, in particular of the relevance of the last three
corollaries, will take place in § 10.4.

9.4.4 Proofs

Proof of Corollary 9.22. The special case where α1, . . . , αm are positive real
(algebraic) numbers is easier and yields a smaller value for C1(m) (see Exercise
9.7). We consider here the general case.

Without loss of generality we may assume bi 6= 0 for 1 ≤ i ≤ m. Further, since
the statement of Corollary 9.22 is symmetric (this is not the case with the next ones),
we may also assume A1 ≤ · · · ≤ Am .

We distinguish two cases:
a) Assume B0 ≤ m D. From Liouville’s inequality (e.g. Exercise 3.7.b) we deduce

∣∣αb1
1 · · ·αbm

m − 1
∣∣ ≥ 2−D A−m DB0 where A = max

1≤i≤m
Ai .

Since C(m) ≥ m2 + log 2 we have

D log 2 + m2 D2 log A ≤ C(m)Dm+2(log B0)(log A1) · · · (log Am) max{1, log D},
and the conclusion of Corollary 9.22 is plain.
b) From now on we assume B0 ≥ m D. For 1 ≤ i ≤ m, define λi ∈ C by the
conditions

eλi = αi , −π ≤ Imλi < π.

Since
|λi |2 ≤ π2 + (log |αi |)2 and |αi | ≤ eDh(αi ) ≤ AD

i ,

we have
|λi | ≤

√
π2 + 1D log Ai .

We use Exercise 1.1.b with θ = 1/2 and

z = αb1
1 · · ·αbm

m .

Clearly without loss of generality we may assume |z − 1| < 1/2. We deduce that
there exists an even integer b0 ∈ 2Z such that the number

3 = b0iπ + b1λ1 + · · · + bmλm

satisfies
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|3| ≤ 2
∣∣αb1

1 · · ·αbm
m − 1

∣∣.

Since αb1
1 · · ·αbm

m 6= 1 we have 3 6= 0. An estimate for |b0| is the following:

π |b0| ≤ 1 +
∣∣b1λ1 + · · · + bmλm

∣∣

≤ 1 + m
√
π2 + 1DB0 log Am

≤ 2πm DB0 log Am .

We shall use Proposition 9.21 with

E = e, E∗ = max{e, D}, B = B2
0 ,

m replaced by m + 1 and Ai replaced by A∗i , where

log A∗0 =
eπ

D
, and log A∗i = e

√
π2 + 1 log Ai for 1 ≤ i ≤ m,

so that if we set λ0 = iπ the inequalities

e|λi | ≤ D log A∗i are satisfied for 0 ≤ i ≤ m.

Notice that the extra assumption

D3(log B)(log Ai )(log E∗) ≥ (log D)(log E)2

of Proposition 9.21 is satisfied, and that the condition B0 ≥ m D yields B ≥ m DB0,
hence the inequalities

B ≥ |bi |
log A∗m

+
|bm |

log A∗i
are satisfied for 0 ≤ i ≤ m. The product

C(m + 1)Dm+3(log B)(log A∗0) · · · (log A∗m) log E∗

arising from the conclusion of Theorem 9.1 is bounded by

2em+1π (π2 + 1)m/2C(m + 1)Dm+2(log B0)(log A1) · · · (log Am) max{1, log D}.
Finally we use the estimates

Dm+2(log B0)(log A1) · · · (log Am) max{1, log D} ≥ 1

and
2em+1π (π2 + 1)m/2C(m + 1) + log 2 ≤ 18 · 9mC(m + 1).

¤

Proof of Corollary 9.23. We shall use Proposition 9.21 with B replaced by B ′ which
is defined by

log B ′ = (log B)(log E2).

Since B ≥ e and E2 ≥ e, we have
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max{B, E2} ≤ B ′

and the conclusion of Corollary 9.23 follows essentially from the homogeneous
rational case (part b) in Theorem 9.1 with E∗ = E1. More precisely we have replaced
here the assumption

log A j ≥ E |λ j |
D

, (1 ≤ j ≤ m)

(which would be required for applying Theorem 9.1) by the weaker condition

m∑

j=1

|λ j |
log A j

≤ D

E
·

This is allowed thanks to a remark at the beginning of § 9.3. Since

D3(log B ′)(log Ai )(log E∗) = D3(log B)(log E2)(log Ai )(log E∗)

≥ (log D)(log E)2,

we may apply Proposition 9.21. ¤

The proof of Corollary 9.24 will use the following elementary result.

Lemma 9.26. Let X , Y , `, b, B, B ′ and δ be positive real numbers satisfying

Y ≥ X ≥ `, b ≥ 1, 0 < δ ≤ 1

2
,

Y log 2 ≥ X log
3Y

`
and B = max

{
e, b +

B ′

`

}
·

Then

X log B ≤ δB ′ + Y log
b

δ
·

Proof. The real function x 7→ x B ′ − Y log x reaches its minimum at x = Y/B ′.
Accordingly we distinguish two cases:
a) Assume B ′ ≤ 2Y . The conclusion is

X log B ≤ 1

2
B ′ + Y log(2b).

Since

b ≤ bY

`
, B ′

`
≤ 2bY

`
and

3bY

`
≥ e,

we have B ≤ 3bY/`. Using the assumptions

Y ≥ X and Y log 2 ≥ X log
3Y

`
,

we get
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X log B ≤ X log b + X log

(
3Y

`

)
≤ Y log b + Y log 2 = Y log(2b).

b) Assume B ′ ≥ 2Y . The conclusion is now

X log B ≤ Y + Y log
bB ′

Y
·

From ` ≤ Y ≤ B ′/2 and b ≥ 1 we deduce

b ≤ bB ′

2`
, B ′

`
≤ bB ′

`
and

3bB ′

2`
≥ 3b ≥ e,

hence B ≤ 3bB ′/2`.
Since X ≤ Y and bB ′ ≥ B ′ ≥ 2Y , we have

X log
bB ′

2Y
≤ Y log

bB ′

2Y
·

Using once more the assumption Y log 2 ≥ X log(3Y/`), we conclude

X log B ≤ X log
bB ′

2Y
+ X log

3Y

`
≤ Y log

bB ′

2Y
+ Y log 2 ≤ Y log

bB ′

Y
·

¤

Proof of Corollary 9.24. We apply Lemma 9.26 with ` = log Am and b = bm . Hence,
by Corollary 9.23, it suffices to check

Y log 2 ≥ X log
3Y

`
·

Define t = log(X/ log Am) so that Y = 2t X . Since t ≥ 11, we have

(2 log 2− 1)t ≥ log(6t).

Therefore

Y

X
log 2 = 2t log 2 ≥ t + log(6t) = log

6t X

log Am
= log

3Y

log Am
·

¤

Proof of Corollary 9.25. Corollary 9.25 follows from Corollary 9.24 with δ = ε/2.
¤
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Exercises

Exercise 9.1. Let K be a field of characteristic zero and let β0, . . . , βm−1 be elements of K .
Define

Y = {0} × Zm−1 + Z(β0, β1, . . . , βm−1) ⊂ K m

=
{
(smβ0, s1 + smβ1, . . . , sm−1 + smβm−1) ; s ∈ Zm}

and, for S ∈ Z, S ≥ 1, consider the subset

Y [S] =
{
(smβ0, s1 + smβ1, . . . , sm−1 + smβm−1) ; s ∈ Zm[S]

}
.

Let V be a vector subspace of K m of codimension r ≥ 1.
a) Assume β0 6= 0. Check

Card

(
Y [S] + V

V

)
≥ (2S + 1)r .

Hint. Notice that Y is spanned over Z by a basis of K m over K . Hence r at least of the
generators of Y are linearly independent modulo V.

b) Assume 1, β1, . . . , βm−1 are linearly independent over Q and (1, 0, . . . , 0) ∈ V. Check

Card

(
Y [S] + V

V

)
≥ (2S + 1)r+1.

Hint. Consider the projection of K m onto K m−1 with kernel K (1, 0, . . . , 0) and use Lemma
6.2.

Exercise 9.2. Let A and B be positive integers. Then the AB + 1 polynomials

1 and 4 (z + a; A)b, (0 ≤ a < A, 1 ≤ b ≤ B)

give a basis of the space of polynomials of degree ≤ AB.

Exercise 9.3. Introduce the following notation: for a, b and c nonnegative integers, define

4(z; a, b, c) =

(
d

dz

)c (4 (z; a)
)b
.

a) Let a be a positive integer and b, c nonnegative integers . For any complex number z, check

|4(z; a, b, c)| ≤
( |z|

a
+ 1

)ab

(2e)ab.

b) For m ∈ Z, show that the number ν(a)c 4 (m; a, b, c) is a rational integer.
c) Let a, b, τ be nonnegative rational integers and t a complex number. Consider the entire
function of one variable

9(z) = zτ et z .

Check the relation

4(z + t ; a, b, τ ) =
ab∑

c=0

4(z; a, b, c)

(
d

dz

)c

9(0)
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Hint. (See [W 1993], Lemme 3.4). Use the relation

4(z1 + z2; a)b =
ab∑

c=0

4(z1; a, b, c)zc
2

for z1 ∈ C and z2 ∈ C together with
(

d

dz

)τ
zc
∣∣∣

z=t
=

(
d

dz

)c

9(0).

d) Let S′ and S′′ be positive integers. Set S = S′S′′+1. Denote by S the set of σ = (σ ′, σ ′′) ∈ N2

satisfying either 0 ≤ σ ′ < S′ and 1 ≤ σ ′′ ≤ S′′ or else σ ′ = σ ′′ = 0. Check that the S × S
matrix (

4(σ ′; S′, σ ′′, σ )
)

σ∈S
0≤σ≤S

is regular.

Exercise 9.4 (Nonhomogeneous rational case).
Assume b0, b1, . . . , bm are all in Z. Let T ]

0 and S]0 be positive integers. Check that the rational
number

τ0∑

κ=0

1

κ!
δS]

0
(t ; σ, κ)δT ]

0
(smb0; τ0, κ)

m−1∏

i=1

4(si bm − smbi ; τi ),

for
τ ∈ Nm, t ∈ Z, σ ∈ Z, s ∈ Zm

has absolute value bounded from above by

(
|t |
S]0

+ 1

)σ
e2σ+2‖τ‖max

{
‖τ‖
T ]

0

; |smb0|
T ]

0

+ 1

}‖τ‖

and has a denominator which divides
(
ν(S]0)ν(T ]

0 )
)τ0 .

Hint. The sum

τ0∑

κ=0

σ !τ0!

κ!(σ − κ)!(τ0 − κ)!

(|t | + S]0 − 1
)σ−κ(|smb0| + T ]

0 − 1
)τ0−κ

is bounded by
(|t | + S]0)σ max

{
τ0 ; |smb0| + T ]

0 − 1
}τ0 .

Exercise 9.5. Refine the lower bound for Card(S ) in step 2 of § 9.3.3: replace Dirichlet’s box
principle by geometry of numbers (see [Mat 1998]).

Exercise 9.6. Extend Lemma 7.20 to the nonhomogeneous case:

3 = β0 + β1λ1 + · · · + βmλm .
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Deduce that for the proof of Theorem 9.1, there is no loss of generality to assume that the
numbers λ1, . . . , λm are linearly independent over Q .

Hint. Define
8n(B) = C(n)Dn+2(log B)(log E∗)(log E)−n−1,

Nkn =
[
11nD3 log+ Ak

]
and B̃ = 2Nkn B2.

Check

C(n − 1) log B̃ ≤ 1

2
C(n)D(log B)(log E∗)(log+ Ak)(log E)−1

and

log Nkn ≤ 1

2
C(n)D3(log B)(log E∗)(log+ Ak)(log E)−2.

Exercise 9.7. Under the assumptions of Corollary 9.22, assume α1, . . . , αm are positive real
numbers. Check that the conclusion holds with C1(m) replaced by

(1 + log 2)C(m) + log 2.

Hint. Define B = 2B0. In case B ≤ D, use Liouville’s inequality. Otherwise, use Theorem
9.1 with

E = e, E∗ = max{e, D}, log B ≤ (1 + log 2) log B0

(see the proof of Corollary 9.22 as well as Corollaire 10.4 of [W 1993]).

Exercise 9.8. Assuming α1, . . . , αm are positive real numbers, show that in the conclusions
of Corollaries 9.23, 9.24 and 9.25, one can replace

|b1λ1 + · · · + bmλm | by
∣∣∣αb1

1 · · ·αbm
m − 1

∣∣∣ ,

provided that, at the same time, one replaces C(m) in the definition of X by C(m) + log 2.

Exercise 9.9. Let α be a complex algebraic number which is not a root of unity.
a) Show that there exists a constant c = c(α) > 0 such that, for any integer q ≥ 2 and any root
of unity ζ of order q,

|α − ζ | > q−c.

b) Show that there exists a constant c′ = c′(α) > 0 such that, for any integer q ≥ 2,

|αq − 1| > q−c′ .

Remark. Nontrivial (but also noneffective) lower bounds for non-vanishing sums
∣∣a1α

m1
1 + · · · + akα

mk
k

∣∣

can be deduced from Schmidt’s subspace Theorem (see [Sc 1991], Chap. V § 1).



   

10. On Baker’s Method

In Chap. 4 we deduced Baker’s Theorems 1.5 and 1.6 from Schneider-Lang’s
Criterion. The proof used an extension of Gel’fond’s method in several variables.
In Chapters 6 and 7, we extended Schneider’s method in several variables in
order to prove the homogeneous transcendence result (Theorem 1.5) as well as
quantitative refinements. The proofs did not involve any derivative at all. In Chap. 9,
a single derivative was introduced, so that a second proof of Theorem 1.6 could be
achieved, and at the same time measures for nonhomogeneous linear independence
of logarithms could be derived. As we saw, it turned out that this approach was useful
also for getting sharper estimates for homogeneous measures of linear independence.

Now we consider Baker’s original method of proving not only his transcendence
results, but also quantitative refinements. This method is now more than 30 years old
now, and many improvements have been incorporated in order to refine the initial
estimate. These sharpening have not always contributed to simplify the proof, and
we plan to explain some of the main features of successive refinements. However
our approach does not follow an historical path: for instance we use Laurent’s
interpolation determinants.

We first explain in § 10.1 the proof of the transcendence result, next (in § 10.2)
we give an estimate using interpolation determinants. A brief outline of the more
classical proof involving an auxiliary function is given in § 10.3. Finally (§ 10.4) we
give further comments on earlier developments of the subject.

10.1 Linear Independence of Logarithms of Algebraic Numbers

This section is devoted to a proof of Baker’s transcendence results which is close to
Baker’s original arguments ([B 1975], Chap. 2), apart from the fact that we use an
interpolation determinant in place of an auxiliary function.

In § 10.1.1 we give a sketch of proof of Baker’s homogeneous Theorem 1.5. Then
we shall explain how to deal with the general situation of Theorem 1.6. In §§ 10.1.3
and 10.1.4 we shall provide the details directly for the general case.

In table 10.1, we provide a summary of the main features of these methods (we
refer also to §§ 11.4 and 14.4.6 where we shall give a detailed comparison between
the different methods considered in Chap. 6 and 7, Chap. 9, § 10.1.1 and § 10.1.2).
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Given algebraic numbers β0, . . . , βm−1, and logarithms of algebraic numbers
λ1, . . . , λm , define

3 = β0 + β1λ1 + · · · + βm−1λm−1 − λm .

The first and third columns are related with the homogeneous case (Theorem 1.5)
where β0 = 0, while the second and fourth ones deal with the general case (Theorem
1.6). The symbols 1’ , 2’ , 1 , 2 refer to the numbering of the different methods
in § 11.4 and § 14.4. The first two rows refer to the algebraic group G = Gd0

a ×Gd1
m ,

the third to the dimension `0 of the space of derivation W in Te(G), and the fourth
row to the number `1 of Q-linearly independent points η1, . . . , η`1 in exp−1

G

(
G(Q)

)
.

Table 10.1.

Chap. 6 and 7 Chap. 9 § 10.1.1 § 10.1.2

1’ 2’ 1 2

d0 m − 1 m 0 1

d1 1 1 m m

`0 0 1 m − 1 m

`1 m m 1 1

In the transcendence method of Chapters 6 and 7, which extends Schneider’s
solution of Hilbert’s seventh problem, the analytic functions are

z1, . . . , zm−1, ezm ,

the underlying algebraic group (occurring in the zero estimate) isGm−1
a ×Gm, there

is no derivative, and the main observation is that the hyperplane of equation

λ1z1 + · · · + λm−1zm−1 = zm,

in Cm , which contains the m − 1 points

η j = (δ j1, . . . , δ j,m−1, λ j ) (1 ≤ j ≤ m − 1),

also contains
ηm = (β1, . . . , βm−1, λm)

if and only if 3 = 0.
In Chap. 9, there are m + 1 functions

z0, . . . , zm−1, ezm ,
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the algebraic group is Gm
a ×Gm, the space of derivations is the complex line

C(1, 0, . . . , 0, 1),

and the m points are

η j = (0, δ j1, . . . , δ j,m−1, λ j ) (1 ≤ j ≤ m − 1),

ηm = (β0, β1, . . . , βm−1, λm)

while the related hyperplane has equation

z0 + λ1z1 + · · · + λm−1zm−1 = zm .

Baker’s method, which is the subject of the present chapter, is quite different.
For the homogeneous case (§ 10.1.1) we shall work with the exponential functions

ez1 , . . . , ezm

and the algebraic groupGm
m, the space W of derivations is the hyperplane of equation

β1z1 + · · · + βm−1zm−1 = zm

and there is a single point, namely (λ1, . . . , λm).
From § 10.1.2 on, we shall consider the general case using the functions

z0, ez1 , . . . , ezm ,

the algebraic group Ga ×Gm
m , the hyperplane of equation

β0z0 + β1z1 + · · · + βm−1zm−1 = zm

and the point (1, λ1, . . . , λm).
The permutation (1, 2, 3, 4) 7→ (3, 4, 1, 2) on the columns as well as on the

rows reveals a symmetry in Table 10.1, which can be written as

A B

B A
with A =

m − 1 m

1 1
and B =

0 1

m m
.
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We shall discuss this duality in § 13.7.
Notice finally that in the simplest case m = 1, the second and fourth column

become identical with d0 = d1 = `0 = `1 = 1, and they both correspond to Hermite-
Lindemann’s Theorem 1.2. In case m = 2 and β0 = 0, the first column is related to
Schneider’s solution of Hilbert’s seventh problem (§ 2.3) and the third column to
Gel’fond’s solution (§ 2.4).

10.1.1 Sketch of Proof of Baker’s Theorem 1.5

We start with a sketch of proof of Baker’s homogeneous Theorem 1.5.
Assume that β1, . . . , βm−1 and λ1, . . . , λm are complex numbers which satisfy

β1λ1 + · · · + βm−1λm−1 = λm .

Consider the hyperplane W of equation

β1z1 + · · · + βm−1zm−1 = zm

in Cm . This hyperplane contains the points (sλ1, . . . , sλm) (s ∈ Z). A basis of W is

(δi1, . . . , δi,m−1, βi ) (1 ≤ i ≤ m − 1),

the map
Cm−1 −→ W

z 7−→ (
z1, . . . , zm−1, β1z1 + · · · + βm−1zm−1

)

is an isomorphism, and the restrictions to W of the functions ez1 , . . . , ezm produce m
functions of m − 1 variables:

ez1 , . . . , ezm−1 , eβ1z1+···+βm−1zm−1 .

A monomial in these functions (and their inverse) can be written

ft = exp
{
t1z1 + · · · + tm−1zm−1 + tm(β1z1 + · · · + βm−1zm−1)

}

for some t = (t1, . . . , tm) ∈ Zm . Notice that for s ∈ Z we have

ft (sλ1, . . . , sλm−1) = αt1s
1 · · ·αtm s

m

where α j = eλ j . Take a derivative of this exponential monomial:
(
∂

∂z1

)σ1

· · ·
(

∂

∂zm−1

)σm−1

ft = (t1 + tmβ1)σ1 · · · (tm−1 + tmβm−1)σm−1 ft

for σ = (σ1, . . . , σm−1) ∈ Nm−1. The value of this derivative at the point
(sλ1, . . . , sλm−1) for s ∈ Z is:

γ
(σ s)
t = (t1 + tmβ1)σ1 · · · (tm−1 + tmβm−1)σm−1α

t1s
1 · · ·αtm s

m .

This number belongs to the field
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Q
(
α1, . . . , αm, β1, . . . , βm−1

)
.

More precisely γ
(σ s)
t is the value, at the point (α1, . . . , αm, β1, . . . , βm−1), of a

polynomial in the ring

Z[X±1
1 , . . . ,X±1

m ,Y1, . . . ,Ym−1].

We put these numbers into a matrix. We first restrict t , σ , s to finite subsets of Zm−1,
Nm−1 and Z respectively, say

|t | ≤ T1, ‖σ‖ ≤ S0, |s| ≤ S1,

and we introduce the corresponding matrix (depending on choices for the orderings
of the rows and columns)

M =
(
γ

(σ s)
t

)
t

(σ ,s)

.

Assume now that 1, β1, . . . , βm−1 are Q-linearly independent and λ1, . . . , λm are
Q-linearly independent. From the multiplicity estimate (Theorem 8.1) one deduces
that M has maximal rank L , where L = (2T1 + 1)m−1. Let1 be the determinant of a
regular square L × L matrix extracted from M. This number 1 is the value, at the
point (α1, . . . , αm, β1, . . . , βm−1), of a polynomial f in the ring

Z[X±1
1 , . . . ,X±1

m ,Y1, . . . ,Ym−1].

Using Schwarz’ Lemma one obtains a sharp upper bound for |1|. Liouville’s estimate
(Lemma 2.1) implies that one at least of the numbers α1, . . . , αm , β1, . . . , βm−1 is
transcendental. Finally, using Lemma 1.7, one gets the conclusion of Theorem 1.5
(for more information, see Exercise 10.1).

10.1.2 Sketch of Proof of Baker’s Theorem 1.6

In § 10.1.1, the multiplicity estimate involves the algebraic group Gm
m. In order to

deal with the coefficient β0 in the general case, one works with the algebraic group
Ga ×Gm

m.
Let β0, . . . , βm−1 and λ1, . . . , λm be complex numbers which satisfy

β0 + β1λ1 + · · · + βm−1λm−1 = λm .

The hyperplane W of equation

β0z0 + β1z1 + · · · + βm−1zm−1 = zm

in Cm+1 contains the points (s, sλ1, . . . , sλm) (s ∈ Z). A basis of W is

(1, 0, . . . , 0, β0), (0, δi1, . . . , δi,m−1, βi ) (1 ≤ i ≤ m − 1).

The restrictions to W of the functions z0, ez1 , . . . , ezm produce the m + 1 functions
of m variables



              

322 10. On Baker’s Method

z0, ez1 , . . . , ezm−1 , eβ0z0+β1z1+···+βm−1zm−1 .

For τ ∈ N and t = (t1, . . . , tm) ∈ Zm , define

fτ t = zτ0 exp
{
t1z1 + · · · + tm−1zm−1 + tm(β0z0 + β1z1 + · · · + βm−1zm−1)

}
.

For s ∈ Z we have

fτ t (s, sλ1, . . . , sλm−1) = sταt1s
1 · · ·αtm s

m .

Using the relation (which is a simple special case of Lemma 4.9)

(
d

dz

)σ (
zτ et z

)
=

min{σ,τ }∑

κ=0

σ !τ !

κ!(σ − κ)!(τ − κ)!
tσ−κ zτ−κet z,

we deduce that for σ = (σ0, . . . , σm−1) ∈ Nm and s ∈ Z, we have
(
∂

∂z0

)σ0

· · ·
(

∂

∂zm−1

)σm−1

fτ t =

min{σ0,τ }∑

κ=0

σ0!τ !

κ!(σ0 − κ)!(τ − κ)!
(tmβ0)σ0−κ (t1 + tmβ1)σ1 · · · (tm−1 + tmβm−1)σm−1 fτ−κ,t .

Define

γ
(σ s)
τ t =

(
∂

∂z0

)σ0

· · ·
(

∂

∂zm−1

)σm−1

fτ t (s, sλ1, . . . , sλm−1).

This number γ
(σ s)
τ t is the value, at the point (α1, . . . , αm, β0, . . . , βm−1), of a

polynomial in the ring

Z[X±1
1 , . . . ,X±1

m ,Y0, . . . ,Ym−1].

The rest of the proof is the usual one: we put these numbers into a matrix; assuming
λ1, . . . , λm are Q-linearly independent and either β0 6= 0 or else 1, β1, . . . , βm−1 are
Q-linearly independent, we deduce from the multiplicity estimate that this matrix has
maximal rank. Schwarz’ Lemma provides an upper bound for |1|, and Liouville’s
estimate yields the conclusion.

An interesting point is that this proof yields the general case of Baker’s Theorem
1.6; it works for β0 6= 0, but also for β0 = 0. It turns out that for producing measures
of linear independence, this method is more efficient than the method of § 10.1.1.
More precisely the method of § 10.1.1 yields the quantitative estimate which has been
proved in Chap. 7, while the method of § 10.1.2 will enable us to prove Theorem
9.1.
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10.1.3 A Consequence of the Multiplicity Estimate

We explain here how the multiplicity estimate (Theorem 8.1) will be used in § 10.1.4.
Let K be an algebraically closed field of zero characteristic and let β0, . . . , βm−1

be elements of K . On the ring K [X0, X±1
1 , . . . , X±1

m ] we introduce derivative
operators:

D0 =
∂

∂X0
+ β0 Xm

∂

∂Xm
, Di = X i

∂

∂X i
+ βi Xm

∂

∂Xm
(1 ≤ i ≤ m − 1)

and, for σ ∈ Nm ,
Dσ = Dσ0

0 · · ·Dσm−1
m−1 .

In case K = C, if one substitutes

X0 = z0, X i = ezi , (1 ≤ i ≤ m − 1)

and
Xm = eβ0z0+β1z1+···+βm−1zm−1

in the polynomial Dσ
(
X τ

0 X t1
1 · · · X tm

m

)
, one gets

(
∂

∂z0

)σ0

· · ·
(

∂

∂zm−1

)σm−1

fτ t (z0, . . . , zm−1).

Proposition 10.2. Let α1, . . . , αm be nonzero elements of K which generate a
multiplicative subgroup of K× of rank≥ m− 1 and let β0, . . . , βm−1 be elements of
K with β0 6= 0. Assume also that 1, β1, . . . , βm−1 are linearly independent over Q.
Let T0, T1, S0, S1 be positive integers satisfying the following conditions:

S0 ≥ 2(m + 1)T1, (S0 + 1)(2S1 + 1) > m!(m + 1)! max

{
T0

2
, 2T1

}

and
(S0 + 1)m(2S1 + 1) > m!(m + 1)!2m T0T m

1 .

For τ ∈ N, t ∈ Zm , σ ∈ Nm and s ∈ Z, define γ
(σ s)
τ t ∈ K as the value, at the point

(
sβ0, α

s
1, . . . , α

s
m

) ∈ K × (K×)m,

of the polynomial

Dσ
(
X τ

0 X t1
1 · · · X tm

m

) ∈ K [X0, X±1
1 , . . . , X±1

m ].

Consider the following matrix:

M =
(
γ

(σ s)
τ t

)
(τ,t)

(σ ,s)

where the index of rows (τ, t) runs over the elements in N × Zm with 0 ≤ τ ≤ T0,
|ti | ≤ T1 (1 ≤ i ≤ m), while the index of columns (σ , s) runs over the elements in
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Nm−1 × Z with ‖σ‖ ≤ (m + 1)S0 and |s| ≤ (m + 1)S1. Then the matrix M has rank
(T0 + 1)(2T1 + 1)m .

Proof. We apply Theorem 8.1 to the algebraic groups G = G+ = Ga ×Gm
m, G− = 0,

with d0 = 1, d1 = m, with the hyperplane W in K m+1 of equation

β0z0 + β1z1 + · · · + βm−1zm−1 = zm

and with the set

6 =
{
(sβ0, α

s
1, . . . , α

s
m) ; s ∈ Z, |s| ≤ S1

} ⊂ G(K ) = K × (K×)m .

If the rank of the matrix M is less than (T0 + 1)(2T1 + 1)m , then there exists a nonzero
polynomial P ∈ K [G] = K [X0, X±1

1 , . . . , X±1
m ] which satisfies the hypotheses of

Theorem 8.1 with D0 = T0, Di = T1 (1 ≤ i ≤ m). Hence there exists an algebraic
subgroup G∗ of G of dimension d∗ < d such that

(
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; T0; T1) ≤ H (G; T0; T1),

where

`′0 = dimK

(
W + Te(G∗)

Te(G∗)

)
·

We first check that this inequality is not satisfied with G∗ = {e}: indeed in this case
we have

d∗ = 0, `′0 = m, Card

(
6 + G∗

G∗

)
= 2S1 + 1, H (G∗; T0; T1) = 1,

so that
(

S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; T0; T1) =

(
S0 + m

m

)
(2S1 + 1)

≥ (S0 + 1)m

m!
(2S1 + 1)

> (m + 1)!2m T0T m
1 ,

while, by (5.8),
H (G; T0; T1) = (m + 1)!2m T0T m

1 .

Therefore d∗ ≥ 1.
Let us write G = G0×G1, G∗ = G∗0 ×G∗1, where G0 = Ga and G1 = Gm

m , while
G∗0 is an algebraic subgroup of G0 and G∗1 an algebraic subgroup of G1. Denote by
d∗, d∗0 , d∗1 the dimensions of G∗, G∗0 and G∗1 respectively, and by d ′, d ′0, d ′1 their
codimensions:

d∗ + d ′ = d = m + 1, d∗0 + d ′0 = d0 = 1, d∗1 + d ′1 = d1 = m.

From the definition of `′0 we derive
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`′0 =
{

d ′ − 1 if Te(G∗) ⊂ W ,
d ′ otherwise.

However 1, β1, . . . , βm−1 are linearly independent over Q, which means that the
hyperplane of K m of equation

β1z1 + · · · + βm−1zm−1 = zm

does not contain any nonzero element of Qm . Since β0 6= 0 and Te(G∗) 6= 0, we
deduce `′0 = d ′.

We first consider the case G∗0 = {0}. We have d∗0 = 0, d∗ = d∗1 and d ′ = m+1−d∗ =
m + 1− d∗1 . Further, by Proposition 5.7,

H (G∗; T0; T1) ≥ (d∗1 + 1)!(2T1)d∗1 .

Furthermore, since β0 6= 0,

Card

(
6 + G∗

G∗

)
= 2S1 + 1.

Therefore the conclusion of the multiplicity estimate implies
(

S0 + d ′

d ′

)
(2S1 + 1) ≤ (m + 1)!

(m + 2− d ′)!
T0(2T1)d ′−1.

Since d ′ ≤ m this estimate yields

(S0 + 1)d ′ (2S1 + 1) ≤ (m + 1)!d ′!
(m + 2− d ′)!

T0(2T1)d ′−1.

However we have S0 + 1 ≥ 2T1, d ′ ≥ 1 and

d ′!
(m + 2− d ′)!

≤ 1

2
m!,

hence we get a contradiction with the inequality

(S0 + 1)(2S1 + 1) >
1

2
m!(m + 1)!T0.

So we may assume d∗0 = 1, so that d∗ = d∗1 + 1 and d ′ = m + 1−d∗ = m−d∗1 . Further
(Proposition 5.7 again)

H (G∗; T0; T1) ≥ (d∗1 + 1)!T0(2T1)d∗1 .

The conclusion of the multiplicity estimate gives now
(

S0 + d ′

d ′

)
Card

(
6 + G∗

G∗

)
≤ (m + 1)!

(m + 1− d ′)!
(2T1)d ′

from which we deduce
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(S0 + 1)d ′Card

(
6 + G∗

G∗

)
≤ (m + 1)!d ′!

(m + 1− d ′)!
(2T1)d ′ .

From the estimates

S0 + 1 ≥ 2T1, d ′ ≥ 1,
d ′!

(m + 1− d ′)!
≤ m!

and
(S0 + 1)(2S1 + 1) > m!(m + 1)!2T1

we obtain

Card

(
6 + G∗

G∗

)
< 2S1 + 1,

which means that 6 ∩ G∗ 6= {e}. The assumption on the rank of the subgroup of K ∗
generated by α1, . . . , αm then implies d∗1 = m − 1, d ′ = 1 and we get the estimate

S0 + 1 ≤ 2(m + 1)T1

which is not compatible with our assumptions. ¤

10.1.4 The Transcendence Argument

Here is a extension of Proposition 2.17.

Proposition 10.3. Let λ1, . . . , λm , β0, . . . , βm−1 be complex numbers satisfying

λm = β0 + β1λ1 + · · · + βm−1λm−1.

Define αi = eλi (1 ≤ i ≤ m). Assume α1, . . . , αm generate a multiplicative subgroup
of C× of rank ≥ m − 1. Assume also either β0 6= 0 and 1, β1, . . . , βm−1 linearly
independent over Q. Let E ≥ e be a real number and T0, T1, S0, S1 L be five
integers, all greater than one, satisfying

L = (T0 + 1)(2T1 + 1)m,

T1 ≥ 8m2, S0 ≥ 4mT1, S0S1 > 2m2m max{T0, T1}
and

Sm
0 S1 > (2m)2m T0T m

1 .

Then there exists a polynomial f ∈ Z[X±1
1 , . . . ,X±1

m ,Y0,Y1, . . . ,Ym−1] satisfying

deg f ≤ L
(
(m + 1)S0 + T0 + m(m + 1)(T1 + 1)S1

)
,

L( f ) ≤ L!(2T1)(m+1)L S0
(
(m + 1)S1

)LT0
,

and

0 < | f (α1, . . . , αm, β0, . . . , βm−1)| ≤
exp

{
− 1

3
L1+(1/m) log E + L

(
c0S0 log(ET0T1) + T0 log(c0 E S1) + c0T1S1 E

)}
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with

c0 = max
{
e(m + 1) max

0≤i≤m−1
(1 + |βi |)m+1, 1 + (m + 1)(|λ1| + · · · + |λm |)

}
.

Proof of Proposition 10.3. For τ ∈ N, t ∈ Zm , σ ∈ Nm and s ∈ Z, define the

polynomial P
(σ s)
τ t in the ring Z[X±1

1 , . . . ,X±1
m ,Y0, . . . ,Ym−1] by

P
(σ s)
τ t =

min{σ0,τ }∑

κ=0

σ0!τ !

κ!(σ0 − κ)!(τ − κ)!
(tmY0)σ0−κsτ−κ ·

(t1 + tmY1)σ1 · · · (tm−1 + tmYm−1)σm−1 Xt1s
1 · · ·Xtm s

m ,

so that the number γ
(σ s)
τ t , which have been introduced in § 10.1.2, satisfies

γ
(σ s)
τ t = P

(σ s)
τ t (α1, . . . , αm, β0, . . . , βm−1).

By Lemma 4.9, for

0 ≤ τ ≤ T0, |t | ≤ T1, ‖σ‖ ≤ (m + 1)S0 and |s| ≤ (m + 1)S1,

this polynomial P
(σ s)
τ t has degree at most (m + 1)|ti |S1 in each of the two variables

X±1
i (1 ≤ i ≤ m) and degree at most T0 in Y0, total degree at most (m + 1)S0 in

Y1, . . . ,Ym−1 and length

L(P
(σ s)
τ t ) ≤ (T1 + T0)(m+1)S0

(
(m + 1)S1

)T0
.

Consider the matrix
M =

(
γ

(σ s)
τ t

)
(τ,t)

(σ ,s)

.

We deduce from Proposition 10.2 that M has maximal rank L . Let 1 be the
determinant of a regular square L × L matrix extracted from M, say

1 = det
(
γ

(σ
µ

sµ)
τ t

)
(τ,t)

1≤µ≤L

.

This number 1 is the value, at the point (α1, . . . , αm, β0, . . . , βm−1), of the polyno-
mial

f = det
(

P
(σ
µ

sµ)
τ t

)
(τ,t)

1≤µ≤L

in the ring Z[X±1
1 , . . . ,X±1

m ,Y0, . . . ,Ym−1]. The degree of f is at most

(m + 1)S1(2T + 1)m−1
T∑

ti =−T

|ti | ≤ (m + 1)S1T (T + 1)(2T + 1)m−1

≤ 1

2
(m + 1)L(T + 1)S1
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in each of the 2m variables X±1
1 , . . . ,X±1

m , at most LT0 in Y0 and the total degree
is at most (m + 1)L S0 in Y1, . . . ,Ym−1. Hence the total degree of f is at most
L(T0 + (m + 1)S0 + m(m + 1)(T1 + 1)S1). Moreover the length of f is bounded by

L!(T1 + T0)(m+1)L S0
(
(m + 1)S1

)LT0
.

We bound |1| from above. For each µ = 1, . . . , L , define

D (µ) =

(
∂

∂z0

)σµ0

· · ·
(

∂

∂zm−1

)σµ,m−1

and
ζ
µ

= sµ(β0, λ1, . . . , λm−1),

so that
γ

(σ
µ

sµ)
τ t = D (µ) fτ,t (ζµ).

Lemma 9.2 shows that the entire function of one variable z:

9(z) = det
(
D (µ) fτ t (zζµ)

)
(τ,t)

1≤µ≤L

.

has a zero at the origin of multiplicity at least2m(L)− (m + 1)L S0. From Schwarz’s
Lemma (see the proof of Lemma 6.1) we deduce

|1| = |9(1)| ≤ E−2m (L) E (m+1)L S0 L!
L∏

λ=1

sup
|z|=E

∣∣D (µ) fτ t (zζµ)
∣∣.

From the explicit formula

D (µ) fτ t (zζµ) =
min{σµ0,τ }∑

κ=0

σµ0!τ !

κ!(σµ0 − κ)!(τ − κ)!
(tmβ0)σµ0−κ zτ−κ0 ·

(t1 + tmβ1)σµ1 · · · (tm−1 + tmβm−1)σµ,m−1 e(t1λ1+···+tmλm )sµz

we deduce the estimate

sup
|z|=E

∣∣D (µ) fτ t (zζµ)
∣∣ ≤ (T1 + T0)(m+1)S0

(
(m + 1)S1

)T0 c(m+1)S0+T0
1 ET0 ec2T1 S1 E .

with
c1 = 1 + max

0≤i≤m−1
|βi | and c2 = (m + 1)(|λ1| + · · · + |λm |).

Therefore

log |1| ≤ −2m(L) log E + L
{

log L + (m + 1)S0 log
(
E(T0 + T1)

)

+T0 log
(
(m + 1)E S1

)
+ c3(T0 + S0) + c2T1S1 E

}

with c3 = (m + 1) log c1. From the assumption T1 ≥ 8m2 we deduce L ≥ (4m)2m

hence from Lemma 6.5 we derive
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2m(L) ≥ 1

3
L1+(1/m).

We use also the trivial bounds

log L ≤ T0 + S0 + T1S1 E and e(m + 1)cm+1
1 ≥ 2 + m + cm+1

1 .

The conclusion of Proposition 10.3 follows with

c0 = max{e(m + 1)cm+1
1 , 1 + c2}.

¤

10.1.5 Proof of Baker’s Theorem 1.6

We are now ready to complete the proof of Baker’s Theorem.

Proof of Theorem 1.6. Let S1 be a fixed sufficiently large integer and T0 an integer
which tends to infinity. Define

T1 = T0, S0 =
[ 1

S1
T 1+(1/m)

0

]
, E = T 1/(2m)

0 .

Using Lemma 2.1, we deduce that under the assumptions of Proposition 10.3, one
at least of the numbers β0, . . . , βm−1, α1, . . . , αm is transcendental. This completes
the proof of Theorem 1.6. ¤

10.2 Baker’s Method with Interpolation Determinants

Our goal is to give a new proof of Theorem 9.1, combining Baker’s method with
Laurent’s interpolation determinants. In the next section (§ 10.3), we shall describe
very briefly the classical approach which involves an auxiliary function and an
extrapolation argument.

The method involving an interpolation determinant we are going to use is simpler
than the classical one involving an auxiliary function. As we shall see in § 10.3, the
only disadvantage would be for an explicit computation of C(m), but we shall not
address this issue here.

One could introduce further simplifications in our method of proof, which then
would lead a slightly weaker result.

- Firstly, we could avoid Fel’dman’s polynomials, but then we should assume
E∗ ≥ log B. Because of the term log E∗, the final estimate would involve
(log B)(log log B) in place of log B.

- Secondly, we could work with a torus Gm
m in place of Ga ×Gm

m. In this case the
stronger condition E∗ ≥ B would be required, and in place of log B one would
have a factor (log B)2 in the final measure.
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From this point of view, the situation is therefore quite similar with what we observed
in Chapters 7 and 9: we shall come back to this point in § 14.4.

10.2.1 Sketch of Proof of Theorem 9.1

Consider a nonzero number

3 = β0 + β1λ1 + · · · + βmλm

where β0, . . . , βm are algebraic numbers and λ1, . . . , λm are in L. Assume βm =
−1, so that 3 is the value at the point η = (1, λ1, . . . , λm) of the linear form
β0z0 + β1z1 + · · · + βm−1zm−1 − zm . In the rational homogeneous case we have
β0 = 0 and βi = −bi/bm (1 ≤ i ≤ m).

For i = 1, . . . ,m define αi = eλi . Let K be the number field generated by
β0, . . . , βm−1,α1, . . . , αm and let G be the algebraic groupGa×Gm

m over K . The point
(1, α1, . . . , αm) lies in G(K ). The exponential map of G(C) involves the functions

z0, ez1 , . . . , ezm .

In the tangent space Te(G) = Cm+1 of G, the hyperplane W of equation

zm = β0z0 + β1z1 + · · · + βm−1zm−1

is rational over K . A basis of the hyperplane W is given by the m column vectors
wk (0 ≤ k ≤ m − 1) of the matrix

(
Im

β0 · · · βm−1

)
.

The restriction to W of the exponential map of G leads us to consider the m + 1
functions of m variables

z0, ez1 , . . . , ezm−1 , eβ0z0+β1z1+···+βm−1zm−1 .

They satisfy differential equations with coefficients in K . We introduce monomials
in these functions, we take their derivatives, and we consider the values of these
derivatives at the points sη, s ∈ Z. We put these numbers into a matrix M and we
investigate the rank of M.

We shall choose later suitable parameters T0, T1, . . . , Tm , S0, S1 (positive inte-
gers) which will enable us to perform the construction of M as follows. Define
L = (T0 + 1)(2T1 + 1) · · · (2Tm + 1) (this will be the number of rows of M). Denote
by δ(X ; τ ) (0 ≤ τ ≤ T0) any basis of the space of polynomials in Q[X ] of degree
≤ T0. For (τ, t) ∈ N× Zm satisfying 0 ≤ τ ≤ T0 and |ti | ≤ Ti (1 ≤ i ≤ m), define

Fτ t (z0, . . . , zm) = δ(z0; τ )et1z1+···+tm zm

and
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fτ t (z0, . . . , zm−1) = Fτ t (z0, . . . , zm−1, β0z0 + β1z1 + · · · + βm−1zm−1)

= δ(z0; τ )etmβ0z0+(t1+tmβ1)z1+···+(tm−1+tmβm−1)zm−1 .

On the space C[X, Y±1
1 , . . . , Y±1

m ], the derivative operators

D0 =
∂

∂X
+ β0Ym

∂

∂Ym

, Di = Yi
∂

∂Yi
+ βi Ym

∂

∂Ym
(1 ≤ i ≤ m − 1)

act as follows. Define, for σ ∈ Nm ,

Dσ = Dσ0
0 · · ·Dσm−1

m−1 ,

and for κ ∈ N,

δ(X ; τ, κ) =

(
d

d X

)κ
δ(X ; τ ).

Then

Dσ
(
δ(X ; τ )Y t

)
=

σ0∑

κ=0

(
σ0

κ

)
(tmβ0)σ0−κ

(
m−1∏

i=1

(ti + tmβi )
σi

)
δ(X ; τ, κ)Y t .

For s ∈ Z define
γ

(σ s)
τ t = Dσ

(
δ(X ; τ )Y t

)
(s, αs

1, . . . , α
s
m).

If we replace X by z0 and Yi by ezi for 1 ≤ i ≤ m, setting

Dwi
=
∂

∂zi
+ βi

∂

∂zm
(0 ≤ i ≤ m − 1)

and D
σ
w in place of Dσ0

w0
· · ·Dσm−1

wm−1
, we obtain

γ
(σ s)
τ t = D

σ
wFτ t (sη)

=
σ0∑

κ=0

(
σ0

κ

)
δ(s; τ, κ)(tmβ0)σ0−κ

(
m−1∏

i=1

(ti + tmβi )
σi

)
(
α

t1
1 · · ·αtm

m

)s
.

For each τ ∈ N, t ∈ Zm , σ ∈ Nm , s ∈ Z, this number γ
(σ s)
τ t is in K . The connection

with the function fτ t (which depends only on m variables) is the following: if we
introduce the projection η′ = (1, λ1, . . . , λm−1) ∈ Cm of η on the space Cm × {0},
then (

∂

∂z0

)σ0

· · ·
(

∂

∂zm−1

)σm−1

fτ t (sη
′) = γ

(σ s)
τ t etm s3.

When |3| is small then etm s3 is close to 1.
We introduce a further parameter T ]

0 (again a positive integer), and we select
for δ(z; τ ) the polynomials δT ]

0
(z; τ ) which have been introduced in § 9.2.1. We also

recall the notation (§ 9.2.1):

δT ]

0
(z; τ, κ) =

(
d

dz

)κ
δT ]

0
(z; τ ).
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In the general case, define

γ̃
(σ s)
τ t =

σ0∑

κ=0

(
σ0

κ

)
δT ]

0
(s; τ, κ)(tmβ0)σ0−κ

(
m−1∏

i=1

(ti + tmβi )
σi

)
α

t1s
1 · · ·αtm s

m .

In the homogeneous rational case, define,

γ̃
(σ s)
τ t =

1

σ0!
δT ]

0
(s; τ, σ0)

(
m−1∏

i=1

4(ti bm − tmbi ; σi )

)
α

t1s
1 · · ·αtm s

m .

Our fundamental matrix M will be

M =
(
γ̃

(σ s)
τ t

)
(τ,t)

(σ ,s)

where τ ∈ N and t ∈ Zm satisfy 0 ≤ τ ≤ T0 and |ti | ≤ Ti (1 ≤ i ≤ m), while
σ ∈ Nm and s ∈ Z range over the sets of elements such that ‖σ‖ ≤ (m + 1)S0 and
|s| ≤ (m + 1)S1 respectively.

This matrix M has L rows and
((m+1)S0+m

m

)(
2(m + 1)S1 + 1

)
columns. Assume that

the number of columns is (slightly) larger than the number of rows. Our first goal is
then to prove that M has rank < L .

For this purpose, consider a L × L submatrix of M and denote by 1 its
determinant. Using Schwarz’ Lemma we shall get an upper bound for |1|. Assuming
|3| is sufficiently small, this upper bound will be sharp.

To make things simple, assume the conclusion of Theorem 9.1 does not hold,
which means that |3| is very small. Let us write the upper bound for |1| we derive
as:

|1| ≤ e−LV .

Our main conditions on V occurs in Proposition 10.5 (with n = m so far) and the
optimal choice will be to take V close to (L log E)/Sm−1

0 , which will be close to
S0S1 log E . Next, we use Liouville’s inequality and deduce1 = 0. This implies that
M has rank < L .

Now we invoke the multiplicity estimate: Theorem 8.1 produces a connected
algebraic subgroup G∗ of G of positive codimension (which means G∗ 6= G) such
that

(10.4)

(
S0 + n′

n′

)
Card

(
6 + G∗

G∗

)
H (G∗; T ) ≤ H (G; T ),

where

6 =
{
(s, αs

1, . . . , α
s
m) ; s ∈ Z, |s| ≤ S1

} ⊂ G(K ) = K × (K×)m,

T = (T0; T1, . . . , Tm) and n′ = dimC

(
W + Te(G∗)

Te(G∗)

)
·

It will turn out (see Lemma 10.8) that it suffices to consider the subgroups G∗ which
satisfy not only this condition (10.4), but also two more properties:
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• Te(G∗) is contained in the hyperplane W .
• 6[2] ∩ G∗(K ) = {e}.

We shall call such a G∗ an obstruction subgroup. Since Te(G∗) ⊂ W , the
codimension of G∗ in G is n′ + 1. Applying Lemma 7.8, one deduces from
6[2] ∩ G∗(K ) = {e} the relation

Card

(
6 + G∗

G∗

)
= 2S1 + 1.

In the proofs of the qualitative result (Proposition 10.3), the mere existence of
G∗ was sufficient to get the conclusion. Here, we need to work more.

The optimal situation, from the point of view of the multiplicity estimate, is
when the algebraic subgroup G∗ produced by conclusion of Theorem 8.1 is the
trivial subgroup {e} of dimension 0. When this is the case, the proof can be greatly
simplified.

This simplification takes place for instance when there is no small linear
dependence relation between the coefficients β j . Indeed, the tangent space of an
obstruction subgroup G∗ = G∗0 × G∗1 is contained in W (by definition), and Te(G∗1)
is a vector subspace of Cm rational overQ. Any element k ∈ Qm ∩ Te(G∗1) gives rise
to a linear dependence relation

k1β1 + · · · + km−1βm−1 = km .

We don’t want to loose any generality and we must take into account the possibility
that such relations take place. We start the proof by looking at a maximal G∗ which
might occur in the conclusion of the multiplicity estimate. We use this G∗ to construct
our auxiliary function, so that the multiplicity estimate at the end of the proof will
provide an algebraic subgroup which is already under control.

Among the obstruction subgroups G∗, we select a maximal one, say G− =
G−0 × G−1 . Here G−0 is an algebraic subgroup of G0 = Ga, hence G−0 is either {0} or
else Ga, while G−1 is a connected algebraic subgroup of G1 = Gm

m.
The idea (arising in [PW 1988a]) is to replace G by its quotient G/G−. A

monomial X τY t ∈ C[X, Y±1
1 , . . . , Y±1

m ] is constant on the classes modulo G− if and
only if (τ, t) satisfies

• If G−0 = Ga then τ = 0.
• For any y ∈ G−1 , yt1

1 · · · ytm
m = 1.

Hence we shall restrict the exponents (τ, t) to a subset T of tuples in N× Zm with
0 ≤ τ ≤ T0, |ti | ≤ Ti , for which these conditions are satisfied. As we shall see
(Lemma 10.10), the number L ′ of such tuples (τ, t) is essentially

H (G; T )

H (G−; T )
·

We repeat the above construction with the algebraic group G of dimension m + 1
replaced by G/G− of dimension say n + 1. More precisely we replace M by a
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submatrix M ′ where, in the definition, we restrict the set of (τ, t) to T . The new
determinant 1′ has an absolute value bounded from above by e−L ′V ′ , where V ′ is
essentially (L ′ log E)/Sn−1

0 , hence V ′ is not much smaller than S0S1 log E . Therefore
the previous arithmetic estimates will be sufficient to deduce1′ = 0 and to conclude
that M ′ has rank < L ′. We are back to the multiplicity estimate, but now we have
the extra information that the new obstruction subgroup G∗ contains G−. Since G−
was maximal among the obstruction subgroups, we deduce that G∗ is G− itself. We
need of course to eliminate also G− in order to get a contradiction. So we introduce
a further modification in our construction: we replace, if necessary, T by a smaller
subset T ′ so that L ′ is replaced by a number which is not too large compared to
Sn

0 S1 log E . This will enable us to exclude G− as well.

10.2.2 Analytic Upper Bound for the Interpolation Determinant

We are looking for an upper bound for the absolute value of an interpolation
determinant. Lemma 9.2 is sufficient not only for the proof of the transcendence
result (§ 10.1), but also to achieve a nontrivial explicit estimate. However the measure
of linear independence we would obtain this way would not be extremely good (it
is comparable with the rough estimate of Chap. 7 in [W 1992] – see § 14.4.1). It
will be more efficient to produce a new upper bound for the absolute value of the
interpolation determinant, taking into account the fact that the points sη lie on a
complex line, even if the derivatives involve several variables. This is the analog,
for interpolation determinants, to the fact that Baker’s original method (see § 10.3)
can be explained without mentioning functions of several variables (see [W 1974],
Chap. 8).

Another refinement is included in our analytic estimate: we introduce a subspace
U of the ambient space Cd (here d = m + 1) for which our functions satisfy
ϕ(z + u) = ϕ(z) for any u ∈ U. This means that the functions ϕ are in fact defined
on Cd/U, and indeed this is what shall be used in the proof. But introducing U will
be more convenient for our application, where U will be Te(G−).

Our aim is to prove only the analytic result needed for this chapter, we are not
looking for the most general statement (see Proposition 13.2): the next analytic
estimate will not include Proposition 9.13, let alone Proposition 7.6.

Let m and n be rational integers with 0 ≤ n ≤ m and m ≥ 1. Let X, U, W be
vector subspaces of Cm+1 with

U ⊂ W , X ⊂ W ,

dimC(X) = 1, dimC(U) = m − n and dimC(W ) = m.

Assume the hyperplane W has an equation

β0z0 + · · · + βm−1zm−1 = zm .

Let L be a positive integer and ϕ1, . . . , ϕL be entire functions in Cm+1 satisfying
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ϕλ(z + u) = ϕλ(z)

for any u ∈ U, any z ∈ Cm+1 and any λ = 1, . . . , L .
Let ζ

1
, . . . , ζ

L
be elements of X and S0 a positive integer. Further, for 1 ≤ λ ≤ L

and 1 ≤ µ ≤ L , let δλµ be a complex number. Recall that for σ ∈ Nm , D
σ
w has been

defined in § 10.2.1:

D
σ
w =

(
∂

∂z0
+ β0

∂

∂zm

)σ0

· · ·
(

∂

∂zm−1
+ βm−1

∂

∂zm

)σm−1

·

Dealing with the general case of Theorem 9.1, we shall consider numbers D
σ
µ

w ϕλ(ζµ),
where σ 1, . . . , σ L are L elements of Nm satisfying ‖σµ‖ ≤ S0 (1 ≤ µ ≤ L). But
in view of the application of our analytic estimate to the homogeneous rational case,
we consider a slightly more general situation. For 1 ≤ µ ≤ L and σ ∈ Nm with
‖σ‖ ≤ S0, let qµσ be a complex number. Define

ϕλµ =
∑

‖σ‖≤S0

qµσD
σ
wϕλ (1 ≤ µ ≤ L).

Let E , V , M1, . . . ,ML be positive real numbers with E > 1 and let ε be a
complex number satisfying

|ε| ≤ e−V .

Assume, for 1 ≤ λ ≤ L ,

Mλ ≥ log sup
|z|=E

max
1≤µ≤L

|ϕλµ(zζ
µ

)| and Mλ ≥ log max
1≤µ≤L

|δλµ|.

Proposition 10.5. Assume

2(S0 + 1) log E + log(2L) + Mλ ≤ V

4
(1 ≤ λ ≤ L)

and

L ≥ 2

(
S0 + n − 1

n − 1

)
· V

log E
·

Then the determinant

1 = det
(
ϕλµ(ζ

µ
) + εδλµ

)
1≤λ,µ≤L

has absolute value bounded by

|1| ≤ e−LV/4.

The proof of Proposition 10.5 requires two preliminary lemmas.
Let I a subset of {1, . . . , L}. For 1 ≤ λ,µ ≤ L , let d (I )

λµ be the entire function of
one variable which is defined by
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d (I )
λµ (z) =





ϕλµ(zζ
µ

) for λ ∈ I ,

δλµ for λ 6∈ I .

Set
DI (z) = det

(
d (I )
λµ (z)

)
1≤λ,µ≤L

.

Lemma 10.6. The function DI (z) has a zero at z = 0 of multiplicity at least
2(n, S0, |I |)− |I |S0.

Proof. Choose a basis of Cm+1/U giving an isomorphism ι:Cm+1/U → Cn+1 and
denote by π :Cm+1 → Cn+1 the composition of ι with the canonical surjection
Cm+1 → Cm+1/U. The relations ϕλ(z + u) = ϕλ(z) mean that there exist entire
functions ϕ̃λ:Cn+1 → C such that ϕ̃λ ◦ π = ϕλ (1 ≤ λ ≤ L). Define w̃k = π (wk)
(1 ≤ k ≤ m), ζ̃

µ
= π (ζ

µ
) (1 ≤ µ ≤ L),

ϕ̃λµ =
∑

‖σ‖≤S0

qµσD
σ
w ϕ̃λ (1 ≤ λ,µ ≤ L).

and

d̃ (I )
λµ (z) =




ϕ̃λµ (̃ζ

µ
z) for λ ∈ I ,

δλµ for λ 6∈ I .

Then
DI (z) = det

(
d̃ (I )
λµ (z)

)
1≤λ,µ≤L

.

Therefore we may assume, without loss of generality, U = 0 and m = n.
For m = 1, the proof is the same as for Lemma 2.8. For m ≥ 2 we repeat the

proof of Lemmas 7.2 and 9.2 with a tiny modification.
After a change of variable (which does not affect the multiplicity) we may assume

X = C×{0}m−1. Using the Taylor expansion at the origin of each ϕλ, we are reduced
to the case ϕλ(z) = zκλ . The point is that each D

σ
wϕλ vanishes on X, unless σi ≥ κλi

for 2 ≤ i ≤ m, in which case κλ2 + · · · + κλm ≤ S0. ¤

Repeating the proof of Lemma 7.5, we deduce:

Lemma 10.7. We have

log |D̃ I (1)| ≤ −2(n, S0, |I |) log E + log(L!) + |I | · S0 log E + M1 + · · · + ML .

Proof of Proposition 10.5. (Compare with the proof of Proposition 7.6). By Lemma
10.7, we can use Lemma 7.4 with r = 1 and

χ0 =
1

2
(log E)

(
S0 + n − 1

n − 1

)−1

,
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χ1 = V − χ0 + S0 log E +
1

2n
(S0 + n) ≤ V + 2S0 log E

and
χ2 = log(L!) + M1 + · · · + ML .

The assumption 2(S0 +1) log E +log(2L)+ Mλ ≤ V/4 implies χ2 + L log 2 ≤ LV/4.
¤

10.2.3 Obstruction Subgroups

We explain here how to apply Theorem 8.1 in order to construct a matrix with
maximal rank.

Let K be an algebraically closed field of zero characteristic, m a positive
integer, α1, . . . , αm elements of K× and β0, . . . , βm−1 elements of K . Further let
T0, T1, . . . , Tm , T ′1, . . . , T ′m , S0 and S1 be nonnegative integers with 1 ≤ T ′i ≤ Ti for
1 ≤ i ≤ m.

For t ∈ Zm define

ξ
t

=
(
tmβ0, t1 + tmβ1, . . . , tm−1 + tmβm−1

) ∈ K m .

Let δ(1)(z; τ ) (0 ≤ τ ≤ T0) denote a basis of the space of polynomials in K [z] of
degree ≤ T0. For κ ∈ N, define

δ(1)(z; τ, κ) =

(
d

dz

)κ
δ(1)(z; τ ).

Next, let δ(2)(z; σ ) (1 ≤ σ ≤ ((m+1)S0+m
m

)
) denote a basis of the space of polynomials

in K [z0, . . . , zm−1] of total degree ≤ (m + 1)S0. For κ ∈ N, define

δ(2)(z; σ, κ) =

(
∂

∂z0

)κ
δ(2)(z; σ ).

For instance when δ(2)(z; σ ) is the element zσ0
0 · · · zσm−1

m−1 of the standard basis, then

1

κ!
δ(2)(ξ

t
; σ, κ)

is nothing else than
(
σ0

κ

)
(tmβ0)σ0−κ (t1 + tmβ1)σ1 · · · (tm−1 + tmβm−1)σm−1 .

Denote by G the algebraic group G0 × G1 with G0 = Ga and G1 = Gm
m. Let

G− = G−0 × G−1 be a connected algebraic subgroup of G, where G−0 is either Ga or
{0}, and where G−1 is a connected algebraic subgroup of G1. We shall use Hilbert-
Samuel’s polynomial

H (G; D0, D1, . . . , Dd1 )
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with the parameters D0, D1, . . . , Dd1 replaced either by T = (T0, T1, . . . , Tm) or else
by T ′ = (T0, T ′1, . . . , T ′m).

Define
6 =

{
(s, αs

1, . . . , α
s
m) ; s ∈ Z, |s| ≤ S1

} ⊂ G(K ).

In K m+1 (which we identify with Te(G)), let W be the hyperplane defined by the
equation

β0z0 + β1z1 + · · · + βm−1zm−1 = zm .

A basis of W is given by the m column vectors of the matrix
(

Im
β0 · · · βm−1

)

which are denoted by w0, . . . , wm−1. We assume

Te(G−) ⊂ W and 6[2] ∩ G−(K ) = {e}.
We denote by n + 1 the codimension of G− in G. Let T ′ be a subset of N×Zm . We
assume that for any (τ, t) ∈ T ′, we have

0 ≤ τ ≤ T0, |ti | ≤ T ′i (1 ≤ i ≤ m).

We assume also {
τ = 0 if G−0 = Ga,
yt1

1 · · · ytm
m = 1 for any y ∈ G−1 .

For (τ, t) ∈ T ′ and (σ, s) ∈ N × Z with 1 ≤ σ ≤ ((m+1)S0+m
m

)
and |s| ≤ (m + 1)S1,

define

γ̃
(σ s)
τ t =

∑

κ≥0

1

κ!
δ(1)(s; τ, κ)δ(2)(ξ

t
; σ, κ) · αt1s

1 · · ·αtm s
m .

Notice that the only non-vanishing terms in the sum over κ occur for

κ ≤ min{T0, (m + 1)S0}.
We build a matrix with these numbers:

M ′ =
(
γ̃

(σ s)
τ t

)
(τ,t)

(σ,s)

.

This is compatible with the notation of § 10.2.1. The number of rows of M ′ is
Card(T ′), and the number of columns is

(
(m + 1)S0 + m

m

)(
2(m + 1)S1 + 1

)
.

The following assumptions will be take place until the end of § 10.2.3:

(S0 + 1)(2S1 + 1) > (m + 1)!2m T0, S0 ≥ 2(m + 1) max
1≤i≤m

Ti ,

and α1, . . . , αm generate a multiplicative subgroup of K× of rank ≥ m − 1.
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Further, in the special case where β0 = 0 and α1, . . . , αm multiplicatively
dependent, we assume that β1z1 + · · · + βm−1zm−1 = zm is not the equation of
the tangent space of an algebraic subgroup of Gm

m containing (αs
1, . . . , α

s
m) for some

s ∈ Z, s 6= 0.

We deduce from Theorem 8.1 the following result:

Lemma 10.8. If M ′ has rank < Card(T ′), then there exists a connected algebraic
subgroup G∗ of G, distinct from G, which contains G−, such that

Te(G∗) ⊂ W , 6[2] ∩ G∗(K ) = {e}
and (

S0 + n′

n′

)
(2S1 + 1)H (G∗; T ′) ≤ H (G, T ′),

where n′ + 1 is the codimension of G∗ in G.

Proof. For 1 ≤ σ ≤ ((m+1)S0+m
m

)
, write

δ(2)(z, σ ) =
∑

‖σ ′‖≤(m+1)S0

qσ ′σ zσ
′
.

This defines a regular square matrix of size
((m+1)S0+m

m

)
:

Q =
(

qσ ′σ
)

‖σ ′‖≤(m+1)S0

1≤σ≤((m+1)S0+m
m )

.

For κ ∈ N a simple computation yields

δ(2)(ξ
t
, σ, κ) =

∑

‖σ ′‖≤(m+1)S0

qσ ′σ
σ ′0!

(σ ′0 − κ)!
(tmβ0)σ

′
0−κ (t1 + tmβ1)σ

′
1 · · · (tm−1 + tmβm−1)σ

′
m−1 .

On the other hand, for σ ′ ∈ Nm , using the derivations Di defined in § 10.2.1, we
have

Dσ ′(δ(1)(X ; τ )Y t
)

=
σ ′0∑

κ=0

(
σ ′0
κ

)
(tmβ0)σ

′
0−κ

(
m−1∏

i=1

(ti + tmβi )
σ ′i

)
δ(1)(X ; τ, κ)Y t .

We deduce

γ̃
(σ s)
τ t =

∑

‖σ ′‖≤(m+1)S0

qσ ′σD
σ ′(δ(1)(X ; τ )Y t

)
(s, αs

1, . . . , α
s
m).

Since M ′ has rank < Card(T ′), there exist elements cτ t in K , not all of which are
zero, such that ∑

(τ,t)∈T ′
cτ t γ̃

(σ s)
τ t = 0
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for any (σ, s) ∈ N× Z with

1 ≤ σ ≤
(

(m + 1)S0 + m

m

)
and |s| ≤ (m + 1)S1.

These relations show that the polynomial

∑

‖σ ′‖≤(m+1)S0

qσ ′σD
σ ′
( ∑

(τ,t)∈T ′
cτ t
(
δ(1)(X ; τ )Y t

))

vanishes at (s, αs
1, . . . , α

s
m). Since Q is a regular matrix, we deduce

Dσ ′
( ∑

(τ,t)∈T ′
cτ t
(
δ(1)(X ; τ )Y t

))
(s, αs

1, . . . , α
s
m) = 0

for all σ ′ with ‖σ ′‖ ≤ (m + 1)S0, which means that the polynomial
∑

(τ,t)∈T ′
cτ tδ

(1)(X ; τ )Y t

in K [X, Y±1
1 , . . . , Y±1

m ] vanishes to order ≥ (m + 1)S0 along W at each point of
6[m + 1].

The hypotheses of Theorem 8.1 are therefore satisfied with G+ = G. It follows that
there exists a connected algebraic subgroup G∗ of G of dimension ≤ m, containing
G−, such that, if we set

`′0 = dimK

(
W + Te(G∗)

Te(G∗)

)
,

then (
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; T ′) ≤ H (G; T ′).

By Lemma 5.8,
H (G; T ′) = (m + 1)!2m T0T ′1 · · · T ′m .

Denote by m − n′ the dimension of G∗, with 0 ≤ n′ ≤ m.
Let us check 6[2] ∩ G∗(K ) = {e}. Indeed, if

(s, αs
1, . . . , α

s
m) ∈ G∗(K ) for some s ∈ Z with 0 < |s| ≤ 2S1,

then G∗ = Ga × G∗1 where G∗1 is a connected algebraic subgroup of G1 of
codimension 1 (recall that α1, . . . , αm generate a multiplicative subgroup of K× of
rank ≥ m − 1). Since (αs

1, . . . , α
s
m) ∈ G∗1(K ), we have by assumption Te(G∗) 6= W ,

hence Te(G∗) + W = Te(G) and `′0 = 1. Since G∗1 has codimension 1, we have, by
Proposition 5.7,

H (G∗; T ′) ≥ m!2m−1 · T0T ′1 · · · T ′m
max1≤i≤m T ′i

,
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and we get a contradiction with our assumptions T ′i ≤ Ti and S0 ≥ 2(m + 1)Ti for
1 ≤ i ≤ m.

As already mentioned, from6[2]∩G∗(K ) = {e}we deduce, by means of Lemma
7.8,

Card

(
6 + G∗

G∗

)
= 2S1 + 1.

Next we check Te(G∗) ⊂ W . Otherwise Te(G∗) + W = Te(G) and `′0 = n′ + 1
(recall that G∗ has dimension m − n′). From Proposition 5.14 we derive

H (G∗; T ′) ≥ (m + 1)!2m min
i

T ′i1
· · · T ′im−n′ ,

where i runs over the subsets {i1, . . . , im−n′} of {0, 1, . . . ,m} with m − n′ elements.
In this case the conclusion of the multiplicity estimate implies

(
S0 + k

k

)
(2S1 + 1) ≤ (m + 1)!2m max

0≤i1<···<ik≤m
Ti1 · · · Tik .

with k = n′ + 1, and this is not compatible with the assumptions

(S0 + 1)(2S1 + 1) > (m + 1)!2m T0 and S0 ≥ 2(m + 1) max
1≤i≤m

Ti .

Hence we have Te(G∗) ⊂ W , and therefore `′0 = n′. The conclusion of the multiplicity
estimate now reads

(
S0 + n′

n′

)
(2S1 + 1)H(G∗; T ′) ≤ H (G; T ′).

This completes the proof of Lemma 10.8. ¤

Proposition 10.9. Assume further that for any connected algebraic subgroup G∗ of
G, of codimension n′ + 1 with 0 ≤ n′ < n, containing G−, and satisfying

Te(G∗) ⊂ W and 6[2] ∩ G∗(K ) = {e},
the estimate (

S0 + n′

n′

)
(2S1 + 1)H (G∗; T ) > H (G, T )

holds. Assume furthermore
(

S0 + n

n

)
(2S1 + 1)H (G−; T ′) > H (G, T ′).

Then the matrix M ′ has rank Card(T ′).

Proof. By contradiction, assume that M ′ has not maximal rank. We use Lemma 10.8:
there exists a connected algebraic subgroup G∗ of G, of codimension n′ + 1 in G,
which contains G−, such that
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Te(G∗) ⊂ W , 6[2] ∩ G∗(K ) = {e}
and (

S0 + n′

n′

)
(2S1 + 1)H (G∗; T ′) ≤ H (G, T ′).

Proposition 5.14 shows that each of the functions

Ti 7−→ H (G∗; T0, T1, . . . , Td1 )

H(G; T0, T1, . . . , Td1 )

is a fractional linear transformation, hence is non-increasing. Therefore we also have
(

S0 + n′

n′

)
(2S1 + 1)H (G∗; T ) ≤ H (G, T ).

By assumption this implies G∗ = G−. But now the conclusion of Lemma 10.8
becomes (

S0 + n

n

)
(2S1 + 1)H (G−; T ′) ≤ H (G, T ′),

which is not compatible with the last assumption of Proposition 10.9. ¤

10.2.4 Estimating a Hilbert Function

In order to apply Proposition 10.9 (with K = C), we need to introduce G−. Consider
the so-called obstruction subgroups, which are the connected algebraic subgroups
G∗ of G of positive codimension n′ + 1 for which

Te(G∗) ⊂ W , 6[2] ∩ G∗(K ) = {e}
and (

S0 + n′

n′

)
(2S1 + 1)H(G∗; T ) ≤ H (G; T ).

If there is no such G∗, we set G− = {e}. Otherwise we define G− as a maximal
obstruction subgroup16. Let n + 1 be the codimension of G− in G, so that either
n = m or else (

S0 + n

n

)
(2S1 + 1)H (G−; T ) ≤ H (G; T ).

This algebraic group G− can be written G−0 × G−1 , where G−0 is either {0} or Ga,
and where G−1 is a connected algebraic subgroup of G1 = Gm

m. By § 5.3, there is a
subgroup 8 of Zm such that G−1 = T8, and the rank δ of 8 is

δ = codimG1 G−1 =

{
n + 1 if G−0 = Ga,
n if G−0 = {0}.

For any α ∈ 8 and any y ∈ G−1 we have

16 The reader may first restrict to the case where G− = {e}, which is much easier.
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yα1
1 · · · yαm

m = 1

Denote by T1 the set of α ∈ 8 such that |αi | ≤ Ti for i = 1, . . . ,m. We need a lower
bound for the number of elements in the finite set T1, which is the intersection of 8
with the polydisc {

x ∈ Rm ; |xi | ≤ Ti (1 ≤ i ≤ m)
}

of Rm , and 8 is a lattice in a vector subspace of Rm . Recall the notation χ (T ) of
Proposition 5.7 for the number of cosets of 8 of the form α +8 with α ∈ Zm[T ].

Using Lemma 7.8 for the mapping
m∏

i=1

[0, Ti ] −→ Zm

8

α 7−→ α +8

yields
χ (T )Card(T1) ≥ (T1 + 1) · · · (Tm + 1).

Hence it suffices now to get an upper bound forχ (T ). The numberχ (T ) is nothing else
than Hilbert’s function H (G−1 ; T ), and we need to compare it with Hilbert-Samuel’s
polynomial H (G−1 ; T ). Here is Lemma 3.2 of [PW 1988a].

Lemma 10.10. There exists a constant c which depends only on m such that

χ (T ) ≤ cH (G−1 ; T ).

The proof of Lemma 10.10 requires some preparation.
Let V be an Euclidean vector space of dimension m over R. Denote by

(ε1, . . . , εm) an orthonormal basis. Let L be a discrete subgroup of V of rank `.
Denote by (λ1, . . . , λ`) a basis of L over Z and by W the vector space they span.

Let (e1, . . . , e`) be an orthonormal basis of W . In
∧` W , write

λ1 ∧ · · · ∧ λ` = µ · e1 ∧ · · · ∧ e`

with µ ∈ R. The number |µ| does not depend on the choice of the bases (λ1, . . . , λ`)
and (e1, . . . , e`). Define

vol(L) = |µ|.
A fundamental domain for W/L is

P =
{
t1λ1 + · · · + t`λ` ; t ∈ R`, 0 ≤ t j < 1 (1 ≤ j ≤ `)},

which means that W is the disjoint union of the sets x + P , x ∈ L . The Euclidean
volume of P in W is nothing else than vol(L). This is the key for estimating from
above the number of elements in some finite subset E of L: it suffices to know an
upper bound for the volume of the (disjoint) union of x + P where x ranges over E ,
and also a lower bound for vol(L).



                   

344 10. On Baker’s Method

Let L ∈ Matm×`(R) be the matrix whose column vectors are the components of
λ1, . . . , λ` in the basis (ε1, . . . , εm):

λ j =
m∑

i=1

λi jεi , L =
(
λi j

)
1≤i≤m
1≤ j≤`

.

Let us check
vol(L)2 = det

(
tL L
)
.

Denote by 〈·, ·〉 the scalar product on V. A scalar product on
∧` W is defined by

〈x1 ∧ · · · ∧ x`, y1 ∧ · · · ∧ y`〉 = det
(
〈x j , yk〉

)
1≤ j,k≤`

.

From

〈λ j , λk〉 =
m∑

i=1

λi jλik

we deduce
µ2 = 〈λ1 ∧ · · · ∧ λ`, λ1 ∧ · · · ∧ λ`〉 = det

(
tL L
)
.

This proves our claim.
Following [Sc 1980], Chap. IV, § 6, denote by C(m, `) the subset of [1,m]`

which consists of sequences i = (i1, . . . , i`) satisfying 1 ≤ i1 < · · · < i` ≤ m. For
each i ∈ C(m, `), define µi ∈ R by

λ1 ∧ · · · ∧ λ` = µi · εi1 ∧ · · · ∧ εi` .

Lemma 10.11. For each i ∈ C(m, `), µi is the determinant of the square ` × `
matrix

(
λik j

)
1≤k, j≤`

=



λi11 · · · λi1`

...
. . .

...
λi`1 · · · λi``




and
vol(L)2 =

∑

i∈C(m,`)

|µi |2.

Proof of Lemma 10.11. This follows from the Cauchy-Binet formula (see [Bou
1985], Algèbre, Chap. III, or J. Fresnel, Algèbre des Matrices, Hermann, Actualités
Scientifiques et Industrielles 1439, 1997): for any commutative ring A and any
matrices X ∈ Matn×p(A), Y ∈ Matm×n(A), for any q in the range 1 ≤ q ≤
min{m, n, p} and any k ∈ C(n, q), ` ∈ C(q, n), the matrix Z = XY satisfies

Zk` =
∑

h∈C(p,q)

XkhYh`,

where the notation Xkh stands for the determinant of the q × q matrix
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(
xi j

)
i∈k

j∈h

.

In particular for X and Y in Matn×m(A)

det(tXY ) =
∑

h∈C(n,m)

XhYh

where Xh stands for Xh` with ` = {1, . . . ,m}. ¤

We wish to compare the volume of two discrete subgroups L0 ⊂ M of V.
First, let L0 ⊂ L be two discrete subgroups of V of the same rank. Let us check

vol(L0) = [L : L0]vol(L).

Indeed, since L is a free Z-module, the elementary divisors Theorem (already
referred to in the proof of Theorem 5.13) shows that there exists a basis (λ1, . . . , λ`)
of L and positive rational integers a1, . . . , a` such that (a1λ1, . . . , a`λ`) is a basis of
L0. Clearly

[L : L0] = a1 · · · a`.
On the other hand if L (resp. L0) is the matrix in Matm×`(R) whose column vectors
are the components of this basis of L (resp. L0) in the basis (ε1, . . . , εm), then

vol(L0)2 = det
(

tL0 L0
)

= (a1 · · · a`)2 det
(

tL L
)

= (a1 · · · a`)2vol(L)2.

Our claim follows.

Next let L ⊂ M be two discrete subgroups of V such that the quotient M/L
has no torsion and M has rank m. Denote by W the subspace of V spanned by L .
Let (λ1, . . . , λ`) be a basis of L over Z and λ`+1, . . . , λm be elements in M whose
images modulo L give a basis of the free Z-module M/L . Then (λ1, . . . , λ`) is a
basis of W over R and (λ1, . . . , λm) is a basis of M over Z . As a consequence we
have L = M ∩W .

Let p: V → V denote the orthogonal projection on W⊥. For ` < i ≤ m
define λ′i = p(λi ). Since λ′`+1, . . . , λ

′
m areR-linearly independent, p(M) is a discrete

subgroup of V. Further, let (e1, . . . , e`) an orthonormal basis of W and (e`+1, . . . , em)
an orthonormal basis of W⊥. From the relations

λ1 ∧ · · · ∧ λm = λ1 ∧ · · · ∧ λ` ∧ λ′`+1 ∧ · · · ∧ λ′m,
λ1 ∧ · · · ∧ λm = ±vol(M) · e1 ∧ · · · ∧ em

λ1 ∧ · · · ∧ λ` = ±vol(L) · e1 ∧ · · · ∧ e`

and
λ′`+1 ∧ · · · ∧ λ′m = ±vol

(
p(M)

) · e`+1 ∧ · · · ∧ em,

one deduces
vol(M) = vol(L)vol

(
p(M)

)

(this is Lemma 3 of [BertP 1988]).
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Proof of Lemma 10.10. Consider the Euclidean vector space V = Rm . A scaling will
reduce the problem to counting points in the unit polydisc

C =
{

x ∈ Rm ; |x | ≤ 1
}

in Rm . Define

M =

{(
α1

T1

, · · · ,αm

Tm

)
; α ∈ Zm

}

= Z
(

1

T1
, 0, . . . , 0

)
+ · · · + Z

(
0, . . . , 0,

1

Tm

)

and

L0 =

{(
ϕ1

T1

, · · · ,ϕm

Tm

)
; ϕ ∈ 8

}
.

Hence χ (T ) is the number of cosets of L0 of the form x + L0 with x ∈ M ∩ C.
Denote by W the R-vector space spanned by L0, by p the projection of Rm on

W⊥ and define L = W ∩ M . Then L is a discrete subgroup of W containing L0,
hence L0 has finite index in L . Moreover M/L has no torsion.

We use Lemma 7.8 for the mapping
{

x + L0 ; x ∈ M ∩ C
} −→ p(M ∩ C)

deduced from the restriction of p to M ∩C. For x and x ′ in M ∩C with p(x) = p(x ′)
we have x − x ′ ∈ W ∩ M = L , hence

χ (T ) ≤ [L : L0]Card
(

p(M ∩ C)
)
.

Any z ∈ W⊥ can be written z = p(x) + p(t) with x ∈ M and t ∈ C ′ where

C ′ =

{
x ∈ Rm ; 0 ≤ xi <

1

Ti

, (1 ≤ i ≤ m)

}
.

Hence there is a fundamental domain P for p(M) in W⊥ which is contained in
p(C ′). The sets y + P , where y ranges over p(M ∩ C), are pairwise disjoint; their
Euclidean volume in W⊥ is vol

(
p(M)

)
. Denote by N the square of the Euclidean

norm on Rm . For x ∈ C and t ∈ C ′ we have

N (x + t) < m +
1

T1
+ · · · + 1

Tm
≤ 2m.

Since p is an orthogonal projection, we deduce

N
(

p(x) + p(t)
) ≤ 2m.

Since W⊥ has dimension ` := m − δ, the volume of the Euclidean ball
{
z ∈ W⊥ ; N (z) ≤ 2m

}

is c`(2m)`/2, with
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c` =
2π `/2

`0(`/2)
.

Therefore
Card

(
p(M ∩ C)

)
vol
(

p(M)
) ≤ c`(2m)`/2.

However we have

(L : L0)

vol
(

p(M)
) =

vol(L0)

vol(L)vol
(

p(M)
) =

vol(L0)

vol(M)

and

vol(M) =
1

T1 · · · Tm

,

hence
χ (T ) ≤ c`(2m)`/2T1 · · · Tmvol(L0).

We now want to relate vol(L0) with H (G−1 ; T ). Let A be a δ×m matrix with integer
coefficients whose columns vectors constitute a basis of8 over Z. From Proposition
5.14 we deduce

H (G−1 ; T ) = `!2`T1 · · · Tm

∑

i∈C(m,δ)

µi

with

µi =
det(Ai )

Ti1 · · · Tiδ

·

Using Lemma 10.11 we obtain

vol(L0)2 =
∑

i∈C(m,δ)

µ2
i ≤


 ∑

i∈C(m,δ)

µi




2

,

hence

T1 · · · Tmvol(L0) ≤ 1

`!2`
H (G−1 ; T ).

Finally

χ (T ) ≤ c`
m`/2

2`/2`!
H (G−1 ; T ).

This proves Lemma 10.10 with

c = max
1≤`≤m

c`
m`/2

2`/2`!
·

¤

Remark. Sharper estimates follow from D. Bertrand’s Chap. 9 in [NeP 2000].
Firstly, the simple upper bound

χ (T ) ≤ H (G−1 ; T ) + m − δ
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where ` = m − δ = dim(G−1 ) is proved as follows.
Let H be a hyperplane of P2. Consider the divisors

Di = Pi−1
2 × H × Pm−1−i

2 (1 ≤ i ≤ m)

on Pm
2 . The projective embedding ι of Gm

m into Pm
2 associated to the divisor

T1 D1 + · · · + Tm Dm is given by the monomials X t1
1 · · · X tm

m with t ∈ Zm , |ti | ≤ Ti

(1 ≤ i ≤ m). By the very definition of the Hilbert function χ (T ) = H (G−1 ; T ), Pχ (T )
2

is the image of G−1 under ι. The Italian Lemma 1.1 of [NeP 2000], Chap. 9 gives

χ (T ) ≤ degT (G−1 ) + dim G−1 ,

where degT (G−1 ) is the degree of G−1 in the embedding ι:

degT (G−1 ) =
(
G−1 · (T1 D1 + · · · + Tm Dm)`

)
.

Expanding by the multinomial formula provides the conclusion.
Since Hilbert’s polynomial H (G−1 ; T ) is the product by `! of the homogeneous

part of degree ` of the polynomial which coincides with H (G−1 ; T ) for sufficiently
large T1, . . . , Tm , one should expect that asymptotically, the constant c in Lemma
10.10 should be replaced by 1/`!. Such an estimate follows indeed from the second
kind of estimates in D. Bertrand’s Chap. 9 in [NeP 2000].

10.2.5 Main Estimate

Here we complete the transcendence argument and prove the following statement:

Theorem 10.12. Let λ1, . . . , λm be logarithms of nonzero algebraic numbers and
β0, . . . , βm−1 be algebraic numbers. Define αi = exp(λi ) for 1 ≤ i ≤ m,

D = [Q(α1, . . . , αm, β0, . . . , βm−1):Q]

and
3 = β0 + β1λ1 + · · · + βm−1λm−1 − λm .

Assume α1, . . . , αm span a multiplicative group of rank ≥ m − 1 and 3 6= 0. Let
A1, . . . , Am , B1, B2 and E be positive real numbers which satisfy

log Ai ≥ h(αi ), D log Ai ≥ 1, E |λi | ≤ D log Ai , (1 ≤ i ≤ m),

B1 ≥ e, B2 ≥ e, E ≥ e, B D
1 ≥ E and B D

2 ≥ E .

Then there exists two positive real numbers c1 and c2, which depend only on m, with
the following property. Let T0, T ]

0 , T1, . . . , Tm , S0, S1 and L be positive rational
integers, U and V positive real numbers satisfying the following conditions:

L = (T0 + 1)(2T1 + 1) · · · (2Tm + 1), L ≥ 2

(
(m + 1)S0 + m − 1

m − 1

)
V

log E
,
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S1 ≥ (m + 1)!2m−1, S0 ≥ 2(m + 1) max
1≤i≤m

Ti ,

(S0 + 1)(2S1 + 1) > (m + 1)!2m T0,

c1U ≤ V ≤ c2S0S1 log E,

DT0 log B1 ≤ U, DS0 log B2 ≤ U, DS1 max
1≤i≤m

Ti log Ai ≤ U

and

B1 ≥ S1

T ]
0

, B1 ≥ E1/D and B2 ≥ eT ]

0 .

Finally, assume

• Either (general case)

log B2 ≥ max
0≤ j≤m

h(β j ) and B2 ≥ S0 max
1≤i≤m

Ti .

• Or else (homogeneous rational case)

β0 = 0, βi = − bi

bm
(1 ≤ i ≤ m) with (b1, . . . , bm) ∈ Zm,

B2 ≥ 1

S0
max

1≤ j<m
(|bm |T j + |b j |Tm).

Then
|3| > e−V .

Proof. Given the parameters T0, . . . , Tm , S0, S1, we have defined in § 10.2.4 a
connected algebraic subgroup G− of codimension n + 1 in G = Ga ×Gm

m, which is
either {e}, or else a maximal obstruction subgroup.

Denote by E the set of tuples T ′ = (T0, T ′1, . . . , T ′m) ∈ Nm+1 satisfying
1 ≤ T ′i ≤ Ti for 1 ≤ i ≤ m. Choose a lexicographic ordering on E ; the smallest
element in E is (T0, 1, . . . , 1) and the largest is (T0, T1, . . . , Tm). Consider the real
valued mapping

E −→ R>0

T ′ 7−→ H (G; T ′)
H (G−; T ′)

.

Let us check that for T ′ = (T0, 1, . . . , 1) we have

H (G; (T0, 1, . . . , 1))

H (G−; (T0, 1, . . . , 1))
<

(
S0 + n

n

)
(2S1 + 1).

If n = 0, then Te(G−) = W , hence β0 = 0, G−0 = Ga and in this case

H (G; (T0, 1, . . . , 1))

H (G−; (T0, 1, . . . , 1))
≤ (m + 1)!2m < 2S1 + 1.

On the other hand, if n ≥ 1, then
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H (G; (T0, 1, . . . , 1))

H (G−; (T0, 1, . . . , 1))
≤ (m + 1)!2m T0 < (S0 + 1)(2S1 + 1).

From now on we denote by T ′ the maximal element in E for which

H (G; T ′)
H (G−; T ′)

<

(
S0 + n

n

)
(2S1 + 1).

In the case G− = {e}, we have T ′ = T because

H (G; T )

H ({e}; T )
= (m + 1)!2m T0T1 · · · Tm <

(
S0 + m

m

)
(2S1 + 1).

Otherwise, G− is an obstruction subgroup, and

H (G; T ′)
H (G−; T ′)

<

(
S0 + n

n

)
(2S1 + 1) ≤ H (G; T )

H (G−; T )
,

which implies T ′ 6= T . In this case there is at least one index i ∈ {1, . . . ,m} such
that, if we replace T ′i by T ′i + 1, we still get an element in E (which is larger than T ′).
Using Proposition 5.14, we deduce

H (G; T ′)
H (G−; T ′)

≥ 1

2

(
S0 + n

n

)
(2S1 + 1).

Denote by T ′ the set of tuples (τ ; t1, . . . , tm) in N×Zm satisfying the following
properties:

• Firstly we have

0 ≤ τ ≤ T0 and |ti | ≤ T ′i for 1 ≤ i ≤ m.

• Further if G−0 = Ga then τ = 0.

• Furthermore
yt1

1 · · · ytm
m = 1

for any y ∈ G−1 .

The number of elements of T ′ will be denoted by L ′. From Lemma 10.10 we deduce

L ′ ≥ 1

c
· (T0 + 1)(T ′1 + 1) · · · (T ′m + 1)

H (G−; T ′)
,

where c is the constant of Lemma 10.10. Hence if G− 6= {e} we obtain

L ′ ≥ mc2

(
(m + 1)S0 + n

n

)
(2S1 + 1) with c2 =

1

(m + 1)!2m+1m(m + 1)c
·

We deduce

L ′ ≥ 2

(
(m + 1)S0 + n − 1

n − 1

)
V

log E
·
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This last inequality is also true in case G− = {e}, as shown by the assumption

L ≥ 2

(
(m + 1)S0 + m − 1

m − 1

)
V

log E
·

Consider the matrix with L ′ rows :

M ′ =
(
γ̃

(σ s)
τ t

)
(τ,t)

(σ ,s)

,

where (τ, t) runs over the set T ′, while (σ , s) runs over the set of tuples in Nm × Z
satisfying ‖σ‖ ≤ (m + 1)S0 and |s| ≤ (m + 1)S1 (recall the definition of γ̃

(σ s)
τ t in

§ 10.2.1).
We are going to use Proposition 10.9 with

δ(1)(z; τ ) = δT ]

0
(z; τ ) (0 ≤ τ ≤ T0)

and
{
δ(2)(z; σ ) ; 1 ≤ σ ≤

(
(m + 1)S0 + m

m

)}
=

{ 1

σ0!
zσ0

0 · · · zσm−1
m−1 ; ‖σ‖ ≤ (m + 1)S0

}
,

Notice that in the case where β0 = 0, if W is the tangent space of an algebraic
subgroup of Ga × Gm

m containing (1, αs
1, . . . , α

s
m) for some s ∈ Z, s 6= 0, then

3 ∈ 2π iQ and then the conclusion of Theorem 10.12 is plain.
All hypotheses of Proposition 10.9 are satisfied; we deduce that M ′ has rank L ′.
Let 1 be the determinant of a regular square L ′ × L ′ submatrix

(
γ̃

(σ
µ

sµ)
τ t

)
(τ,t)∈T ′
1≤µ≤L′

of M ′. We are going to use Proposition 10.5 with L , S0 and S1 replaced respectively
by L ′, (m + 1)S0 and (m + 1)S1 for the following functions ϕ1, . . . , ϕL ′ :

ϕτ t = δT ]

0
(z0; τ )et z (τ, t) ∈ T ′.

Define

η′ = (1, λ1, . . . , λm−1, λm +3) ∈ W , ζ ′
µ

= sµη
′ (1 ≤ µ ≤ L ′),

X = Cη′, U = Te(G−),

δτ tµ = γ̃
(σ
µ

sµ)
τ t · 1− esµtm3

3
,

ε = 3, and Mτ t = c3U for any (τ, t) ∈ T ′.

Let us check the hypotheses of Proposition 10.5. We have
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2
(
(m + 1)S0 + 1

)
log E + log(2L ′) + max

(τ,t)∈T ′
Mτ t ≤ c1

4
·U ≤ V

4
·

We now split the proof by considering two cases.
In the general case, we define

ϕτ tµ = D
σ
µ

w ϕτ t ,

so that we have
γ̃

(σ
µ

sµ)
τ t = ϕτ tµ(ζ ′

µ
) +3δτ tµ.

We need to check

sup
|z|=E

max
1≤µ≤L ′

|ϕτ tµ(zζ ′
µ

)| ≤ eMτ t and max
1≤µ≤L ′

|δτ tµ| ≤ eMτ t .

Here

ϕτ tµ(zζ ′
µ

) =
σµ0∑

κ=0

(
σµ0

κ

)
δT ]

0
(sz; τ, κ)(tmβ0)σµ0−κ

(
m−1∏

i=1

(ti + tmβi )
σµi

)
e(t1λ1+···+tmλm )sz .

For |z| = E , |ti | ≤ Ti and |s| ≤ (m + 1)S1 we have

log
∣∣e(t1λ1+···+tmλm )sz

∣∣ ≤ (m + 1)S1 E
m∑

i=1

Ti |λi | ≤ m(m + 1)U

and (recall Lemma 9.8)

∣∣δT ]

0
(sz; τ, κ)

∣∣ ≤ κ!eT0+T ]

0

(
1 +

E(m + 1)S1

T ]
0

)T0

·

Since κ ≤ (m + 1)S0 we have

κ! ≤ ((m + 1)S0
)(m+1)S0 ≤ (B2S0)(m+1)S0 .

Using the assumptions

E1/D ≤ B1,
S1

T ]
0

≤ B1, T ]
0 ≤ log B2 ≤ U and E ≥ e,

we deduce, for |z| = E ,

log
∣∣δT ]

0
(sz; τ, κ)

∣∣ ≤ T0 + T ]
0 + 2(m + 1)S0 log B2 + 3DT0 log B1 ≤ (2m + 7)U.

Recall that h(β j ) ≤ log B2, hence |β j | ≤ B D
2 . Using only the assumption Ti ≤ B D

2 ,
we bound

σµ0∑

κ=0

(
σµ0

κ

)
|tmβ0|σµ0−κ

m−1∏

i=1

|ti + tmβi |σµi

from above by
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(
max

1≤i≤m
Ti
)(m+1)S0

(
1 + max

0≤ j≤m
|β j |

)(m+1)S0 ≤ (2B2)2(m+1)DS0 ≤ e4(m+1)U .

The estimate |δτ tµ| ≤ eMτ t is proved in the same way: since

|δτ tµ| ≤ 2
∣∣sµtm γ̃

(σ
µ

sµ)
τ t

∣∣,

it suffices to use the inequalities

2|sµtm | ≤ 2(m + 1)S1Tm ≤ 2(m + 1)U < eU .

Consider now the homogeneous rational case. Define rational numbers qσκ
(σ ≥ κ ≥ 0) by

4(z; σ ) =
σ∑

κ=0

qσκ zκ .

Set

ϕτ tµ =
1

σµ0!

σµ1∑

κ1=0

· · ·
σµ,m−1∑

κm−1=0

qσµ1κ1 · · · qσµ,m−1κm−1 b
‖κ‖−σµ0
m D

κ
wϕτ t ,

where κ stands for (σµ0, κ1, . . . , κm−1) ∈ Nm . We have

ϕτ tµ(zζ ′
µ

) =
1

σµ0!
δT ]

0
(sz; τ, σµ0)

(
m−1∏

i=1

4(ti bm − tmbi ; σµi )

)
e(t1λ1+···+tmλm )sz .

Therefore
γ̃

(σ
µ

sµ)
τ t = ϕτ tµ(ζ ′

µ
) +3δτ tµ.

Let us check
sup
|z|=E

max
1≤µ≤L ′

|ϕτ tµ(zζ ′
µ

)| ≤ eMτ t .

We have
(m + 1)S1

T ]
0

+ 1 ≤ (m + 1)B1 + 1 ≤ Bm+1
1 ,

1 +
|ti bm − tmbi |

(m + 1)S0
≤ B2 (1 ≤ i ≤ m − 1),

and
eT0+T ]

0 +(m+1)S0 B(m+1)T0
1 B(m+1)S0

2 ≤ e(3m+5)U .

From Lemma 9.11 we deduce, for |z| = E ,

1

σµ0!

∣∣δT ]

0
(sz; τ, σµ0)

∣∣
m−1∏

i=1

∣∣4(ti bm − tmbi ; σµi )
∣∣ ≤ e(3m+5)U .

The estimate |δτ tµ| ≤ eMτ t also follows.
From Proposition 10.5 we deduce

either |ε| ≤ e−V or else |1| ≤ e−L ′V/4.
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On the other hand, we claim that Liouville’s inequality (Proposition 3.14) yields
|1| > e−L ′V/4. The arithmetic estimates are similar to the analytic estimates, apart
from the fact that we need to take into account the denominator ν(T ]

0 )S0 and the

degree D. This is the place in the proof where we need the assumption B2 ≥ eT ]

0 ,
and also B2 ≥ Ti in the general case.

Hence |3| > e−V . ¤

10.2.6 Second Proof of Theorem 9.1

Assume the hypotheses of Theorem 9.1 are satisfied. Without loss of generality we
may assume also βm 6= 0. Define β ′i = −βi/βm (0 ≤ i ≤ m) and 3′ = −3/βm . Our
goal is to deduce from Theorem 10.12 a lower bound for |3′|.

Let N be a sufficiently large integer which depends only on m. Define

B1 = (E∗)N , B2 = B N ,

T ]
0 = [log B2], S1 =

[
N 2 D log B2

log E

]
,

U = N 2m+1 Dm+2(log B1)(log B2)(log A1) · · · (log Am)(log E)−m−1,

T0 =

[
U

D log B1

]
, S0 =

[
U

D log B2

]
,

Ti =

[
U

DS1 log Ai

]
(1 ≤ i ≤ m)

and
L = (T0 + 1)(2T1 + 1) · · · (2Tm + 1).

Notice that each of the parameters T ]
0 , T0, . . . , Tm , S0, S1 and L is a (large) positive

integer, because

D log B ≥ log E, D log E∗ ≥ log E and D log Ai ≥ log E .

It is plain that the following hypotheses of Theorem 10.12 are satisfied:

DT0 log B1 ≤ U, DS0 log B2 ≤ U, DS1 max
1≤i≤m

Ti log Ai ≤ U.

Also, for sufficiently large N , we check

S0 ≥ 2(m + 1) max
1≤i≤m

Ti because log Ai ≥ 1

D
log E,

and

(S0 + 1)(2S1 + 1) > (m + 1)!2m T0 because log E∗ ≥ 1

D
log E .

Define V = c1U where c1 is the constant occurring in Theorem 10.12. We plainly
have (again for sufficiently large N )
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V ≤ c2S0S1 log E .

From the estimates

L ≥
(

U

D log B2

)m

· U (log E)m

N 2m Dm+1(log B1)(log A1) · · · (log Am)

and

2

(
S0 + m − 1

m − 1

)
· V

log E
≤ 2

(
U

D log B2

)m

· c1 D log B2

log E
,

using the definition of U , we deduce

L ≥ 2

(
S0 + m − 1

m − 1

)
· V

log E
·

We also deduce the estimates

B1 ≥ S1

T ]
0

from the assumption E∗ ≥ D

log E
,

B1 ≥ E1/D from the assumption E∗ ≥ E1/D,

and
B2 ≥ eT ]

0 .

In the general case, we have, for 1 ≤ i ≤ m,

Ti ≤ 4N 2m · D log E∗

log E

∏

j 6=i

D log A j

log E

≤ 4N 2m Bm log B

≤ B2.

In the homogeneous rational case, we have

Ti

S0
≤ log E

D log Ai
(1 ≤ i ≤ m),

hence the assumption

B ≥ log E

D
· max

1≤i<m

( |bm |
log Ai

+
|bi |

log Am

)

yields

B2 ≥ 1

S0
max

1≤i<m
(|bm |Ti + |bi |Tm).

From Theorem 10.12 we deduce |3′| > e−V , and the conclusion of Theorem 9.1
easily follows with C(m) = N 2m+4. ¤
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10.3 Baker’s Method with Auxiliary Function

Baker’s method involving an auxiliary function has been developed in a collection
of original papers (references are given in the comments on methods 1 and 2
in § 14.4.6). A few monographs include a description of this method: [W 1974],
Chap. 8, [B 1975], Chap. 2 and 3, [L 1978], Chap. 8, 10, 11, [W 1979a], Lectures 4
and 5, [F 1982], Chap. 10, [Sp 1982], Chap. III and [FNe 1998], Chap. 4, § 1.

Here we outline the main points of this method.
One introduces an auxiliary function

F(z) = P(z0, ez1 , . . . , ezm ),

where P ∈ K [X, Y±1
1 , . . . , Y±1

m ] is a nonzero polynomial with coefficients in the
number field K = Q(α1, . . . , αm, β0, . . . , βm). This polynomial P is constructed by
means of Dirichlet’s box principle. To be more precise, P is not explicitly constructed,
but the mere existence of P is sufficient for the proof. One requires

D
σ
wP(s, sλ1, . . . , sλm) = 0

for σ ∈ Nm , ‖σ‖ ≤ S0 and s ∈ Z, |s| ≤ S1. Like in § 10.2.1,

D
σ
w =

(
∂

∂z0
+ β0

∂

∂zm

)σµ0

· · ·
(

∂

∂zm−1
+ βm−1

∂

∂zm

)σµm−1

·

To prove the existence of such a polynomial P 6= 0 of degree ≤ T0 in X and degree
≤ Ti in Y±1

i amounts to show that a system with
(S0+m

m

)
(2S1 + 1) equations and

(T0 + 1)(2T1 + 1) · · · (2Tm + 1) unknowns has a nontrivial solution. The unknowns
are nothing else than the coefficients of P . The equations are homogeneous and
linear, and they have their coefficients in K (these coefficients are just entries of
our interpolation matrix M in § 10.2.1). The existence of P is guaranteed as soon
as
(S0+m

m

)
(2S1 + 1) is larger than the number L = (T0 + 1)(2T1 + 1) · · · (2Tm + 1).

Assuming the quotient of these two numbers not only is larger than 1, but is a little
bit bigger, enables one to get a good control of the height of the coefficients of P in
K . This control is necessary for checking several estimates occurring in the proof.
We shall not tell more on this point, since we only give a sketch, but is suffices to
say that Thue-Siegel’s Lemma (see § 4.5) is the clue.

The goal of the extrapolation process is to prove that

D
σ ′
w P(s ′, s ′λ1, . . . , s ′λm) = 0

for further values of σ ′ ∈ Nm and s ′ ∈ Z, say ‖σ ′‖ ≤ S′0 and |s ′| ≤ S′1. If we succeed
to show that these equations hold with S′0 and S′1 sufficiently large, namely such that(S′0+m

m

)
(2S′1 + 1) is somewhat bigger than L , then we shall be in a position to apply

Proposition 10.9 with S0, S1 replaced by S′0, S′1.

To begin with, assume for a while 3 = 0. Define, for σ ∈ Nm ,

Fσ (z) = D
σ
wP(z0, ez1 , . . . , ezm ),
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where, as in § 10.2.1,

D
σ
w =

m−1∏

i=0

(
∂

∂zi
+ βi

∂

∂zm

)σµi

·

A fundamental remark of Baker’s is that, for ‖σ ′‖ ≤ S0/2, the function of a single
variable

ϕσ ′ (z) = Fσ ′ (z, zλ1, . . . , zλm)

has a zero of multiplicity ≥ S0/2 at each point s ∈ Z with |s| ≤ S1.

We check this assertion as follows. Define

fσ ′ (z0, . . . , zm−1) = Fσ ′ (z0, . . . , zm−1, β0z0 + · · · + βm−1zm−1).

Since 3 = 0, we have on one hand

ϕσ ′ (z) = fσ ′ (z, zλ1, . . . , zλm−1),

and on the other hand, for κ ∈ Nm ,

D
κ
wFσ ′ (z0, . . . , zm−1, β0z0 + · · · + βm−1zm−1) =

(
∂

∂z0

)κ0

· · ·
(

∂

∂zm−1

)κm−1

fσ ′ (z0, . . . , zm−1).

The chain rule for derivatives of the composite of functions gives

(
d

dz

)σ ′′
ϕσ ′ =

∑

‖κ‖=σ ′′

σ ′′!
κ!
λ
κ1
1 · · · λκm−1

m−1ϕσ ′+κ .

By assumption

ϕσ ′+κ (s) = 0 for ‖σ ′‖ ≤ S0

2
, ‖κ‖ ≤ S0

2
and |s| ≤ S1.

Hence for ‖σ ′‖ ≤ S0/2 we have

(
d

dz

)σ ′′
ϕσ ′ (s) = 0 for 0 ≤ σ ′′ ≤ S0

2
and |s| ≤ S1,

which means that ϕσ ′ has a zero of multiplicity ≥ S0/2 at each point s ∈ Z with
|s| ≤ S1.

From Schwarz’ Lemma for a function of a single variable (for instance the case
n = 1 of Proposition 4.7) we deduce an upper bound for |ϕσ ′ (s ′)| when s ′ ∈ Z
satisfies |s ′| ≤ S′1, and S′1 is larger than S1.

We insist here that it is crucial to deal with a function ϕσ ′ (z) which depends only
on a single variable. Proposition 4.7 would yield an upper bound for the maximum
modulus of a function vanishing on a Cartesian product, but the points
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(s, sλ1, . . . , sλm) (s ∈ Z, |s| ≤ S1)

do not constitute a Cartesian product in Cm+1. Due to the lack of a suitable Schwarz
Lemma in several variables, one would not be able to perform a similar argument
with the method of Chapters 6, 7 and 9 when m ≥ 3.

The assumption 3 = 0 is good enough for the proof of Baker’s transcendence
results (Theorems 1.5 and 1.6), but not for the quantitative refinements. Assume now
only that |3| is small. One still deduces an upper bound for |ϕσ ′ (s ′)|, but Schwarz’
Lemma needs to be replaced by an interpolation formula. The point is that the function
ϕσ ′ (z) (of a single variable) takes small values at the points s ∈ Z, |s| ≤ S1, and its
derivatives of order ≤ S0/2 also. An interpolation formula provides an upper bound
for the maximum modulus of such a function on a disc.

If the upper bound for |ϕσ ′ (s ′)| is sufficiently sharp, Liouville’s estimate implies
ϕσ ′ (s ′) = 0, which was our goal.

It is not difficult to work out the details of this proof; one obtains in this way
another proof of Theorem 9.1.

By the way, all the proofs given in Chap. 2 can also be worked out by means of
an auxiliary function in place of an interpolation determinant, along the same lines.
The method with an auxiliary function is in fact the older one, and there are many
references for it, like [Si 1949], [G 1952], [Sch 1957], [L 1966], [W 1974], [B 1975],
[W 1979a] and [W 1979b].

The proof of Schneider-Lang’s criterion in Chap. 4 involved also an auxiliary
function, but the construction was slightly different: we did not consider a system
of equations, because we did not require the auxiliary function to have many zeroes.
In place, we used the universal auxiliary function provided by Proposition 4.10.
More precisely this function was constructed so that its first derivatives at the origin
have small absolute values, and then from an interpolation formula (Lemma 4.13,
involving several variables, but a single point) we deduced an upper bound for the
maximum modulus of the function on a large disc.

The transcendence proofs in Chapters 6, 7, 9 and 10 could also be given by means
of an auxiliary function like the one of Proposition 4.10 (see [W 1991a]), but we
do not know how to work out the transcendence proofs of Chapters 6, 7 and 9 with
an auxiliary function constructed to have many zeroes, as in Baker’s extrapolation
argument. There is no interpolation lemma, let alone Schwarz’ Lemma, in several
variables, which would be suitable for this purpose.

One of the main interests of Baker’s extrapolation technique is the following: if
one computes the value of C(m) by means of the interpolation determinant method
where there is no extrapolation, we find a much larger number than the one given by
Proposition 9.18. Some explanation for this difference between the outputs of two
methods will be given in § 14.4 (we shall see that it seems mainly due to a lack of
symmetry in the multiplicity estimate). However, using an auxiliary function and an
extrapolation, a much smaller value for C(m) can be achieved (see Theorems 10.20,
10.21, 10.23 and 10.24).

The idea is the following. Starting from the system of relations Fσ (s) = 0
(‖σ‖ ≤ S0, |s| ≤ S1), we have explained how to deduce Fσ ′ (s ′) = 0 for ‖σ ′‖ ≤ S′0
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and |s ′| ≤ S′1, where S′0 = S0/2, while S′1 is larger than S1. It may be wise to repeat the
argument and to get Fσ ′ (s ′) = 0 for ‖σ ′‖ ≤ S( j)

0 and |s ′| ≤ S( j)
1 , where S( j)

0 = S0/2 j

and S( j)
1 is larger than S( j−1)

1 . One cannot repeat this argument forever, since S( j)
0

decreases 17. But performing this extrapolation several times is better than just once
if one is interested in getting a sharp estimate for C(m).

The above mentioned smallest known numerical values for C(m) are achieved
by a slight modification of this argument. The extrapolation is performed not only on
the integers s ∈ Z, but also on some rational numbers, after H. M. Stark [St 1971].
Several attempts have been made, and the best results nowadays are obtained by
using the numbers s/q with s = 0,±1,±2, . . ., while q is a fixed prime, say q = 2.
For this purpose a strong independence condition on α1, . . . , αm is introduced.

Definition. Dealing withβ0+β1λ1+· · ·+βmλm , we shall say that Kummer’s condition
is satisfied if the field K = Q(α1, . . . , αm, β0, . . . , βm) satisfies

(10.13) [K (
√
α1, . . . ,

√
αm) : K ] = 2m .

This condition implies that α1, . . . , αm generate a multiplicative subgroup of K×
of rank ≥ m − 1 (see Exercise 10.6).

Once a measure of linear independence is proved in the special case where (10.13)
holds, a final descent enables one to remove it; see for instance [LoxV 1976], [B
1977], § 8, [L 1978], Chap. XI, § 5 and [W 1980].

Thanks to assumption (10.13), each relation Fσ ′ (s ′/2) = 0 can be decomposed
into 2m relations18 (recall that the coefficients of P are in K ). After performing
a sufficiently large number of steps for this extrapolation, one finally applies the
multiplicity estimate, which produces an algebraic subgroup G∗ of G = Ga × Gm

m.
There are mainly three ways to conclude the proof.

(1) The simplest one, used in [B 1977], [W 1980] and [Mat 1998] for instance (see
Theorems 10.19, 10.20 and 10.24), consists in pushing the extrapolation process
sufficiently far so that G∗ is trivial. The drawback of this approach is that one
needs to assume E∗ ≥ log Ai for 1 ≤ i ≤ m − 1.

(2) In [PW 1988a] (see Theorem 10.21), one starts the proof by selecting, among the
algebraic subgroups of G, an obstruction subgroup, say G−, which is maximal
among the G∗ which could be produced by the zero estimate. The whole
construction of the auxiliary function is performed on G/G− in place of G.
This is just what we did in § 10.2.1.

(3) The argument of [Wü 1988] and [BWü 1993] (see Theorem 10.23) is basically
the same, but it is introduced in a slightly different way, involving an inductive

17 Due to this fact, Baker’s method always requires some kind of rather sharp zero estimate,
even for the transcendence result; one cannot just use the fact that a nonzero function cannot
have a zero of infinite order for instance. Compare with the zero estimate which is implicit
in the proof given in § 4.6.

18 In the extrapolation process, it is not the number of equations which increases, but the
number of coefficients which decreases!



                

360 10. On Baker’s Method

process starting with the algebraic subgroup G∗ produced by the multiplicity
estimate.

10.4 The State of the Art

It is not so easy to give a survey of known explicit measures of linear independence
for logarithms of algebraic numbers, since different authors use different notation:
normalization for the height, choice of parameters, assumptions differ from one text
to another. We shall keep here the notation and assumptions of Theorem 9.1 and try
to give an idea of the state of the art on this topic.

As before we refer to the general case for

3 = β0 + β1λ1 + . . . + βmλm

where βi and α j = eλ j are algebraic numbers in a number field of degree D, and to
the homogeneous rational case when β0 = 0 and β1, . . . , βm are rational integers; in
such a situation we write bi for βi so that

3 = b1λ1 + . . . + bmλm

Surveys dealing with measures of linear independence of logarithms are given
in [B 1977], § 1, [FNe 1998], Chap. 4, § 1.1 and [Mat 1998].

We now discuss some of the recent refinements. We start with the dependence
on the main parameters, namely B and A j , next we look at D and E , and finally at
m and the absolute constant. To finish with we quote a few recent estimates.

10.4.1 Dependence on B and A j

The most natural parameters to measure the height of β0, . . . , βm are either

h(1:β0: · · · :βm) or max
{
h(β0), . . . , h(βm)

}
.

It does not make much difference to choose one or the other (cf. Exercise 3.3.a). In the
homogeneous rational case, there is no harm to assume that the integers b1, . . . , bm

are relatively prime, and then both quantities are nothing else than

log max
{|b1|, . . . , |bm |

}
.

Theorem 9.1 includes Fel’dman’s estimate [F 1968], which, by Lemma 1.8, is best
possible in terms of the maximal heights of the β j :

|3| ≥ exp
{
−C max

{
1, h(β0), . . . , h(βm)

}}
,

where C does not depend on B (it depends only on m, λ1, . . . , λm and D).
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Apart from the condition B ≥ log max1≤i≤m Ai which occurs in the general case,
the final result is optimal also in terms of each Ai separately (see Exercise 10.5).

However one would expect that the product (log B)(log A1) · · · (log Am) could
be replaced by the sum log B + log A1 + · · · + log Am — see Conjectures 1.11 and
14.25.

Let us now restrict the discussion to the homogeneous rational case until the end
of § 10.4.1. For convenience define

B0 = max
{
e, |b1|, . . . , |bm |

}
.

The choice of the constant e is not important, but one should not exclude the case
where all bi are±1. In fact one might assume that B0 is large, otherwise Liouville’s
estimate is stronger than what we can prove via transcendence methods (see Remark
2 in § 7.1.1).

In spite of the fact that Fel’dman’s result yields a best possible estimate in terms
of B0, namely B−C

0 , one can improve this lower bound by introducing a smaller
parameter than B0: this is what we did in Theorem 9.1 with the number

(10.14) max
1≤ j≤m−1

{ |bm |
log A j

+
|b j |

log Am

}
·

Feld’man’s polynomials are the main tool which enables one to replace B0

by (10.14) The introduction of this quantity (10.14) has the following origin. As
we already pointed out in § 1.2, the estimates we are studying have dramatic
consequences in several diophantine problems, in particular to diophantine equations.
Typically, one wishes to prove that some diophantine equation has no solution, apart
from those which are already known. Assuming a contrario that there is a nontrivial
solution, one produces a number

3 = b1λ1 + · · · + bmλm

which satisfies 0 < |3| ≤ e−δB0 with some δ in the range 0 < δ ≤ 1. Usually the
number λ1, . . . , λm (in L) and δ (in R) are explicitly known, while b1, . . . , bm (in
Z) depend on the exceptional solution we started from. From this information one
wishes to deduce an upper bound for B0, and usually this restricts the exceptional
solution to belong to some finite set. Once B0 will be bounded, the rest of the proof
consists in checking that the given equation has no nontrivial solution in the finite
set: it is a finite problem - which does not mean that it is always trivial! But we do
not address this issue here: our concern is only to deduce from 0 < |3| ≤ e−δB0 an
upper bound for B0.

Any nontrivial lower bound for |3| (like Theorem 1.9, which Gel’fond proved in
fact for algebraic α’s in place of rational a’s) will do. For instance, from Fel’dman’s
estimate |3| ≥ B−C

0 with C = C(m, λ1, . . . , λm) we deduce

B0

log B0
≤ C

δ
·
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Before Fel’dman’s result was available, in part IV of [B 1966], A. Baker proved,
under the hypothesis 0 < |3| ≤ e−δB0 , the upper bound

B0 <
(
4m2
δ−1 D2m

+ log A
)(2m+1)2

,

where A = max{4, A1, . . . , Am} and D+ = max{4, D}.
Such an estimate has been refined by N. I. Feld’man in [F 1968], and then by

A. Baker in part II of [B 1972], who proved an estimate of the form

|3| >
(
δ

Bm

)C log Am

e−δB ′ for any δ with 0 < δ ≤ 1

2
, (10.15)

with
B ′ = max{2, |b1|, . . . , |bm−1|}, Bm = max{2, |bm |}

and C depends only on m, D, A1, . . . , Am−1. Our Corollary 9.24, is a refinement of
(10.15).

Using (10.15) with δ = 1/B0 yields

|3| ≥ e−C(log B0)(log Am ) (10.16)

with another constant C which depends also on m, D, A1, . . . , Am−1. We already
remarked that in terms of either B0 or Am , the measure (10.16) is best possible.

Another consequence of (10.15) is the following: assume bm = −1 and 0 <

|3| ≤ e−εB0 with 0 < ε ≤ 1. Taking δ = ε/2, one deduces from (10.15)

B ≤ κ log Am

where κ depends only on m, D, A1, . . . , Am−1 and ε. The estimate (10.16) would
yield only B ≤ κ(log Am)(log log Am); hence (10.15) produces a sharper conclusion
than (10.16).

The next step goes back to [LoxVMW 1987]. One remarks that for any λ > 0, the
minimum of the function x 7→ e−x xλ is obtained for x = λ, hence there is an optimal
value for δ which minimizes the right hand side of (10.15). In fact it is slightly more
efficient to look directly where this δ appears in Baker’s proof and to optimize at
this point. This is how we included this refinement into the final estimate for the
homogeneous rational case by introducing the number (10.14) as in Theorem 9.1
(see also [W 1993], [Lau 1994], [LauMN 1995] and [Mat 1998] for instance).

Let us describe an example where the refinement from B0 to (10.14) is relevant.
The following result is Corollary 1 in [LauMN 1995]:

Theorem 10.17. Let λ1, λ2 be two elements in L and b1, b2 two rational integers
such that 3 = b1λ1 + b2λ2 is not zero. Define

α1 = eλ1 , α2 = eλ2 and D = [Q(α1, α2) : Q].

Let A1, A2 and B be positive real numbers satisfying
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log Ai = max

{
h(αi ),

|λi |
D

, 1

D

}
(i = 1, 2)

and

B ≥ e, B ≥ |b2|
D log A1

+
|b1|

D log A2
·

Then
|3| ≥ exp

{−C D4(log A1)(log A2)(log B)2
}
.

Theorem 10.17 follows from Theorem 9.1 with m = 2, E = e and E∗ = B (the
main result of [LauMN 1995] includes also a parameter E , but we do not need it
here). The proof of [LauMN 1995] is very close to the proof in Chap. 7 of Theorem
7.1 (in the special case m = 2, so that only functions of a single variable are needed),
but it uses Lemma 7.15 in the same way as we did in Chap. 9 (that means, more
efficiently than the estimates in Chap. 7 where we were content with B0).

Also [LauMN 1995] includes a very small numerical value for the absolute con-
stant C : assuming the two algebraic numbers α1, α2 are multiplicatively independent
and

B ≥ e21/D,

then the conclusion of Theorem 10.17 holds with C = 31.
Using an idea of E. Bombieri in [Bo 1993] and [BoCoh 1997], worked out

by Y. Bilu and Y. Bugeaud in [BilBu 2000], we deduce from Theorem 10.17 the
following result of N. I. Fel’dman [F 1971] (see also [F 1982], Chap. 10, Th. 7.10,
[Sp 1982], Chap. 3, Lemma 1.1 and [FNe 1998], Chap. 4, § 1.6, Theorem 4.18):

Corollary 10.18. Given positive integers n and D, a real number δ in the range
0 < δ ≤ 1 and elements λ1, . . . , λn in L, there exists a positive constant κ with the
following property. Let λ be an element of L and let b1, . . . , bn be rational integers.
Define α = eλ,

3 = b1λ1 + · · · + bnλn − λ,
log A = max {e, h(α), |λ|} and B0 = max

{
2, |b1|, . . . , |bn|

}
.

Assume [Q(α) : Q] ≤ D and

0 < |3| ≤ e−δB0 .

Then
B0 ≤ κ log A.

In case n = 1 one may use directly Theorem 10.17 with

b2 = −1, λ2 = λ, B = max

{
e, 1 +

B0

log A

}

and deduce an upper bound for B.
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Similarly, for n ≥ 2 one might apply Corollary 9.24. But the point is that we
want to deduce Corollary 10.18 from Theorem 10.17, (the latter involves only two
logarithms).

Proof of Corollary 10.18. Given n, D, δ and λ1, . . . , λn , select a sufficiently large
integer M . The main condition which will be required for M is

M(log M)−2 > 6Cδ−1(D0 D)4(1 + n log A0)2,

where C is the constant in Theorem 10.17,

D0 = [Q(α1, . . . , αn) : Q], log A0 = max
1≤i≤n

max {e, h(αi ), |λi |}

and αi = eλi (1 ≤ i ≤ n).
Assume now b1, . . . , bm and λ are such that 3 6= 0 and

B0 > M2n+1, B0 > Mn+1 log A.

Our goal is to prove |3| > e−δB0 . This will plainly imply the conclusion of Corollary
10.18 with, say, κ = M2n+1.

Denote by N the smallest integer satisfying

N 2 ≥ B0 M2n+1 and N ≥ Mn+1 log A.

From our assumption on B0 we deduce B0 ≥ N .
Using Dirichlet’s box principle (see § 15.2), we deduce that there exist rational

integers p0, . . . , pn such that 1 ≤ p0 < Mn and

max
1≤i≤n

∣∣∣∣p0
bi

N
− pi

∣∣∣∣ ≤
1

M
·

Let r ∈ Z be the integer in the range

N

p0
≤ r <

N

p0
+ 1.

We have for 1 ≤ i ≤ n

|bi − r pi | ≤ r

M
+

bi

r − 1
≤ r

M
+

2B

r
·

Since p0 ≤ Mn and N 2 ≥ B0 M2n+1 we have

B0

r
≤ B0 p0

N
≤ B0 Mn

N
≤ N

Mn+1
≤ N

p0 M
≤ r

M
,

hence

|bi − r pi | ≤ 3r

M
and |pi | ≤ |bi |

r
+

3

M
≤ 2B0

r
·

From N > Mn+1 log A we deduce
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r

M
≥ N

Mn+1
≥ log A.

Define

λ̃1 =
n∑

i=1

piλi , λ̃2 =
n∑

i=1

(bi − r pi )λi + λ,

so that 3 = r λ̃1 + λ̃2, and set

log Ã1 =
2B0

r
· n log A0 and log Ã2 =

r

M

(
1 + 3n log A0

)
.

Since log Ã1 ≥ 1 and log Ã2 ≥ 2r/M , we have

1

log Ã1
+

r

log Ã2
≤ M.

Hence we may use Theorem 10.17 with

λ1, λ2, b1, b2, D, A1, A2, B,

replaced respectively by

λ̃1, λ̃2, r, 1, D0 D, Ã1, Ã2, M.

We deduce

|3| ≥ exp
{−C(D0 D)4(log Ã1)(log Ã2)(log M)2

}

≥ exp
{−C(D0 D)4 · 2B0

r
· (n log A0) · r

M
· (1 + 3n log A0)(log M)2

}

> e−δB0 .

¤

Among the applications of Corollary 10.18 is Fel’dman’s improvement of
Liouville’s Theorem 1.1 (see for instance [Sp 1982], Chap. V, § 5 and [FNe 1998],
Chap. 4, § 2.2):

• For any algebraic number α of degree d ≥ 3, there exists two positive numbers
c and η, which are explicitly known, such that, for any p/q ∈ Q,

∣∣∣∣α −
p

q

∣∣∣∣ >
c

qd−η ·

It is a remarkable fact that Gel’fond knew how to deduce such a result from Corollary
10.18, and he also knew how to derive effective measures of linear independence
for two logarithms; but his measures involved B0, and not (10.14) like in Theorem
10.17!
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10.4.2 The Degree D

The degree D has not been considered as an important parameter at the early stage
of the subject (apart for questions dealing with transcendence measures). The first
papers who achieved a strong dependence in D involved Schneider’s method for two
logarithms [MiW 1978], thanks to the systematic use of Weil’s absolute logarithmic
height. However Baker’s method also yields the best known estimate in this respect,
namely Dm+2 (see Theorem 10.20). One should insist that the dependence on D
depends strongly on the choice of the height: we recall that here the parameters Ai

and B are defined by means of Weil’s absolute logarithmic height, as in Theorems
7.1 and 9.1.

10.4.3 The Parameter E

The idea of introducing the parameter E in [MiW 1978] arose from a work by
T. N. Shorey [Sho 1974] who got very sharp estimates when the algebraic numbers
αi are close to 1. This happens in several applications, especially to some problems
related to prime number theory. Two examples are Mignotte’s paper A note on the
equation axn − byn = c, Acta Arith. 75 (1997), 287–295 and the paper by Bennett
and de Weger On the diophantine equation |axn−byn| = 1, Math. Comp. 67 (1998),
413–438.

This parameter has been incorporated in Baker’s method in [W 1980], and used
also in [PW 1988a] and [BlaGMMS 1990] (see Theorem 10.20 and 10.21). It is useful
not only when the | logαi | are very small, but even when they are not too large. In
particular it plays an important role for getting sharp transcendence measures [W
1978].

There is a limitation for E : for an algebraic number α 6= 1 of degree ≤ D, and
for A ≥ e satisfying log A ≥ h(α), Liouville’s estimate (§ 3.5) yields

|α − 1| ≥ 21−D A−D,

hence any logarithm λ of α has |λ| ≥ (2A)−D . On the other hand an extreme case
where E can be chosen quite large is given in Exercise 10.4.

This parameter turns out to be quite important in the work of E. Matveev [Mat
1998] for getting a sharp dependence on the number m of logarithms. Also we shall
see examples in Chap. 14 where E plays a fundamental role for the dependence
on the degree. For instance without the introduction of E the dependence on the
degree D in the measure of simultaneous approximation for the two numbers 2

3√2

and 2
3√4 in § 14.1.3 would not be sharp enough to yield Gel’fond’s result of algebraic

independence of these two numbers in § 15.3.2. It is interesting to notice here that
the p-adic analog of this algebraic independence result is not yet proved, and the
main reason for that is the fact that E cannot be chosen large enough in the p-adic
case. A p-adic analog of the parameter E has been obtained by Y. Bugeaud [Linear
forms in p-adic logarithms and the Diophantine equation xn−1

x−1 = yq , Math. Proc.
Cambridge Phil. Soc., (1999) 127, 373–381]; notice however that this improvement
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does not yield so spectacular results as in the Archimedean case and is useful only
in some (very) particular cases.

10.4.4 The Number m of Logarithms

The number C(m) occurring in the conclusion of Theorem 9.1 depends only on the
number m of logarithms.

In the early 70’s, the estimates obtained by Baker and Stark for instance (in
connection with Gauss’ class number problem, which they solved for imaginary
quadratic fields with class number one and two) involved a function C(m) which
grows like the exponential of m2 (one should say that the rest of the estimate was not
as sharp as it is now in Theorem 9.1, but this is a different issue). An improvement
of this value of C(m) has been achieved by T. N. Shorey [Sho 1976], who got
C(m) = mcm for some absolute constant c by introducing small steps in Baker’s
inductive argument. J. H. Loxton and A. J. van der Poorten [LoxV 1976] have shown
that c can be replaced by 2 + ε(m) with ε(m)→ 0 as m →∞, and even by 1 + ε(m)
under Kummer’s condition (10.13).

In [W 1980] (see Theorem 10.20), it was shown that in the final estimate one
needs only mmcm under Kummer’s condition (10.13), m2mcm without any Kummer’s
condition (here c is an absolute constant with c > 1). More precisely, the final descent
costs cmmm for the constant C(m).

Using Matveev’s arguments in [Mat 1998] (Theorem 10.24) one should be able to
prove that the number C(m) in Theorem 9.1 may be replaced by cm under Kummer’s
condition. Hence in that case the main dependence on m will arise from the product
log A1 · · · log Am .

Also one expects Theorem 9.1 holds with C(m) = cmmm without Kummer’s
condition. However one should be careful here: removing hypothesis (10.13) requires
to measure the height of the coefficients with the parameter B0 and not with (10.14).
Furthermore, this final descent introduces max{B0, log Am} in place of B0 in the
estimate.

One conjectures that Theorem 9.1 holds with C(m) = cm without any further
assumption like (10.13), but this is still an open problem.

10.4.5 The Numerical Constant

Computation of the numerical value of the constants appearing in the final estimates
are particularly significant for applications, and several works have been devoted to
get sharp estimates. The first completely explicit measure of linear independence of
logarithms is due to A. Schinzel [S 1967] for two logarithms and to A. Baker [B 1966]
for m logarithms. Considerable improvements have been obtained later, motivated
by the wide range of applications. Not all the arguments have been explained here.
For instance Blaschke factors (see Exercise 4.3) have proved to be very efficient in
this respect (see [MiW 1978] and [BWü 1993], § 18).
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The smallest numerical constants so far occurring in the final estimate for two
logarithms are given in [LauMN 1995] (an example is given in Theorem 10.17),
for three logarithms in [BeBGMS 1997] (there is also some unpublished work by
P. Voutier dealing with the case m = 3), and for m logarithms in [Mat 1998].

10.4.6 A Sample of Recent Estimates

We quote some linear independence measures from the literature. Each of the six
theorems below refers to a text where a completely explicit estimate is provided. But
the notation and assumptions (for A1, . . . , Am , B for instance) differ from one text
to another. Here we use the same notation for all of the six results, but we do not give
a numerical value for the absolute constant C . We insist that the results we quote
are only consequences of the original statements, and we recommend the interested
reader to see the corresponding paper for a more precise result.

Let m ≥ 1 be a positive integer, α1, . . . , αm nonzero algebraic numbers,
β0, . . . , βm algebraic numbers, λ1, . . . , λm logarithms of α1, . . . , αm respectively,
D the degree over Q of the number field

Q(α1, . . . , αm, β0, . . . , βm).

Assume that the number

3 = β0 + β1λ1 + · · · + βmλm

is nonzero. As before, in the homogeneous rational case where β0 = 0 and βi ∈ Z,
we write βi = bi and

3 = b1λ1 + · · · + bmλm .

Let A1, . . . , Am , B, E and E∗ be positive numbers with E ≥ e and

log Ai = max

{
h(αi ),

E

D
|λi |, log E

D

}
(1 ≤ i ≤ m).

Theorem 10.19 [B 1977]. Assume λi = logαi (1 ≤ i ≤ m), where the logarithms
have their principal values. Assume also Ai ≥ e. Define

E = e and E∗ = max{e, log A1, . . . , log Am−1}.
In the general case, assume B satisfies

log B ≥ max
0≤i≤m

h(βi ) B ≥ E∗ and B ≥ log Am .

In the homogeneous rational case, define

B = max{2, |b1|, . . . , |bm |}.
Then

|3| ≥ exp
{−Cmm200m D200m(log A1) · · · (log Am)(log B)(log E∗)

}
.
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This result, which is a consequence of Theorem 9.1 (taking Proposition 9.18 into
account), includes most of the known results in 1977, apart from some already quoted
(in § 10.4.1) refinements in the homogeneous rational case, providing an upper bound
for B under the assumption |3| < e−δB for some δ in the range 0 < δ ≤ 1.

Theorem 10.20∗ [W 1980]. Define

E∗ = max{E, D, log A1, . . . , log Am−1}
and assume

log B ≥ max
0≤i≤m

h(βi ), B ≥ E∗ and B ≥ log Am .

Then

|3| ≥ exp
{−Cmm2m Dm+2(log A1) · · · (log Am)(log B)(log E∗)(log E)−m−1

}
.

This is almost a consequence of Theorem 9.1: only the constant C(m) in Theorem
9.1 is replaced here by Cmm2m .

Moreover, in the case where Kummer’s condition (10.13) is satisfied, one may
replace m2m by mm in the conclusion of Theorem 10.20.

Theorem 10.21∗ [PW 1988a]. Define E∗ = max{E, D} and assume

log A j ≥ m

D
log E, (1 ≤ j ≤ m),

log B ≥ max
0≤i≤m

h(βi ) and B ≥ max{E∗, log A1, . . . , log Am}.
Then

|3| ≥ exp
{−Cmm2m Dm+2(log A1) · · · (log Am)(log B)(log E∗)(log E)−m−1

}
.

This result is Theorem 2.1 of [PW 1988a] and refers to the general case (as
does Theorem 10.20). Here also, when Kummer’s condition (10.13) holds, one may
replace m2m by mm .

The conclusions of Theorems 10.20 and 10.21 are the same, but the term log E∗
is smaller in Theorem 10.21.

A similar statement has been proved by G. Wüstholz in [Wü 1988]: he removes
the factor log E∗ in the conclusion of Theorem 10.19 (assuming β0 = 0).

A sharp estimate for the numerical value of the constant C in Theorem 10.21 is
given in part I of [BlaGMMS 1990].

From now on we assume that we are in the homogeneous rational case.

A refinement of Theorem 10.21 is provided in Theorem 2.2 of [PW 1988a],
but the dependence of the final constant in terms of m is not explicitly given. This
refinement reads as follows:
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• Define E∗ = max{E, D} and assume bm 6= 0,

B ≥ e, B ≥ E1/D and B ≥ max
1≤ j≤m−1

{ |bm |
log A j

+
|b j |

log Am

}
·

Then

|3| ≥ exp
{−C(m)Dm+2(log A1) · · · (log Am)(log B)(log E∗)(log E)−m−1

}
,

where C(m) depends only on m.

(This is a consequence of Theorem 9.1).
In part II of [BlaGMMS 1990], an explicit value for this constant C(m) is

computed, but only under additional restrictions: the authors assume

B ≥ max{E∗, log A1, . . . , log Am},
and they also assume that Kummer’s condition (10.13) is satisfied.

Theorem 10.22 [W 1993]. Assume bm 6= 0,

E∗ ≥ E1/D, E∗ ≥ D

log E

and

B ≥ E∗, B ≥ max
1≤ j≤m−1

{ |bm |
log A j

+
|b j |

log Am

}
·

Then

|3| ≥ exp
{−Cmm3m Dm+2(log A1) · · · (log Am)(log B)(log E∗)(log E)−m−1

}
.

A proof of Theorem 10.22 has been given in Chap. 9, using interpolation
determinants. In [W 1993] the proof uses an auxiliary function, and for this reason
the conclusion is (very marginally) weaker: either the stated lower bound for |3|
holds, or else

|3| ≥ exp
{−Cmm3m D2 log A

}
,

where A = max{A1, . . . , Am}.

Theorem 10.23∗ [BWü 1993]. Define

E = e, E∗ = eD and B = max{|b1|, . . . , |bm |, e1/D}.
Then

|3| ≥ exp
{−Cmm2m Dm+2(log A1) · · · (log Am)(log B)(log E∗)

}
.

Theorem 10.24∗ [Mat 1998]. Assume bm 6= 0 and E = e. Assume further that
Kummer’s condition (10.13) is satisfied. Define
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E∗ = max{e, D, log A1, . . . , log Am−1}
and assume furthermore

B ≥ e, B ≥ max
1≤ j≤m

|b j | log A j

log Am
·

Then
|3| ≥ exp

{−Cm Dm+2(log A1) · · · (log Am)(log B)(log E∗)
}
.

In [Y 1998], Yu Kunrui proves p-adic estimates which may be considered as
ultrametric analogues to the results of [BWü 1993] and [Mat 1998].

Exercises

Exercise 10.1.
a) Let K be an algebraically closed field of zero characteristic and β1, . . . , βm−1 elements of
K such that 1, β1, . . . , βm−1 are linearly independent over Q . On the ring K [X±1

1 , . . . , X±1
m ],

introduce derivative operators by

Di = X i
∂

∂X i
+ βi Xm

∂

∂Xm
(1 ≤ i ≤ m − 1)

and, for σ ∈ Nm−1,
Dσ = Dσ1

1 · · ·Dσm−1
m−1 .

Let m ≥ 2 be an integer, α1, . . . , αm nonzero elements of K which generate a multiplicative
subgroup of K× of rank ≥ m − 1. Let T , S0, S1 be positive integers satisfying

S0 ≥ 2mT, (S0 + 1)(2S1 + 1) > m!(m − 1)!2T

and
Sm−1

0 (2S1 + 1) > m!(m − 1)!(2T )m .

For t ∈ Zm , σ ∈ Nm−1 and s ∈ Z, define γ
(σ s)
t ∈ K as the value, at the point

(
αs

1, . . . , α
s
m

) ∈ (K×)m,

of the polynomial
Dσ

(
X t1

1 · · · X tm
m

) ∈ K [X±1
1 , . . . , X±1

m ].

Consider the following matrix:

M =
(
γ

(σ s)
t

)
t

(σ ,s)

where the index of rows t runs over the elements in Zm with |t | ≤ T , while the index of
columns (σ , s) runs over the elements of Nm−1 × Z with ‖σ‖ ≤ mS0 and |s| ≤ mS1.

Using Theorem 8.1, show that the matrix M has rank (2T + 1)m .
b) Let λ1, . . . , λm , β1, . . . , βm−1 be complex numbers, with m ≥ 2, (λ1, . . . , λm) 6= (0, . . . , 0)
and 1, β1, . . . , βm−1 linearly independent over Q . Assume

λm = β1λ1 + · · · + βm−1λm−1.
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Let E ≥ e be a real number and T , S0, S1, L be four integers, all greater than one, satisfying

L = (2T + 1)m, S0 ≥ 2(m!)2T, T ≥ 8m2

and
Sm−1

0 S1 > 2m(m!)2T m .

Using a) with K = C and αi = eλi , show that there exists a polynomial f in
Z[X±1

1 , . . . ,X±1
m ,Y1, . . . ,Ym−1] satisfying

deg f ≤ mL
(
m(T + 1)S1 + S0

)
, L( f ) ≤ L!(2T )mL S0 ,

and

0 < | f (α1, . . . , αm, β1, . . . , βm−1)| ≤
exp

{
− 1

3
L1+(1/(m−1)) log E + L

(
mS0 log(T E) + c0 S0 + c0T S1 E

)}

where
c0 = max

{
m log max

1≤i≤m−1
(1 + |βi |) ; 1 + m(|λ1| + · · · + |λm |)

}
.

c) From b), using Lemmas 1.7 and 2.1, deduce Baker’s Homogeneous Theorem 1.5.

Exercise 10.2.
a) Under the assumptions of Proposition 10.3, compute an explicit positive number ε such
that, for each θ ∈ (C×)m × Cm satisfying

max
1≤i≤m

|θi − αi | ≤ ε and max
0≤i≤m−1

|θm+i − βi | ≤ ε,

there exists a polynomial f satisfying the conclusion of Proposition 10.3 with the number

f (α1, . . . , αm, β0, . . . , βm−1)

replaced by f (θ ).
b) Deduce an explicit measure of linear independence for logarithms of algebraic numbers.
c) Extend the result in a) including multiplicities and deduce an improved estimate for b).

Hint. Compare with Exercise 15.4.

Exercise 10.3. Let λ1, . . . , λm be complex numbers and β1, . . . , βm algebraic numbers such
that

3 = β1λ1 + · · · + βmλm 6= 0.

For i = 1, . . . , n define αi = eλi and Ai = max |λi |. Let D be the degree of a number field
containing β1, . . . , βm . Define B by

log B = max
1≤i≤m

h(βi ).

Assume that there exists an algebraic subgroup G∗ of Gm
m, defined by equations of degree

≤ L , and a positive integer s ≥ 1, such that

(αs
1, . . . , α

s
m) ∈ G∗ and Te(G∗) ⊂ {z ∈ Cm ; β1z1 + · · · + βm zm = 0

}
.

Check
|3| ≥ exp

{− m D log B − m D log(mL)− log(m2 As)
}
.

Hint. See Lemma 3.7 of [PW 1988a].
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Exercise 10.4. For any integer m ≥ 2, show the existence of a number c(m) > 0 with the
following property.

Let α1, . . . , αm be nonzero algebraic numbers in a number field of degree ≤ D and
b1, . . . , bm rational integers such that αb1

1 · · ·αbm
m 6= 1. Let A, B and κ be positive real numbers

with A ≥ e, B ≥ e and 0 < κ ≤ 1. Assume

|αi − 1| ≤ A−D/κ D log A for 1 ≤ i ≤ m.

Assume further

B ≥ max{2, D, log A} and B ≥ max
1≤i≤m

2|bi |
log A

·
Furthermore, assume

A ≥ max
1≤i≤m

h(αi ).

Then ∣∣∣αb1
1 · · ·αbm

m − 1
∣∣∣ ≥ B−c(m)Dκ−m

.

Hint. Using Exercise 1.1.b, check that the principal value λi of the logarithm of αi satisfies,
for 1 ≤ i ≤ m,

|λi | ≤ e

e − 1
|αi − 1| (1 ≤ i ≤ m).

Use Theorem 9.1 with E = AκD and E∗ = Aκ .

Remark. See [Sho 1974] for arithmetical applications.

Exercise 10.5.
a) For any ϑ ∈ R, there are infinitely many (p, q) ∈ Z2 with p > 0, q > 0 such that

∣∣∣∣ϑ − log
p

q

∣∣∣∣ ≤
1

pq
·

b) Fix (b1, b2) ∈ Z2 with b1 > 0 and b2 < 0. For A > 2, define

8(A) = min
{|ab1

1 ab2
2 − 1| ; (a1, a2) ∈ Z2, 2 ≤ ai ≤ A, ab1

1 ab2
2 6= 1

}
.

Check

lim
A→∞

log8(A)

log A
< 0.

Exercise 10.6. Let K be a number field and α1, . . . , αm elements in K×.
a) Check that the following two conditions are equivalent.

(i) [K (
√
α1, . . . ,

√
αm) : K ] = 2m .

(ii) For (h1, . . . , hm) ∈ Zm and γ ∈ K×, the relation αh1
1 · · ·αhm

m = γ 2 implies that each of
the integers h1, . . . , hm is even.

Hint. The field K (
√
α1, . . . ,

√
αm) is an abelian extension of K whose Galois group is

described by Kummer’s theory; see for instance [L 1993], Chap. VI, § 8, Th. 8.1.

b) Deduce that if Kummer’s condition is satisfied for β0 + β1λ1 + · · · + βmλm , then λ1, . . . , λm

are linearly independent over Q .
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11. Points Whose Coordinates are Logarithms of
Algebraic Numbers

The main result of this chapter (Theorem 11.5) includes Baker’s Theorems 1.5 and
1.6 (hence also Hermite-Lindemann’s Theorem 1.2 as well as Gel’fond-Schneider’s
Theorem 1.4), the six exponentials Theorem 1.12, and much more (especially
extensions of these results to several variables). It provides information on the
distribution of elements of Ld into the vector space Cd , and more generally on
the distribution of elements of Cd whose coordinates are linear combinations of
logarithms of algebraic numbers.

11.1 Introduction

11.1.1 The Q-Vector Subspace Ld of Cd

The set Ld is a Q-vector subspace of Cd :

Ld =
{
(logα1, . . . , logαd ) ; (α1, . . . , αd ) ∈ (Q×)d

}
.

Our first goal is to study the intersection of Ld with a C-vector subspace V of Cd .
A preliminary remark is that if V is a vector subspace of Cd which contains a

nonzero rational point, that means an element b = (b1, . . . , bd ) 6= 0 of Qd , then V
contains (b1λ, . . . , bdλ) for any λ ∈ L; therefore in this case the Q-vector space
V ∩Ld has infinite dimension.

Next, assume that V is a complex vector subspace ofCd which is rational overQ
and such that V ∩Qd = {0}. One deduces from Baker’s Theorem that V ∩Ld = {0}.
In fact it is not difficult (see Exercise 1.5) to check that this statement is equivalent to
Baker’s homogeneous Theorem 1.5. This settles the problem in the case of a vector
space which is rational over Q:

• If V is is rational over Q and V ∩Qd = {0}, then V ∩Ld = {0}, and otherwise
V ∩Ld has infinite dimension over Q.

Consider now a vector subspace V of Cd which is not assumed to be rational over
Q. Of course V ∩Ld may contain nonzero elements even if V ∩Qd = {0}: the most
obvious example is a complex line Cλ spanned by an element λ = (λ1, . . . , λd ) in
Ld with dimQ(Qλ1 + · · · +Qλd ) ≥ 2.
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In § 11.2 we deal with the special case dimC(V) = 1 and show that the six
exponentials Theorem 1.12 is equivalent to the following result:

• If V is a vector subspace of C2 such that dimC(V) = 1 and V ∩Q2 = {0}, then

dimQ
(
V ∩L2

) ≤ 2.

On the other hand, the four exponentials Conjecture 1.13 is equivalent to:

(?) If V is a vector subspace of Cd such that dimC(V) = 1 and V ∩Qd = {0}, then
dimQ

(
V ∩Ld

) ≤ 1.

The hypotheses imply d ≥ 2. Plainly, it would be sufficient to prove the conclusion in
the case d = 2. One can establish this estimate for d ≥ 3, but some extra hypothesis is
needed (otherwise one would deduce the four exponentials Conjecture 1.13), namely
that V is not contained in a subspace of Cd of dimension < d rational over Q:

• Let V be a C-vector subspace of Cd of dimension 1. Assume that Cd itself is
the only subspace of Cd rational over Q which contains V. If d ≥ 3, then
dimQ

(
V ∩Ld

) ≤ 1.

Again, this statement is equivalent to the six exponentials Theorem 1.12.

The situation concerning higher dimensional vector subspaces ofCd will be dealt
with in § 11.5. We shall prove (Corollary 11.6) that the condition V ∩ Qd = {0} is
necessary and sufficient for V ∩Ld to be of finite dimension over Q. Moreover,

• if V ∩Qd = {0}, then
dimQ

(
V ∩Ld

) ≤ n(n + 1)

where n = dimC(V).

It is expected that this dimension is at most n(n+1)/2 and this would be best possible.

11.1.2 The Q-Vector Subspace LG of Cd

A more general situation will be considered in § 11.3. Let d0 and d1 be two
nonnegative rational integers with d = d0 + d1 > 0 (in fact the case d1 = 0 will
turn out not to be interesting). Consider the linear algebraic groups

G0 = Gd0
a , G1 = Gd1

m and G = G0 × G1.

The exponential map

expG :Cd −→ G(C) = Cd0 × (C×)d1

is a surjective morphism of groups, with kernel the group of periods:

�G = {0} × (2iπZ)d1 ⊂ Cd0 × Cd1 .
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The Q-vector space

LG = exp−1
G G(Q) = Qd0 ×Ld1

consists of all elements in Cd whose images under the exponential map of G(C) are

in the group of algebraic points of G over Q, namely in Qd0 × (Q×)d1 . An element
in LG can be written

(β1, . . . , βd0 , λ1, . . . , λd1 ),

where β1, . . . , βd0 are algebraic numbers, while λ1, . . . , λd1 are logarithms of
algebraic numbers. We now repeat the previous discussion in this more general
framework.

The set LG is a Q-vector subspace of Cd . Our second goal is to study the
intersection of LG with a C-vector subspace V of Cd .

A preliminary remark is that if V is a vector subspace of Cd which con-
tains a point b = (0, . . . , 0, b1, . . . , bd1 ) 6= 0 in {0} × Qd1 , then V contains
(0, . . . , 0, b1λ, . . . , bd1λ) for any λ ∈ L; therefore in this case the Q-vector
space V ∩ LG has infinite dimension. Another circumstance where V ∩ LG

has infinite dimension over Q is when V contains a nonzero element β =

(β1, . . . , βd0 , 0, . . . , 0) ofQd0 ×{0}, since in this case V contains all elements of the
form (β1γ, . . . , βd0γ, 0, . . . , 0) with γ ∈ Q.

Therefore it is natural to consider first the C-subspaces V of Cd for which

V ∩ ({0} ×Qd1
)

= {0} and V ∩ (Qd0 × {0}) = {0}. (11.1)

Notice that this condition means exactly that no algebraic subgroup G∗ of G of
positive dimension has its tangent space contained in V.

Any subspace V ofCd contains a unique maximal subspace of the form E0× E1,
where E0 is a subspace of Cd0 rational over Q and E1 is a subspace of Cd1 rational
over Q. We denote this maximal subspace by Vmax. It is also defined as follows:

Vmax = E0×E1, where E0 is the subspace ofCd0 which is spanned by V∩(Qd0×{0}),
while E1 is the subspace of Cd1 which is spanned by V ∩ ({0} ×Qd1

)
. Hence

condition (11.1) holds if and only if Vmax = {0}

Warning. This subspace Vmax depends on (d0, d1), not only on d.

For a complex vector subspace V of Cd which is rational over Q and such that
(11.1) holds, V ∩LG = {0}, as shown by Baker’s Theorem 1.6 (see Exercise 1.5).

Consider now a vector subspace V ofCd which is not assumed to be rational over
Q. We shall prove (Corollary 11.6) that (11.1) is a necessary and sufficient condition
for V ∩LG to be of finite dimension over Q.

The next goal is to produce an upper bound for this dimension, when it is finite
(that is under condition (11.1)). In order to include both the situation where the
given space is rational over Q and the general case, we introduce a complex vector
subspace W of Cd , rational over Q, of dimension say `0, which is contained into V.
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The case W = {0}, `0 = 0 will of course not be excluded, while the other extreme
case W = V, `0 = dimC(V) occurs when V itself is rational over Q (this will be
related with Baker’s method ). The upper bound for the dimension will be, roughly
speaking,

dimQ
(
V ∩LG

) ≤ d1(n − `0)

d − n
, (11.2)

with n = dimC(V), but this will be shown to be true only under some extra conditions.
One example where hypothesis (11.1) is sufficient for (11.2) to hold is when V is a
hyperplane (that is n = d − 1 — see Corollary 11.6 in § 11.3).

In general, we shall require that d0 and d1 are minimal in the following sense:

(11.3) If E0 is a C-vector subspace of Cd0 which is rational over Q and E1 is a
C-vector subspace of Cd1 which is rational over Q, such that V ⊂ E0 × E1, then
E0 = Cd0 and E1 = Cd1 .

This condition means that expG V is Zariski dense in G(C); this is certainly a natural
condition, for otherwise one would replace G by the Zariski closure of expG V.

In § 11.2, we show that the estimate (11.2) is valid under condition (11.3) when
V is a complex line (that is n = 1 — see Theorem 11.4).

Concerning condition (11.3), one may notice that there is a unique minimal
subspace of Cd of the form E0 × E1, with E0 ⊂ Cd0 rational over Q and E1 ⊂ Cd1

rational overQ, which contains V. We denote it by Vmin. Explicitly, Vmin = E0× E1,
where E0 is the intersection of all hyperplanes ofCd0 , rational overQ, which contain
the projection of V ontoCd0 , and similarly, E1 is the intersection of the hyperplanes of
Cd1 rational overQ, which contain the projection of V ontoCd1 . Since orthogonality
V 7→ V⊥ for the scalar product (z, w) 7→ zw, preserves rationality and reverses
inclusions, we can write

(Vmin)⊥ = (V⊥)max.

From the definition of Vmin we deduce:

condition (11.3) holds if and only if Vmin = Cd

On the other hand, if (11.3) is not satisfied, then one can apply the results conditional
to (11.3) but with d replaced by dmin = dimC(Vmin), with d0 replaced by dimC(E0)
and d1 by dimC(E1), where Vmin = E0 × E1.

Remark. Assume d ≥ 2. For a complex line V, condition (11.1) means that V is not

spanned by an element in Qd0 × {0}, nor by an element in {0} × Qd1 . In dimension
n = 1 condition (11.3) implies (11.1).

For a hyperplane V, condition (11.3) means that V is not defined by an equation

β1z1 + · · · + βd0 zd0 = 0 for some (β1, . . . , βd0 ) ∈ Qd0 \ {0},
nor by an equation

b1zd0+1 + · · · + bd1 zd = 0 for some (b1, . . . , bd1 ) ∈ Qd1 \ {0}.
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In codimension d − n = 1 condition (11.1) implies (11.3).

The very general result we shall state in § 11.3 does not involve any condition
like (11.1) nor (11.3). As we know, if we remove condition (11.1), we cannot expect
V ∩LG to be of finite dimension; but we show that most elements in V ∩LG belong
to a set LG∗ for some algebraic subgroup G∗ of G, of positive dimension. This is the
meaning of the Linear Subgroup Theorem 11.5.

11.1.3 The Q-Vector Subspace L̃
d

of Cd

Our last goal (§ 11.6) is to study the Q-vector space L̃ spanned by 1 and L. As
above, we start with a preliminary remark: if V is a vector subspace of Cd such that

V ∩Qd 6= {0}, say

β = (β1, . . . , βd ) ∈ V ∩Qd \ {0}
then V contains (β1λ, . . . , βdλ) for any λ ∈ L̃. Therefore in this case the Q-vector

space V∩L̃
d

has infinite dimension. We shall prove conversely that if V∩Qd
= {0},

then the dimension over Q of V ∩ L̃
d

is finite. Moreover, when this condition is
fulfilled, we shall give an upper bound for this dimension in Corollary 11.15. In
particular we have

dimQ
(
V ∩ L̃

d) ≤ n(n + 1)

where n is the dimension of V. It is expected that this dimension is at most n(n +1)/2
and this would be best possible (Lemma 11.20).

11.2 One Parameter Subgroups

Here we restrict the discussion of the previous section § 11.1 to the special case
where V has dimension 1.

Let, as before, d0 and d1 be two nonnegative integers with d = d0 + d1 ≥ 2.

11.2.1 The Main Result in Dimension 1

We shall show that the following result is equivalent to the conjunction of the Theorem
of Hermite-Lindemann 1.2, the Theorem of Gel’fond-Schneider 1.4 and the six
exponentials Theorem 1.12.

Theorem 11.4. Let V be a vector subspace of Cd of dimension 1.
(1) The Q-vector space V ∩LG has finite dimension if and only if (11.1) holds.
(2) Assume (11.3). Then

dimQ
(
V ∩LG

) ≤ d1

d − 1
·
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(3) Assume (11.1). Assume further that V is rational over Q. Then

V ∩LG = {0}.

We now deduce corollaries from Theorem 11.4. As a matter of fact one can,
conversely, deduce Theorem 11.4 from these special cases.

11.2.2 On Hermite-Lindemann’s Theorem

Assumeα is a nonzero algebraic number and β an algebraic number such that eβ = α.
Henceβ is a logarithm of an algebraic number, i.e.β belongs to L. We want to deduce
β = 0.

Take d0 = d1 = 1 so that d = 2 and LG = Q×L. The complex line V = C(1, 1)
in C2 is rational over Q and contains (β, β) ∈ LG . Notice that V is neither C× {0}
nor {0} × C; hence condition (11.1) holds. By part 3) of Theorem 11.4, we have
V ∩LG = {0}, which gives β = 0. ¤

11.2.3 On Schneider’s Solution to Hilbert’s Seventh Problem

Assume λ1 and λ2 are two elements of L and β is an algebraic number such that
λ2 = βλ1. Assume λ1 6= 0. We want to prove β ∈ Q.

We choose again d0 = d1 = 1 so that d = 2 and LG = Q×L. Now let V be the
complex line in C2 of equation z2 = λ1z1. Notice that V ∩ LG contains the points
(1, λ1) and (β, λ2). Clearly, V 6= {0} × C. Since λ1 6= 0, we also have V 6= C× {0}.
Therefore (11.3) holds. From part 2) of Theorem 11.4 we deduce dimQ

(
V∩LG

) ≤ 1.
Hence (1, λ1) and (β, λ2) are linearly dependent over Q in LG , which implies that
β is rational. ¤

11.2.4 On Gel’fond’s Solution to Hilbert’s Seventh Problem

Again, λ1 and λ2 are two elements of L and β is an algebraic number such that
λ2 = βλ1. Assume β 6∈ Q. We want to prove λ1 = 0.

Take d0 = 0 and d1 = 2, so that d = 2 and LG = L2. Let V be the complex line
in C2 of equation z2 = βz1, that is V = C(1, β). Condition (11.1) follows from the
assumption β 6∈ Q. From part 3) of Theorem 11.4 one deduces V ∩LG = {0}. Now
(λ1, λ2) ∈ V ∩LG , hence λ1 = λ2 = 0. ¤

11.2.5 On the Six Exponentials Theorem 1.12

Let x1, . . . , xd be Q-linearly independent complex numbers and y1, . . . , y` also Q-
linearly independent complex numbers. Assume that the d` numbers xi y j (1 ≤ i ≤
d, 1 ≤ j ≤ `) all belong to L. We want to deduce d` ≤ d + `.
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One may obviously assume d ≥ 2 and ` ≥ 2, otherwise the conclusion is plain.
Take d0 = 0, so that d1 = d and LG = Ld . Define V as the complex line in Cd

spanned by the point (x1, . . . , xd ). Condition (11.3) holds, since it is equivalent to
the hypothesis of linear independence of x1, . . . , xd over Q. Now V ∩LG contains
the ` points (x1 y j , . . . , xd y j ) (1 ≤ j ≤ `), which are linearly independent over Q.
From part 2) of Theorem 11.4 one deduces

` ≤ d

d − 1
·

¤

Remark. Theorem 11.4 can be stated in an equivalent way as follows.

• Let m and n be two positive integers, {x1, . . . , xm} and {y1, . . . , yn} two families
of Q-linearly independent complex numbers. Define

E1 =
{
exi y j , 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
, κ1 = mn,

E2 = E1 ∪
{

x1, . . . , xm
}
, κ2 = κ1 + m,

E3 = E2 ∪
{

y1, . . . , yn
}
, κ3 = κ2 + n.

Let h ∈ {1, 2, 3}. Assume κh > m + n. Then one at least of the κh elements of Eh

is transcendental.

Extensions of this statement to algebraic independence are considered in § 15.3.3
and § 15.4.

11.3 Six Variants of the Main Result

Let d0 and d1 be two nonnegative integers with d = d0 + d1 ≥ 2. Let Y be a subgroup
of LG of finite rank `1 > 0 over Z, let W be a vector subspace of Cd , rational over
Q, of dimension `0 ≥ 0 over C and let V be a vector subspace of Cd of dimension
n over C which contains both Y and W .

We want to show that `1 and `0 cannot be too large with respect to n and d ,
unless most elements in Y and W belong to a subspace Te(G∗) of Cd , where G∗ is a
connected algebraic subgroup of G of positive dimension. The best estimate we can
reach turns out to be

`1(d − n) ≤ d1(n − `0).

This is the expected conclusion in a general situation, and there are several equivalent
formulations for this result.

11.3.1 The Main Result

In the next statement, G∗ is a connected algebraic subgroup of G, defined over Q;
for each such G∗ we define
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Y ∗ = Y ∩ Te(G∗), V∗ = V ∩ Te(G∗), W∗ = W ∩ Te(G∗)

and

d∗ = dim(G∗), `∗1 = rankZ(Y ∗), n∗ = dimC(V∗), `∗0 = dimC(W∗).

By Theorem 5.13, we may write G∗ = G∗0 × G∗1 where G∗0 is an algebraic subgroup
of G0 and G∗1 is an algebraic subgroup of G1. Define

d∗0 = dim(G∗0), d∗1 = dim(G∗1),

so that d∗ = d∗0 + d∗1 .
Further, we introduce

G ′0 =
G0

G∗0
, G ′1 =

G1

G∗1
, G ′ =

G

G∗
= G ′0 × G ′1,

Y ′ =
Y

Y ∗
, V ′ =

V

V∗
, W ′ =

W

W∗
,

and
d ′0 = dim(G ′0), d ′1 = dim(G ′1), d ′ = dim(G ′),

`′1 = rankZ(Y ′), n′ = dimC(V ′), `′0 = dimC(W ′).

The relations
d0 = d∗0 + d ′0, d1 = d∗1 + d ′1, d = d∗ + d ′,

`1 = `∗1 + `′1, n = n∗ + n′, `0 = `∗0 + `′0
plainly hold.

Theorem 11.5 — The Linear Subgroup Theorem.
(1) Assume d > n. Then there exists a connected algebraic subgroup G∗ of G such
that

d ′ > `′0 and
`′1 + d ′1
d ′ − `′0

≤ d1

d − n
·

(1’) Assume `1 > 0. Then there is a G∗ for which

(d∗1 , `
∗
1) 6= (0, 0) and

d∗ − `∗0
d∗1 + `∗1

≤ n − `0

`1
·

(2) Assume d > n and `1 > 0. Assume further that for any G∗ for which Y ∗ 6= {0},
we have

n∗ − `∗0
`∗1

≥ n − `0

`1
·

Assume also that there is no G∗ for which the three conditions `′1 = 0, n′ = `′0 and
d ′ > 0 simultaneously hold. Then

d1 > 0 and `1(d − n) ≤ d1(n − `0).
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(2’) Assume d > n and `1 > 0. Assume further that for any G∗ for which d ′ > n′,
we have

d1

d − n
≤ d ′1

d ′ − n′
·

Assume also that there is no G∗ for which the three conditions d∗1 = 0, d∗ = n∗ and
d∗ > 0 simultaneously hold. Then

n > `0 and `1(d − n) ≤ d1(n − `0).

(3) Assume `1 > 0. Then the family of G∗ for which `∗1 6= 0 and (n∗ − `∗0)/`∗1 is
minimal is not empty. Let G∗ be such an element for which d∗ is minimal. Then
either d∗ = n∗ or else

d∗1 > 0 and
n − `0

`1
≥ n∗ − `∗0

`∗1
≥ d∗ − n∗

d∗1
·

(3’) Assume d > n. Then the family of G∗ for which d ′ > n′ and d ′1/(d
′ − n′) is

minimal is not empty. Let G∗ be such an element for which d ′ is minimal. Then either
`′1 = 0 or else

n′ > `′0 and
d1

d − n
≥ d ′1

d ′ − n′
≥ `′1

n′ − `′0
·

The proof of Theorem 11.5 will be given in § 11.7. Notice that there is a duality
(explained in [Roy 1990]) which relates (1) and (1’), as well as (2) and (2’) and also
(3) and (3’) (see § 11.7).

11.3.2 A Second Proof of Theorem 11.4

Here we deduce Theorem 11.4 from the case n = 1 of Theorem 11.5. We assume
that V is a complex line in Cd for which (11.3) holds (this is no loss of generality).
Under this assumption we prove that the number

`1 = dimQ
(
V ∩LG

)

is bounded by

`1 ≤ d1(1− `0)

d − 1
where `0 =

{
1 if V is rational over Q,
0 otherwise.

Part (2) of Theorem 11.4 will follow from the case W = {0}, `0 = 0 and part (3) from
the case W = V, `0 = 1.

Since n = 1 and d ≥ 2, part (1) of Theorem 11.5 shows the existence of G∗ ⊂ G
such that d ′ > `′0 and

(`′1 + d ′1)(d − 1) ≤ d1(d ′ − `′0).
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Since d ′ > 0, we have G∗ 6= G. Assumption (11.3) then gives V 6⊂ Te(G∗). Hence
n′ = n = 1, `′0 = `0, `′1 = `1 and we get

(`1 + d ′1)(d − 1) ≤ d1(d ′ − `0).

Since d = d1 + d0 and d ′ = d ′1 + d ′0 with d ′0 ≤ d0 ≤ 1, we have

d ′0d1 − d0d ′1 ≤ d0(d1 − d ′1) ≤ d1 − d ′1

and therefore

(d ′ − 1)d1 = (d ′1 + d ′0 − 1)d1 ≤ d ′1(d1 + d0 − 1) = d ′1(d − 1).

Hence
`1(d − 1) ≤ d1d ′ − d ′1(d − 1)− d1`0 ≤ d1(1− `0).

¤

11.3.3 The Q-Vector Space V ∩LG

Corollary 11.6. Let V be a vector subspace ofCd . Then theQ-vector space V∩LG

has finite dimension if and only if (11.1) holds. If this condition is satisfied, then

dimQ
(
V ∩LG) ≤ d1(n − `0)

where n denotes the dimension of V and `0 the dimension of the Q-vector space
spanned by V ∩Q.

This result includes not only the six exponentials Theorem 1.12, but also the five
exponentials Theorem (Example 1 in § 11.3.3).

Proof. We first recall why (11.1) is a necessary condition for V ∩ LG to have
finite dimension: if G∗ is an algebraic subgroup of G such that Te(G∗) ⊂ V, then
V ∩LG ⊃ LG∗ . Further, if G∗ has positive dimension over C, then LG∗ has infinite
dimension over Q.

Conversely, if the dimension of the Q-vector space V ∩ LG is not finite, then
part (3) of Theorem 11.5 shows that there exists a G∗ such that d∗ = n∗, hence such
that V ⊃ Te(G∗), and in this case (11.1) does not hold.

Assume now condition (11.1) holds (so that d > n) and denote by `1 the
dimension of V∩LG overQ. Plainly we may assume `1 > 0. We prove the estimate
by induction on d. For d = 2 the result follows from Theorem 11.4.

We use conclusion (3’) of Theorem 11.5: there exists an algebraic subgroup G∗
of G such that d ′ > n′ and

`′1 ≤
d1

d − n
(n′ − `′0) ≤ d1(n′ − `′0).

If G∗ = G, then d ′ = d, n′ = n, `′0 = `0, `′1 = `1 and the desired estimate
`1 ≤ d1(n − `0) holds.



                

11.3 Six Variants of the Main Result 385

Otherwise we have d∗ < d, and V∗ = V ∩ Te(G∗) satisfies (11.1) as a subspace
of Te(G∗). Therefore we may apply the inductive hypothesis:

`∗1 ≤ d∗1 (n∗ − `∗0).

However we have d∗1 ≤ d1, `0 = `′0 + `∗0 and n = n′ + n∗, so that

`1 = `′1 + `∗1 ≤ d1(n′ − `′0) + d∗1 (n∗ − `∗0) ≤ d1(n − `0).

¤

The following examples turn out to be special cases of Corollary 11.15 below.

Example 1. Here is the Five Exponentials Theorem of [W 1988], Corollary 2.2.

• Let x1, x2 be twoQ-linearly independent complex numbers and y1, y2 be also two
Q-linearly independent complex numbers. Further let γ be a nonzero algebraic
number. Then one at least of the five numbers

ex1 y1 , ex1 y2 , ex2 y1 , ex2 y2 , eγ x1/x2

is transcendental.

Proof. We deduce this result from Corollary 11.6 by taking d0 = 1, d1 = 2, while V
is the hyperplane of C3 of equation

γ x1z0 − x2z1 + x1z2 = 0

which contains the point (1, 0,−γ ) of Q3
. Since x1, x2 are Q-linearly independent

and γ 6= 0, V satisfies (11.1), hence dimQ
(
V ∩LG) ≤ 2. The three points

(1, γ x1/x2, 0), (0, x1 y1, x2 y1), (0, x1 y2, x2 y2)

are Q-linearly independent and in V, therefore one at least of them does not belong
to LG = Q×L2. ¤

Without loss of generality we may set x2 = 1, in which case the five exponentials
become

ey1 , ey2 , ex1 y1 , ex1 y2 , eγ x1 .

Therefore the five exponentials Theorem can be stated as follows:

• Let λ0 be a nonzero element of L, λ1, λ2 two Q-linearly independent elements
of L and β a nonzero algebraic number. Then one at least of the two numbers

eβλ0λ1 , eβλ0λ2

is transcendental.
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Example 2. The following result was called the strong six exponentials Theorem in
[W 1988], Corollary 2.1 and [W 1990], Corollary 2.3 – but it is now a special case
of the more general Corollary 11.16 who deserves this name.

• Let x1, x2 be twoQ-linearly independent complex numbers and y1, y2, y3 be three
Q-linearly independent complex numbers. Further let βi j (i = 1, 2, j = 1, 2, 3)
be six algebraic numbers. Assume that the six numbers

exi y j−βi j , i = 1, 2, j = 1, 2, 3

are algebraic. Then

xi y j = βi j for i = 1, 2, and j = 1, 2, 3.

This result clearly contains the five exponentials Theorem: take βi j = 0 for
(i, j) 6= (1, 3), β13 = γ , y3 = γ /x1, and use Baker’s Theorem to deduce the linear
independence of x1 y1, x1 y2, γ .

Proof. By assumption the six numbers λi j = xi y j − βi j (i = 1, 2, j = 1, 2, 3) are in
L. Put d0 = d1 = 2. The hyperplane V of C4 of equation

x2(z1 + z3) = x1(z2 + z4)

contains the points (1, 0,−1, 0) and (0,−1, 0, 1) of Q4
as well as the three points

(β1 j , β2 j , λ1 j , λ2 j ) ( j = 1, 2, 3)

of LG = Q2×L2. These three points areQ-linearly independent, because y1, y2, y3

are Q-linearly independent. From Corollary 11.6 we deduce that V does not satisfy
(11.1). It follows that x1, x2 are Q-linearly dependent, so that γ = x2/x1 is an
irrational algebraic number. The relations

λ2 j + β2 j = γ (λ1 j + β1 j ) ( j = 1, 2, 3)

together with Baker’s Theorem 1.6 imply λi j = 0 for i = 1, 2 and j = 1, 2, 3. ¤

11.3.4 Subspaces which are Rational over Q

A simple statement can be deduced from Theorem 11.5 in the case where V is rational
over Q, that is `0 = n and W = V. We fix d0 ≥ 0 and d1 ≥ 1 and we set d = d0 + d1,
as before.

Corollary 11.7. Let V be a subspace of Cd which is rational over Q. Then

V ∩LG = Vmax ∩LG .
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Proof. For a subspace V ofCd which is rational overQ and satisfies (11.1), we have
V ∩LG = {0}: this follows from Corollary 11.6 with `0 = n.

For the general case, write

Vmax = E0 × E1, d ′0 = dimC

(
Cd

E0

)
, d ′1 = dimC

(
Cd

E1

)
·

Define G ′ = Gd ′0
a ×Gd ′1

m . Let Cd0 → Cd ′0 be a surjective linear map, rational over Q,
with kernel E0 and let Cd1 → Cd ′1 be a surjective linear map, rational over Q, with
kernel E1. Denote by

ϕ:Cd0 × Cd1 → Cd ′0 × Cd ′1

their product, so that kerϕ = Vmax. Notice that ϕ(LG) = LG ′ . From the definition of
Vmax we deduce that condition (11.1) holds for the subspace V ′ = ϕ(V) ofCd ′0×Cd ′1 ,
hence V ′ ∩LG ′ = {0}. Therefore

V ∩LG ⊂ ϕ−1
(
V ′ ∩LG ′

)
= kerϕ = Vmax.

¤

11.4 Linear Independence of Logarithms

There are different ways to recover Baker’s Theorem 1.5 (homogeneous case) from
Theorem 11.5. Two of them (§ 11.4.1) involve the special case `0 = n, which means
that V is rational over Q. They correspond to Gel’fond-Baker’s method. Two others
(§ 11.4.2) are dual (in the sense of § 13.7) of the previous ones and correspond to
Schneider’s method. We also deduce in § 11.4.3 Baker’s nonhomogeneous Theorem
1.6 from Theorem 11.5.

We display values for the parameters d0, d1, `0, `1 and n for which

`1(d − n) > d1(n − `0).

By Theorem 11.5, some degeneracy should take place, which will yield the desired
result.

11.4.1 Gel’fond-Baker’s Method

We give two proofs of Baker’s Theorem 1.5.
Assume

β1λ1 + · · · + βmλm = 0 (11.8)

where λ1, . . . , λm are elements in L, while β1, . . . , βm are algebraic numbers.
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1 Set d0 = 0, d1 = m, `0 = m − 1, `1 = 1, n = m − 1

Assume (β1, . . . , βm) 6= (0, . . . , 0) and consider the hyperplane V in Cm of
equation

β1z1 + · · · + βm zm = 0

which is plainly defined over Q. Since d0 = 0, Vmax is the maximal vector subspace
of Cm which is rational over Q. This is nothing else than the vector subspace of V
spanned by

V ∩Qm =
{
b ∈ Qm ; b1β1 + · · · + bmβm = 0

}
.

Therefore

Vmax = {0} ⇐⇒ β1, . . . , βm are Q-linearly independent.

Assume now that in (11.8) the numbersβ1, . . . , βm areQ-linearly independent. Since
(λ1, . . . , λm) ∈ V ∩ Lm , we deduce from Corollary 11.7 λ1 = · · · = λm = 0 and
Baker’s Theorem 1.5 follows (see Lemma 1.7). ¤

2 Set d0 = 1, d1 = m, `0 = m, `1 = 1, n = m

Consider the hyperplane V in Cm+1 of equation

z0 + β1z1 + · · · + βm zm = 0.

Again V is defined over Q. Now d0 = 1 and d1 = m. Since (1, 0, . . . , 0) 6∈ V, Vmax

is the vector subspace of V spanned by
{
(0, b) ∈ {0} ×Qm ; b1β1 + · · · + bmβm = 0

}
.

Therefore we still have

Vmax = {0} ⇐⇒ β1, . . . , βm are Q-linearly independent.

Since (0, λ1, . . . , λm) ∈ V ∩ LG , Corollary 11.7 yields λ1 = · · · = λm = 0, and
Baker’s Theorem 1.5 follows as before. ¤

11.4.2 Schneider’s Method

Here are two other proofs of Baker’s Theorem 1.5.

1’ Set d0 = m − 1, d1 = 1, `0 = 0, `1 = m, n = m − 1

We shall prove, by induction on m, that if λ1, . . . , λm are Q-linearly dependent
elements of L, then they are linearly dependent overQ. Assume now λ1, . . . , λm are
Q-linearly dependent: they satisfy a relation (11.8) with (β1, . . . , βm) 6= 0. Without
loss of generality we may assume βm = −1. Also, thanks to the induction hypothesis,
we may assume that λ1, . . . , λm−1 are Q-linearly independent.
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For d0 = m − 1 and d1 = 1, we have d = m and LG = Qm−1 ×L. Let V be the
hyperplane in Cm of equation

z1λ1 + · · · + zm−1λm−1 = zm

and let W = {0}. We have V ∩ ({0} × C) = {0}. Moreover, since λ1, . . . , λm−1 are

Q-linearly independent, we also have V ∩ (Qm−1 × {0}) = {0}. This shows that
condition (11.1) is fulfilled.

Using Kronecker’s symbol δi j , we check that the elements

η
j

= (δ1 j , . . . , δm−1, j , λ j ) (1 ≤ j ≤ m − 1), η
m

= (β1, . . . , βm−1, λm)

belong to V ∩LG . From Corollary 11.6 one deduces that η
1
, . . . , η

m
are Q-linearly

dependent, hence λ1, . . . , λm are Q-linearly dependent. ¤

2’ Set d0 = m, d1 = 1, `0 = 1, `1 = m, n = m

Let λ1, . . . , λm beQ-linearly independent elements of L which satisfy (11.8) for
some (β1, . . . , βm) 6= 0. We want to get a contradiction.

Since d0 = m and d1 = 1, we have d = m + 1 and LG = Qm × L. Consider
the hyperplane V of equation z1λ1 + · · · + zmλm = zm+1 in Cm+1. Further, let W be
theC-vector space of dimension 1, rational overQ, spanned by (β1, . . . , βm, 0). The
points

η
j

= (δ1 j , . . . , δmj , λ j ) (1 ≤ j ≤ m)

belong to V ∩LG and they are linearly independent over C (hence also overQ). We
use part (3’) of Theorem 11.5 with Y = Zη

1
+ · · · +Zη

m
. Consider the G∗ for which

d ′ > n′. They satisfy d∗ = n∗, hence Te(G∗) ⊂ V. Since V ∩ ({0} × C) = {0}, we
have d∗1 = 0 and d ′1 = 1. Moreover d ′ − n′ = 1, so that

d ′1
d ′ − n′

= 1 =
d1

d − n
·

An example of such a Te(G∗) is C(β1, . . . , βm, 0), whose codimension d ′ is m.
Consider such a G∗with d ′minimal. Our example shows that d ′ ≤ m. The conclusion
(3’) of Theorem 11.5 yields`′0+`′1 ≤ n′. Sinceλ1, . . . , λm areQ-linearly independent,
Y ∩ (Cm × {0}) = {0}, hence `∗1 = 0 and `′1 = m. We deduce m ≤ m + `′0 ≤ n′ and
d ′ = n′ + 1 ≥ m + 1, which is the desired contradiction. ¤

11.4.3 Affine Linear Forms

Our goal is to show that any relation

β0 + β1λ1 + · · · + βmλm = 0, (11.9)

with λ1, . . . , λm in L and β0, . . . , βm in Q implies β0 = 0. This will complete the
proof of Baker’s Theorem 1.6.
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It will be convenient to argue by contradiction: assume β0 6= 0 and consider such
a relation with m minimal. Therefore λ1, . . . , λm are Q-linearly independent and at
the same time β1, . . . , βm are Q-linearly independent.

We give two proofs which are just slight modifications of proofs in §§ 11.4.1 and
11.4.2 respectively.

2 Set d0 = 1, d1 = m, `0 = m, `1 = 1, n = m

The hyperplane V in Cm+1 of equation

β0z0 + β1z1 + · · · + βm zm = 0

is rational over Q and satisfies property (11.1), because β1, . . . , βm are linearly
independent over Q. However it contains the nonzero element (1, λ1, . . . , λm) of
LG = Q×Lm , which contradicts Corollary 11.7. ¤

Replacing z0 by z0/β0 one might as well consider the hyperplane z0 + β1z1 +
· · · + βm zm = 0 and the point (β0, λ1, . . . , λm).

2’ Set d0 = m, d1 = 1, `0 = 1, `1 = m, n = m

Since λ1, . . . , λm are Q-linearly independent, the hyperplane V of Cm+1 of
equation z1λ1 + · · · + zmλm = zm+1 satisfies condition (11.1). Let W be the C-vector
subspace of Cm+1, rational over Q, of dimension 1, spanned by (β1, . . . , βm,−β0).

Since the points

η
j

= (δ1 j , . . . , δmj , λ j ) ∈ Qm ×L (1 ≤ j ≤ m)

belong to V ∩LG and are linearly independent over C, we deduce our contradiction
from Corollary 11.6. ¤

Another description of the same method (involving the same values for d0, d1,
`0, `1 and m) arises from the following change of variables

(z1, . . . , zm+1) 7−→ (Z0, Z1, . . . , Zm)

with
Z0 = β0zm, Z i = zi + βi zm (1 ≤ i ≤ m − 1), Zm = zm+1.

Assume βm = −1, so that

β0 + β1λ1 + · · · + βm−1λm−1 = λm .

The hyperplane V in Cm+1 of equation

Z0 + λ1 Z1 + · · · + λm−1 Zm−1 = Zm

satisfies (11.1) (recall that m is minimal for (11.9)) and contains the complex vector
subspace W of Cm+1 spanned by (1, 0, . . . , 0, 1). Moreover V ∩LG contains the m
points

η
j

= (0, δ1 j , . . . , δm−1, j , λ j ) (1 ≤ j ≤ m − 1)

and
η

m
= (β0, β1, . . . , βm−1, λm).



                

11.4 Linear Independence of Logarithms 391

11.4.4 Exponential Polynomials

One may analyze the underlying principle to each of the previous proofs by writing
the functions and the points (as well as derivatives, if applicable):

1 Assume βm = −1; we work with m functions of m − 1 complex variables:

ez1 , . . . , ezm−1 , eβ1z1+···+βm−1zm−1 ,

take the derivatives with respect to m − 1 variables z1, . . . , zm−1 and consider the
values at the points of the subgroup Z

(
λ1, . . . , λm−1

)
which has rank 1.

Due to the fact that these points span a C-vector space of dimension 1, one may
introduce Baker’s method without mentioning several complex variables. Indeed, for
t = (t1, . . . , tm) ∈ Zm , consider the exponential monomial

8t (z1, . . . , zm−1) = et1z1+···+tm−1zm−1+tm (β1z1+···+βm−1zm−1)

= e(t1+tmβ1)z1+···+(tm−1+tmβm−1)zm−1 .

Let φt be the restriction of 8t to the complex line C
(
λ1, . . . , λm−1

)
:

φt (z) = ez
(

(t1+tmβ1)λ1+···+(tm−1+tmβm−1)λm−1

)
.

For κ ∈ N, we have the relations
(

d

dz

)κ
φt (z) =

∑

‖σ‖=κ

κ!

σ !
λ
σ1
1 · · · λσm−1

m−1D
σ8t (λ1z, . . . , λm−1z),

where σ runs over the elements (σ1, . . . , σm−1) in Nm−1 satisfying ‖σ‖ = κ and

Dσ =

(
∂

∂z1

)σ1

· · ·
(

∂

∂zm−1

)σm−1

·

Specializing z = s ∈ Z, the number (d/dz)κφt (s) is a polynomial in λ1, . . . , λm−1,
and this is not so nice since these numbers are transcendental. However the numbers
Dσ8t (λ1s, . . . , λm−1s) are algebraic, and the main feature of Baker’s method is to
work with these algebraic numbers.

2 Let us start with the homogeneous situation of § 11.4.1:

β1λ1 + · · · + βmλm = 0.

We consider m + 1 functions of m variables, namely

β1z1 + · · · + βm zm, ez1 , . . . , ezm .

We differentiate them in all directions and evaluate their derivatives at the points of
the set Z

(
λ1, . . . , λm

)
.

Let us assume βm = −1 and perform the change of variables
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−z0 = β1z1 + · · · + βm−1zm−1 − zm .

Take the derivatives of the functions

z0, ez1 , . . . , ezm−1 , ez0+β1z1+···+βm−1zm−1 ,

with respect to the m variables z0, . . . , zm−1 and consider their values at the points
of the subgroup Z

(
β0, λ1, . . . , λm−1

)
which has rank 1.

For (τ, t) ∈ N× Zm , define

8τ t (z0, . . . , zm−1) = zτ0etm z0+(t1+tmβ1)z1+···+(tm−1+tmβm−1)zm−1

and
φτ t (z) = 8τ t (z, λ1z, . . . , λm−1z)

= zτ ez
(

tm +(t1+tmβ1)λ1+···+(tm−1+tmβm−1)λm−1

)
.

The derivatives of φτ t can be written

(
d

dz

)κ
φτ t (z) =

∑

‖σ‖=κ

κ!

σ !
λ
σ1
1 · · · λσm−1

m−1D
σ8τ t (z, λ1z, . . . , λm−1z),

for σ = (σ0, . . . , σm−1) ∈ Nm . For s ∈ Z, the numbers

Dσ8τ t (s, λ1s, . . . , λm−1s)

are algebraic, while (d/dz)κφτ t (s) is a polynomial in λ1, . . . , λm−1.

In the situation of § 11.4.3 with a linear form

β0z0 + β1z1 + · · · + βm−1zm−1 − zm

which vanishes at (1, λ1, . . . , λm), we consider the functions

z0, ez1 , . . . , ezm−1 , eβ0z0+β1z1+···+βm−1zm−1 ,

so that we replace 8τ t (z) by

zτ0etmβ0z0+(t1+tmβ1)z1+···+(tm−1+tmβm−1)zm−1 .

Notice that we do not recover the previous discussion of the homogeneous case if
we just set β0 = 0! See § 14.4.3 for a further discussion of this point.

1’ Again assume βm = −1. We deal with m functions of m − 1 variables:

z1, . . . , zm−1, eλ1z1+···+λm−1zm−1 ,

we take no derivative at all (this is why we speak of Schneider’s method) and we
consider the values at the points of the subgroup Zm−1 + Z

(
β1, . . . , βm−1

)
of Cm−1.
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2’ In the homogeneous situation of § 11.4.2 as well as in the affine case of § 11.4.1,
we work with m + 1 functions of m variables. We can

• either consider
z1, . . . , zm, eλ1z1+···+λm zm ;

in this case we introduce a single derivative

D =
β1∂

∂z1
+ · · · + βm

∂

∂zm

and we take the values at the points in Zm .

• or else, assuming βm = −1, deal with

z0, z1, . . . , zm−1, ez0+λ1z1+···+λm−1zm−1 ;

then we consider one derivative ∂/∂z0, and we evaluate our functions at the points
of the subgroup {0} × Zm−1 + Z

(
β0, β1, . . . , βm−1

)
of Cm−1.

As we saw in § 11.4.3, a simple change of variables passes from one option to the
other.

11.4.5 Comparison

Methods 1 and 2 correspond to Baker’s method. They involve several exponential
functions (that is several factors Gm) and several derivatives, but one point η is

sufficient (together with its multiples). In method 1 , there is no factor Ga (since
d0 = 0), so that one works on a torus Gm

m.
In the case m = 2, method 1 reduces to Gel’fond’s solution of Hilbert’s seventh

problem.
Methods 1’ and 2’ are dual (see § 13.7) of 1 and 2 respectively. They

involve only one multiplicative factor, but several additive factors Ga. Also several
independent points of G(Q) are needed (not just a rank one subgroup). In 1’ there
is no derivative (and in 2’ there is just a single direction for multiplicities).

When one restricts to only two logarithms, 1’ is Schneider’s solution to Hilbert’s
seventh problem.

In the nonhomogeneous case (11.9) with m = 1, methods 2 and 2’ coincide:
they just reduce to the proof of Lindemann-Weierstraß’ Theorem by means of
Gel’fond’s method, involving one additive factor, one multiplicative factor, one
derivative and one point:

d0 = d1 = `0 = `1 = 1.

It may seem pointless to produce several proofs for the same result. However it
will turn out that our variants lead to a few differences in the diophantine estimates
which are obtained as quantitative refinements of the transcendence result. We refer
to § 14.4 for a detailed discussion of this matter.
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11.5 Complex Toruses

By the case d0 = 0, d1 = d of Corollary 11.6, for a C-vector subspace V of Cd , the
Q-vector space V ∩Ld has finite dimension if and only if V ∩Qd = {0}. This point
of view was initiated by M. Emsalem [E 1987] and his estimates were refined by
D. Roy.

For d and n positive integers satisfying 0 ≤ n < d, define

9(n, d) =





1 for n = 1, d ≥ 3,
n(n − 1) + 1 for 2 ≤ n ≤ d − 3,
n(n − 1) + 2 for n = d − 2 ≥ 2,
n(n + 1) for n = d − 1

and 9(0, d) = 0 for d > 0.
Here is Th. 5 of [Roy 1992b], which we shall deduce from Theorem 11.5 applied

to the torus G = Gd
m.

For V ⊂ Cd , recall that Vmin is the least vector subspace of Cd which is rational
over Q and contains V, while dmin is the dimension of Vmin.

Corollary 11.10. Let V be a vector subspace of Cd of dimension n such that
V ∩Qd = {0}. Then

dimQ
(
V ∩Ld

) ≤ 9(n, dmin).

Since 9(1, 2) = 2 and 9(1, d) = 1 for d ≥ 3, taking n = 1 and either d = 2 or
d = 3, we deduce from Corollary 11.10 the six exponentials Theorem 1.12.

Before going into the proof of Corollary 11.10, we state a property of the function
9, whose proof is left as an exercise (Exercise 11.4).

Lemma 11.11. For 0 < n < d we have

9(n, d) ≥
[

nd

d − n

]
· (11.12)

Moreover, if n = n′ + n∗ and d = d ′ + d∗ with 0 < n′ < d ′ and 0 < n∗ < d∗, then

9(n′, d ′) +9(n∗, d∗) ≤ 9(n, d). (11.13)

For the proof of Corollary 11.10 we shall apply only the following consequence
of Theorem 11.5.

Corollary 11.14. Let V be a vector subspace of Cd of dimension n < d. Among the
subspaces S of Cd which are rational overQ and distinct from Cd , we select one for
which the quantity n′/d ′ is minimal, with

n′ = dimC

(
V

V ∩ S

)
, d ′ = dimC

(
Cd

S

)
·
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Then the dimension `′ of theQ-vector space V∩Ld/V∩S∩Ld is finite and satisfies

`′

d ′ + `′
≤ n′

d ′
≤ n

d
·

Proof of Corollary 11.14. Corollary 11.14 would immediately follow from part (3’)
of Theorem 11.5 if we were asking S to have minimal d ′. Since we did not include
this condition, we shall proceed by induction on d and we split the proof in three
cases.

The first case is when the only subspace S which satisfies the assumptions is
S = {0}. We use part (3’) of Theorem 11.5 with d0 = 0, d1 = d, `0 = 0: the only G∗
for which n′/d ′ ≤ n/d is G∗ = {e}. Hence d ′ = d, n′ = n, and the dimension ` of the
Q-vector space V ∩Ld is finite and bounded above by dn/(d − n).

The second case is when the selected subspace S has positive dimension. We use
the induction hypothesis with Cd , V, S replaced respectively by Cd/S, V/(V ∩ S)
and {0}. We need to check that the subspace {0} of Cd/S satisfies the assumption
with respect to V/(V∩ S). A subspace ofCd/S, rational overQ, can be written S′/S
where S′ is a subspace of Cd , rational overQ, containing S. The required inequality

dimC
(
(V/V ∩ S)/(V ∩ S′/V ∩ S)

)

dimC
(
(Cd/S)/(S′/S)

) ≥ dimC(V/V ∩ S)

dimC(Cd/S)

follows from our assumption that n′/d ′ is minimal, namely

dimC(V/V ∩ S′)
dimC(Cd/S′)

≥ dimC(V/V ∩ S)

dimC(Cd/S)
·

Hence in this second case we may use the induction hypothesis and the desired result
follows at once.

Finally we need to consider the case where S = {0}, but there exists a nonzero
subspace, say S∗, for which n′/d ′ = n/d, where d ′ = d − d∗, n′ = n − n∗, d∗ is the
dimension of S∗ and n∗ the dimension of V ∩ S∗.

From the induction hypothesis with Cd , V, S replaced respectively by Cd/S∗,
V/(V ∩ S∗) and {0}, we deduce (like in the second case) that the dimension `′ of
(V ∩Ld )/

(
V ∩ S∗ ∩Ld ) is bounded by

`′ ≤ d ′n′

d ′ − n′
=

d ′n
d − n

·

Next we use the induction hypothesis with Cd , V, S replaced respectively by S∗,
V ∩ S∗ and {0}. We need to check the hypothesis: if S′ is a rational subspace of Cd

contained in S∗ and distinct from S∗, then we have by assumption

n − dimC(V ∩ S′)
d − dimC(S′)

≥ n

d

and this implies
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n∗ − dimC(V ∩ S′)
d∗ − dimC(S′)

≥ n∗

d∗
·

Hence the dimension `∗ of V ∩ S∗ ∩Ld is bounded by

`∗ ≤ d∗n∗

d∗ − n∗
=

(d − d ′)n
d − n

·

Therefore the number ` = dimQ(V ∩Ld ) = `∗ + `′ satisfies the desired upper bound:

` ≤ dn

d − n
·

¤

Proof of Corollary 11.10.
We first notice that the assumption V ∩Qd = {0} is nothing else that (11.1).
Without loss of generality we may assume dmin = d: otherwise we just replace

Cd by Vmin, which is a subspace of Cd rational overQ of dimension dmin containing
V. When (11.3) holds, the result we want to prove can be stated as follows:

Let V be a vector subspace ofCd of dimension n such that V∩Qd = {0}. Assume
that the only subspace ofCd which is rational overQ and contains V isCd itself.
Then dimQ

(
V ∩Ld

) ≤ 9(n, d).

The proof is by induction on d. The case d = 1 is trivial. Assume d ≥ 2 and define

Y = V ∩Ld , ` = dimQ(Y ).

We use Corollary 11.14: there exists a subspace S of Cd , rational over Q of
codimension d ′ > 0 in Cd such that, if we set

n′ = dimC

(
V

V ∩ S

)
and `′ = dimQ

(
Y ∩Ld

Y ∩ S ∩Ld

)
,

then

`′ ≤ n′d ′

d ′ − n′
·

If S = {0}, then `′ = `, n′ = n, d ′ = d, we obtain ` ≤ ψ(n, d), and in this case the
result is proved.

If dim(S) > 0, we may apply the induction hypothesis to Y ∩ S and deduce that
the numbers

d∗ = dimC(S), n∗ = dimC(V ∩ S), `∗ = `− `′ = dimQ
(
Y ∩ S ∩Ld

)
,

satisfy

`∗ ≤ n∗d∗

d∗ − n∗
,

hence `∗ ≤ ψ(n∗, d∗). We conclude
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` = `′ + `∗ ≤ ψ(n′, d ′) + ψ(n∗, d∗) ≤ ψ(n, d).

This completes the proof of Corollary 11.10. ¤

Consider now the special case of vector subspaces of Cd which are rational over
Q. Baker’s homogeneous Theorem 1.5 says that for such a space W ,

W ∩Ld =
⋃

V

V ∩Ld ,

where V ranges over the vector subspaces of Cd which are rational over Q and
contained in W (see Exercise 1.5). Baker’s nonhomogeneous Theorem 1.6 can be
stated in the same way, replacing W by a linear affine subvariety of Cd defined over
Q.

Conjecture 1.15 on algebraic independence of logarithms can be stated as follows
(see [Roy 1995]):

Any affine algebraic subvariety V of Cd defined over Q satisfies the following
property:

V ∩Ld =
⋃

V

V ∩Ld , (a.i.)

where V ranges over the vector subspaces of Cd which are rational over Q and
contained in V.

The first examples of nonlinear algebraic varieties for which property (a.i.) holds
are given by D. Roy in [Roy 1995]. Let V be a C-vector space of finite dimension
equipped with aQ-structure (see Exercise 1.4.c). For each integer k ≥ 1, the external
product

∧k V has a natural Q-structure ([Roy 1995], § 1). Denote by G(k,V) the
image of the map

Vk −→ ∧k V
(v1, . . . , vk) 7−→ v1 ∧ · · · ∧ vk

.

Hence G(k,V) is an algebraic subvariety of
∧k V defined over Q: it is the affine

cone over the Grassmannian of subspaces of V of dimension k. By [Roy 1995],

• If property (a.i.) holds for G(2,C4), then it also holds for G(k,V) for any V and
any k ≥ 1.

It remains to deal with G(2,C4), which amounts to prove that property (a.i.) holds
for the hypersurface

x1 y1 + x2 y2 + x3 y3 = 0

in C6 (see Exercise 12.12). Compare with the four exponentials conjecture which
raises the question of proving property (a.i.) for the hypersurface

x1 y1 + x2 y2 = 0

in C4 (see Exercise 1.8).
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Further examples involving tensor products or symmetric products have been
worked out by S. Fischler. The general context is that of an affine algebraic group,
defined overQ, acting on a vector space W over C endowed with aQ-structure. The
action is given by a representation %, which is a morphism, defined overQ, between
the algebraic groups G and GL(W ). Let X be an orbit for the action of G over W .
From Conjecture 1.15 one deduces that, if X is not of maximal dimension among
the orbits of %, then any element of X (L) belongs to a hyperplane of W defined over
Q.

A simple example of one of Fischler’s results is the following.

• Let k and m be two positive integers with km > k + m. Let L = a1 X1 + ...+ am Xm

be a linear form in m variables with complex coefficients. Assume that the
coefficients λi (‖i‖ = k) of the polynomial

Lk =
∑

‖i‖=k

λi X i

are in L. Then these coefficients are Q-linearly dependent.

11.6 Linear Combinations of Logarithms with Algebraic
Coefficients

We extend the results of § 11.5 in two directions. On one hand one replaces L by
Q+L: we consider points inCd with coordinates (bi +λi )1≤i≤d , where bi are rational
numbers and λi are logarithms of algebraic numbers. On the other hand we replace
the Q-vector space L by the Q-vector space L̃: we consider points in Cd whose
coordinates are linear combinations of 1 and logarithms of algebraic numbers.

We denote by (K, L) either (Q, Q + L) or else (Q, L̃). One could also take (Q,
L): one would just recover previous results. In any case L is aK-vector subspace of
C.

11.6.1 Results and Conjectures

Following [Roy 1992b], we deduce from Theorem 11.5 the next result (compare
with Corollary 11.10 above).

Corollary 11.15. Let V be a vector subspace of Cd of dimension n such that
V ∩ Kd = {0}; denote by dmin the dimension of the least vector subspace of Cd

which is rational over K and contains V. Then

dimK
(
V ∩ Ld

) ≤ 9(n, dmin).

One deduces from Corollary 11.15 the strong six exponentials Theorem of D. Roy
[Roy 1992b], Corollary 2 § 4 p. 38:
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Corollary 11.16 — Strong Six Exponentials Theorem. Let x1, . . . , xd be Q-
linearly independent complex numbers and y1, . . . , y` be also Q-linearly indepen-
dent complex numbers. Assume d` > d +`. Then one at least of the d` numbers xi y j

(1 ≤ i ≤ d, 1 ≤ j ≤ `) does not belong to L̃.

In other terms, for d = 2 and ` = 3 the six numbers exi y j cannot all be of the form

eβ0α
β1
1 · · ·αβs

s .

Remark. One deduces the six exponentials Theorem 1.12 as well as the five
exponentials Theorem (Example 1 of § 11.3.3) from Corollary 11.16 using the
following fact: if the d numbers xi y1 (1 ≤ i ≤ d) are logarithms of algebraic
numbers with x1, . . . , xd linearly independent over Q and y1 6= 0, then Baker’s
Theorem shows that x1, . . . , xd are also linearly independent over Q.

One expects that Corollary 11.16 also holds in the limit case d` = d + `, i.e.
d = ` = 2:

Conjecture 11.17 — Strong Four Exponentials Conjecture. Let x1, x2 be twoQ-
linearly independent complex numbers and y1, y2 be also twoQ-linearly independent
complex numbers. Then at least one of the four numbers x1 y1, x1 y2, x2 y1, x2 y2 does
not belong to L̃.

Again, using Gel’fond-Schneider’s Theorem 1.4, it is easy to check that Conjec-
ture 11.17 includes the four exponentials Conjecture 1.13.

As pointed out by G. Diaz (see [Di 1997a]), the strong four exponentials
Conjecture implies the following refinement of the Hermite-Lindemann’s Theorem,
which is an open problem:

(?) For any λ ∈ L with λ 6= 0, the number |λ| is transcendental.

In other terms, for any nonzero complex number u ∈ C, if |u| is algebraic, then eu

should be transcendental. This follows from Conjecture 11.17 by taking

λ = eu, x1 = 1, x2 = λ, y1 = 1, y2 = λ.

In the same way, the following conjectural refinement of the Gel’fond-Schneider’s
Theorem is also a consequence of the strong four exponentials Conjecture:

(?) Let λ ∈ L, λ 6= 0 and let u ∈ C with |u| ∈ Q. If the number euλ is algebraic,
then either u ∈ Q, or else uλ/λ ∈ Q.

(Compare with Exercise 1.8)
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11.6.2 Proof

The proof of Corollary 11.15 (following [Roy 1992b]) will rest on two preliminary
results.

Let k be a number field of degree m. We choose a basis (ω1, . . . , ωm) of k as a
Q-vector space. The mapping

Qm −→ k = Qω1 + · · · +Qωm

(a1, . . . , am) 7−→ a1ω1 + · · · + amωm

is an isomorphism of Q-vector spaces from Qm to k.
Denote by L̃k the k-vector subspace of C spanned by 1 and L: this is the set of

numbers of the form
β + ω1λ1 + · · · + ωmλm

where β runs over the elements of k and λ1, . . . , λm over the elements of L.
The linear map

ϒ : Cd × (Cd )m −→ Cd

(x, y
1
, . . . , y

m
) 7−→ x + ω1 y

1
+ · · · + ωm y

m

will play a fundamental role. We define

d0 = d, d1 = dm, d = d0 + d1 = (m + 1)d

and we introduce the algebraic group G = G0 × G1 with G0 = Gd0
a , G1 = Gd1

m .

Lemma 11.18.
1.– The kernel of ϒ is the C-vector subspace of Cd , rational over k, of dimension
md, defined by the equation

x + ω1 y
1

+ · · · + ωm y
m

= 0.

2.– Let U be a C-vector subspace of Cd and let V = ϒ−1(U). Then

dimC

(
Cd

V

)
= dimC

(
Cd

U

)
·

Hence dimC(V) = dimC(U) + md. Moreover, if U ∩ kd = {0}, then

V ∩ ({0} ×Qd1
)

= {0} and V ∩ (Qd0 × {0}) = {0}.
3.– Let G∗ = G∗0 ×G∗1 be a connected algebraic subgroup G∗ of G, defined over Q.
The tangent space S = Te(G∗) is a subspace of Cd and T = ϒ(S) is a subspace of
Cd which is rational over Q. Define

d ′1 = dim

(
G1

G∗1

)
and d ′ = dimC

(
Cd

T

)
·

Then d ′1 ≥ md ′. Moreover if U is a C-vector subspace of Cd and if we set



               

11.6 Linear Combinations of Logarithms with Algebraic Coefficients 401

d ′ = dim

(
G

G∗

)
, n′ = dimC

(
U

U ∩ T

)
,

V = ϒ−1(U), n′ = dimC

(
V

V ∩ S

)
,

we have d ′ − n′ = d ′ − n′.
4.– The restriction of ϒ to kd0 ×Ld1 defines an isomorphism of Q-vector spaces:

υ: kd0 ×Ld1 −→ L̃
d
k .

Therefore, if Z is a k-vector subspace of L̃
d
k and if we set Y = υ−1(Z ), we have

dimQ(Y ) = m dimk(Z ).

Proof of Lemma 11.18. The first property is trivial. The second one follows from the
fact that the spaces Cd/V and Cd/U are isomorphic.

Before going further, we make two remarks.
a) If k is a field, K an extension of k and if x1, . . . , xn are k-linearly independent
elements in kn , then in K n the elements x1, . . . , xn are K -linearly independent (the
rank of a matrix does not change under scalar extension).
b) If Z is a k-vector space of finite dimension, then Z is a Q-vector space of finite
dimension m dimk(Z ).

We now prove the estimate d ′1 ≥ md ′ in part 3 of Lemma 11.18. Let us define

S = Te(G∗) ⊂ Cd and S1 = Te(G∗1) ⊂ Cd1 .

The subspace S1 ofCd1 is rational overQ; hence its codimension inCd1 , namely d ′1, is
the same as the codimension in {0}×Qd1 of theQ-vector space E = S∩({0}×Qd1

)
.

Sinceϒ induces anQ-isomorphism between {0}×Qd1 and kd , theQ-vector subspace
ϒ(E) of kd is isomorphic to E . Moreover ϒ(E) is contained in the Q-vector space
T ∩ kd . Hence

dimQ(E) ≤ dimQ(T ∩ kd ).

Since T ∩ kd is a k-vector space, we have dimQ(T ∩ kd ) = m dimk(T ∩ kd ).
From remark a) above we deduce dimk(T ∩ kd ) ≤ dimC(T ). Finally we conclude
dimQ(E) ≤ m dimC(T ), which means dm − dimQ(E) ≥ m dimC(Cd/T ), hence
d ′1 ≥ md ′.

We deduce d ′ − n′ = d ′ − n′ as follows: since V ⊃ kerϒ , using property 2 for
V + S yields ϒ−1(U + T ) = V + S. Hence

dimC

(
Cd

V + S

)
= dimC

(
Cd

U + T

)

with (V + S)/S ' V/V ∩ S and (U + T )/T ' U/U ∩ T .
Finally the fact that υ is surjective is a consequence of the very definition of

L̃k , while the injectivity uses Baker’s Theorem: if λ1, . . . , λm belong to L and if
β belongs to k, then the relation β + ω1λ1 + · · · + ωmλm = 0 implies β = 0 and
λ1 = · · · = λm = 0. ¤
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The main tool for the proof of Corollary 11.15 is the following (see [Roy 1992b],
Th. 4).

Proposition 11.19. Let U be a vector subspace of Cd of dimension n < d. Among
the subspaces of T which are rational over K and distinct from Cd , we select one
for which the quantity n′/d ′ is minimal, with

n′ = dimC

(
U

U ∩ T

)
, d ′ = dimC

(
Cd

T

)
·

Then the dimension `′ of theK-vector space U∩Ld/U∩T ∩Ld is finite and satisfies

`′

d ′ + `′
≤ n′

d ′
≤ n

d
·

In particular if the inequality n′/d ′ ≥ n/d holds for any K-rational subspace T ,
then the hypothesis holds with T = {0}. In this case we deduce that the dimension `
of the K-vector space U ∩ Ld is finite and satisfies `d ≤ n(` + d).

Proof of Proposition 11.19. The statement of Proposition 11.19 is obtained from
Corollary 11.14 by replacing Q, L, V and S by K, L, U and T respectively. The
proof of Corollary 11.14 was by induction on d, and the general case was a formal
consequence of the so-called first case, where S = {0} is the only subspace of Cd ,
rational over Q and distinct from Cd , for which n′/d ′ ≤ n/d. In exactly the same
way, for the proof of Proposition 11.19, we may restrict to the case where the space
T = {0} is the only one which satisfies the assumptions. Therefore we assume that
for any K-rational subspace T of dimension d∗ in the range 0 < d∗ < d,

dimC
(
U/U ∩ T

)

dimC(Cd/T )
>

d∗

d
·

This implies U ∩Kd = {0}.
Let Z1 be aK-vector subspace of U∩Ld of finite dimension `. We want to prove

the upper bound `(d − n) ≤ nd. Choose a basis of Z1 over K. The elements of this
basis belong to L: they are linear combinations β0 +β1λ1 + · · ·+βsλs with algebraic
coefficients βi of elements in L; these coefficients βi generate a number field k (in
the case (K, L) = (Q,Q + L) we have k = Q). Let Z be the k-vector subspace of L̃k

which is spanned by our selected basis of Z1. Then dimk(Z ) = dimK(Z1) = `.
Thanks to Lemma 11.18, we may apply part (3’) of Theorem 11.5 with d0, d1,

d, n and `0 replaced respectively by

d0 = d, d1 = dm, d = d0 + d1 = (m + 1)d, n = n + md, `0 = md,

and with
Y = υ−1(Z ), W = kerϒ ⊂ V = ϒ−1(U) ⊂ Cd .
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The rank of Y is at least `1 = m`. Since d > n, we deduce `1(d − n) ≤ d1(n − `0),
which yields the desired inequality `(d − n) ≤ dn. ¤

Proof of Corollary 11.15. The proof is now exactly the same as the proof of Corollary
11.10, using Proposition 11.19 in place of Corollary 11.14 and K, L, U, T in place
of Q, L, V, S respectively. ¤

11.6.3 Are we Far from the Truth?

As shown by D. Roy [Roy 1992b], § 5 Th. 6, the estimates in Corollaries 11.10 and
11.15 are optimal up to a coefficient 1/2. More precisely, set

φ(n, d) =





n(n − 1)
2 + 1 for 1 ≤ n ≤ d − 2,

n(n + 1)
2 for n = d − 1.

Lemma 11.20. Let n and d be two positive integers with 1 ≤ n < d. There exists a
vector subspace V of Cd , of dimension n, which is not contained in any subspace of
Cd rational over Q distinct from Cd , and such that

V ∩Qd
= {0}, dimQ

(
V ∩Ld

) ≥ φ(n, d) and dimQ
(
V ∩ L̃

d) ≥ φ(n, d).

Proof. The proof of Lemma 11.20 uses the following consequence of Baker’s
Theorem (see Exercise 1.5):

• Let y1, . . . , y` be Q-linearly independent elements in Ld . Then y1, . . . , y` are
Q-linearly independent.

Hence for any subspace V of Cd we have

dimQ
(
V ∩ L̃

d) ≥ dimQ
(
V ∩Ld

)
.

The problem now is to construct V with dimQ
(
V ∩Ld

) ≥ φ(n, d). Let λ1, . . . , λd

be Q-linearly independent elements of L.
a) If n = 1 we take for V the complex line C(λ1, . . . , λd ) in Cd , so that dimQ

(
V ∩

Ld
) ≥ 1.

b) For n = d − 1 we take for V the hyperplane of equation λ1z1 + · · · + λd zd = 0 in
Cd , which contains the d(d − 1)/2 points λi e j − λ j ei of Ld (1 ≤ i < j ≤ d) (here
(e1, . . . , ed ) denotes the canonical basis in Cd ).
c) Finally, for 2 ≤ n ≤ d − 2 we take V = V1 × V2 where V1 is the line
C(λ1, . . . , λd−n) in Cd−n while V2 is the hyperplane λd−n+1z1 + · · · + λd zn = 0
in Cn . Then V1 contains a nonzero element in Ld ; moreover V2 contains n(n− 1)/2
elements of Ld which areQ-linearly independent. Therefore V contains 1+n(n−1)/2
elements of L which are Q-linearly independent. ¤

Remark. Assuming Conjecture 1.15 on algebraic independence of logarithms of
algebraic numbers, Lemma 11.20 is optimal; see Exercise 12.8.
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11.7 Proof of the Linear Subgroup Theorem

We split the proof of Theorem 11.5 in three parts. In the first one we apply the
transcendence method and produce a variant of part (1) (it seems weaker than (1),
but it will turn out to be equivalent). Next we establish the equivalence between the
six statements. Finally we complete the proof by taking possible periods into account.
It may be worthwhile to point out that the same method works more generally for
commutative algebraic groups (and not only for the linear ones).

11.7.1 The Transcendence Argument

We first prove the following statement (compare with Theorem 4.1 of [W 1988]):

Theorem 11.21. Let d0 and d1 be two nonnegative integers with d = d0 +d1 ≥ 2. Let
V be a complex subspace ofCd of dimension n with 1 ≤ n < d, let W be aC-vector
subspace of Cd , rational over Q, of dimension `0 ≥ 0, contained in V and let Y be
a subgroup of LG , of finite rank `1 > 0 over Z, also contained in V. Consider the
subgroup 0 = expG(Y ) of G(Q). Then there exists a connected algebraic subgroup
G∗ = G∗0 × G∗1 of G, defined over Q, such that

d ′ > `′0 and
λ′ + d ′1
d ′ − `′0

≤ d1

d − n

where

d ′ = dim

(
G

G∗

)
, λ′ = rankZ

(
0

0 ∩ G∗(C)

)
,

d ′1 = dim

(
G1

G∗1

)
, `′0 = dimC

(
W

W ∩ Te(G∗)

)
·

Proof.

Step 1. Preliminary Reduction
It will be convenient (at the end of the proof) to assume d0 ≤ n. So let us start

by proving the conclusion in the alternative case.
Assume d0 > n. Denote byπ0 the projection ofCd ontoCd0 with kernel {0}×Cd1 .

The complex vector subspace of Cd0 spanned by π0(Y ∪W ) is contained in π0(V),
hence has dimension ≤ n < d0. Therefore Y ∪W ⊂ Te(G∗) where G∗ = G∗0 × G1,
and G∗0 is an algebraic subgroup of G0 of codimension d ′0 > 0. In this case we
trivially get the conclusion with d ′1 = `′0 = λ′ = 0.

Step 2. Introducing the Parameters
We introduce positive integers T0, T1, S0, S1 and we define

L =

(
T0 + d0

d0

)
(2T1 + 1)d1 .
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We denote by c1, . . . , c11 positive integers which depend only on the data of Theorem
11.21 but do not depend on T0, T1, S0, S1.

Step 3. Construction of the Matrix M
In the ring C[G] = C[X , Y±1] (see § 5.1), consider the monomials

X τY t = X τ1
1 · · · X

τd0
d0

Y t1
1 · · · Y

td1
d1
,

where (τ , t) runs over the set of all L elements in Nd0 × Zd1 which satisfy

‖τ‖ ≤ T0, |t | ≤ T1.

We fix an ordering of these L elements and we define entire functions of d variables
by

zτ et z = zτ1
1 · · · z

τd0
d0

et1zd0+1+···+td1 zd .

Let w = (w1, . . . , w`0
) be a basis of W over C contained in Qd`0 . The coordinates

of wk (1 ≤ k ≤ `0) will be written

wk = (β1k, . . . , βdk).

Recall the notation, for σ ∈ N`0 ,

D
σ
w = Dσ1

w1
· · ·Dσ`0

w
`0
,

with

Dwk
= β1k

∂

∂z1
+ · · · + βdk

∂

∂zd
·

Further, let η
1
, . . . , η

`1
be Z-linearly independent elements of Y . We shall denote

the coordinates of η
j

(1 ≤ j ≤ `1) by

η
j

= (β1,`0+ j , . . . , βd0,`0+ j , λ1 j , . . . , λd1, j ).

We set αi j = eλi j (1 ≤ i ≤ d1, 1 ≤ j ≤ `1) and we denote by K a number field
which contains all the d1`1 +d1`0 +d0`1 +d0`0 = (d0 +d1)(`0 +`1) algebraic numbers

αi j , βhk, βd0+i,k, βh,`0+ j

for
1 ≤ i ≤ d1, 1 ≤ j ≤ `1, 1 ≤ k ≤ `0, 1 ≤ h ≤ d0.

Notice that the points

γ
j

= expG(η
j
) = (β1,`0+ j , . . . , βd0,`0+ j , α1 j , . . . , αd1, j ) (1 ≤ j ≤ `1)

are in G(K ) = K d0 × (K×)d1 .
For each (σ , s) ∈ N`0 × Z`1 satisfying

‖σ‖ ≤ S0, |s j | ≤ S1 (1 ≤ j ≤ `1),
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we introduce the number

γ
σ s
τ t = D

σ
w

(
zτ et z

)
(s1η1

+ · · · + s`1η`1
)

which lies in the number field K . We also choose an ordering for these tuples (σ , s)
and we build the matrix

M =
(
γ
σ s
τ t

)
(τ ,t)

(σ ,s)

.

Our goal is to show that M has rank< L . This will allow us to apply the multiplicity
estimate (Theorem 8.1) which will in turn produce the subgroup G∗ of G.

Our goal is trivially achieved if the number of columns of M is less than L .
Otherwise, let 1 be the determinant of a square L × L matrix extracted from M.

Step 4. Upper Bound for |1|
The determinant F(ζ ) of the matrix

(
D
σ
w

(
zτ et z

)(
ζ (s1η1

+ · · · + s`1η`1
)
))

(τ ,t)

(σ ,s)

is a function of a complex variable ζ which has a zero of multiplicity

≥ c1L1+(1/n) − c2L S0

at the origin (the correcting term c2L S0 arises from D
σ
w ; compare with Lemma 9.2

which settles the case `0 = 1 and with Lemma 10.6; further explicit estimates will
be provided in Lemma 13.4). Moreover on the disc |ζ | ≤ e we have

log |F(ζ )| ≤ c3L
(
S0 log(T0T1) + T0 log(S0S1) + T1S1

)
.

Again, explicit estimates for a more general situation will be provided in Lemma
13.9.

Since 1 = F(1), from Schwarz’ Lemma 6.1 we conclude

log |1| ≤ −c4L1+(1/n) + c5L
(
S0 log(T0T1) + T0 log(S0S1) + T1S1

)
.

Step 5. Lower Bound for |1|
From Liouville’s estimate (see Exercise 3.8 for the case `0 = 0 and Proposition

13.8 for the general case) we deduce that either 1 = 0 or else

log |1| ≥ −c6L
(

S0 log(T0T1) + T0 log(S0S1) + T1S1

)
.

Therefore if our parameters satisfy

S0 log(T0T1) + T0 log(S0S1) + T1S1 ≤ c7L1/n (11.22)

for a suitable (sufficiently small) c7 > 0, we shall deduce from steps 4 and 5 that
1 = 0. We assume that this condition (11.22) is fulfilled and we shall confirm it in
step 7 thanks to a suitable choice of the parameters.
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Step 6. Using the Multiplicity Estimate
Since 1 = 0 it follows that M has rank < L . Therefore there exist complex

numbers cτ t , not all of which are zero, such that
∑

τ

∑

t

cτ tγ
σ s
τ t = 0

for all (σ , s) as above. This means that the polynomial

P =
∑

τ

∑

t

cτ t X τY t ∈ C[X , Y±1]

yields a function
F(z) = P(z1, . . . , zd0 , ezd0+1 , . . . , ezd )

which satisfies
D
σ
wF(s1η1

+ · · · + s`1η`1
) = 0

for all (σ , s) ∈ N`0 × Z`1 with ‖σ‖ ≤ S0 and |s j | ≤ S1 (1 ≤ j ≤ `1).
Using Theorem 8.1 with G+ = G, G− = 0, D0 = T0, D1 = · · · = Dd1 = T1 and

6 =
{

s1γ 1
+ · · · + s`1γ `1

; s ∈ Z`1 , |s j | ≤ S1 (1 ≤ j ≤ `1)
}
,

we obtain the existence of a subgroup G∗ of G of dimension< d such that, if we set

`′0 = dimC

(
W

W ∩ Te(G∗)

)
,

then (
S0 + `′0
`′0

)
Card

(
6 + G∗

G∗

)
H (G∗; T0; T1) ≤ H (G; T0; T1).

Therefore we deduce
S
`′0
0 Sλ

′
1 ≤ c8T

d ′0
0 T

d ′1
1 . (11.23)

Step 7. Choice of Parameters
Defineµ = d1/(d−n) and ν = d +n. We choose for S1 a sufficiently large integer

and we define

S0 =
[
Sµ1 (log S1)ν

]
, T0 =

[
S0/ log S1

]
, T1 =

[
S0/S1

]
.

From step 1 we deduce µ ≥ 1. We check (11.22): indeed we have

S0 log(T0T1) + T0 log(S0S1) + T1S1 ≤ c9Sµ1 (log S1)ν+1

and

L ≥ 1

d0!
Sdµ−d1

1 (log S1)dν−d0 .

This explains the choice of µ. As far as ν is concerned, any ν > (d0 + n)/(d − n) is
admissible.
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Therefore (11.23) holds. We first replace T0 and T1 by their values in terms of S0

and S1:

S
λ′+d ′1
1 ≤ c10S

d ′−`′0
0 (log S1)−d ′0

and then in terms of S1 only:

S
λ′+d ′1
1 (log S1)d ′0 ≤ c11S

(d ′−`′0)µ
1 (log S1)(d ′−`′0)ν .

The inequality λ′ + d ′1 ≤ (d ′ − `′0)µ plainly follows. Further, if λ′ + d ′1 = (d ′ − `′0)µ,
then d ′0 ≤ (d ′ − `′0)ν.

Hence d ′ ≥ `′0, and equality d ′ = `′0 would imply λ′ = d ′1 = 0 and d ′0 = 0. But
this is not compatible with the condition d ′ > 0. ¤

11.7.2 Equivalence between Six Statements

Following [Roy 1992a], we show that if any of the six statements (1) to (3’) from
Theorem 11.5 holds for any (d0, d1, Y,V,W ), then so do the five others.

The following simple fact will be useful: for positive real numbers a, b, c, d, we
have

min
{a

b
, c

d

}
≤ a + c

b + d
≤ max

{a

b
, c

d

}
·

(1)⇒ (2)

Assume (1). Assume also that the hypotheses of (2) are satisfied. Among the G∗
for which d ′ > n′, select one (and call it G∗) for which d ′1/(d

′ − n′) is minimal.
From (1) with G replaced by G ′ = G/G∗ we deduce that there exists a quotient
G ′′ = G/G∗∗ of G ′, where G∗∗ is an algebraic subgroup of G containing G∗, such
that, if we set

G ′′ = G ′′0 × G ′′1, d ′′ = dim(G ′′), d ′′1 = dim(G ′′1),

Y ′′ =
Y

Y ∩ Te(G∗∗)
, V ′′ =

V

V ∩ Te(G∗∗)
, W ′′ =

W

W ∩ Te(G∗∗)
and

`′′1 = rankZ(Y ′′), n′′ = dimC(V ′′), `′′0 = dimC(W ′′),

then

d ′′ > `′′0 and
`′′1 + d ′′1
d ′′ − `′′0

≤ d ′1
d ′ − n′

·

Since G ′′ is a quotient of G, from the choice of G∗ we deduce

d ′1
d ′ − n′

≤ d ′′1
d ′′ − n′′

if d ′′ > n′′.

This inequality together with
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`′′1 + d ′′1
(d ′′ − n′′)− (`′′0 − n′′)

≤ d ′1
d ′ − n′

imply
`′′1

n′′ − `′′0
≤ d ′1

d ′ − n′
if d ′′ > n′′ and n′′ > `′′0.

The last inequality plainly holds also if d ′′ = n′′. Further, we have n′′ > `′′0 . Indeed
otherwise we would get d ′′ > `′′0 , hence `′′1 = 0, which has been excluded in the
assumptions of (2).

Again from the choice of G∗ we deduce

d ′1
d ′ − n′

≤ d1

d − n
·

Hence
`′′1

n′′ − `′′0
≤ d1

d − n
·

Using the relations

`′′1 = `1 − `∗∗1 , n′′ = n − n∗∗ and `′′0 = `0 − `∗∗0
we can write the last inequality:

`1 − `∗∗1
(n − n∗∗)− (`0 − `∗∗0 )

≤ d1

d − n
·

However from the assumptions in (2) we deduce

`1(n∗∗ − `∗∗0 ) ≥ `∗∗1 (n − `0).

Since n′′ > `′′0 we have W ′′ 6= V ′′, hence W 6= V and n > `0. Therefore the last
inequality yields

`1

n − `0
≤ `1 − `∗∗1

(n − `0)− (n∗∗ − `∗∗0 )
·

The desired inequality
`1

n − `0
≤ d1

d − n

follows.

(2)⇒ (3)

The first inequality
n − `0

`1
≥ n∗ − `∗0

`∗1
is plain. Replacing G by G∗, we may assume that for any G∗ 6= G for which `∗1 6= 0,
we have

n∗ − `∗0
`∗1

>
n − `0

`1
·
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If `′1 = 0, then `1 = `∗1 and n′ < `′0. From (2) we deduce

`1(d − n) ≤ d1(n − `0).

(3)⇒ (1)’

This is a consequence of the following remark: if `∗1 6= 0 and d∗1 6= 0, then

d∗ − `∗0
d∗1 + `∗1

≤ max

{
d∗ − n∗

d∗1
, n∗ − `∗0

`∗1

}
·

(1)’⇒ (2)’⇒ (3)’⇒ (1)

One can just repeat the same arguments as before, permuting

d ′1 n′ − `′0 `′1 d ′ − n′
l l l l

n∗ − `∗0 d∗1 d∗ − n∗ `∗1
respectively. However there is a much more elegant solution in [Roy 1992a] (see also
[Roy 1992b]) involving a category and its opposite.

11.7.3 Taking Periods into Account

Theorem 11.21 does not look as sharp as statement (1) in Theorem 11.5, because
λ′ ≤ `′1: the difference is the rank of Y ′ ∩ ker expG ′ . In order to keep track of the
periods and to get rid of the discrepancy between λ′ and `′1, we shall use the following
Lemma:

Lemma 11.24. Under the assumptions of Theorem 11.5, denote by�G the kernel of
expG in Cd0 × Cd1 . Define also

0 = expG Y, λ = rankZ(0), κ = rankZ(Y ∩�G),

so that λ = `1 − κ . Then there exists a connected algebraic subgroup G∗ of G such
that, if we define G ′, Y ′, d ′0, d ′1, d ′, n′, `′1, `′0 as in § 11.3.1, and also

�G ′ = ker expG ′ , κ ′ = rankZ(Y ′ ∩�G ′ ),

then we have

d ′0 = d0, d ′1 = d1 − κ, d ′ = d − κ, n′ = n − κ,
`′1 ≤ `1 − κ, `0 − κ ≤ `′0 ≤ `0, `′0 + κ ≤ n, κ ′ = 0.

Proof. From�G = {0}× (2iπZ)d1 we deduce that elements in�G which are linearly
independent over Z are also linearly independent over C. The C-vector subspace of
Cd spanned by�G can be written Te(G∗) where G∗ = {0}×G∗1 satisfies the required
properties. ¤
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The conclusion of Theorem 11.21 involves an upper bound where the left hand
side depends on a quotient of G and the right hand side is d1/(d − n). Now if there
is a quotient of G which has a corresponding value of d1/(d − n) smaller than the
initial value associated to G, then one gets a sharper estimate by applying Theorem
11.21 to this quotient rather than to G. An example is given by using Lemma 11.24:
it produces a quotient where d1/(d−n) is replaced by d̃1/(d−n), where d̃1 = d1−κ .

We now observe that in the left hand side of the conclusion of Theorem 11.21,
the quantity λ′ + d ′1 can be written `′1 + d̃ ′1, where d̃ ′1 = d ′1 − κ ′. Therefore, with this
notation, we deduce from Theorem 11.21 together with Lemma 11.24 the following
statement (which is Theorem 4.1 of [W 1988]), where the assumptions are those of
Theorem 11.5:

(1̃) Assume d > n. Then there exists a connected algebraic subgroup G∗ of G such
that

d ′ > `′0 and
`′1 + d̃ ′1
d ′ − `′0

≤ d̃1

d − n
·

Repeating the proof of (1)⇒ (2) with d1 replaced by d̃1, and we deduce

(2̃) Assume d > n and `1 > 0. Assume further that for any G∗ for which Y ∗ 6= {0},
we have

n∗ − `∗0
`∗1

≥ n − `0

`1
·

Assume also that there is no G∗ for which the three conditions `′1 = 0, n′ = `′0
and d ′ > 0 simultaneously hold. Then

d1 > 0 and `1(d − n) ≤ d̃1(n − `0).

Now d̃1 ≤ d1, therefore (2̃) is stronger than (2). Since (1̃) holds, it follows that (2̃)
and (2) also hold, and from § 11.7.2 we deduce finally that all properties (3), (1’),
(2’), (3’), (1) also hold. ¤

Exercises

Exercise 11.1. Assume, in Theorem 11.5, that K is a subfield ofQ such that W is rational over
K and expG(Y ) ⊂ G(K ). Show that in the conclusion one can restrict to algebraic subgroups
G∗ of G which are defined over K .

Exercise 11.2. Let V be a vector subspace of Cd = Cd0 × Cd1 satisfying (11.1). Show that
there exists a hyperplane H of Cd containing V and satisfying (11.1).

Hint. Write V as intersection of hyperplanes H1, . . . , Hm , where m is the codimension of V.
For 1 ≤ i ≤ m let L i be a nonzero linear form whose kernel is Hi . Consider the set of complex
tuples (t1, . . . , tm) for which the kernel H of t1 L1 + · · · + tm Lm does not satisfy (11.1).
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Exercise 11.3. (Six exponentials Theorem in several variables) For X and Y subsets of Cn ,
denote by XY the set of scalar products xy (x ∈ X , y ∈ Y ).

Let U and V be two Q-vector spaces of Cn and X , Y two Q-vector subspaces of Cn of
dimensions

dimQ (U) = d0 ≥ 0, dimQ (V) = `0 ≥ 0, dimQ (X ) = d1 ≥ 1, dimQ (Y ) = `1 ≥ 1.

Assume
UV ⊂ Q, UY ⊂ Q, XV ⊂ Q, XY ⊂ L.

Deduce from part (3’) of Theorem 11.5 the existence of decompositions as direct sums of
vector subspaces

U = U∗ ⊕U′, V = V∗ ⊕ V ′, X = X∗ ⊕ X ′, Y = Y ∗ ⊕ Y ′,

where
U′V∗ = {0}, U′Y ∗ = {0}, X ′V∗ = {0}, X ′Y ∗ = {0},

and such that
n′ < d ′0 + d ′1 and (n′ − `′0)d ′1 ≥ `′1(d ′0 + d ′1 − n′),

where n′ is the dimension of the C-vector subspace of Cn spanned by U′ ∩ X ′, and where

d ′0 = dimQ (U′), `′0 = dimQ (V ′), d ′1 = dimQ (X ′), `′1 = dimQ (Y ′).

Hint. For the case d0 = `0 = 0, see Theorem 1 of [W 1981].

Exercise 11.4. Prove Lemma 11.11.

Hint. The proof of (11.12) is easy. For (11.13), first check

n(n − 1) + 1 ≤ 9(n, d) ≤ n(n + 1)

and deduce the desired estimate when n′n∗ ≥ n′ + n∗. By symmetry, assume now n∗ = 1 and
n = n′ + 1. In the case d∗ ≥ 3, show 9(1, d∗) = 1 and

9(n′, d ′) +9(1, d∗) ≤ n′(n′ + 1) + 1 ≤ 9(n, d).

Next assume d∗ = 2. In order to prove

9(n′, d ′) + 2 ≤ 9(n′ + 1, d ′ + 2),

consider several cases:
a) If n′ = 1 check

9(n′, d ′) =

{
1 for d ′ ≥ 3,
2 for d ′ = 2,

and 9(2, d ′ + 2) =

{
3 for d ′ ≥ 3,
4 for d ′ = 2.

Assume now n′ ≥ 2.
b) Assume d ′ ≥ n′ + 2. From 9(n′, d ′) ≤ n′(n′ − 1) + 2 deduce

9(n′, d ′) + 2 ≤ n′(n′ − 1) + 4 = (n − 1)(n − 2) + 4 ≤ n(n − 1) + 1 = 9(n, d ′ + 2).

c) The last case is n′ = d ′ − 1 ≥ 2. In this case show 9(n′, d ′) = n′(n′ + 1) and

9(n′, d ′) + 2 = n′(n′ + 1) + 2 = n(n − 1) + 2 = 9(n, d).
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Exercise 11.5.
a) Show that the function 9 of § 11.5 is the smallest arithmetic function satisfying both
properties (11.12) and (11.13) of Lemma 11.11.
b) Show also that another equivalent definition of 9(n, d) is

9(n, d) =
{
9(1, d − n) +9(n − 1, n) if n ≥ 2 and d − n ≥ 2,
[nd/(d − n)] if n = 1 or d − n = 1.

Hint. Check first

9(n, d) ≥
[

nd

d − n

]
and 9(n, d) ≥ 9(n′, d ′) +9(n∗, d∗)

for n = n′ + n∗ and d = d ′ + d∗. Deduce

9(n, d) ≥ max

{[
n1d1

d1 − n1

]
+ · · · +

[
nkdk

dk − nk

]}
·

c) Show that this function 9 is also defined by

9(n, d) = max

{[
n1d1

d1 − n1

]
+ · · · +

[
nkdk

dk − nk

]}

when (n1, . . . , nk, d1, . . . , dk) runs over the finite set of tuples with 0 < ni < di (1 ≤ i ≤ k)
and n1 + · · · + nk = n, d1 + · · · + dk = d.

Hint. Check, for d = 1 and for d − n = 1, 9(n, d) = [nd/(d − n)]. Assume now d ≥ 2 and
d − n ≥ 2. Check

9(n, d) =

[
n′d ′

d ′ − n′

]
+

[
n∗d∗

d∗ − n∗

]

with n′ = 1, n∗ = n − 1, d ′ = d − n, d∗ = n, because
[

n∗d∗

d∗ − n∗

]
= n(n − 1) = 9(n − 1, n).

Deduce the conclusion (if one wishes one may restrict to k ∈ {1, 2}).

d) Compare with [Roy 1992b].

Exercise 11.6. Let V be a vector subspace of Cd and Y a subgroup of V ∩Ld of rank `. For
a subspace S of Cd , rational over Q , define

V∗ = V ∩ S, Y ∗ = Y ∩ S,
d∗ = dimC (S), n∗ = dimC (V∗), `∗ = dimQ (Y ∗),

S′ = Cd

S
, V ′ = V

V∗
, Y ′ = Y

Y ∗
,

d ′ = dimC (S′), n′ = dimC (V ′), `′ = dimQ (Y ′),

so that d = d∗ + d ′, n = n∗ + n′ and ` = `∗ + `′.
Check that the following statements are equivalent to Corollary 11.14.

(1) Assume d > n. Show the existence of a subspace S of Cd , rational overQ , of codimension
d ′ ≥ 1 such that
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`′ + d ′

d ′
≤ d

d − n
·

(1’) Assume Y 6= {0}. Show the existence of a subspace S of Cd , rational over Q , for which

(d∗, `∗) 6= (0, 0) and
d∗

d∗ + `∗
≤ n

`
·

(2) Assume d > n and Y 6= {0}. Assume further that for any S for which Y ∩ S 6= {0}, we have

n∗

`∗
≥ n

`
·

Assume furthermore that there is no S 6= Cd which contains Y . Check

`(d − n) ≤ dn.

(2’) Assume d > n and Y 6= {0}. Assume further that for any S 6= Cd , we have

n′

d ′
≤ n

d
·

Assume furthermore that there is no S 6= {0} contained in V. Check

`(d − n) ≤ dn.

(3) Assume Y 6= {0}. Then the family of S for which `∗ 6= 0 and n∗/`∗ is minimal is not empty.
Let S be such an element for which d∗ is minimal. Assume d∗ > n∗. Check

n

`
≥ n∗

`∗
≥ d∗ − n∗

d∗
·

Exercise 11.7. Let F be any subfield of Q . Define LF as the F-vector space spanned by 1
and L. Extend the results of § 11.6, as well as Exercise 11.6, replacing Q by F . For instance
prove:

• Let U be a vector subspace of Cd of dimension n < d. Among the subspaces of T which
are rational over Q and distinct from Cd , we select one for which the quantity n′/d ′ is
minimal, with

n′ = dimC

(
U

U ∩ T

)
, d ′ = dimC

(
Cd

T

)
·

Then the dimension `′ of the F-vector space U ∩Ld
F/U ∩ T ∩Ld

F is finite and satisfies

`′

d ′ + `′
≤ n′

d ′
≤ n

d
·

Hint. See [Roy 1992b], Remark (i) p.37.
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Exercise 11.8.
a) Deduce from Corollary 11.16 the following result. Let x1, . . . , xd beQ-linearly independent
complex numbers and y1, . . . , y` be also Q-linearly independent complex numbers. Assume
d` > d + `. Then one at least of the d` numbers xi y j (1 ≤ i ≤ d, 1 ≤ j ≤ `) does not belong
to Q + L.

b) Deduce from the five exponentials Theorem of § 11.3.3:

• Let λ0 and λ1 be nonzero elements of L and β a nonzero algebraic number. Then one at
least of the two numbers

eβλ0λ1 , e(βλ0)2λ1

is transcendental.

c) Deduce that one at least of the two numbers

2log 2, 2(log 2)2

is transcendental.

Exercise 11.9. Let λi j (0 ≤ i ≤ n, 1 ≤ j ≤ m) be elements in L and t1, . . . , tn complex
numbers. Assume m > n(n + 1). Assume also

n∑

i=1

tiλi j = λ0 j (1 ≤ j ≤ m).

a) If the m elements
(λ1 j , . . . , λnj ) (1 ≤ j ≤ m)

in Ln are Q-linearly independent, then the numbers 1, t1, . . . , tn are Q-linearly dependent.
b) If the mn numbers

λi j (1 ≤ i ≤ n, 1 ≤ j ≤ m)

are Q-linearly independent, then the numbers t1, . . . , tn are are all rational.

Hint. See [W 1981], Corollary 1.2.

Exercise 11.10. Let λi j (1 ≤ i ≤ n, 0 ≤ j ≤ m) be elements in L with m > n2. Assume
λ10, . . . , λn0 are Q-linearly independent. Assume also the m elements

(λ1 j , . . . , λnj ) (1 ≤ j ≤ m)

in Ln are Q-linearly independent. Show that one at least of the numbers

exp

(
n∑

i=1

λi0λi j

)
(1 ≤ j ≤ m)

is transcendental

Hint. (See [W 1990]). Consider the hyperplane V of equation

λ10(zn+1 − z1) + · · · + λn0(z2n − zn) = z2n+1

in C2n+1. Using Baker’s Theorem, check that V satisfies (11.1) for d0 = n and d1 = n + 1.

Check also dimQ
(
V ∩ Q2n+1) ≥ n. Define
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λ0 j =
n∑

i=1

λi0λi j (1 ≤ j ≤ m).

Deduce that one at least of the m + n points
(
1, 0, . . . , 0,−λi0

)
(1 ≤ i ≤ n)

(
0, . . . , 0, λ1 j , . . . , λnj , λ0 j

)
(1 ≤ j ≤ m)

does not belong to LG = Q
n ×Ln+1.

Exercise 11.11.
a) Let G be a subgroup of Rd . Show that the following properties are equivalent.

(i) There exists a finitely generated subgroup of G which is dense in Rd .
(ii) For each hyperplane V of Rd , the lower bound

rkZ

(
G + V

V

)
≥ 2

holds.
(iii) For each vector subspace V of Rd with V 6= Rd , the lower bound

rkZ

(
G + V

V

)
> dimR

(
Rd

V

)

holds.

b) Let ` and d be positive integers with ` > d2 − d + 1. Let αi j , (1 ≤ i ≤ d, 1 ≤ j ≤ `) be
multiplicatively independent positive real algebraic numbers. Denote by R∗+ the multiplicative
group of positive real numbers, and by0 the multiplicative subgroup of (R∗+)d which is spanned
by α1, . . . , α`, with α j = (α1 j , . . . , αd j ):

0 =

{(∏̀

j=1

α
s j
1 j , . . . ,

∏̀

j=1

α
s j
d j

)
; s = (s1, . . . , s`) ∈ Z`

}
.

Prove that 0 is dense in (R∗+)d .

Hint. Let Y be the subgroup of Rd which is spanned by λ1, . . . , λ`, with

λ j = (logα1 j , . . . , logαd j ), (1 ≤ j ≤ `).

Show that for each hyperplane V of Rd ,

rkZ

(
Y + V

V

)
≥ `− d(d − 1).

Deduce from a) that Y is dense in Rd , and conclude.



              

12. Lower Bounds for the Rank of Matrices

Hermite-Lindemann’s Theorem, Gel’fond-Schneider’s Theorem and the four expo-
nentials Conjecture which have been stated in Chap. 1 can be phrased in terms of
rank of 2× 2 matrices, respectively

(
β0 β1

β2 λ

)
,

(
β0 β1

λ0 λ1

)
,

(
λ1 λ2

λ3 λ4

)
,

where β0, β1, β2 are algebraic numbers and λ, λ0, . . . , λ4 are elements of L =
exp−1(Q×). In this chapter we study the rank of a matrix whose entries are either
algebraic numbers, or else logarithms of algebraic numbers, and more generally
whose entries are linear combinations with algebraic coefficients of logarithms of
algebraic numbers.

We first study matrices whose entries are linear polynomials (§ 12.1). This will
enable us to introduce the structural rank (see Chap. 1 § 1.4) which will be our
main tool for studying (in § 12.4) the situation from a conjectural point of view. By
Conjecture 1.15 on algebraic independence of logarithms of algebraic numbers:

(?) Q-linearly independent elements of L are algebraically independent.

As explained in Chap. 1, it is not yet known that the transcendence degree overQ of
the field Q(L) is at least 2. However a few partial results are known, and they deal
with the rank of matrices whose entries are either in L, or else in theQ-vector space

Q + L = {b + λ ; b ∈ Q, λ ∈ L}
spanned by 1 and L, or, more generally, in theQ-vector space L̃ (already considered
in Chap. 11) spanned by 1 and L .

Conjecture 1.15 provides a simple (conjectural) description for the rank of a
matrix whose entries are in L: it should be equal to the structural rank. It turns out
that the Linear Subgroup Theorem (Theorem 11.5) enables one to show: the rank of
a matrix in Matd×`(L) is at least half its structural rank. Moreover, as noticed by
D. Roy, in order to solve the problem of algebraic independence of logarithms, it
would be sufficient to show that the rank of a matrix in Matd×`(Q + L) is equal to
the structural rank.

Theorem 1.16 provides a lower bound for the rank of a d × ` matrix M =
(
λi j
)

with entries in L, namely rank(M) ≥ d`/(d +`). This estimate is valid under a rather
strong hypothesis: one assumes that there is no nontrivial relation
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d∑

i=1

∑̀

j=1

ti s jλi j = 0

with rational integer coefficients t1, . . . , td and s1, . . . , s`. This is a simple but rather
strong assumption: for instance no entry λi j of M is allowed to be zero!

In § 12.2 we prove similar lower bounds for the rank under much weaker
assumptions. We also consider matrices (like in § 1.5)

M =

(
B0 B1

B2 L

) }d0

}d1

︸︷︷︸ ︸︷︷︸
`0 `1

where B0, B1, B2 have algebraic entries, while the entries of L are in L. From Theorem
11.5 we deduce (see Theorem 12.19) that if M has rank

rank(M) <
d1`1 + d1`0 + d0`1

d1 + `1

,

then, after linear combinations of rows and columns, one gets a matrix with many
zeroes.

In § 12.3 we deal with matrices whose entries are linear combinations, with
algebraic coefficients, of logarithms of algebraic numbers.

The main references for all this chapter are [Roy 1990] and [Roy 1989].
In the last section (§ 12.5) we consider quadratic relations between logarithms

of algebraic numbers, following [RoyW 1997a] and [RoyW 1997b].

12.1 Entries are Linear Polynomials

In all this section, K is a field and k a subfield of K .

12.1.1 k-Equivalent Matrices

Two d × ` matrices M and N with entries in K are k-equivalent if there exist two
regular matrices P ∈ GLd (k) and Q ∈ GL`(k) such that N = PMQ. In this case the
rank of M is the same as the rank of N. We shall use Q-equivalence when dealing
with matrices with entries either in L (in § 12.2) or in Q + L (in § 12.3), because
L is a Q-vector space, and for a similar reason we shall use Q-equivalence when
dealing with matrices with entries in L̃ (in § 12.3).

If a matrix M ∈ Matd×`(K ) is k-equivalent to a matrix which can be written by
block as (

A B
C 0

) }d∗
}d ′

︸︷︷︸ ︸︷︷︸
`′ `∗

(12.1)
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then the rank of M is bounded above by d∗ + `′.
The connection with the previous chapter is given by elementary considerations

of linear algebra. Given M ∈ Matd×`(K ), denote by Y the k-vector subspace of K d

spanned by the ` column vectors of M. Further, let S be a vector subspace of K d ,
rational over k, of dimension d∗ and codimension d ′. Select a basis (e1, . . . , ed ) of
kd with ei ∈ S for 1 ≤ i ≤ d∗, and denote by P ∈ GLd (k) the transition matrix from
the standard basis of kd to (e1, . . . , ed ). In the same way, define `∗ = dimk(Y ∩ S)
and let Q ∈ GL`(k) be the matrix associated with a linear automorphism of k` which
maps the last `∗ elements of the standard basis of k` onto elements of Y ∩ S. Then
PMQ has the shape (12.1) with `′ = `− `∗.

12.1.2 Vector Spaces Spanned by Algebraically Independent Elements

Here is the key result (Proposition 1 of [Roy 1990]).

Proposition 12.2. Let E be a k-vector subspace of K which is spanned over k by a
family (finite or not) of elements of K which are algebraically independent over k.

Then any matrix M with entries in E is k-equivalent to a matrix of the form

(
A B
C 0

)

where A is either the zero-size matrix or else a regular square matrix.

Remark. It is convenient not to exclude the following three trivial examples:
– If the matrix M is null, we take d ′ = d and `′ = 0, so that A has size 0× 0;
– If the rows of M are linearly independent over K , we take d ′ = `′ = 0, hence the
size of C is 0× `, which means that M is k-equivalent to a matrix (A,B) where A is
invertible;
– If the columns of M are K -linearly independent, we take d ′ = d and `′ = `, which

means that B has size d × 0: M is k-equivalent to a matrix

(
A

C

)
where A is a square

matrix with maximal rank.

We shall give two proofs of Proposition 12.2 (for the second one only we shall
assume that the field k has infinitely many elements).

For the first proof, we need the following elementary result.

Lemma 12.3. Let E be a k-vector subspace of K . The following properties are
equivalent.

(i) The vector space E is spanned over k by a family of elements in K which are
algebraically independent over k.

(ii) Elements in E which are k-linearly independent are also algebraically inde-
pendent over k.

(iii) If E ′ is a k-vector subspace of E and x an element of E which does not belong
to E ′, then x is transcendental over k(E ′).
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Proof of Lemma 12.3.
(i)⇒ (ii)

Let x1, . . . , xm be k-linearly independent elements of E . Let B be a basis of
E over k consisting of elements in K which are algebraically independent over k.
We write each xi (1 ≤ i ≤ m) as a linear combination, with coefficients in k, of
elements of B. This involves only finitely many elements of B, say y1, . . . , yn , which
are algebraically independent over k:

xi =
n∑

j=1

ai j y j (1 ≤ i ≤ m).

The matrix
(
ai j
)

1≤i≤m
1≤ j≤n

has rank m. From linear algebra it follows that there is a subset

{z1, . . . , zn−m} of {y1, . . . , yn} such that

k(y1, . . . , yn) = k(x1, . . . , xm, z1, . . . , zn−m).

Therefore x1, . . . , xm are algebraically independent over k.

(ii)⇒ (iii)
Let x ∈ E be algebraic over k(E ′). There exist y1, . . . , yn in E ′, linearly

independent over k, such that x is algebraic over k(y1, . . . , yn). Then y1, . . . , yn, x
are algebraically dependent over k, and since they belong to E it follows from (ii)
that they are linearly dependent over k. Since y1, . . . , yn are linearly independent
over k, we conclude x ∈ ky1 + · · · + kyn ⊂ E ′.

(iii)⇒ (i)
Let B be a basis of E over k. We shall prove that any set {y1, . . . , yn} of k-linearly

independent elements in B consists of k-algebraically independent elements. We
prove this result by induction on n. For n = 1 we use assumption (iii) with E ′ = {0}:
since y1 6= 0, we have y1 6∈ E ′, hence y1 is transcendental over k.

Assume the result holds for n − 1 with n ≥ 2. Let y1, . . . , yn be k-linearly
independent elements of B. Consider the vector subspace E ′ of E over k spanned
by y1, . . . , yn−1. From the induction hypothesis we deduce that y1, . . . , yn−1 are
algebraically independent over k. Since yn 6∈ E ′ we deduce from (iii) that yn is
transcendental over the field k(y1, . . . , yn−1). Hence y1, . . . , yn are algebraically
independent over k. ¤

First proof of Proposition 12.2. Let E0 be the k-vector subspace of E spanned by the
entries of M. Let us warm up by looking at the situation where the dimension n of
E0 is 1 or 2.

For n = 1 we can write M = Nx where N has entries in k and x ∈ E , x 6= 0.
Let r be the rank of N. Let P and Q be regular square matrices with entries in k

such that PNQ =

(
Ir 0
0 0

)
. Then PMQ =

(
Ir x 0
0 0

)
. We deduce the conclusion of

Proposition 12.2 with A = Ir x , B = 0, C = 0.
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Next consider the case n = 2. Write M = M1x1 + M2x2 with x1 and x2 in E
linearly (hence, by Lemma 12.3, also algebraically) independent over k, while M1

and M2 are matrices with entries in k. Denote by r1 the rank of M1. There exist

regular matrices P1 and Q1 with entries in k such that P1M1Q1 =

(
Ir1 0
0 0

)
. Denote

by A2,B2,C2,D2 the matrices with entries in k (where A2 is a square r1× r1 matrix)

such that P1M2Q1 =

(
A2 B2

C2 D2

)
. Hence

P1MQ1 =

(
Ir1 x1 + A2x2 B2x2

C2x2 D2x2

)
.

Let now P2 and Q2 be regular matrices with entries in k such that P2D2Q2 =(
Ir2 0
0 0

)
, where r2 is the rank of D2. Then

(
Ir1 0
0 P2

)
P1MQ1

(
Ir1 0
0 Q2

)
=

( Ir1 x1 + A2x2 B′2x2 B′′2x2

C′2x2 Ir2 x2 0
C′′2x2 0 0

)

where B′2,B′′2,C′2,C′′2 have entries in k. We now set

A =

(
Ir1 x1 + A2x2 B′2x2

C′2x2 Ir2 x2

)
.

The determinant of A is a polynomial in x1 and x2 and the coefficient of xr1
1 xr2

2 is 1.
Hence this determinant is not zero.

After having considered the cases n = 1 and n = 2, here is the general case. We
proceed by induction on n. Assume n ≥ 1. Then E0 contains a nonzero element x .
Let E1 be a subspace of E0 such that E0 = E1⊕ kx . Write M = xN + M1 with N having
entries in k, while M1 has entries in E1. If r denotes the rank of N, there exist matrices
P ∈ GLd (k) and Q ∈ GL`(k) such that

PNQ =

(
Ir 0
0 0

)
.

Then

PMQ =

(
x Ir + A1 B1

C1 D1

)
,

with A1, B1, C1 and D1 having their entries in E1. Use the induction hypothesis for

D1: there exist P′ ∈ GLd−r (k) and Q′ ∈ GL`−r (k) such that P′D1Q′ =

(
A′ B′
C′ 0

)
,

where A′ is a regular matrix with entries in E1. Then
(

Ir 0
0 P′

)(
x Ir + A1 B1

C1 D1

)(
Ir 0
0 Q′

)
=

(
A B
C 0

)

with
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A =

(
x Ir + A1 B′′

C′′ A′

)
,

the entries of the matrices B′′ and C′′ being in E1. The determinant of A is a polynomial
in x with coefficients in k(E1), whose term of highest degree is xr det A′. Since x
does not belong to E1, by Lemma 12.3 x is transcendental over k(E1), and since A′
is regular, we conclude det A 6= 0. ¤
This proof of Proposition 12.2 yields a more general result where the xi are not
assumed to be algebraically independent ([Roy 1989], Lemme).

Proposition 12.4. Let x1, . . . , xn be k-linearly independent elements of K . For
0 ≤ m ≤ n denote by Em = kx1 + · · · + kxm the k-vector subspace of K spanned
by x1, . . . , xm . Then any d × ` matrix with entries in En is k-equivalent to a block
matrix 



M11 · · · M1n M1,n+1
...

. . .
...

...
Mn1 · · · Mnn Mn,n+1

Mn+1,1 · · · Mn+1,n 0




with the following properties:

• For 1 ≤ i ≤ n, Mi i is a square ri × ri matrix with ri ≥ 0, the diagonal elements
belong to En−i+1 and not to En−i , the other elements belong to En−i .
• For 1 ≤ i < j ≤ n + 1, the entries of the matrices Mi j and M j i are in En−i .

Proposition 12.2 again follows from the fact that the determinant of the matrix



M11 · · · M1n
...

. . .
...

Mn1 · · · Mnn




is a nonzero polynomial in x1, . . . , xn , since the coefficient of the monomial xr1
n · · · xrn

1
is not zero.

Proof of Proposition 12.4. We repeat the proof of Proposition 12.2: write M = xnA+N
where A is a matrix of rank r1−1 with entries in k while N has entries in En−1. There

exist matrices P ∈ GLd (k) and Q ∈ GL`(k) with PAQ =

(
Ir1 0
0 0

)
. Then

PMQ =

(
M11 N1

N2 M′

)
,

where M11 is a r1 × r1 matrix whose diagonal has entries in En \ En−1, while the
other entries are in En−1. The entries of matrices N1, N2 and M′ are in En−1. If n = 1
Proposition 12.4 follows. If n ≥ 2 we use the induction hypothesis for M′. ¤
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Before starting the second proof, let us come back to the initial problem. Denote
by k[X1, . . . , Xn] the ring of polynomials in n variables over k and consider a d × `
matrix M = M1 X1 + · · · + Mn Xn , where each Mi has entries in k. We keep the same
symbol Mi to denote the associated linear map from k` to kd in the canonical bases.
We shall assume k is infinite, and we shall specialize X i in k. It is therefore natural to
introduce the k-vector subspace T of Homk(k`, kd ) which is spanned by M1, . . . ,Mn .
Consider in T a matrix N of maximal rank. After a change of bases, we may assume

N =

(
Ir 0
0 0

)
, where r is the rank of N. We shall prove (this is the main point) that

in these new bases, we have Mi =

(
Ai Bi

Ci 0

)
, where Ai is a square r × r matrix.

Then

M =

(
A B
C 0

)
,

with

A =
n∑

i=1

Ai X i , B =
n∑

i=1

Bi X i , C =
n∑

i=1

Ci X i .

Then A is a regular matrix (one of its specializations is Ir ).
It remains to check that each matrix Mi can be written as we have claimed.

Hence we need to prove Mi · x ∈ kr × {0}n−r for x ∈ {0}r × kn−r , which means
Mi (ker N) ⊂ ImN.

The following result is Proposition 3 of [Roy 1990] (see also Lemma 3.2 of [Roy
1992c]).

Proposition 12.5. Let k be a field with infinitely many elements, U and V vector
spaces of finite dimension over k and T a vector subspace of Homk(U,V). Let θ be
an element in T of maximal rank. Then for any ξ ∈ T we have ξ (ker θ ) ⊂ Imθ .

Proof of Proposition 12.5. Fix θ ∈ T of maximal rank, ξ ∈ T and u ∈ ker θ . Let W
be a vector subspace of U such that U = W ⊕ ker θ and let (u1, . . . , ur ) be a basis
of W , so that θ (u1), . . . , θ (ur ) is a basis of Imθ . For any a ∈ k, the linear map θ + aξ
has rank ≤ r , hence

(θ + aξ )(u1), . . . , (θ + aξ )(ur ), (θ + aξ )(u)

are k-linearly dependent. Since u ∈ ker θ we have (θ + aξ )(u) = aξ (u). It follows
that for any a ∈ k, a 6= 0, the following r + 1 elements

(θ + aξ )(u1), . . . , (θ + aξ )(ur ), ξ (u),

which we denote by µ(a)
1 , . . . , µ

(a)
r+1, are also k-linearly dependent. Let us check that

this holds true also for a = 0. Indeed, in a basis (e1, . . . , ed ) of V, the (r + 1) × d
matrix associated with µ(a)

1 , . . . , µ
(a)
r+1 has rank ≤ r . Each of the

( d
r+1

)
determinants

of (r + 1)× (r + 1) submatrices is zero. Consider any one of them: it is a polynomial
in a, which vanishes for any a ∈ k×. Since k is infinite, it also vanishes at 0.
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It follows that the vectors θ (u1), . . . , θ (ur ), ξ (u) are k-linearly dependent.
Therefore ξ (u) is a linear combination of θ (u1), . . . , θ (ur ), hence belongs to Imθ .

¤

Proof of Proposition 12.2 when the field k is infinite.
Write the matrix M as M1x1 + · · · + Mn xn where x1, . . . , xn are algebraically

independent over k. Denote by T the subspace of Matd×`(k) which is spanned by
M1, . . . ,Mn , and by N an element in T of maximal rank, say r . Let P ∈ GLd (k) and

Q ∈ GL`(k) be regular matrices such that PNQ =

(
Ir 0
0 0

)
. From Proposition 12.5

we deduce that each of the matrices PMi Q is of the form

(
Ai Bi

Ci 0

)
, where Ai is a

square r × r matrix. Then

PMQ =

(
A B
C 0

)
,

with

A =
n∑

i=1

Ai xi , B =
n∑

i=1

Bi xi , C =
n∑

i=1

Ci xi .

The determinant of A is a polynomial in x1, . . . , xn . Since there exists u ∈ kn such
that N = M1u1 + · · · + Mnun , this polynomial does not vanish at the point u. Since
x1, . . . , xn are algebraically independent over k, we deduce det A 6= 0, which shows
that A is a regular matrix. ¤

12.1.3 Property ( A
C

B
0
)

Let E be a k-vector subspace of K . We denote by ( A

C

B

0
) the following property:

Any nonzero matrix M with entries in E is k-equivalent to a matrix

(
A B
C 0

)

where A is a regular square matrix.

This is a property for the triple (k, K , E ), but we shall often simply say only that E
satisfies ( A

C

B

0
).

Remark. By Proposition 12.2, any k-vector space spanned by algebraically inde-
pendent elements over k satisfies Property ( A

C

B

0
). Moreover

If E0 is a k-vector subspace of K which is spanned by k-algebraically independent
elements and if E0 ∩ k = {0}, then E = k + E0 satisfies Property ( A

C

B

0
).

Indeed, as a k-vector space, E is isomorphic to the subspace E ′ = k X + E0 of K (X ),
and Property ( A

C

B

0
) holds for the triple (k, K (X ), E ′) by Proposition 12.2.

The next result uses the definition of K -vector subspace of K d , rational over k,
when K is a field and k a subfield (see Exercise 1.4).
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Proposition 12.6. Let E be a k-vector subspace of K satisfying Property ( A

C

B

0
). Let

V be a K -vector subspace of K d of dimension n < d and let Y be a k-vector space
of finite dimension contained in V ∩ Ed . Then there exists a K -vector subspace S of
K d , rational over k, such that, if we write

d ′ = dimK

(
K d

S

)
and `′ = dimk

(
Y

Y ∩ S

)
,

then
`′ ≤ d − d ′ ≤ n.

In order to compare with Corollary 11.14, one can write the conclusion as

`′

d ′ + `′
≤ d − d ′

d
≤ n

d
·

Proof. If Y = {0}, we take S = {0}. Assume Y 6= {0}. Let η
1
, . . . , η

`
be a basis of Y

over k. Consider the matrix M whose j-th column consists of the components yi j of
η

j
in the canonical basis of K d . From condition ( A

C

B

0
) we obtain two matrices

P =
(

psi
)

1≤s,i≤d ∈ GLd (k) and Q =
(
q j t
)

1≤ j,t≤` ∈ GL`(k)

such that PMQ =

(
A B
C 0

)
where A is a regular r×r matrix. Since the columns of M

span a K -vector space of dimension ≤ n, we have 1 ≤ r ≤ n < d. The coefficients
of PMQ are

mst =
d∑

i=1

∑̀

j=1

psi yi j q j t , 1 ≤ s ≤ d, 1 ≤ t ≤ `

and we have
mst = 0 for r < s ≤ d and r < t ≤ `.

Let S denote the subspace of K d intersection of hyperplanes

d∑

i=1

psi zi = 0, (r < s ≤ d).

Its codimension d ′ in K d is d − r . Define θ1, . . . , θ ` in Y by

θ t =
∑̀

j=1

q j tη j
, (1 ≤ t ≤ `).

Since Q is regular, these elements provide another basis of Y over k and the
` − r elements θ r+1, . . . , θ ` belong to S. Hence dimk(Y ∩ S) ≥ ` − r and
`′ = dimk(Y/Y ∩ S) ≤ r . ¤
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Proposition 12.7. Let E be a k-vector subspace of K satisfying Property ( A

C

B

0
). Let

V be a K -vector subspace of K d of dimension n such that V ∩ kd = {0}. Then the
k-vector subspace V ∩ Ed has dimension ≤ n(n + 1)/2.

Proof. For d = 1 we have V = {0} and V ∩ E = {0}. Assume now d ≥ 2. By
induction on d we shall prove the following assertion: for any r < d, if V1 is a
k-vector subspace of K r such that V1 ∩ kr = {0}, then the k-vector space V1 ∩ E r

has finite dimension ≤ r (r − 1)/2.
Take ` elements in V ∩ Ed which are linearly independent over k, and consider

the d × ` matrix M whose columns are given by the coordinates of these elements.
The rank of M is ≤ n < d. From Property ( A

C

B

0
) it follows that M is k-equivalent

to a matrix

(
A B
C 0

)
, where A is a regular r × r matrix. The rank of M is ≥ r ,

hence r ≤ n < d. Put `1 = ` − r , so that B is a r × `1 matrix. Let V1 be the
k-vector space spanned by the columns of B in K r . Since V contains V1 × {0}d−r ,
we have V1∩kr = {0}. The columns of M are k-linearly independent, hence the same

holds for

(
A B
C 0

)
, and also for B. Therefore we can use the induction hypothesis:

`1 ≤ r (r − 1)/2. We deduce

` ≤ r +
1

2
r (r − 1) ≤ n +

1

2
n(n − 1) =

1

2
n(n + 1)·

Therefore the conclusion of Proposition 12.7 follows from the induction hypothesis.
Moreover, since n ≤ d − 1, we find ` ≤ d(d − 1)/2, which completes the inductive
argument. ¤

12.1.4 Structural Rank

Following [Roy 1989] and [Roy 1995], we now define the structural rank with respect
to k of a matrix M whose entries are in K . Consider the k-vector subspace E of K
spanned by the entries of M. Choose an injective morphism ϕ of E into a k-vector
space k X1 + · · ·+ k Xn . The image ϕ(M) of M is a matrix whose entries are in the field
k(X1, . . . , Xn) of rational fractions. We shall check that its rank does not depend
on the choice of ϕ. This will be the structural rank of M, which will be denoted by
rstr(M).

Lemma 12.8. Let M be a matrix with entries in K . Choose a basis (e1, . . . , en) of
the k-vector subspace of K spanned by the entries of M. Write

M = M1e1 + · · · + Mnen,

where M1, . . . ,Mn are matrices of the same size as M with entries in k. Then the
rank of the matrix M1 X1 + · · · + Mn Xn does not depend on the choice of the basis
(e1, . . . , en).



                   

12.1 Entries are Linear Polynomials 427

Proof. Assume (x1, . . . , xn) and (y1, . . . , yn) are two families of k-algebraically
independent elements of K and M1, . . . ,Mn be matrices with entries in k. Then
the rank of the matrix M1x1 + · · ·+ Mn xn is the same as the rank of M1 y1 + · · ·+ Mn yn .
In particular for K = k(X1, . . . , Xn), if (Y1, . . . , Yn) is a basis of the k-vector space
k X1 + · · · + k Xn , then the two matrices M1 X1 + · · · + Mn Xn and M1Y1 + · · · + MnYn

have the same rank. Lemma 12.8 easily follows. ¤

Examples.
1. If the k-vector space E is spanned by elements of K which are algebraically
independent over k, then the rank of M is the same as its structural rank with respect
to k.
2. If E has dimension 1, then again the rank of any matrix is the same as the structural
rank with respect to k. For instance the structural rank with respect to K is nothing
else than the rank of M.
3. The rank of M is always bounded above by its structural rank. Here is an example
with a strict inequality. Let P ∈ K [X ] be the determinant of a square d × d matrix
M0 +M1 X , where M0 and M1 have entries in k, and let θ ∈ K be a root of P with θ 6∈ k.
The matrix M0 + M1θ has rank < d (its determinant is P(θ ) = 0) but its structural
rank with respect to k is d (because the determinant of M0 + M1 X is P(X ) 6= 0). For

instance19 the matrix

(√
2 2

1
√

2

)
has rank 1 but structural rank 2 with respect to

Q. This shows that the structural rank depends on the field k.

Remark. If M is a r × r matrix with entries in a k-vector subspace of K which
satisfies Property ( A

C

B

0
),, then the rank of M is at least r , while its structural rank

with respect to k is at most 2r . Indeed, if (x1, . . . , xn) is a basis of the k-vector space
spanned by the entries of M , so that M = M1x1 + · · · + Mn xn where each Mi has
entries in k, and if M1 X1 + · · · + Mn Xn is equivalent over k to a matrix (12.1), then

the matrix

(
A

C

)
has rank r , while

(
B

0

)
has rank ≤ r . Therefore

If E is a k-vector subspace of K which satisfies Property ( A

C

B

0
), the rank of any

matrix with coefficients in E is at least half its structural rank with respect to k.

The determinant of a matrix whose entries are linear forms is a homogeneous
polynomial. In order to deal with nonhomogeneous polynomials, we consider
matrices whose entries are linear polynomials (i.e. polynomials of total degree≤ 1).

Lemma 12.9. Let M be a matrix with entries in K , E the k-vector subspace of K
spanned by the entries of M, and ϕ an injective linear map from E into a k-vector
space k + k X1 + · · · + k Xn . Then the rank of the matrix ϕ(M) is the same as the
structural rank of M with respect to k.

19 On the other hand, by Lemma 12.16, the rank of any matrix M with entries in the field
Q(
√

2) is at least half the structural rank of M with respect to Q .
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Proof of Lemma 12.9. Compose ϕ with the injective linear mapping

k + k X1 + · · · + k Xn −→ kY0 + kY1 + · · · + kYn

a0 + a1 X1 + · · · + an Xn 7−→ a0Y0 + a1Y1 + · · · + anYn

and use Lemma 12.8. ¤

12.1.5 Any Polynomial is the Determinant of a Matrix

Again, the results of this section are due to D. Roy [Roy 1990](see also [Roy
1995]§ 3.1).

We first show that any polynomial in variables X1, . . . , Xn is the determinant of
a matrix whose entries are linear polynomials in 1, X1, . . . , Xn .

Proposition 12.10. For any P ∈ k[X1, . . . , Xn] there exists a square matrix with
entries in the k-vector space k + k X1 + · · · + k Xn whose determinant is P .

The proof involves two lemmas.

Lemma 12.11. Let M be a matrix whose entries are bilinear forms

M =

(
S∑

s=0

T∑

t=0

mi jst XsYt

)

1≤i≤d
1≤ j≤`

.

There exist a matrix A whose entries are linear forms in X0, . . . , X S and a matrix B
whose entries are linear forms in Y0, . . . , YT such that M = AB.

Proof of Lemma 12.11. Here is one solution (plainly, there is no unicity). Write

M = M0 X0 + · · · + MS X S

with

Ms =

(
T∑

t=0

mi jst Yt

)

1≤i≤d
1≤ j≤`

, (0 ≤ s ≤ S).

Take for A the d × d S matrix

A =
(
X0Id , . . . , X S Id

)

and for B the d S × ` matrix

B =




M0
...

MS


 .

¤

Lemma 12.12. The determinant of a product AB of a d × ` matrix A by a ` × d
matrix B is the determinant of the (d + `)× (d + `) matrix written as blocks

(
I` B
−A 0

)
.
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Proof of Lemma 12.12. Multiply on the left the matrix

(
I` B
−A 0

)
by the determinant

1 matrix

(
I` 0
A Id

)
. This will not change the determinant, and the product is

(
I` B
0 AB

)
, whose determinant is det(AB). ¤

Proof of Proposition 12.10. If P has degree 1 the result is trivial. We first explain
the argument by considering a polynomial P of total degree 2. Write P as
L0 + L1 X1 + · · · + Ln Xn where each L i is a polynomial of degree ≤ 1, which
means that each L i lies in k + k X1 + · · · + k Xn . Then P is the determinant of the
(n + 2)× (n + 2) matrix




1
X1

In+1
...

Xn

−L0 · · · −Ln 0




Consider now the general case. For any m ≥ 1, denote by Em the k-vector
subspace of k[X1, . . . , Xn] consisting of all polynomials of degree≤ m. For instance
E1 = k + k X1 + · · · + k Xn . Let M be a matrix with entries in Em with m ≥ 2. Write
M0 + M1 X1 + · · · + Mn Xn , where each Mi has entries in Em−1. Thanks to Lemma
12.11 (with S = T = n, Ys = Xs for 0 ≤ s ≤ n), we may write M = AB where the
entries of A are in Em−1 while the entries of B lie in E1. By Lemma 12.12, M has

the same determinant as the square matrix

(
I` B
−A 0

)
whose entries are in Em−1.

By induction on m this implies that any square matrix M with entries in Em has
the same determinant as a square matrix whose entries are in E1. In particular any
polynomial (which is the determinant of a 1× 1 matrix with entries in Em , when m
is any upper bound for the total degree) is the determinant of a square matrix with
entries in E1. ¤

Remark. The determinant of a square d× d matrix whose entries are homogeneous
linear forms in k X0 + · · · + k Xn is a homogeneous polynomial of degree d. But not
all homogeneous polynomials occur as such determinants (see Exercise 12.4).

Proposition 12.13. For a subspace E of K over k containing k the four following
properties are equivalent:

(i) There exists a basis (xi )i∈I of E over k with 0 ∈ I , x0 = 1 and {xi ; i ∈ I, i 6= 0}
algebraically independent over k.

(i i) If x1, . . . , xn are elements in E such that 1, x1, . . . , xn are linearly independent
over k, then x1, . . . , xn are algebraically independent over k.

(i i i) For any tuple (x0, . . . , xn) which consists of k-linearly independent elements
of E and for any nonzero homogeneous polynomial P ∈ k[X0, . . . , Xn], the
number P(x0, . . . , xn) is not zero.
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(iv) Any matrix M with entries in E has a rank equal to its structural rank with
respect to k.

Proof of Proposition 12.13. Implication (i i i)⇒ (i i) is easy (take x0 = 1), (i i)⇒ (i)
is plain, while (i)⇒ (iv) follows from Lemma 12.9.

It remains to check (iv) ⇒ (i i i). Assume (i i i) does not hold: there exist
x0, . . . , xn in E which are k-linearly independent such that, if we set yi = xi/x0,
then y1, . . . , yn are algebraically dependent over k. Let P ∈ k[X1, . . . , Xn] be a
nonzero polynomial such that P(y1, . . . , yn) = 0. Proposition 12.10 shows that there
exists a square matrix M0+M1 X1+· · ·+Mn Xn with entries in k+k X1+· · ·+k Xn whose
determinant is P . Hence the determinant of the matrix M = M0 + M1 y1 + · · ·+ Mn yn is
zero. Since 1, y1, . . . , yn are k-linearly independent, there exists an injective k-linear
map ϕ from k + ky1 + · · · + kyn into k + k X1 + · · · + k Xn which maps yi onto X i and
is the identity on k. The determinant of ϕ(M) is not zero, hence the structural rank of
M with respect to k is strictly larger than the rank of M and condition (iv) does not
hold. ¤

We apply Proposition 12.13 to a k-vector subspace of K of the form k +E0 where
k ∩ E0 = {0} so that the sum k + E0 is direct.

Corollary 12.14. Let E0 be a k-vector subspace of K such that k ∩ E0 = {0}. Then
the two following properties are equivalent.

(i) Elements of E0 which are k-linearly independent are algebraically independent
over k.

(i i) The rank of any matrix M with coefficients in k + E0 is equal to the structural
rank of M with respect to k.

12.1.6 Conclusion

One can summarize the preceding properties as follows. Consider a triple (k, K , E0),
where k is a field, K an extension of k and E0 a k-vector subspace of K satisfying
E0 ∩ k = {0}. Define E = k + E0.

xi a.i. ⇐⇒ r = rstr

⇓
` ≤ n(n + 1)/2 ⇐ ( A

C

B

0
)

⇓ ⇓
` ≤ n(n + 1) r ≥ rstr/2

In the first row, the left hand side means that E0 is spanned as a k-vector space
by elements of K which are algebraically independent over k. The right hand side
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means that the rank of any matrix with entries in E is equal to its structural rank with
respect to k. The fact that these two properties are equivalent is Corollary 12.14.

In the intermediate row, the right hand side is Property ( A

C

B

0
) for the k-vector

space E , the left hand side means that for any K -vector subspace V of K d satisfying
V ∩ kd = {0}, the dimension ` of V ∩ Ed over k is finite and ≤ n(n + 1)/2. The
implication from right to left is Proposition 12.7.

Property ( A

C

B

0
) is a consequence of r = rstr and it implies r ≥ rstr/2 as pointed

out in § 12.1.5. Lemmas 12.15 and 12.16 below show that the converse implications
do not hold: it is not possible to go from one row to the row above it.

For arithmetic applications (see § 12.2 and 12.3), two cases are most important:
(1) Take k = Q, E0 is the Q-vector space L of logarithms of algebraic numbers,
E = Q+L (see §§ 12.2 and 12.3). The condition E0∩Q = {0} is Hermite-Lindemann’s
Theorem.
(2) Choose k = Q, E0 is the Q-vector space of homogeneous linear combinations
of elements of L with coefficients in Q, while E = L̃ (see § 12.3). The condition
E0 ∩Q = {0} follows from Baker’s Theorem.

By Conjecture 1.15, one conjectures that the properties on the top line are satisfied
in both cases. As we shall see below, the bottom line corresponds to the known facts
so far. It would already be interesting to prove the results corresponding to the
intermediate row: this would include for instance a solution of the four exponentials
Conjecture, but this would not enable us to infer that the fieldQ(L) has transcendence
degree ≥ 2 over Q.

We complete this section with two examples (Proposition 1 of [Roy 1989] and
Theorem 3.4 of [Roy 1995]) whose proofs are left as exercises (12.9 and 12.10).

Lemma 12.15∗. Let x ∈ K be transcendental over k. There exists a k-vector
subspace E of k[x] of infinite dimension which satisfies Property ( A

C

B

0
).

Lemma 12.16∗. Let E be a k-vector subspace of K of dimension≤ 3. Then the rank
of any matrix M with entries in E is at least half its structural rank with respect to k.

Here is a motivation for Lemma 12.16 (cf. Proposition 2 of [Roy 1989]). Let x and
u be two elements in K such that u, ux , ux2 are k-linearly independent. Denote by E
the k-vector space ku + kux + kux2. Then dimk(E ) = 3, and therefore Lemma 12.16
shows that the rank of any matrix M with entries in E is at least half its structural rank
with respect to k. However E does not satisfy a property like the four exponentials
Conjecture: the line V = K (1, x) in K 2 (which is also the hyperplane of equation
z2 = xz1) satisfies V ∩ k2 = {0} (because x 6∈ k), while V ∩ E2 contains the two
points (u, ux) and (ux, ux2) which are k-linearly independent (because x 6∈ k). In
particular this triple (k, K , E ) does not satisfy Property ( A

C

B

0
).
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12.2 Entries are Logarithms of Algebraic Numbers

In Chap. 11 we investigated the relationships between the dimension ` of Q-vector
space V ∩Ld and the dimension n of V, when V is a complex vector subspace of
Cd . Taking a basis over Q of V ∩Ld gives rise to a d × ` matrix M whose entries
are logarithms of algebraic numbers. The question studied in Chap. 11 amounts to
investigate the rank n of M in terms of d and `.

12.2.1 A Consequence of the Linear Subgroup Theorem

From Corollary 11.14 we deduce a lower bound for the rank of matrices with entries
in L as follows (see [W 1981], Th. 2.1).

Theorem 12.17. Any d × ` matrix M of rank n with entries in L is Q-equivalent to
a block matrix (12.1) where the matrix C has size d ′ × `′ with d ′ > 0 and

n ≥ d`′

d ′ + `′
·

We insist that d ′ > 0, but (with the notation of (12.1)) we allow `∗ = 0. In
particular if the conclusion holds with `′ = ` then n ≥ `d/(` + d). For instance if a
matrix with entries in L has its d` entries linearly independent over Q, then its rank
is ≥ `d/(` + d).

Proof of Theorem 12.17. In (12.1) we allow `′ = `. Hence we may, without loss of
generality, assume n < `d/(` + d). Therefore the assumption n < d of Corollary
11.14 is satisfied.

Denote by η
1
, . . . , η

`
the columns of M inCd , by V the complex vector subspace

of Cd which they span and by Y the Q-vector space which they span in Ld . The
dimension n of V is nothing else than the rank of M. From Corollary 11.14 we deduce
that there exists a complex vector subspace S ofCd , rational overQ, of dimension d∗
and codimension d ′ > 0, such that the dimension `′ of the Q-vector space Y/Y ∩ S
satisfies

`′

d ′ + `′
≤ n′

d ′
≤ n

d
·

Let (e1, . . . , ed∗ ) be a basis of S which we complete into a basis (e1, . . . , ed ) ofCd . We
denote by P =

(
phi
)

1≤h,i≤d the transition matrix, so that, for z = (z1, . . . , zd ) ∈ Cd ,

z =
d∑

h=1

d∑

i=1

phi zi eh .

Notice that z ∈ S if and only if
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d∑

i=1

phi zi = 0 for d∗ < h ≤ d.

Next we take a basis (θ1, . . . , θ `) of Y over Q such that (θ `′+1, . . . , θ `) is a basis of
Y ∩ S. Let Q =

(
q j t
)

1≤ j,t≤` the transition matrix between the two bases of Y :

θ t =
∑̀

j=1

q j tη j
(1 ≤ t ≤ `).

For `′ < t ≤ `,
θ t =

(∑̀

j=1

q j tλi j

)

1≤i≤d

is in S, hence for d∗ < h ≤ d we have,
d∑

i=1

phi

∑̀

j=1

q j tλi j = 0,

which means that PMQ has the form (12.1). ¤

Proof of Theorem 1.16. Let M =
(
λi j
)

be a d × ` matrix with entries in L. Assume,
for any t = (t1, . . . , td ) ∈ Zd \ {0} and any s = (s1, . . . , s`) ∈ Z` \ {0},

d∑

i=1

∑̀

j=1

ti s j logαi j 6= 0.

We use Theorem 12.17: since no matrix of the form PMQ can have a vanishing entry,
and since d ′ > 0, in (12.1) we have `∗ = 0, which means `′ = `. Hence the rank of
M is at least d`/(d + `). ¤

12.2.2 Rank and Structural Rank

From Theorem 12.17 we deduce:

Corollary 12.18. Any matrix with entries in L has rank at least half its structural
rank with respect to Q.

Proof. Without loss of generality we may assume rstr = ` = d (just take a square
submatrix of maximal structural rank). From Theorem 12.17 we deduce that the rank
of M is bounded from below by

rank(M) ≥ d`′

d ′ + `′

while the structural rank is bounded from above by

rstr(M) ≤ `′ + d − d ′.

Since rstr(M) = d, we deduce d ′ ≤ `′ and `′/(d ′ + `′) ≥ 1/2. ¤
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12.2.3 A Further Consequence of the Linear Subgroup Theorem

Here is a reformulation of Theorem 11.5 part (1) in terms of matrices.

Theorem 12.19. Let

M =

(
B0 B1

B2 L

) }d0

}d1

︸︷︷︸ ︸︷︷︸
`0 `1

be a d × ` matrix of rank n with 1 ≤ n < d, where B0, B1, B2 are matrices with
entries in Q, while the entries of L are in L. Then there exist regular matrices

P =

(
P0 0
0 P1

)
and Q =

(
Q0 0
0 Q1

)

where
P0 ∈ GLd0 (Q), P1 ∈ GLd1 (Q),

Q0 ∈ GL`0 (Q), Q1 ∈ GL`1 (Q),

such that

PMQ =

(
P0B0Q0 P0B1Q1

P1B2Q0 P1LQ1

)

with

P0B0Q0 =

(
B00 B01

B02 0

)
P0B1Q1 =

(
B10 B11

B12 0

) }d∗0
}d ′0

P1B2Q0 =

(
B20 B21

B22 0

)
P1LQ1 =

(
L0 L1

L2 0

) }d∗1
}d ′1

︸︷︷︸ ︸︷︷︸
`′0 `∗0

︸︷︷︸ ︸︷︷︸
`′1 `∗1

and d ′ = d ′0 + d ′1 > `′0,

(`′1 + d ′1)(d − n) ≤ d1(d ′ − `′0).

As for Theorem 12.17, we insist that d ′ > 0, but we allow `∗0 = 0 or/and `∗1 = 0.
Examples involving matrices like

( 1 1 0 0
0 γ x1/x2 x1 y1 x1 y2

−γ 0 x2 y1 x2 y2

)
and




1 0 β11 β12 β13

0 −1 β21 β22 β23

−1 0 λ11 λ12 λ13

0 1 λ21 λ22 λ23




occur in § 11.3.3.
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12.3 Entries are Linear Combinations of Logarithms

We now translate some of the results of § 11.6 in terms of matrices whose entries are
in Q + L or more generally in L̃.

12.3.1 A Consequence of the Linear Subgroup Theorem

The following result is nothing else than Proposition 11.19.

Theorem 12.20. Denote by (K, L) either (Q,Q+L) or else (Q, L̃). Let M be a d×`
matrix (with d > 0) of rank n with entries in L. Then M is K-equivalent to a block
matrix (12.1) where the matrix C has size d ′ × `′ with d ′ > 0 and

n ≥ d`′

d ′ + `′
·

One deduces the analog of Theorem 1.16 for L̃.

Corollary 12.21. Let M =
(
3i j

)
1≤i≤d
1≤ j≤`

be a d × ` matrix with entries in L̃. Assume,

for any τ = (τ1, . . . , τd ) ∈ Qd \ {0} and any σ = (σ1, . . . , σ`) ∈ Q` \ {0},
d∑

i=1

∑̀

j=1

τiσ j3i j 6= 0.

Then the rank of M is at least d`/(d + `).

12.3.2 Rank and Structural Rank

For a matrix with entries in L or inQ + L, it is natural to consider its structural rank
with respect toQ, since L is aQ-vector space. Now L̃ is aQ-vector space; hence for
a matrix with coefficients in L̃, one should rather consider its structural rank with
respect toQ. But L ⊂ Q+L ⊂ L̃. Fortunately, for a matrix M with entries inQ+L,
its structural rank with respect to Q is the same as its structural rank with respect
to Q. Indeed, let 1, λ1, . . . , λm is a basis over Q of the subspace of L spanned by 1
and the entries of M. Write

M = M0 + M1λ1 + · · · + Mmλm

where each Mi is in Matd×`(Q). From Baker’s Theorem, it follows that 1, λ1, . . . , λm

is also a basis overQ of the subspace of L̃ spanned by 1 and the entries of M. Hence
both structural ranks are just the rank of the d × ` matrix

M0 + M1 X1 + · · · + Mm Xm



                      

436 12. Lower Bounds for the Rank of Matrices

with entries in the field Q(X1, . . . , Xm).
Therefore, dealing with matrices with entries in Q + L, we shall not specify the

field with respect to which we consider the structural rank20.

The next statement follows from Theorem 12.20 exactly as Corollary 12.18 from
Theorem 12.17.

Corollary 12.22. Any matrix with entries in L̃ has rank at least half its structural
rank.

Also:

Corollary 12.23. The rank of any matrix with entries in Q + L is at least half its
structural rank.

Therefore the properties stated in the bottom line in the diagram of § 12.1.7
are satisfied for (k, E ) either (Q,Q + L) or (Q, L̃): the left hand side follows from
Corollary 11.15 and the right hand side from Corollaries 12.22 and 12.23.

Lemma 12.15 shows that one cannot deduce from Corollary 12.23 that the
transcendence degree over Q of the field Q(L) is at least 2. Moreover, Lemma
12.16 shows that one cannot deduce either the four exponentials Conjecture.

The strong six exponentials Theorem (Corollary 11.16) follows from Corollary
12.22:

Corollary 12.24. Let M be a d × ` matrix with entries in L̃ whose rows are Q-

linearly independent in L̃
`

and whose columns areQ-linearly independent in L̃
d
. If

`d > ` + d, then the rank of M is at least 2.

One can deduce the following result either from Corollary 12.23 or from Corollary
12.24 :

• If M is a d×`matrix with entries inQ+L whose rows areQ-linearly independent
and whose columns are also Q-linearly independent, if `d > ` + d, then the rank
of M is at least 2.

20 If M ∈ Matd×`(L̃) does not belong to Matd×`(Q + L), it is implicit that we consider its
structural rank with respect to Q , not to Q .



                   

12.4 Assuming the Conjecture on Algebraic Independence 437

12.4 Assuming the Conjecture of Algebraic Independence of
Logarithms

In this last section we discuss consequences of Conjecture 1.15 on algebraic
independence of logarithms of algebraic numbers.

12.4.1 The Q-Vector Space L

One conjectures that Property ( A

C

B

0
) holds for the triple (Q, C, L). Using Proposition

12.14, one would deduce:

(?) For any complex vector subspace V ofCd of dimension n such that V∩Qd = {0},
the Q-vector subspace V ∩Ld has dimension ≤ n(n + 1)/2.

Clearly this would solve the four exponentials Conjecture. On the other hand Lemma
12.15 shows that Property ( A

C

B

0
) would not be sufficient to deduce that there exist two

algebraically independent logarithms of algebraic numbers.
Corollary 12.14 shows that the two following statements are equivalent:

(?) The rank of any matrix in Matd×`(L) is equal to its structural rank.
(?) If λ0, . . . , λn are Q-linearly independent elements in L, then the numbers

λ1/λ0, . . . , λn/λ0 are algebraically independent over Q.

12.4.2 The Q-Vector Space Q + L

From Corollary 12.14 one deduces that Conjecture 1.15 is equivalent to the following
statement

(?) Any matrix (
bi j + λi j

)
1≤i≤d
1≤ j≤`

with bi j ∈ Q and λi j ∈ L has a rank equal to its structural rank.

12.4.3 The Q-Vector Space L̃

By Conjecture 1.15 the rank of any matrix in Matd×`(L̃) should be equal to its
structural rank. This would imply that Property ( A

C

B

0
) also holds for the triple (Q, C,

L̃). Hence from Proposition 12.7 one would deduce:

(?) For any complex vector subspace V ofCd of dimension n such that V∩Qd
= {0},

the Q-vector subspace V ∩ L̃
d

has dimension ≤ n(n + 1)/2.

This result includes the strong four exponentials Conjecture 11.17. A weaker
statement is the so-called Strong Five Exponentials Conjecture of [W 1988]:
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(?) Let x1, x2 be twoQ-linearly independent complex numbers and y1, y2 be also two
Q-linearly independent complex numbers. Further let βi j (i = 1, 2, j = 1, 2),
γ1 and γ2 be six algebraic numbers with γ1 6= 0. Assume that the five numbers

ex1 y1−β11 , ex1 y2−β12 , ex2 y1−β21 , ex2 y2−β22 , e(γ1x1/x2)−γ2

are algebraic. Then

xi y j = βi j for i = 1, 2, and j = 1, 2 and γ1x1 = γ2x2.

.

12.5 Quadratic Relations

In this section, k ⊂ K are two fields and E is a k-subspace of K .
In the next proposition, we assume that any nonzero matrix with coefficients in

E has rank larger than half the structural rank, with strict inequality. For k = Q,
K = C and E = L this condition is not yet known: we have no strict inequality
so far. However we shall see (Theorem 15.30) that this property is satisfied for any
Q-vector subspace of L spanned by elements in a field of transcendence degree 1. It
is unlikely that any such space of dimension≥ 2 exists, but it is a challenge to prove
that there is none.

For such a vector space E , we prove a property akin to the assertion (a.i) of § 11.5
for all quadratic hypersurfaces of K n (i.e. affine hypersurfaces which are defined by
a homogeneous polynomial of degree 2).

The proof rests on an explicit representation of a Clifford algebra, following
[RoyW 1997a] and [RoyW 1997b].

Proposition 12.25. Assume the rank of any nonzero matrix M with entries in E
satisfies rank(M) > (1/2)rstr(M), where rstr(M) is the structural rank of M with respect
to k. Let Q ∈ k[X1, . . . , Xn] be a nonzero homogeneous polynomial of degree 2.
Denote by Z (Q) the hypersurface Q(x) = 0 in K n . Then Z (Q) ∩ En is the union of
E ∩En , where E ranges over the vector subspaces of K n , rational over k, contained
in Z (Q).

Roughly speaking, the conclusion means that the only x ∈ En which satisfy
Q(x) = 0 are the trivial ones. For instance any x = (x1, . . . , xn) ∈ En with x1, . . . , xn

linearly independent over k has Q(x) 6= 0.
Let us start with an easy case: take n = 4 and

Q(X ) = X1 X4 − X2 X3.

We use the hypothesis of Proposition 12.25 for the matrix

M =

(
x1 x2

x3 x4

)
.
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For x ∈ E4 ∩ Z (Q) \ {0}, this matrix M has rank 1, hence structural rank 1 also. The
conclusion easily follows (see Exercise 1.8).

The next lemma reduces the proof of Proposition 12.25 to the special case n = 2m
and

Q = X1Y1 + · · · + XmYm .

Lemma 12.26. Let E be a k-vector subspace of K . The two following assertions are
equivalent.

(i) For any m ≥ 1, the hypersurface Z of K 2m of equation

x1 y1 + · · · + xm ym = 0

satisfies:
Z ∩ Em =

⋃

E⊂Z

E ∩ Em,

where E ranges over the vector subspaces of K m , rational over k, contained in
Z.

(ii) For any n ≥ 1 and any nonzero homogeneous quadratic polynomial Q ∈
k[X1, . . . , Xn],

Z (Q) ∩ En =
⋃

E⊂Z (Q)

E ∩ En,

where E ranges over the vector subspaces of K n , rational over k, contained in
Z (Q).

Proof of Lemma 12.26. Obviously (i) is a consequence of (i i) with n = 2m and
Q = X1Y1 + · · · + XmYm .

Conversely, assume (i). Let Q ∈ k[X1, . . . , Xn] be a nonzero homogeneous
polynomial of degree 2, and let u ∈ Z (Q) ∩ En .

We choose one way of writing

Q(X ) =
n∑

i=1

n∑

j=1

ai j X i X j

with ai j ∈ k. Define a k-linear map

ϕ: K n −→ K 2n

(z1, . . . , zn) 7−→
(

z1, . . . , zn,
∑n

j=1 a1 j z j , . . . ,
∑n

j=1 anj z j

)

and set v = ϕ(u). From u ∈ Z (Q) ∩ En we deduce v ∈ Z ∩ E2n , where Z is the
hypersurface of K 2n of equation x1 y1 + · · · + xn yn = 0. Now let F be the minimal
vector subspace of K 2n , rational over k, containing v. Thanks to (i) with m = n we
know that F is contained in Z. Define E = ϕ−1(F). Then E is a vector subspace of
K n , rational over k, containing u, and

E = ϕ−1(F) ⊂ ϕ−1(Z) = Z (Q).

¤
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The next result occurs in [RoyW 1997a]. Define inductively, for each m ≥ 1, two
K -linear mappings ϕm and ψm of K 2m into Mat2m−1×2m−1 (K ) as follows. For m = 1,
define

ϕ1(x1, y1) =
(
x1
)
, ψ1(x1, y1) =

(
y1
)
,

and, for m ≥ 1, setting

v = (x1, . . . , xm, y1, . . . , ym), v′ = (x1, . . . , xm+1, y1, . . . , ym+1),

define

ϕm+1(v′) =

(
xm+1I2m−1 ψm(v)
−ϕm(v) ym+1I2m−1

)

and

ψm+1(v′) =

(
ym+1I2m−1 −ψm(v)
ϕm(v) xm+1I2m−1

)
.

Lemma 12.27. The following properties hold.

(1) For m ≥ 1,

ϕm(v)ψm(v) = ψm(v)ϕm(v) = (x1 y1 + · · · + xm ym)I2m−1 .

(2) For m ≥ 2,

detϕm(v) = detψm(v) = (x1 y1 + · · · + xm ym)2m−2
.

(3) Both mappings ϕm(v) and ψm(v) are injective. For m ≥ 2 and v 6= 0, the rank
of each of the two matrices ϕm(v) and ψm(v) is either 2m−1 or 2m−2.

Proof of Lemma 12.27. Statement (1) is clear by induction (and products of bloc
matrices). Since detϕm(v) and detψm(v) are homogeneous polynomials of degree
2m−1, and since the coefficient of (xm ym)2m−2

is 1, property (2) follows. Injectivity
as well as the lower bound for the ranks of the matrices in (3) are plain by induction
on m. The upper bound for the ranks then follows from ϕm(v)ψm(v) = 0 when
x1 y1 + · · · + xm ym = 0. ¤

Proof of Proposition 12.25. Using Lemma 12.26, we may assume n = 2m and
Q = X1Y1 + · · · + XmYm . Let Z = Z (Q), let v = (x, y) ∈ E2m ∩Z with v 6= 0 and let
(e1, . . . , es) ∈ E s be a basis of the k-vector space spanned by x1, . . . , xm, y1, . . . , ym .
Write

xi =
s∑

σ=1

aiσ eσ , yi =
s∑

σ=1

biσ eσ (1 ≤ i ≤ m)

with aiσ and biσ in k. For the proof, we can use either the map ϕm , or ψm , or else

θm =

(
0 ψm

ϕm 0

)
,
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as we wish. Let us use ϕm . Since v ∈ Z (Q) and v 6= 0, the rank of the matrix ϕm(v)
is 2m−2. Using the hypothesis on E with Lemma 12.27, we deduce that the structural
rank of this matrix is < 2m−1. This structural rank is nothing else than the rank of
the matrix ϕm

(
w(T )

)
, where

w(T ) =
(
ξ1(T ), . . . , ξm(T ), η1(T ), . . . , ηm(T )

)

with

ξi (T ) =
s∑

σ=1

aiσTσ , ηi (T ) =
s∑

σ=1

biσTσ (1 ≤ i ≤ m).

Therefore
m∑

i=1

ξi (T )ηi (T ) = 0

in k[T ] = k[T1, . . . , Ts]. The image of K s under the linear map t 7→ w(t) is a vector
subspace of K 2m , rational over k, which is contained in the hypersurface Z and
contains v. This completes the proof of Proposition 12.25. ¤

Remark. The linear map

θm : K 2m −→ Mat2m×2m (K )

v 7−→
(

0 ψm(v)
ϕm(v) 0

)

is injective and satisfies
θm(v)2 = Q(v)I2m

for any v ∈ K 2m , where Q is the quadratic form X1Y1 + · · ·+ XmYm . This shows that
Mat2m×2m (K ) is the Clifford algebra attached to the quadratic form X1Y1 +· · ·+ XmYm

(see [L 1993], Chap. 19, S 4, [RoyW 1997a], § 7 and [RoyW 1997b], § 10).

Exercises

Exercise 12.1. Let M ∈ Matd×`(L) be a d×`matrix with entries in L. Denote by ϕ:C` → Cd

the associated linear map (in the canonical bases).
a) Check that the smallest vector subspace of Cd which is rational over Q and contains the
image of ϕ is in fact rational over Q .
b) Check that the smallest vector subspace of C` × Cd which is rational over Q and contains
the graph G(ϕ) of ϕ, namely

G(ϕ) =
{(

z, ϕ(z)
)

; z ∈ C`} ⊂ C` × Cd

is of the form C` × V , where V is a subspace of Cd which is rational over Q .
c) Check that the largest vector subspace of C` which is rational over Q and is contained in
the kernel of ϕ is rational over Q .
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Exercise 12.2. In the field k(X1, . . . , Xn) of rational fractions in n unknowns over k, denote
by E the k-vector subspace spanned by 1, X1, . . . , Xn . Let Y1, . . . , Ym be elements in E which
are algebraically dependent over k. Deduce from Lemma 12.3 that 1, Y1, . . . , Ym are k-linearly
dependent.

Exercise 12.3. Any polynomial inZ[X1, . . . , Xn] is the determinant of a matrix whose entries
are in Z + ZX1 + · · · + ZXn .

Exercise 12.4. Check that the polynomial X0 X1 + X2 X3 + X4 X5 cannot be written as AD−BC
with A, B,C, D linear forms in X0, . . . , X5.

Exercise 12.5. Let k ⊂ K be two fields. Assume k is infinite.
a) Let x1, . . . , xn be elements in K . Show that the following properties are equivalent.

(i) The elements x1, . . . , xn are algebraically independent over k.
(ii) The rank of any matrix M with entries in the k-vector space k + k X1 + · · · + k Xn equals

the rank of the matrix M′ with coefficients in the k-vector space k + kx1 + · · · + kxn which
is derived from M by specializing X i in xi for each i = 1, . . . , n.

b) Let x0, . . . , xn be elements in K . Show that the following properties are equivalent.

(i) For any nonzero homogeneous polynomial P ∈ k[X0, . . . , Xn],

P(x0, . . . , xn) 6= 0.

(i i) The rank of any matrix M with entries in the k-vector space k X0 + · · · + k Xn is equal to
the rank of the matrix M′ with coefficients in the k-vector space kx0 + kx1 + · · · + kxn

which is obtained by specializing X i in xi for each i = 0, . . . , n.

Exercise 12.6. Let K be a field and k a subfield.
a) Let E0 be a k-subspace of K containing k. Check that the following conditions are equivalent.

(i) There exists a basis B of E0 over k such that, for any distinct elements x0, . . . , xm in B
and for any nonzero homogeneous polynomial P in the ring k[X0, . . . , Xm], we have
P(x0, . . . , xm) 6= 0.

(ii) For any tuple (x0, . . . , xm) of k-linearly independent elements in E0 and any nonzero
homogeneous polynomial P ∈ k[X0, . . . , Xm], P(x0, . . . , xm) 6= 0.

(iii) For any nonzero homogeneous polynomial P ∈ k[X0, . . . , Xn], we have

E n+1
0 ∩ Z (P) =

⋃

V⊂Z (P)

E n+1
0 ∩ V,

where V runs over the set of K -vector subspaces of K n+1, rational over k, and contained
in

Z (P) =
{

x ∈ K n+1 ; P(x) = 0
}
.

b) Let E be a k-subspace of K . Check that the conditions (i), (ii) and (iii) of Lemma 12.3 are
equivalent to the following one

(iv) For any nonzero polynomial P ∈ k[X1, . . . , Xn], we have

E n ∩ Z (P) =
⋃

V⊂Z (P)

E n ∩ V,
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where V runs over the set of K -vector subspaces of K n , rational over k, and contained
in

Z (P) =
{

x ∈ K n ; P(x) = 0
}
.

Hint. Compare with Exercise 1.8.a. See also [Roy 1995].

Exercise 12.7. Let K be a field, k a subfield of K and E a k-vector subspace of K spanned
by elements of K which are algebraically independent over k. Let M be a d × ` matrix with
coefficients in E . Denote by V the K -vector subspace of K d spanned by the columns of M.
Assume V ∩kd = {0}. Show that the columns of M span a k-vector space of dimension at most
d(d − 1)/2.

Exercise 12.8. Under the assumptions from Proposition 12.7, check the estimate

dimkV ∩ E d ≤ φ(n, d)

involving the function φ(n, d) from § 11.6.3.

Exercise 12.9. Prove Lemma 12.15.

Hint. (Following [Roy 1989], Proposition 1). Let (pn)n≥1 be a sequence of elements in Q[x],
where pn has degree tn > 0, such that tn+1 ≥ 2tn for any n ≥ 1. Set En = Q p1 + · · · +Q pn for
n ≥ 1 and

E =
⋃

n≥1

En .

Exercise 12.10. Prove Lemma 12.16. More precisely, under the assumptions of Lemma 12.16,
if the ` columns of M are k-linearly independent, and if the same holds for the d rows, then
the rank of M is ≥ (d + `)/4.

Hint. Apply Proposition 12.4 – see [Roy 1995], Theorem 3.4.

Exercise 12.11 (D. Roy). Let k be a field of zero characteristic, k an algebraic closure of k,
K an extension of k and E a subspace of K spanned by elements in K which are algebraically
independent over k. Further, let V be a K -vector subspace of K n spanned by elements of E n .
Show that V ∩ k

n
is contained in the maximal subspace of V rational over k.

Hint. Check k ∩ k(E ) = k. Deduce that any automorphism of k can be extended to an
automorphism of k(E ) which fixes k(E ).

Exercise 12.12. Here is Conjecture 2.6 of [Roy 1995]:

(?) For any 4×4 skew-symmetric matrix M with entries in L and rank≤ 2, either the rows of
M are linearly dependent over Q , or the columns space of M contains a nonzero element
of Q4.
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Check that this statement is a consequence of Conjecture 1.15 on algebraic independence of
logarithms of algebraic numbers, and that it contains the four exponentials Conjecture 1.13.

Hint. A 4× 4 skew-symmetric matrix



0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0




has rank ≤ 2 if and only if
x12x34 − x13x24 + x14x23 = 0.

Exercise 12.13. Let V be a real vector space of positive dimension n and Y a finitely generated
subgroup of V of rank `. Assume no subgroup of Y of rank n + 1 is dense in V. Show that
there exists a subgroup of Y of rank ≥ `− n + 1 which is not dense in V.

Hint. Use Proposition 12.5 and see [Roy 1992c], Lemma 3.3.

Exercise 12.14 (É. Reyssat). Show that the assumption that k has infinitely many elements
cannot be removed from Proposition 12.5.

Exercise 12.15. Let K be a field of zero characteristic and m ≥ 1 a positive integer. Denote
by Z the set of zeros in K 2m of the quadratic polynomial X1Y1 + · · · + XmYm . Recall the map
θm : K 2m → MatN×N (K ) of § 12.5, with N = 2m , which satisfies

θm(x, y)2 = (x1 y1 + · · · + xm ym)IN .

Let w = (x, y) ∈ Z. Denote by X the Q-vector subspace of K N spanned by the column
vectors of θm(w). Assume that there exists a vector subspace U of K N , defined over Q , such
that

dimQ

(
X

X ∩U

)
< dimK

(
K N

U

)
·

Show that there exists a vector subspace of K 2m , defined over Q , which contains w and is
contained in Z.

Hint. Define

d ′ = dimK

(
K N

U

)
and `′ = dimQ

(
X

X ∩U

)
·

Show that there exist two matrices P and Q in GLN (Q) such that

Pθm(w)Q =
(

A B
C 0

) }d∗
}d ′

︸︷︷︸ ︸︷︷︸
`′ `∗

Define E as the set of v ∈ K 2m such that there exist matrices A(v), B(v) and C(v) for which

Pθm(v)Q =
(

A(v) B(v)
C(v) 0

) }d∗
}d ′

︸︷︷︸ ︸︷︷︸
`′ `∗

Check that E is a vector subspace of K 2m which satisfies the desired properties. (See also
[RoyW 1997b], Lemma 10.3).



              

13. A Quantitative Version of the Linear Subgroup
Theorem

The main result of this chapter (Theorem 13.1) is a quantitative version of Theorem
11.5.

Let G = Gd0
a ×Gd1

m be a commutative linear algebraic group overQ of dimension
d = d0 + d1 > 0. Denote by

expG : Cd −→ G(C) = Cd0 × (C×)d1

(z1, . . . , zd ) 7−→ (
z1, . . . , zd0 , ezd0+1 , . . . , ezd

)

its exponential map. There are two kinds of interesting points in Cd related to the

field Q of algebraic numbers: the points w = (β1, . . . , βd ) in Qd
whose coordinates

are algebraic numbers, and the points

η = (β1, . . . , βd0 , λ1, . . . , λd1 ) ∈ Qd0 ×Ld1

whose images under expG lie in G(Q) = Qd0 × (Q×)d1 . According to Hermite-

Lindemann’s Theorem 1.2, the intersection of the two sets is Qd0 × {0}.
The Linear Subgroup Theorem 11.5 provides information on the dimension of

the vector subspace of Cd spanned by points

w1, . . . , w`0
, η

1
, . . . , η

`1
,

when w1, . . . , w`0
belong to Qd

and η
1
, . . . , η

`1
to Qd0 ×Ld1 .

Our quantitative version is as follows: let r be the lower bound for the dimension
which is provided by the Linear Subgroup Theorem and let

w′1, . . . , w
′
`0
, η′

1
, . . . , η′

`1

be points in a subspace ofCd of dimension< r overC. Then we refine the conclusion
(
w1, . . . , w`0

, η
1
, . . . , η

`1

) 6= (w′1, . . . , w′`0
, η′

1
, . . . , η′

`1

)

of the Linear Subgroup Theorem by giving a lower bound for

max

{
max

1≤k≤`0

|wk − w′k | , max
1≤ j≤`1

|η
j
− η′

j
|
}
.
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This lower bound will be completely explicit. We describe briefly this result here –
the exact statement (Theorem 13.1) is given in § 13.1.

The data involve algebraic numbers, namely the coordinates ofwk (1 ≤ k ≤ `0)

in Qd
and the coordinates of expG(η

j
) (1 ≤ j ≤ `1) in Qd0 × (Q×)d1 . If we write

wk = (β1k, . . . , βdk) (1 ≤ k ≤ `0)

and
η

j
= (β1,`0+ j , . . . , βd0,`0+ j , λ1 j , . . . , λd1 j ) (1 ≤ j ≤ `1),

then all βi j are algebraic as well as all αi j = eλi j . We denote by D an upper bound
for the degree of a number field generated by these d` algebraic numbers, where
` = `0 + `1.

The height of these algebraic numbers will be measured by parameters B1, B2

and Ai j (1 ≤ i ≤ d1, 1 ≤ j ≤ `1). The parameter Ai j takes care of the algebraic
number αi j , the parameter B1 is related to the heights of the projections of expG(η

j
)

on Qd0 , while B2 is related to the heights of the coordinates of w1, . . . , w`0
in Qd

.
There is also a parameter E , which often in applications will be chosen as e, but

which will enable us to reach sharper estimates when it is chosen larger; this will
be possible when the numbers |λi j | are comparatively not too large with respect to
log Ai j .

There are further parameters r1, r2 and r3 which can be described as ranks of
matrices and satisfy r = r1 + r2 + r3: while r is the rank of the full d × ` matrix M′
whose columns are the components of

w′1, . . . , w
′
`0
, η′

1
, . . . , η′

`1
,

the number r3 is the rank of the d1 × `1 matrix
(
η′d0+i, j

)
1≤i≤d1
1≤ j≤`1

which approximates
(
λi j

)
1≤i≤d1
1≤ j≤`1

, while r1 +r3 and r2 +r3 are related to the ranks of the matrices composed

of the last `1 columns (resp. the last d1 rows) of M′.

The main tools for the proof (§ 13.4) are: Philippon’s multiplicity estimate
(Theorem 8.1) on one hand, and analytic estimates (§ 13.2) on the other hand. Of
course Liouville’s Lemma will also be needed; we apply it to produce a lower bound
for the absolute value of a determinant involving exponential polynomials (§ 13.3).

In § 13.5 we investigate which optimal result could be deduced from Th. 13.1.
At the same time we show how to choose the parameters T0, T1, . . . , Td1 and
S0, S1, . . . , S`1 in most cases. We shall see in the next chapter that this optimal
value is reached (up to constants) in a number of cases.

Theorem 13.1 (which is a variant of the main result in [W 1997a]) includes a
lot of diophantine estimates; some examples will be given in the next chapter. It is
not the final word on this topic, even within the present limitations of the theory: it
is possible to refine it by introducing Fel’dman’s polynomials. In § 13.6 we suggest
how such a refinement could be performed.
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13.1 The Main Result

Let d0 ≥ 0, d1 ≥ 1, `0 ≥ 0, `1 ≥ 1, r1 ≥ 0, r2 ≥ 0, r3 ≥ 1 be rational integers.
Define d = d0 + d1, ` = `0 + `1 and r = r1 + r2 + r3.

Let K be a number field of degree≤ D overQ. We consider the linear algebraic
groups

G0 = Gd0
a , G1 = Gd1

m , G = G0 × G1.

Let G−1 and G+
1 be connected algebraic subgroups of G1, defined over K , with

G−1 ⊂ G+
1 . Define

G− = {0} × G−1 , G+ = G0 × G+
1 .

Assume that the dimension d+ of G+ is positive.
Let w1, . . . , w`0

be elements of K d , with

wk = (β1k, . . . , βdk) (1 ≤ k ≤ `0).

The complex vector subspace Cw1 + · · · + Cw`0
of Cd = Te(G) they span will be

denoted by W . We assume W ⊂ Te(G+).
Let η

1
, . . . , η

`1
be elements of K d0 ×Ld1 , with

η
j

= (β1,`0+ j , . . . , βd0,`0+ j , λ1 j , . . . , λd1 j ) (1 ≤ j ≤ `1).

For 1 ≤ i ≤ d1 and 1 ≤ j ≤ `1 define

αi j = eλi j

and assume αi j ∈ K×. Hence for 1 ≤ j ≤ `1 the point

γ
j

= expG η j
= (β1,`0+ j , . . . , βd0,`0+ j , α1 j , . . . , αd1 j )

belongs to G(K ) = K d0 × (K×)d1 ; we assume that in fact η
j

belongs to Te(G+) so

that γ
j
∈ G+(K ).

Let w′1, . . . , w
′
`0

, η′
1
, . . . , η′

`1
be elements of Cd . Define

W ′ = Cw′1 + · · · + Cw′`0
, X′ = Cη′

1
+ · · · + Cη′

`1
.

Denote by π the projection Cd −→ Cd/Te(G−) and by π1 the projection Cd −→
Cd1/Te(G−1 ) with kernel Cd0 × Te(G−1 ). Assume

r = dimC
(
π (W ′ + X′)

)
, r3 = dimC

(
π1(X′)

)

and
r1 + r3 ≥ dimC

(
π (X′)

)
, r2 + r3 ≥ dimC

(
π1(W ′ + X′)

)
.

Let B1 and B2 be two real numbers which are > 1 and satisfy

h(1:βh,`0+1: · · · :βh`) ≤ log B1 (1 ≤ h ≤ d0)
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and
h(1:βd0+1,k : · · · :βdk) ≤ log B2 (1 ≤ k ≤ `0).

Moreover, assume

either
h(1:βh1: · · · :βh`) ≤ log B1 (1 ≤ h ≤ d0)

or
h(1:β1k : · · · :βdk) ≤ log B2 (1 ≤ k ≤ `0).

Let Ai j > 1 be real numbers satisfying

log Ai j ≥ max

{
h(αi j ),

1

D

}
(1 ≤ i ≤ d1, 1 ≤ j ≤ `1).

Let U , V , E be positive real numbers with E ≥ e and T0, T1, . . . , Td1 , S0,
S1, . . . , S`1 nonnegative integers. Assume

U ≥ max
{

20r D log(2d D), r3 log E, DT0 log B1, DS0 log B2,

D
d1∑

i=1

`1∑

j=1

Ti S j log Ai j

}

and
V = (12d+ + 9)U.

Define T ∗ = T1 + · · · + Td1 , S∗ = S1 + · · · + S`1 and assume

B D
1 ≥ E, B1 ≥ d+S∗, B D

2 ≥ E, B2 ≥ T ∗;

assume moreover T ∗ ≥ 1, S∗ ≥ 1 and

either B1 ≥ d+S∗ +
d+S0

T ∗
or B2 ≥ T ∗ +

T0

d+S∗
·

Let T1 be a subset of Zd1 consisting of tuples t for which |ti | ≤ Ti for 1 ≤ i ≤ d1

and
yt = 1

for any y ∈ G−1 .
Define T = T0 × T1 ⊂ Nd0 ×Zd1 , where T0 is the subset of Nd0 consisting of all

tuples τ for which ‖τ‖ ≤ T0. Denote by H (G+; T ) the dimension of the C-vector
space of polynomial maps G+(C) → C which are given by polynomials in C[G+]
of the form ∑

‖τ‖≤T0

∑

t∈T1

cτ t X τY t .

For instance if G+ = G then
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H (G; T ) =

(
T0 + d0

d0

)
CardT1,

while for G−1 = {1} and

T1 =
{
t ∈ Zd1 ; |ti | ≤ Ti (1 ≤ i ≤ d1)

}
,

we have

H (G+; T ) = H (G+; T0, T ) =

(
T0 + d0

d0

)
H (G+

1 ; T )

with the notation of Chap. 8 and T = (T1, . . . , Td1 ).
Further, let S1 be a subset of Z`1 consisting of tuples s for which |s j | ≤ S j for

1 ≤ j ≤ `1. Assume ∣∣∣∣∣
d1∑

i=1

`1∑

j=1

ti s jλi j

∣∣∣∣∣ ≤
U

E

for any t ∈ T1 and any s ∈ S1.
We assume

H (G+; T ) ≥ 2

(
T0 + r1

r1

)(
d+S0 + r2

r2

)(
V

log E

)r3

·

Finally we denote by 6 the following subset of G+(K ):

6 =
{
s1γ 1

+ · · · + s`1γ `1
; s ∈ S1

}
.

Theorem 13.1. Assume

max
1≤k≤`0

|wk − w′k | ≤ e−V and max
1≤ j≤`1

|η
j
− η′

j
| ≤ e−V .

Then there exists a connected algebraic subgroup G∗ of G+ of dimension< d+, which
contains G−, which is incompletely defined in G+ by polynomials of multidegree
≤ (T0, T ), such that, if we set

`
[
0 = dimC

(
W + Te(G∗)

Te(G∗)

)
,

then (
S0 + `[0
`
[
0

)
Card

(
6 + G∗

G∗

)
H (G∗; T0, T ) ≤ H (G+; T0, T ).

Remark. The vector columns in Cd of the matrix

M =

(B0 B1

B2 L

)
=




β11 · · · β1`0 β1,`0+1 · · · β1`
...

. . .
...

...
. . .

...
βd01 · · · βd0`0 βd0,`0+1 · · · βd0`

βd0+1,1 · · · βd0+1,`0 λ11 · · · λ1`1

...
. . .

...
...

. . .
...

βd1 · · · βd`0 λd11 · · · λd1`1
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are w1, . . . , w`0
, η

1
, . . . , η

`1
. Notice that the conditions on the parameters B1 and

B2 are the following:

• either B1 is an upper bound for the height of projective points corresponding to
the rows of the matrix

(
B0 B1

)
and B2 is an upper bound corresponding to the

columns of the matrix
(
B2
)

• or B1 is an upper bound for the height of projective points corresponding to the
rows of the matrix

(
B1
)

and B2 is an upper bound corresponding to the columns

of the matrix

(
B0

B2

)
.

13.2 Analytic Estimates

In this section we prove some analytic estimates which hold for analytic functions;
since not all data from § 13.1 are involved, we shall repeat the piece of notation we
need.

13.2.1 Analytic Upper Bound for a Determinant

We give here an extension of Propositions 9.13 and 10.5 (compare with Proposition
5.1 of [W 1997a]).

Let d0 ≥ 0, d1 > 0, `0 ≥ 0 be rational integers. Put d = d0 + d1. Let W and X
be two subspaces of Cd , U0 a subspace of Cd0 and U1 a subspace of Cd1 . Define
U = U0 × U1. Denote by π the linear projection Cd −→ Cd/U and by π1 the
projection Cd −→ Cd1/U1 with kernel Cd0 ×U1. Define

r = dimC
(
π (W + X)

)
, r3 = dimC

(
π1(X)

)
.

We assume r3 ≥ 1. Let r1 ≥ 0 and r2 ≥ 0 be rational integers satisfying r = r1 +r2 +r3

and

dimC
(
π (X)

)− dimC
(
π1(X)

) ≤ r1 ≤ dimC
(
π (W + X)

)− dimC
(
π1(W + X)

)
.

Notice that dimC
(
π (X)

)− dimC
(
π1(X)

)
is the dimension of

π (X) ∩
(
Cd0

U0
× {0}

)
.

Let L > 0, T0 ≥ 0 and S0 ≥ 0 be rational integers, ϕ1, . . . , ϕL entire functions inCd ,
ζ

1
, . . . , ζ

L
elements of X, w1, . . . , w`0

be elements of W and σ 1, . . . , σ L elements
of N`0 satisfying ‖σµ‖ ≤ S0 (1 ≤ µ ≤ L). Assume

ϕλ(z + u) = ϕλ(z)
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for 1 ≤ λ ≤ L , u ∈ U and z ∈ Cd . We define w = (w1, . . . , w`0
) ∈ W `0 and we

take derivatives:
D
σ
w = Dσ1

w1
· · ·Dσ`0

w
`0
.

For 1 ≤ λ ≤ L and 1 ≤ µ ≤ L , let δλµ be a complex number. For 1 ≤ λ ≤ L
and τ ∈ Nd0 with ‖τ‖ ≤ T0, let ψλτ be an entire function in Cd1 . We assume, for
1 ≤ λ ≤ L ,

ϕλ(z) =
∑

‖τ‖≤T0

zτ1
1 · · · z

τd0
d0
ψλτ (zd0+1, . . . , zd ).

Let V , E , M1, . . . ,ML be positive numbers and ε a complex number satisfying

E ≥ 1, |ε| ≤ e−V ,

|δλµ| ≤ eMλ , sup
z∈C
|z|=E

∣∣(Dσ
µ

w ϕλ
)
(zζ

µ
)
∣∣ ≤ eMλ (1 ≤ λ,µ ≤ L).

Define
Ṽ = V + r3T0 log E + (r3 + 1)S0 log E + r3(r3 + 1) log E

and assume

L ≥ 2

(r3 + 1)!

(
T0 + r1

r1

)(
S0 + r2

r2

)(
Ṽ

log E

)r3

· Ṽ

V
·

Proposition 13.2. The determinant 1 of the L × L matrix
(
D
σ
µ

w ϕλ(ζµ) + εδλµ
)

1≤λ,µ≤L

has absolute value bounded by

log |1| ≤ −1

2
LV + L log(2L) + M1 + · · · + ML .

This Proposition 13.2 will be the main (analytic) tool providing an upper bound
for the absolute value of an arithmetic determinant 1ar occurring in § 13.3.2. A
suitable value for Mλ will be computed in § 13.4.2.

13.2.2 A Combinatorial Lemma

The lower bound we shall produce, for the order of vanishing at the origin of
the interpolation determinant, will depend on the following combinatorial lemma
(compare with Lemmas 6.5 and 7.3):

Lemma 13.3. Let s be a nonnegative integer, L , K1, . . . , Ks be positive integers and
I0, I1, . . . , Is be a partition of the set {1, . . . , d}, with CardIσ = iσ (0 ≤ σ ≤ s),
where i0 > 0. Define2L as the minimum of ‖κ1‖+· · ·+‖κ L‖ for κ1, . . . , κ L pairwise
distinct elements of Nd satisfying
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max
1≤λ≤L

∑

i∈Iσ

κλi ≤ Kσ (1 ≤ σ ≤ s).

Put K = K1 + · · · + Ks and define M by

M i0 =

(
i0

i0 + 1

)i0

· i0!L
∏s
σ=1

(Kσ+iσ
iσ

) .

Then
2L ≥ L M − i0L(K + i0 + 1).

Proof. For any nonnegative integer a, define

Na = Card

{
κ ∈ Nd ; ‖κ‖ = a and

∑

i∈Iσ

κi ≤ Kσ (1 ≤ σ ≤ s)

}
.

From this definition and the definition of2L it follows that if A is a positive integer
such that

A∑

a=0

Na ≤ L , then 2L ≥
A∑

a=0

aNa .

We claim that for any a ≥ 0,

Na ≤
(

a + i0 − 1

i0 − 1

)
·

s∏

σ=1

(
Kσ + iσ

iσ

)
.

Indeed, once the coordinates κi of κ for i ∈ Iσ (1 ≤ σ ≤ s) are chosen, the number
of (κi )i∈I0 which will give a κ ∈ Nd with ‖κ‖ = a is

(
a −∑i 6∈I0

κi + i0 − 1

i0 − 1

)
.

Therefore

Na =
a∑

c0=0

K1∑

c1=0

· · ·
Ks∑

cs =0

s∏

σ=0

(
cσ + iσ − 1

iσ − 1

)
,

where (c0, c1, . . . , cs) is restricted to the condition c0 + · · · + cs = a. For c0 ≤ a we
have (

c0 + i0 − 1

i0 − 1

)
≤
(

a + i0 − 1

i0 − 1

)
,

while, for 1 ≤ σ ≤ s, we have

Kσ∑

cσ=0

(
cσ + iσ − 1

iσ − 1

)
=

(
Kσ + iσ

iσ

)
.

Our claim readily follows.
We use the same argument to show that for a ≥ K , we have
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Na ≥
(

a − K + i0 − 1

i0 − 1

)
·

s∏

σ=1

(
Kσ + iσ

iσ

)
.

Indeed, for a ≥ K , we have
(

c0 + i0 − 1

i0 − 1

)
≥
(

a − K + i0 − 1

i0 − 1

)
,

because c0 + · · · + cs = a and c1 + · · · + cs ≤ K . The claimed lower bound for Na

plainly follows.
We define A by the condition

A∑

a=0

Na ≤ L <
A+1∑

a=0

Na .

Since
A+1∑

a=0

(
a + i0 − 1

i0 − 1

)
=

(
A + i0 + 1

i0

)
,

we deduce from the upper bound for Na

L <

(
A + i0 + 1

i0

)
·

s∏

σ=1

(
Kσ + iσ

iσ

)
≤ (A + i0 + 1)i0

i0!
·

s∏

σ=1

(
Kσ + iσ

iσ

)
;

hence

(A + i0 + 1)i0

s∏

σ=1

(
Kσ + iσ

iσ

)
> i0!L .

Using the definition of M , we can write

A + i0 + 1 >

(
1 +

1

i0

)
M.

On the other hand, from the lower bound for Na , we deduce immediately

2L ≥
A∑

a=K

a

(
a − K + i0 − 1

i0 − 1

)
·

s∏

σ=1

(
Kσ + iσ

iσ

)
.

We now check the formula

A∑

a=K

a

(
a − K + i0 − 1

i0 − 1

)
=

i0 A + K

i0 + 1

(
A − K + i0

i0

)
.

Indeed, we have

A∑

a=K

a

(
a − K + i0 − 1

i0 − 1

)
=

A−K∑

α=0

(α + K )

(
α + i0 − 1

i0 − 1

)
.

Since
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α

(
α + i0 − 1

i0 − 1

)
= i0

(
α + i0 − 1

i0

)
,

we have

A−K∑

α=0

α

(
α + i0 − 1

i0 − 1

)
= i0

(
A − K + i0

i0 + 1

)
= i0 · A − K

i0 + 1

(
A − K + i0

i0

)
;

on the other hand

A−K∑

α=0

K

(
α + i0 − 1

i0 − 1

)
= K

(
A − K + i0

i0

)
.

The desired formula follows from

i0

i0 + 1
(A − K ) + K =

i0 A + K

i0 + 1
·

We use the lower bound
(

A − K + i0

i0

)
≥ (A − K )i0

i0!

and deduce

2L ≥ 1

(i0 + 1)!
(i0 A + K )(A − K )i0 ·

s∏

σ=1

(
Kσ + iσ

iσ

)

≥ i0 A + K

i0 + 1
·
(

i0(A − K )

(i0 + 1)M

)i0

· L;

we now use the weak estimate i0 A + K ≥ i0(A− K ) and obtain, thanks to the lower
bound i0(A + i0 + 1) > (i0 + 1)M ,

2L ≥ L M

(
1− i0(K + i0 + 1)

(i0 + 1)M

)i0+1

·

Finally we notice that Lemma 13.3 holds trivially if M ≤ i0(K + i0 + 1) and we use,
with x = i0(K + i0 + 1)/(i0 + 1)M and t = i0 + 1, the estimate

(1− x)t ≥ 1− t x

which holds for t ≥ 1 and 0 ≤ x ≤ 1. ¤
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13.2.3 Lower Bound for the Order of Vanishing of the Interpolation
Determinant

Let L ′ be an integer in the range 0 ≤ L ′ ≤ L and let I be a subset of {1, . . . , L} with
L ′ elements. Define an entire function 1I on C by

1I (z) = det
(

dλµ(z)
)

1≤λ,µ≤L

with

dλµ(z) =





(
D
σ
µ

w ϕλ
)
(zζ

µ
) for λ ∈ I ,

δλµ for λ 6∈ I .

We now give a lower bound for the order of vanishing of 1I (z) at the origin
which generalizes Lemmas 6.4, 9.2 and 10.6.

Lemma 13.4. The function 1I has a zero at the origin of multiplicity at least

2L ′ − L ′S0,

where 2L ′ satisfies

1

L ′
2L ′ ≥ r3

r3 + 1




r3!L ′(
T0 + r1

r1

)(
S0 + r2

r2

)




1/r3

− r3(T0 + S0 + r3 + 1).

Proof. Assume first U0 = {0} and U1 = {0}. In this case π is the identity and π1 is
the canonical linear projection Cd −→ Cd1 with kernel Cd0 × {0}.

Let e1, . . . , er3
be r3 elements in X such that

(
π1(e1), . . . , π1(er3

)
)

is a basis of
π1(X). From the assumption

dimC
(
X ∩ kerπ1

) ≤ r1 ≤ dimC
(
(W + X) ∩ kerπ1

)
,

we deduce that there exists elements er3+1, . . . , er1+r3
in (W + X) ∩ kerπ1 such that

the vector space V spanned by e1, . . . , er1+r3
contains X. We complete first into a

basis (e1, . . . , er ) of W + X, and then into a basis (e1, . . . , ed ) of Cd . We denote by
Z1, . . . , Zd the homogeneous linear forms in (z1, . . . , zd ) satisfying

z = Z1e1 + · · · + Zded .

For κ = (κ1, . . . , κd ) ∈ Nd , Z κ denotes the polynomial Z κ1
1 · · · Z κd

d which is
homogeneous of degree ‖κ‖.

For 1 ≤ λ ≤ L consider the Taylor expansion at the origin of the function
Z 7→ ϕλ(Z1e1 + · · · + Zded ):
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ϕλ(Z1e1 + · · · + Zded ) =
∑

κ
λ
∈Nd

cλκ
λ
Z κλ .

The determinant 1I = 1I,ϕ1,...,ϕL associated with the functions ϕ1, . . . , ϕL can be
written

1I,ϕ1,...,ϕL =
∑

κ1∈Nd

· · ·
∑

κ L∈Nd

c1κ1
· · · cLκ L

1I,Zκ1 ,...,ZκL

where 1I,Zκ1 ,...,ZκL denotes the corresponding determinant associated with the
functions ϕλ(z) = Z κλ (1 ≤ λ ≤ L). Therefore we may assume without loss of
generality ϕλ(z) = Z κλ , for some κλ ∈ Nd .

Since, for κ ∈ Nd and σ ∈ N`0 , D
σ
w

(
Z κ
)

is either 0 or a homogeneous
polynomial in z1, . . . , zd of degree ‖κ‖ − ‖σ‖, if we multiply each entry in a
row of index λ ∈ I by zS0 , we get a common factor z‖κλ‖ in all elements of this
row. Hence, if 1I does not vanish identically, then it has a zero of multiplicity
≥ max{0, ‖κ1‖ + · · · + ‖κ L ′‖ − L ′S0}. It remains to produce a lower bound for
‖κ1‖ + · · · + ‖κ L ′‖ when 1I does not vanish identically.

Consider one row with index λ ∈ I of the matrix whose determinant is 1I (z):

(dλ1 · · · dλL )

with
dλµ = dλµ(z) = D

σ
µ

w

(
Z κλ

)
(zζ

µ
) (1 ≤ µ ≤ L).

By construction er3+1, . . . , er1+r3
belong to kerπ1; it follows that the linear forms

Zr3+1, . . . , Zr1+r3 do not depend on the d1 variables zd0+1, . . . , zd . Hence, as a function
of z1, . . . , zd0 , Z κλ is a homogeneous polynomial of degree

≥
r1+r3∑

i=r3+1

κλi .

Since ‖τµ‖ ≤ T0, if our row does not consist only of zeroes, then we have

r1+r3∑

i=r3+1

κλi ≤ T0.

Since ζ
µ
∈ X ⊂ V, the linear forms Zr1+r3+1, . . . , Zr vanish at ζ

µ
. Hence for

r∑

i=r1+r3+1

κλi > ‖σ‖,

we have
D
σ
w

(
Z κλ

)
(zζ

µ
) = 0.

Therefore, if
r∑

i=r1+r3+1

κλi > S0,
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then dλ1 = · · · = dλL = 0.
Since wk ∈ W ⊂ W + X and ζ

µ
∈ X ⊂ W + X, if one component κλi of κλ

with r < i ≤ d is not zero, then again dλµ = 0 for 1 ≤ µ ≤ L .
Define I0 = {1, . . . , r3}, I1 = {r3 + 1, . . . , r3 + r1}, I2 = {r3 + r1 + 1, . . . , r},

I3 = {r + 1, . . . , d}. Let K denote the set of κ ∈ Nd for which
∑

i∈I1

κi ≤ T0,
∑

i∈I2

κi ≤ S0 and κi = 0 for i ∈ I3.

From the above remarks, it follows that 1I vanishes, unless κ1, . . . , κ L ′ are distinct
elements in K . We use Lemma 13.3 with s = 3, K1 = T0, K2 = S0, K3 = 0, i0 = r3,
i1 = r1, i2 = r2, i3 = d − r and L replaced by L ′: for κ1, . . . , κ L distinct elements in
K , we have

‖κ1‖ + · · · + ‖κ L ′‖ ≥ 2L ′ .

This completes the proof of Lemma 13.4 in case U = {0}.
For the general case, we repeat the argument in the proof of Lemma 10.6. Define

d̃0 = dimC

(
Cd0

U0

)
, d̃1 = dimC

(
Cd1

U1

)
, d̃ = d̃0 + d̃1 = dimC

(
Cd

U

)
,

choose bases of Cd0/U0 and Cd1/U1 giving isomorphisms ι0:Cd0/U0 → C̃d0 and
ι1:Cd1/U0 → C̃d1 and denote by π̃ :Cd → C̃d the composition of ι = ι0 × ι1 with
π . The relations ϕλ(z + u) = ϕλ(z) mean that for 1 ≤ λ ≤ L there exists a unique

entire function ϕ̃λ: C̃d → C such that ϕ̃λ ◦ π̃ = ϕλ. Define

w̃k = π̃ (wk) (1 ≤ k ≤ `0).

Clearly we have for σ ∈ N`0

D
σ
wϕλ =

(
D
σ

w̃
ϕ̃λ
) ◦ π̃ .

Hence for λ ∈ I and 1 ≤ µ ≤ L ,

dλµ(z) = D
σ
µ

w̃
(zξ̃

µ
)

where
ξ̃
µ

= π̃ (ζ
µ

) (1 ≤ µ ≤ L).

Applying the special case of Lemma 13.4 (where Ũ = {0}) to C̃d with

W̃ = π̃ (W ) and X̃ = π̃ (X)

completes the proof of Lemma 13.4 in the general case. ¤



               

458 13. A Quantitative Version of the Linear Subgroup Theorem

13.2.4 Upper Bound for the Interpolation Determinant

We now extend Lemma 7.7 in order to include derivatives:

Corollary 13.5. Under the assumptions of Lemma 13.4, for 1 ≤ λ ≤ L , let Mλ be
a positive real number for which

log sup
|z|=E

max
1≤µ≤L

|dλµ(z)| ≤ Mλ;

then

log |1I (1)| ≤ −2L ′ log E + L ′S0 log E + log(L!) + M1 + · · · + ML .

Proof. We use Schwarz’ Lemma (Lemma 6.3) together with Lemma 13.4:

log |1I (1)| ≤ −(2L ′ − L ′S0) log E + log sup
|z|=E
|1I (z)|.

For |z| = E we plainly have

log |1I (z)| ≤ log(L!) + M1 + · · · + ML .

¤

13.2.5 Proof of Proposition 13.2

Proof. From Corollary 13.5 and the lower bound for2L ′ in Lemma 13.4, we deduce
that the hypotheses of Lemma 7.6 are satisfied with r = r3 and with χ0, χ1 and χ3

defined by (
r3 + 1

r3
· χ0

log E

)r3
(

T0 + r1

r1

)(
S0 + r2

r2

)
= r3!,

χ1 = Ṽ , χ2 = log(L!) + M1 + · · · + ML .

The assumption on L implies

r r3
3

(r3 + 1)r3+1
· Ṽ r3+1

χ
r3
0

≤ 1

2
LV .

¤



                     

13.3 Exponential Polynomials 459

13.3 Exponential Polynomials

For τ = (τ1, . . . , τd0 ) ∈ Nd0 and t = (t1, . . . , td1 ) ∈ Zd1 , consider the exponential
monomial in d variables

zτ et z = zτ1
1 · · · z

τd0
d0

et1zd0+1+···+td1 zd .

In order to take derivatives, we introduce w = (w1, . . . , w`0
) ∈ (Cd )`0 and σ =

(σ1, . . . , σ`0 ) ∈ N`0 . Let η
1
, . . . , η

`1
be elements of Cd . For s = (s1, . . . , s`1 ) ∈ Z`1 ,

the number
D
σ
w

(
zτ et z

)
(s1η1

+ · · · + s`1η`1
)

is the value of a polynomial at a point given by the coordinates of

expG η j
∈ G(C) = Cd0 × (C×)d1 (1 ≤ j ≤ `1).

Our first goal (§ 13.3.1) is to introduce these polynomials.
Write

wk = (β1k, . . . , βdk) (1 ≤ k ≤ `0),

η
j

= (β1,`0+ j , . . . , βd0,`0+ j , λ1 j , . . . , λd1 j ) (1 ≤ j ≤ `1)

and for 1 ≤ i ≤ d1, 1 ≤ j ≤ `1, define

αi j = eλi j

so that
expG η j

= (β1,`0+ j , . . . , βd0,`0+ j , α1 j , . . . , αd1 j ).

Further, set
η

s
= s1η1

+ · · · + s`1η`1
.

Then we will get

D
σ
w

(
zτ et z

)
(η

s
) = P

(σ s)
τ t (β)

d1∏

i=1

`1∏

j=1

α
ti s j

i j

where P
(σ s)
τ t is a polynomial in d0`0 + d1`0 + d0`1 variables.

Next we put these numbers into a square matrix and we express again its
determinant1ar as the value of a polynomial1 (§ 13.3.2). In the special case where
all the numbers α and β are algebraic, Liouville’s estimate will enable us to produce
a lower bound for the absolute value of this determinant, assuming it is not zero.

13.3.1 Algebraic Expression for D
σ
w

(
zτ et z)(η

s
)

We introduce d(` + 1) variables, named as follows:
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( X X
W

Y Y

)
=

( Whk Xhj Xh

Wd0+i,k Yi j Yi

) } 1 ≤ h ≤ d0

} 1 ≤ i ≤ d1.︸︷︷︸ ︸︷︷︸
1 ≤ k ≤ `0 1 ≤ j ≤ `1

Hence Z[W,X,Y] is a ring of polynomials in d` variables, while Z[W,X,Y] is a
ring of polynomials in d(`0 + 1) variables.

For τ = (τ1, . . . , τd0 ) ∈ Nd0 and t = (t1, . . . , td1 ) ∈ Zd1 , we write

Xτ = Xτ1
1 · · ·X

τd0
d0
, Yt = Yt1

1 · · ·Y
td1
d1
.

For 1 ≤ k ≤ `0, write Wk = (W1k, . . . ,Wdk) and define a derivative operator DWk

on the field of rational functions in d(`0 + 1) variables Q(W,X,Y) as follows:

DWk
=

d0∑

h=1

Whk
∂

∂Xh
+

d1∑

i=1

Wd0+i,kYi
∂

∂Yi
·

For σ = (σ1, . . . , σ`0 ) ∈ N`0 , define

D
σ

W = Dσ1
W1
· · ·Dσ`0

W
`0
.

Further, for s = (s1, . . . , s`1 ) ∈ Z`1 , we put

Zs =

(
`1∑

j=1

s j X1 j , . . . ,

`1∑

j=1

s j Xd0 j ,

`1∏

j=1

Y
s j

1 j , . . . ,

`1∏

j=1

Y
s j

d1 j

)
.

We assume that τ , t , σ and s satisfy

‖τ‖ ≤ T0, ‖σ‖ ≤ S0,

‖t‖ ≤ T ∗ and ‖s‖ ≤ S∗.

Lemma 13.6. For each τ ∈ Nd0 , t ∈ Zd1 , σ ∈ N`0 and s ∈ Z`1 , there exists a

polynomial P
(σ s)
τ t in the ring Z[W,X], such that

D
σ

W(XτYt )(X,Y)=Zs
= P

(σ s)
τ t (W,X)

d1∏

i=1

`1∏

j=1

Y
ti s j

i j .

This polynomial P
(σ s)
τ t is

– for 1 ≤ k ≤ `0, homogeneous of degree σk in the d variables W1k, . . . ,Wdk;
– for 1 ≤ h ≤ d0, homogeneous of degree τh in the ` variables Wh1, . . . ,Wh`0 ,
Xh1, . . . ,Xh`1 ;

moreover, the length of P
(σ s)
τ t is bounded from above by

L
(
P

(σ s)
τ t

) ≤
min{T0,S0}∑

m=0

m!

(
T0

m

)(
S0

m

)
(S∗)T0−m(T ∗)S0−m .
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Proof. Define the polynomial Q
(σ )
τ t (W,X) in Z[W,X] by

Q
(σ )
τ t (W,X)Yt = D

σ

W(XτYt ).

By induction on ‖σ‖, it is easily checked that this polynomial Q
(σ )
τ t is homogeneous

of degree σk in the d variables W1k, . . . ,Wdk (1 ≤ k ≤ `0), and homogeneous of
degree τh in the `0 + 1 variables Wh1, . . . ,Wh`0 , Xh (1 ≤ h ≤ d0). One obtains the

polynomial P
(σ s)
τ t by substituting, in Q

(σ )
τ t ,

`1∑

j=1

s j Xhj to the variable Xh (1 ≤ h ≤ d0).

We now estimate the length. Since the upper bound we announced is a nondecreasing
function of each of the parameters S0, T0, S∗ and T ∗, there is no loss of generality to
assume S0 = ‖σ‖, T0 = ‖τ‖, S∗ = ‖s‖ and T ∗ = ‖t‖. For each σ , s, τ and t , we can
write

P
(σ s)
τ t =

∑

α

∑

β

tαsβ pαβ, (α ∈ Nd1 , β ∈ N`1 ),

where pαβ ∈ Z[W,X] are polynomials with nonnegative coefficients. It easily
follows that if we set

t = (|t1|, . . . , |td1 |) ∈ Nd1 and s = (|s1|, . . . , |s`1 |) ∈ N`1 ,

then we have
L
(
P

(σ s)
τ t

) ≤
∑

α

∑

β

tαsβL(pαβ).

For a polynomial with nonnegative coefficients, the length is the value of the
polynomial where one substitutes 1 to each variable. Denote by (1, 1, 1) the
corresponding point in Cd0`0 × Cd1`0 × Cd0`1 . We get

L
(
P

(σ s)
τ t

) ≤ P
(σ s)
τ t (1, 1, 1)

≤
(

d0∑

h=1

∂

∂Xh
+

d1∑

i=1

Yi
∂

∂Yi

)S0 (
XτYt)

X1=···=Xd0
=S∗

Y1=···=Yd1
=1

.

For f ∈ C[X,Y], we have

d

dz
f (z, . . . , z, ez, . . . , ez)

∣∣
z=S∗ =

(
d0∑

h=1

∂

∂Xh
+

d1∑

i=1

Yi
∂

∂Yi

)
f
∣∣∣ X1=···=Xd0

=S∗
Y1=···=Yd1

=eS∗
.

Therefore

L
(
P

(σ s)
τ t

) ≤ e−T ∗S∗
(

d

dz

)S0 (
zT0 eT ∗z)∣∣

z=S∗

≤
min{T0,S0}∑

m=0

m!

(
T0

m

)(
S0

m

)
(S∗)T0−m(T ∗)S0−m .

¤
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Remark. Using the bound m!
(N

m

) ≤ N m for N ≥ 0 – with the usual conventions,
namely

N m = 1 for N = m = 0,
(

N

m

)
= 0 unless 0 ≤ m ≤ N ,

(
N

0

)
= 1 for N ≥ 1,

we deduce

L
(
P

(σ s)
τ t

) ≤ (T ∗)S0 (S∗)T0 min

{(
1 +

S0

T ∗S∗

)T0

,
(

1 +
T0

T ∗S∗

)S0
}
·

A special case of Lemma 13.6 is Lemma 4.9.

13.3.2 The Arithmetic Determinant

In this section we use the notation of § 13.1 and we assume that the conditions stated
there are fulfilled.

a) The Polynomial 1
Let L be nonnegative integers. For 1 ≤ λ,µ ≤ L , let

τ λ = (τ1λ, . . . , τd0λ) ∈ Nd0 , tλ = (t1λ, . . . , td1λ) ∈ Zd1 ,

σµ = (σ1µ, . . . , σ`0µ) ∈ N`0 , sµ = (s1µ, . . . , s`1µ) ∈ Z`1

satisfy
‖τ λ‖ ≤ T0, |tiλ| ≤ Ti , (1 ≤ i ≤ d1),

‖σµ‖ ≤ d+S0, |s jµ| ≤ d+S j , (1 ≤ j ≤ `1).

Define
ϑλµ = D

σ
µ

W Xτ
λYt

λ

∣∣
(X,Y)=Zs

µ

= P
(σ
µ

s
µ

)
τ
λ
t
λ

(W,X)
d1∏

i=1

`1∏

j=1

Y
tiλs jµ

i j .

Recall the notation T ∗ = T1 + · · · + Td1 and S∗ = S1 + · · · + S`1 .

Lemma 13.7. The determinant 1 of the L × L matrix
(
ϑλµ

)
1≤λ,µ≤L

is a polynomial with integer coefficients inW, X, Y±1, of total degree
≤ d+L S0 in the d`0 variables Wik (1 ≤ i ≤ d, 1 ≤ k ≤ `0),
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≤ LT0 in the d0` variables Whk , Xhj (1 ≤ h ≤ d0, 1 ≤ k ≤ `0, 1 ≤ j ≤ `1),
≤ d+LTi S j in each of the variables Yi j and 1/Yi j (1 ≤ i ≤ d1, 1 ≤ j ≤ `1). The
length of this polynomial is bounded from above by

L!eLU0 ,

where

U0 = T0 log(d+S∗) + d+S0 log T ∗+

min

{
T0 log

(
1 +

S0

T ∗S∗

)
,d+S0 log

(
1 +

T0

d+T ∗S∗

)}
·

Proof. We develop the determinant

1 =
∑

{ϕ}
ε(ϕ)

L∏

µ=1

(
P

(σ
µ

s
µ

)
τ
ϕ(µ)tϕ(µ)

(W,X)
d1∏

i=1

`1∏

j=1

Y
ti,ϕ(µ)s jµ

i j

)
,

where ϕ runs over the set of bijective maps from the set {1, . . . , L} onto itself and
ε(ϕ) = ±1. The length which we want to estimate is bounded by

∑

{ϕ}

L∏

µ=1

L
(
P
σ
µ

s
µ

τ
ϕ(µ)tϕ(µ)

)
.

The number of terms in the sum is L! and therefore the desired bound follows from
Lemma 13.6 and the remark at the end of § 13.3.1 (with S0, S1, . . . , S`1 replaced by
d+S0, d+S1, . . . , d+S`1 respectively). ¤

b) Liouville’s Estimate for the Arithmetic Determinant
We substitute toW, X and Y algebraic numbers.

Define
θ
σ s
τ t = D

σ
w

(
zτ et z

)
(η

s
)

and
θλµ = θ

σ
µ

s
µ

τ
λ
t
λ
.

Proposition 13.8. Assume that the determinant 1ar of the L × L matrix
(
θλµ

)
1≤λ,µ≤L

is not zero. Then

− 1

L
log |1ar| ≤ (D − 1)(U0 + log L) + U1 + 2U2

with
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U1 = DT0 log B1 + d+ DS0 log B2,

U2 = d+ D
d1∑

i=1

`1∑

j=1

Ti S j log Ai j .

Proof. The number θλµ is the value of the polynomial ϑλµ at the point

Whk = βhk (1 ≤ h ≤ d0, 1 ≤ k ≤ `0), Xhj = βh,`0+ j (1 ≤ h ≤ d0, 1 ≤ j ≤ `1),

Wd0+i,k = βd0+i,k (1 ≤ i ≤ d1, 1 ≤ k ≤ `0), Yi j = αi j (1 ≤ i ≤ d1, 1 ≤ j ≤ `1),

hence 1ar is the value at the same point of the determinant 1 from Lemma 13.7.
We use Proposition 3.14 (Liouville’s inequality); in the case where

h(1:βh1: · · · :βh`) ≤ log B1 (1 ≤ h ≤ d0)

one uses the fact that for 1 ≤ h ≤ d0 the degree of the polynomial1 in the variables
Wh1, . . . ,Wh`0 , Xh1, . . . ,Xh`1 is at most LT0, while for 1 ≤ k ≤ `0 the degree in
Wd0+1,k, . . . ,Wdk is at most d+L S0. In the other case where

h(1:β1k : · · · :βdk) ≤ log B2 (1 ≤ k ≤ `0)

we use the fact that for 1 ≤ k ≤ `0,1 has degree≤ d+L S0 in W1k, . . . ,Wdk and for
1 ≤ h ≤ d0, it has degree ≤ LT0 in Xh1, . . . ,Xh`1 . ¤

13.4 Proof of Theorem 13.1

We assume that the hypotheses of Theorem 13.1 are satisfied. We first give the
main arguments, taking for granted some technical estimates; next we check these
estimates.

13.4.1 Sketch of the Proof

We choose for L the least integer for which

L ≥ 2

(
T0 + r1

r1

)(
d+S0 + r2

r2

)(
V

log E

)r3

·

From the hypotheses in § 13.1 we deduce

L ≤ H (G+; T ).

By the definition of H (G+; T ), there exist monomials in C[G] = C[X , Y±1], say

X τ
λY t

λ = X τ1λ
1 · · · X

τd0λ

d0
Y t1λ

1 · · · Y
td1λ

d1
(1 ≤ λ ≤ L),
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with τ λ ∈ Nd0 , ‖τ λ‖ ≤ T0, tλ ∈ T1, such that the restrictions to G+(C) of the
associated mappings

G(C) = Cd0 × (C×)d1 −→ C
(u, v) 7−→ uτ λvt

λ

are linearly independent.
Our goal is to show that the matrix

M =
(
D
σ
w

(
zτ λet

λ
z
)
(η

s
)
)

1≤λ≤L
(σ ,s)

has rank < L; the index of rows is λ with 1 ≤ λ ≤ L , while the index of columns is
(σ , s) with σ ∈ N`0 , ‖σ‖ ≤ d+S0 and s ∈ S1[d+]. Recall the notation

S1[d+] =
{
s(1) + · · · + s(d+) ; s(i) ∈ S1 (1 ≤ i ≤ d+)

}
.

This will allow us to check the hypotheses of Philippon’s multiplicity estimate
(Chap. 10): indeed a vanishing nontrivial linear combination between the rows gives
a nonzero element of C[G] of multidegree ≤ (T0, . . . , Td1 ) which does not vanish
identically on G+ but vanishes to order > d+S0 with respect to W at each point of
6[d+] + G− (recall the definition of T1) with

6[d+] =
{
γ (1) + · · · + γ (d+) ; γ (i) ∈ 6 (1 ≤ i ≤ d+)

}

=
{
s1γ 1

+ · · · + s`1γ `1
; (s1, . . . , s`1 ) ∈ S1[d+]

}
.

Theorem 8.1 then gives the conclusion of Theorem 13.1.
We select L elements

(
σµ, sµ

) ∈ N`0 × S1 with ‖σµ‖ ≤ S0 and we consider the
corresponding determinant (see Proposition 13.8)

1ar = det
(
θλµ

)
1≤λ,µ≤L

.

We want to prove 1ar = 0.
We shall check below that the assumptions of Proposition 13.2 are satisfied

with w, W and X replaced by w′, W ′ and X′ respectively, and with U0 = {0},
U1 = Te(G−1 ),

ψλτ (zd0+1, . . . , zd ) =
{

et
λ
z = et1λzd0+1+···+td1λzd for τ = τ λ,

0 otherwise
,

ϕλ(z) = zτ λet
λ
z = zτ1λ

1 · · · z
τd0λ

d0
ψλτ

λ
(zd0+1, . . . , zd ),

ζ
µ

= η′
s
µ

, ε = e−V ,

Mλ = 2(d+ + 1)U + (d+ + 1)
U

D
+ 1,

while δλµ is defined by

θλµ = D
σ
µ

w′
(
zτ λet

λ
z
)
(η′

s
µ

) + εδλµ.
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Hence
1

L
log |1ar| ≤ −1

2
V + 2(d+ + 1)U + (d+ + 1)

U

D
+ 2 + log L .

From the estimates

U0 ≤ (d+ + 1)
U

D
, U1 ≤ (d+ + 1)U, U2 ≤ d+U,

it follows that the conclusion of Proposition 13.8 gives the lower bound

1

L
log |1ar| ≥ −2(2d+ + 1)U − (D − 1) log L + (d+ + 1)

U

D
·

The first technical estimate below implies e2L D < eU/2; the condition V ≥ cU
with c = 12d+ + 9 shows that this lower bound for |1ar| is not compatible with the
previous upper bound ; hence the assumption of Proposition 13.8 is not satisfied,
which means 1ar = 0. This is what we wanted to prove.

13.4.2 First Technical Estimate

We prove now:
e2L D < eU/2.

Using the lower bound

2

(
T0 + r1

r1

)(
d+S0 + r2

r2

)(
V

log E

)r3

≥ 2(12d+ + 9) > 1

we derive

L < 3

(
T0 + r1

r1

)(
d+S0 + r2

r2

)(
V

log E

)r3

·
From the estimates log E ≥ 1 and max{T0, S0, r1, r2} ≤ U , we deduce

L < 3(T0 + r1)r1 (d+S0 + r2)r2

(
V

log E

)r3

< 3(12d+ + 9)rU r .

Using the assumption U ≥ 20r D log(2d D) we obtain U r D < eU/4 and 9e2(4d +3) <
eU/4r D (for this last upper bound one may notice that the assumptions of § 13.1 cannot
be satisfied with d = 1). The first technical estimate follows.

13.4.3 Second Technical Estimate

We check the upper bounds

e2d+T ∗S∗(T0 + d+S0 + d+T ∗S∗) < eU and T0 + d+S0 + d+T ∗S∗E < eV

which will be needed later. We bound firstly T0 + d+S0 + d+T ∗S∗ by (2d + 1)U ,
secondly T ∗S∗ by U , and next e2d+(2d + 1)U 2 by eU , using again the lower bound
U ≥ 20 log(2d). This proves the first estimate, while the second is proved in the
same way using the inequality U > log E .
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13.4.4 Upper Bound for Ṽ

We check
Ṽ ≤

(
1 +

r3

4

)
V .

Indeed, from V = cU with c = 12d+ + 9, using the assumption

max
{
T0 log E, S0 log E, r3 log E

} ≤ U,

we deduce

Ṽ = V + r3T0 log E + (r3 + 1)d+S0 log E + r3(r3 + 1) log E

≤ V + (d+r3 + d+ + 2r3 + 1)U ≤
(

1 +
d+r3 + d+ + 2r3 + 1

c

)
V .

Since
d+r3 + d+ + 2r3 + 1

c
≤ r3

4
and

(
1 +

r3

4

)r3+1
< (r3 + 1)!,

we deduce
2

(r3 + 1)!

(
Ṽ

V

)r3+1

< 2.

13.4.5 Estimate for Mλ

We check now that the assumptions of Proposition 13.2 are satisfied with

Mλ = 2(d+ + 1)U + (d+ + 1)
U

D
+ 1.

Recall that a complex algebraic numberβ of degree≤ D and absolute logarithmic
height ≤ log B satisfies |β| ≤ B D .

For 1 ≤ k ≤ `0 write w′k = (w′1k, . . . , w
′
dk). From the assumptions of Theorem

13.1 we derive, for 1 ≤ h ≤ d0 and 1 ≤ k ≤ `0,

|w′hk − βhk | ≤ e−V and |βhk | ≤ max{B D
1 , B D

2 },
hence

|w′hk | ≤ max{B D
1 , B D

2 }(1 + e−V ),

because Bi ≥ 1; from the estimate log(1 + t) ≤ t (for t ≥ 0), we obtain

log |w′hk | ≤ D log max{B1, B2} + e−V .

We also write η′
j

= (η′1 j , . . . , η
′
d j ) for 1 ≤ j ≤ `1. The same argument gives, for

1 ≤ h ≤ d0, 1 ≤ i ≤ d1 and 1 ≤ j ≤ `1:

log |η′hj | ≤ D log B1 + e−V , log |w′d0+i,k | ≤ D log B2 + e−V

and
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|η′d0+i, j | ≤ |λi j | + e−V .

Fix λ and µ in the range 1 ≤ λ ≤ L , 1 ≤ µ ≤ L , and define Fλµ:C→ C by

Fλµ(z) = D
σ
µ

w′
(
zτ λet

λ
z
)
(zη′

s
µ

).

Lemma 13.9. We have

log sup
|z|=E
|Fλµ(z)| ≤ U0 + U1 + U3 + T0 log E + 1,

where

U3 = E

∣∣∣∣∣
d1∑

i=1

`1∑

j=1

ti s jλi j

∣∣∣∣∣ .

Proof. We can write

Fλµ(z) = P
(σ s)
τ t

(
w′, zx′

) d1∏

i=1

`1∏

j=1

eti s jη
′
d0+i, j z

where w′ denotes the point in Cd`0 with coordinates (w′ik), x′ denotes the point in

Cd0`1 with coordinates (η′hj ) and P
(σ s)
τ t is the polynomial of Proposition 13.6, in the

variables Wik , Xhj , with length bounded by eU0 and total degree in Xh1, . . . , Xh`1 at
most T0. Hence

log
∣∣P (σ s)
τ t

(
w′, zx′

)∣∣ ≤ U0 + U1 + T0 log E + (T0 + d+S0)e−V .

Finally for |z| ≤ E we have

log

∣∣∣∣∣
d1∏

i=1

`1∏

j=1

eti s jη
′
d0+i, j z

∣∣∣∣∣ ≤
∣∣∣∣∣

d1∑

i=1

`1∑

j=1

ti s jη
′
d0+i, j z

∣∣∣∣∣

≤ E

∣∣∣∣∣
d1∑

i=1

`1∑

j=1

ti s jλi j

∣∣∣∣∣ + d+T ∗S∗Ee−V

≤ U3 + d+T ∗S∗Ee−V

By the second technical estimate, we may bound

(T0 + d+S0 + d+T ∗S∗E)e−V by 1.

¤

For the proof of the next analytic lemma, we need a simple auxiliary result which
is useful to estimate differences.



                    

13.4 Proof of Theorem 13.1 469

Lemma 13.10. Let ν1, . . . , ν` be positive integers and P a polynomial with complex
coefficients in ν1 + · · · + ν` variables X i j (1 ≤ j ≤ νi , 1 ≤ i ≤ `). Assume P has
total degree N . Assume also that for any i = 1, . . . , `, P has total degree ≤ L i

with respect to the νi variables X i1, . . . , X iνi . Let ai j , bi j be complex numbers and
A1, . . . , A`, ε positive real numbers such that

max{1, |ai j |, |bi j |} ≤ Ai and |ai j − bi j | ≤ εAi

for 1 ≤ j ≤ νi and 1 ≤ i ≤ `. Then

|P(a)− P(b)| ≤ εN L(P)AL1
1 · · · AL`

` .

Proof. For any integer k ≥ 0, the identity

ak − bk = (a − b)(ak−1 + · · · + bk−1)

gives the estimate

|ak − bk | ≤ k|a − b|max{|a|, |b|}k−1.

By induction on m, one deduces, for k1, . . . , km nonnegative integers,

|ak1
1 · · · akm

m − bk1
1 · · · bkm

m | ≤
m∑

ν=1

kν |aν − bν |max{|aν |, |bν |}kν−1
∏
µ6=ν

1≤µ≤m

max{|aµ|, |bµ|}kµ .

This proves Lemma 13.10 when P is a monomial; the general case easily follows.
¤

Remark. The same proof yields a homogeneous version of Lemma 13.10: for each
i ∈ {1, . . . , `} for which P is homogeneous of degree L i with respect to the νi

variables X i1, . . . , X iνi , one may replace

max{1, |ai j |, |bi j |} ≤ Ai by max{|ai j |, |bi j |} ≤ Ai .

For instance if P ∈ C[X0, . . . , Xm] is homogeneous of degree N , then

|P(a0, . . . , am)− P(b0, . . . , bm)| ≤
N L(P)

(
max

0≤i≤m
|ai − bi |

)(
max

0≤i≤m
max{|ai |, |bi |}

)N−1
.

Lemma 13.11. The number

δλµ = eV
(
D
σ
µ

w

(
zτ λet

λ
z
)
(η

s
µ

)−D
σ
µ

w′
(
zτ λet

λ
z
)
(η′

s
µ

)
)

has absolute value bounded by
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log
∣∣δλµ

∣∣ ≤ U0 + U1 +
U3

E
+ U.

Proof. For simplicity we write τ , t , σ and s in place of τ λ, tλ, σµ and sµ. We use
Exercise 1.1.a:

|ez − ez′ | ≤ |z − z′|max{|ez|, |ez′ |}
with

z =
d1∑

i=1

`1∑

j=1

ti s jλi j , z′ =
d1∑

i=1

`1∑

j=1

ti s jη
′
d0+i, j .

For these values of z and z′ we have

ez =
d1∏

i=1

`1∏

j=1

α
ti s j

i j , ez′ =
d1∏

i=1

`1∏

j=1

eti s jη
′
d0+i, j ,

and

|z − z′| ≤ d+T ∗S∗e−V , |ez| ≤ exp

(
U3

E

)
,

|ez′ | ≤ exp

(
U3

E
+ d+T ∗S∗e−V

)
.

Hence
|ez − ez′ | ≤ d+T ∗S∗e−V max{1, |ez|, |ez′ |}

with

log max{1, |ez|, |ez′ |} ≤ U3

E
+ d+T ∗S∗e−V .

We use Lemma 13.10 for the polynomial

P
(σ s)
τ t (W,X)Z .

The number e−V δλµ which we want to estimate is the absolute value of the difference
of the values of this polynomial at two different points, namely the points with
coordinates

Whk = βhk, Xhj = βh,`0+ j , Z =
d1∏

i=1

`1∏

j=1

α
ti s j

i j

and

Whk = w′hk, Xhj = η′hj , Z =
d1∏

i=1

`1∏

j=1

eti s jη
′
d0+i, j

respectively. We use Lemma 13.10 with ε = d+T ∗S∗e−V . The total degree N is
bounded by T0 + d+S0 + 1 and the length by eU0 . We deduce

log
∣∣δλµ

∣∣ ≤ log(d+T ∗S∗) + log(T0 + d+S0 + 1) + U0 + U1 +
U3

E
+

(T0 + d+S0 + d+T ∗S∗)e−V .
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From the technical estimates we deduce

ed+T ∗S∗(T0 + d+S0 + 1) ≤ eU , (T0 + d+S0 + d+T ∗S∗)e−V ≤ 1

and the conclusion of Lemma 13.11 readily follows. ¤

From the estimates

U0 ≤ (d+ + 1)
U

D
, U1 ≤ (d+ + 1)U,

and
U3 ≤ d+U, T0 log E ≤ DT0 log B1 ≤ U

we conclude that

Mλ = (d+ + 1)

(
2 +

1

D

)
U + 1

is admissible, which is what we wanted to check. ¤

13.5 Directions for Use

In this section we explain how to use Theorem 13.1. For simplicity we shall consider
only the simpler situation where G− = {e}, G+ = G (see § 14.4.5.for comments on
the relevance of G− and G+).

We also assume that T1 is the full set of tuples (t1, . . . , td1 ) for which |ti | ≤ Ti

(1 ≤ i ≤ d1), and similarly for S1. Even when G− = {e}, it may be useful to take
for T1 and S1 smaller subsets (for instance in connection with Matveev’s trick - see
§ 9.3), but we shall no insist further on this point.

The statement of Theorem 13.1 involves a number of parameters. In most
applications (examples already occurred earlier in this book, and further applications
are to come), the parameters Ai j , B1, B2 and E are imposed by the data. For instance,
when proving a measure of linear independence for logarithms of algebraic numbers,
that means a lower bound for the absolute value of nonzero numbers of the form

β0 + β1λ1 + · · · + βmλm,

the parameters Ai j measure the height of the algebraic numbers eλi , B1 and B2 are
related to the heights of the coefficients β0, . . . , βm , and E is connected with |λ j |.

On the other hand we have to choose the parameters T0, T1, . . . , Td1 and
S0, S1, . . . , S`1 , and the main goal of this section is to provide a few tips for a good
choice; here, good means that we are looking for a sharp conclusion, which means
that U and V should be as small as possible.

In many applications, the most restrictive conditions on the parameters are
imposed by the fact that we wish to avoid the trivial case where the conclusion
of Theorem 13.1 holds with G∗ = {e}. We deal with this issue here.
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13.5.1 Optimal Value for U

We prove that, under the assumptions of Theorem 13.1, if the parameter U is
sufficiently small, then the conclusion is satisfied with G∗ = {e}. This indicates, to
a certain extent, a limit of application of Theorem 13.1: one can deduce a nontrivial
conclusion only by taking U large enough.

Proposition 13.12. Under the assumptions of Theorem 13.1, suppose

T1 =
{
t ∈ Zd1 ; |ti | ≤ Ti (1 ≤ i ≤ d1)

}
,

S1 =
{
s ∈ Z`1 ; |s j | ≤ S j (1 ≤ j ≤ `1)

}

and G−1 = {1}, G+
1 = G1. Suppose also Ti ≥ 1 for 1 ≤ i ≤ d1, S j ≥ 1 for 1 ≤ j ≤ `1,

and moreover T0 ≥ 1 if d0 > 0, S0 ≥ 1 if `0 > 0. Assume further that the numbers

u = d1`1 + d0`1 + d1`0 − r (d1 + `1),

δ = d1`1 + d0`1 + d1`0 − (r − r3)(d1 + `1),

b1 = d0`1 − r1(d1 + `1),

b2 = d1`0 − r2(d1 + `1)

are ≥ 0. If the conclusion of Theorem 13.1 is not satisfied for the trivial subgroup
G∗ = {e}, then the parameter U satisfies

U u ≥ c0 Dδ(log B1)b1 (log B2)b2

(
d1∏

i=1

`1∏

j=1

log Ai j

)
(
log E

)−r3(d1+`1)

where c0 depends only on d0, d1, `0, `1, r1, r2, r3.

Proof.
Define

L =

(
T0 + d0

d0

)
(2T1 + 1) · · · (2Td1 + 1) =

(
T0 + d0

d0

)
CardT1

and

N =

(
S0 + `0

`0

)
(2S1 + 1) · · · (2S`1 + 1) =

(
S0 + `0

`0

)
CardS1

which represent (to a certain extent) the number of unknowns and the number of
equations in the multiplicity estimate. We have

L ≤ (1 + η1)
2d1

d0!
T d0

0 T1 · · · Td1 and N ≤ (1 + η2)
2`1

`0!
S`0

0 S1 · · · S`1 ,
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with

1 + η1 =

(
1 +

d0

T0

)d0
(

1 +
1

2T1

)
· · ·
(

1 +
1

2Td1

)

and

1 + η2 =

(
1 +

`0

S0

)`0
(

1 +
1

2S1

)
· · ·
(

1 +
1

2S`1

)
·

Since the conclusion of Theorem 13.1 is not satisfied for the trivial subgroup G∗ of
dimension 0, we have

N ≥ cZ E L with cZ E = d!.

The analytic condition implies

L ≥ cAN T r1
0 Sr2

0

(
V

log E

)r3

with cAN =
2dr2

r1!r2!
,

while the arithmetic condition requires

V ≥ cARU, with cAR = 12d + 9.

Hence the arithmetic plus analytic constraints are

L ≥ cAN (cAR)r3 T r1
0 Sr2

0

(
U

log E

)r3

·

From the upper bounds for L and N one deduces

L`1 N d1 ≤ (1 + η1)`1 (1 + η2)d1

(
T d0

0

d0!

)`1
(

S`0
0

`0!

)d1

4d1`1

d1∏

i=1

`1∏

j=1

Ti S j .

We estimate the left hand side:

L`1 N d1 ≥ (cZ E )d1 Ld1+`1 ≥ (cZ E )d1
(
cAN (cAR)r3

)d1+`1

(
T r1

0 Sr2
0

(
U

log E

)r3
)d1+`1

·

Therefore we have

(1 + η1)`1 (1 + η2)d1 T d0`1
0 Sd1`0

0

d1∏

i=1

`1∏

j=1

Ti S j ≥

d0!`1`0!d1

4d1`1
(cZ E )d1

(
cAN (cAR)r3

)d1+`1

(
T r1

0 Sr2
0

(
U

log E

)r3
)d1+`1

.

We use the bounds

T0 ≤ U

D log B1

, S0 ≤ U

D log B2

, Ti S j ≤ U

D log Ai j

,
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together with u ≥ 0, δ ≥ 0, b1 ≥ 0, b2 ≥ 0 and we find the given condition on
U . ¤

Remark. The proof yields also an estimate for c0. For simplicity we replace η1 and
η2 by 0 (in all applications these numbers are pretty small, in any case< 1). We also
assume

Ti S j ≤ U

d1`1 D log Ai j
·

Then

c0 ≥ (d0!)`1 (`0!)d1 ·
(

d1`1

4

)d1`1

(cZ E )d1
(
cAN (cAR)r3

)d1+`1 (13.13)

≥ (d0!)`1 (`0!)d1 (d1`1)d1`1 d!d1

4d1`1

(
2dr2 (12d + 9)r3

r1!r2!

)d1+`1

·

This is only a lower bound for the value of the constant which can be expected using
Theorem 13.1. The actual value involves extra terms, coming for instance from the
need to choose the parameters T0, . . . , Td1 , S0, . . . , S`1 as integers, and taking into
account the difference between a real number and its integral part. On the other hand
if one wishes to get a sharp numerical constant, it is usually advisable to repeat the
proof introducing a few minor refinements at some places. Such tricks can be found
in the literature on this subject. The paper [LauMN 1995] (which deals only with
homogeneous linear combinations of two logarithms only) contains several such
refinements. Just to name one of them, the use of Blaschke factors (see Exercise 4.3),
which was introduced in [MiW 1978], easily yields sharper numerical values for the
final constants.

13.5.2 Choice of the Parameters

Proposition 13.12 gives a limit of application to Theorem 13.1. When applying
Theorem 13.1, one wishes to come as close as possible to this limit. We explain how
to select the parameters for this purpose.

We shall denote by c1 a constant which depends only on d0, d1, `0, `1, r1, r2, r3.
We assume, as we may without loss of generality,

log Ai j ≤ log Ai1 log A1 j

log A11

for 1 ≤ i ≤ d1, 1 ≤ j ≤ `1 (a permutation reduces to this case).

Remark. From the proof of Proposition 13.12 it is easy to see that the optimal value
of U cannot be reached unless the rank of the matrix

(
log Ai j

)
is 1.

We first define U by the following condition involving u, δ, b1, b2:
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U u = c0 Dδ(log B1)b1 (log B2)b2 ·
(

d1∏

i=1

log Ai1

)`1
(

`1∏

j=1

log A1 j

)d1 (
log A11

)−d1`1
(
log E

)−r3(d1+`1)
.

The definition of S0 and T0 is easy:

T0 =

[
U

D log B1

]
, S0 =

[
U

D log B2

]
·

We shall select a positive integer S1 below and then define

S j =

[
S1

log A11

log A1 j

]
(1 ≤ j ≤ `1),

Ti =

[
U

d1`1 DS1 log Ai1

]
(1 ≤ i ≤ d1).

This enables us to check

d1∑

i=1

`1∑

j=1

Ti S j log Ai j ≤ U

D
·

Now we define S1 in terms of U in such a way that the condition N ≥ cZ E L of
§ 13.5.1 is satisfied. For simplicity we replace

N by
2`1

`0!

(
U

D log B2

)`0 (S1 log A11)`1

log A11 · · · log A1`1

and

L by
2d1

d0!

(
U

D log B1

)d0 U d1

(d1`1 DS1)d1 log A11 · · · log Ad11
·

Accordingly we choose the least positive integer for which

Sd1+`1
1 ≥ c1

U d−`0 (log B2)`0 log A11 · · · log A1`1

Dd−`0 (log B1)d0 (log A11)`1 log A11 · · · log Ad11

with some c1 satisfying

c1 ≥ `0!2d1−`1

d0!(d1`1)d1
· cZ E

(see Exercise 13.7). This is essentially how our parameters will be chosen in the next
chapter. Notice that this choice leads a value for T d1+`1

1 which is close to

c′1
U `−d0 (log B1)d0 log A11 · · · log Ad11

D`−d0 (log B2)`0 (log A11)d1 log A11 · · · log A1`1

where

c′1 =
d0!2`1−d1

`0!(d1`1)`1
· 1

cZ E
·
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A good approximation for L is then

2d1

d0!(d1`1)d1
· U d

Dd (log B1)d0 Sd1
1 log A11 · · · log Ad11

,

which is close to

cAN (cAR)r3
U r

(D log B1)r1 (D log B2)r2
·

13.5.3 On the Conditions Ti ≥ 1 and S j ≥ 1

Recall that the letters T0, T1, . . . , Td1 and S0, S1, . . . , S`1 in Theorem 13.1 denote
positive integers. A general principle is that if the choice suggested in § 13.5.1 yields
a value for some of the parameters Ti or S j less than one, then one should omit the
corresponding factor. The condition S j ≥ 1 amounts to

c1U d−`0 (log B2)`0 (log A11)d1 log A11 · · · log A1`1 ≥
Dd−`0 (log B1)d0 (log A1 j )

d1+`1 log A11 · · · log Ad11

while the condition Ti ≥ 1 is essentially

c′1U `−d0 (log B1)d0 (log A11)`1 log A11 · · · log Ad11 ≥
D`−d0 (log B2)`0 (log Ai1)d1+`1 log A11 · · · log A1`1 .

We shall use this remark in §§ 14.1.2, 14.2.2, 14.3.1 and 14.3.2.

13.6 Introducing Fel’dman’s Polynomials

As mentioned in the introduction of the present chapter, we did not include Fel’dman’s
polynomials in our proof. Therefore Theorem 13.1 does not contain the refined
measures of linear independence of logarithms given in Theorem 9.1 for instance.
We explain here one way of including such a refinement in Theorem 13.1.

In this section we assume that the d0 × `0 matrix B0 has a special shape:

βhk = δhk (1 ≤ h ≤ d0, 1 ≤ k ≤ `0).

(This assumption is satisfied, by agreement, when either d0 = 0 or `0 = 0). The

specialization P̃
(σ s)
τ t at

Whk = δhk (1 ≤ h ≤ d0, 1 ≤ k ≤ `0)

of the polynomial P
(σ s)
τ t of Lemma 13.6 has a simple closed form21, namely

21 Compare with Lemma 4.9.
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P̃
(σ s)
τ t =

∑

κ

σ !τ !

κ!(σ − κ)!(τ − κ)!

(
sX
)τ−κ(

tW
)σ−κ

,

where κ runs over the tuples (κ1, κ2, . . .) of rational integers with

0 ≤ κh ≤ min{σh, τh}, κh = 0 for h ≥ min{d0, `0}.
For simplicity we have written

(
sX
)τ−κ

=

(
`1∑

j=1

s j X j

)τ−κ
=

d0∏

h=1

(
`1∑

j=1

s j Xhj

)τh−κh

and similarly

(
tW
)σ−κ

=

(
d1∑

i=1

ti Wd0+i

)σ−κ
=

`0∏

k=1

(
d1∑

i=1

ti Wd0+i,k

)σk−κk

.

It is sometimes useful to perform a change of basis, as we already saw in Chapters
9 and 10, where we used Fel’dman’s4 polynomials. We are going to do the same in
the general context.

To start with, consider
τ !

(τ − κ)!

(
sX
)τ−κ

.

This term arises from the specialization of

D
κ
w(zτ )

at

sX =

(
`1∑

j=1

s j X1 j , . . . ,

`1∑

j=1

s j Xd0 j

)
.

One may replace zτ = zτ1
1 · · · z

τd0
d0

by other polynomials, which may have better
arithmetic properties. So let us choose any basis

δ(1)(z; τ ) (1 ≤ τ ≤ M) with M =

(
T0 + d0

d0

)

of the space of polynomials in d0 variables with coefficients in the number field K
and total degree ≤ T0. For κ ∈ Nd0 , define

δ(1)(z; τ, κ) =

(
∂

∂z1

)κ1

· · ·
(
∂

∂zd0

)κd0

δ(1)(z; τ ).

Then in the expression for P̃
(σ s)
τ t one may replace

τ !

(τ − κ)!

(
sX
)τ−κ
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by
δ(1)(sX; τ, κ).

The consequence on the matrix

M =
(
D
σ
w

(
zτ et z

)
(sη)

)
(τ t)

(σ s)

is described as follows. Define M̃ to be the matrix of the same size as M whose
entries are

∑

κ

σ !

κ!(σ − κ)!
δ(1)(sβ; τ, κ)

(
tβ
)σ−κ d1∏

i=1

`1∏

j=1

α
ti s j

i j .

Here, sβ is nothing but

(
`1∑

j=1

s jβ1,`0+ j , . . . ,

`1∑

j=1

s jβd0,`0+ j

)
∈ K d0

while

tβ =

(
d1∑

i=1

tiβd0+i,1
, . . .

d1∑

i=1

tiβd0+i,`0

)
∈ K `0 ,

so that
(
tβ
)σ−κ

=

(
d1∑

i=1

tiβd0+i

)σ−κ
=

`0∏

k=1

(
d1∑

i=1

tiβd0+i,k

)σk−κk

.

We choose any ordering for the tuples (τ , t) so that the tuples with the same t are
consecutive. Denote by

Q(1) =
(

q (1)
ττ

)
∈ GLM (C)

the transition matrix such that

δ(1)(z; τ ) =
∑

‖τ‖≤T0

q (1)
ττ zτ (1 ≤ τ ≤ M).

Denote by Q̃
(1)

the matrix in GLL (C) (where L = M(2T1 + 1) · · · (2Td1 + 1)) which
is diagonal by blocs with

Q̃
(1)

= diag( Q(1), . . . , Q(1)).

Then
Q̃

(1)
M = M̃.

The change of basis we just performed turns out to be specially useful when the
entries of the matrix B1 are rational integers. In the same way, when B2 has rational
integers entries, it may be useful to perform a similar change of basis in order to
avoid a too strong condition on the parameter B2 of Theorem 13.1. For this, consider
any basis
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δ(2)(z; σ ) 1 ≤ σ ≤
(

S0 + `0

`0

)

of the space of polynomials in `0 variables with coefficients in K and total degree
≤ S0. For κ ∈ N`0 , define

δ(2)(z; σ, κ) =

(
∂

∂z1

)κ1

· · ·
(
∂

∂z`0

)κ`0
δ(1)(z; σ ).

Denote by

Q(2) =
(

q (2)
σσ

)

the (transposed of the) transition matrix such that

δ(2)(z; σ ) =
∑

‖σ‖≤S0

q (2)
σσ zσ 1 ≤ σ ≤

(
S0 + `0

`0

)

and by Q̃
(2)

the matrix diag( Q(2), . . . , Q(2)). Then the entries of

Q̃
(1)

M Q̃
(2)

are
∑

κ

1

κ!
δ(1)(sβ; τ, κ)δ(2)(tβ; σ, κ)

d1∏

i=1

`1∏

j=1

α
ti s j

i j .

This means that we have replaced the polynomials P̃
(σ s)
τ t by

∑

κ

1

κ!
δ(1)(sX; τ, κ)δ(2)(tW; σ, κ).

This polynomial depends on the choices of bases δ(1) and δ(2). Of course if we take

the canonical bases then we find P̃
(σ s)
τ t again (the transition matrices Q(1), Q(2),

Q̃
(1)

, Q̃
(2)

are then identity matrices), so we do not lose any generality with this
modification.

Remark. When the entries of the matrix
(
B0,B1

)
are rational integers, one may take

for instance for δ(1)(z; τ ) the basis

d0∏

h=1

4(zh ; τh) (‖τ‖ ≤ T0),

or some variants of these like

d0∏

h=1

4(zh + τ ′h ; T ′0)τ
′′
h or

d0∏

h=1

δT ′0 (zh ; τh)

(see Lemma 9.8).
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In a symmetric way, if the entries of
(B0
B2

)
are inZ, one may also take for δ(2)(z; τ )

products of Delta polynomials.
The choice of such polynomials should be done in order to sharpen the arithmetic

estimates and to get rid (at least in some cases) of the conditions DT0 log S1 ≤ U
(using δ(1)) and DS0 log T1 ≤ U (using δ(2)) of Theorem 13.1. In the context of
measures of linear independence of logarithms of algebraic numbers, this enables
one to weaken the assumptions on E∗, as we have seen in Chap. 9 and Chap. 10.
However this process has its own limitation: for instance in the nonhomogeneous
rational case (βi ∈ Z for 0 ≤ i ≤ m), the available estimates are not yet strong
enough to enable us to omit the assumption B ≥ max log A j in Theorem 9.1 (see
Exercise 9.4).

13.7 Duality: the Fourier-Borel Transform

We already mentioned several times the existence of a duality22 between the solution
by Gel’fond on one hand, Schneider on the other hand, of Hilbert’s seventh problem.
Let us consider this matter more thoroughly.

13.7.1 Duality between Gel’fond-Baker’s Method and Schneider’s Method

Start for simplicity with a homogeneous linear combination of logarithms of algebraic
numbers with algebraic coefficients:

3 = β1λ1 + · · · + βm−1λm−1 − λm,

where βi and αi = eλi (1 ≤ i ≤ m) are algebraic numbers.
The method we described in Chap. 10 (Gel’fond-Baker) involves the functions

ez1 , . . . , ezm−1 , eβ1z1+···+βm−1zm−1

which satisfy differential equations with algebraic coefficients The proof required a
multiplicity estimate on Gm

m related to an exponential sum

8
(1)
G (z) =

∑

t

ct

m−1∏

i=1

e(ti +tmβi )zi =
∑

t

ct e
x t z,

with
x t = (t1 + tmβ1, . . . , tm−1 + tmβm−1) ∈ Cm−1.

22 This duality is certainly different from the one introduced by D. Roy in [Roy 1992a] and
[Roy 1992b] related to a category and its opposite — see § 11.7.2.
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Here, t runs over a finite subset of Zm and ct are algebraic numbers. We take
derivatives (∂/∂z1)σ1 · · · (∂/∂zm−1)σm−1 for σ ∈ Nm−1. If 3 = 0, the value of this
derivative of 8(1)

G at a point sλ = (sλ1, . . . , sλm−1) (s ∈ Z) is an algebraic number:

Dσ8
(1)
G (sλ) =

∑

t

ct

m−1∏

i=1

(ti + tmβi )
σi ·

m∏

i=1

α
ti s
i . (13.14)

If 3 is not zero, then equality (13.14) does not hold anymore, but the difference
between both sides of (13.14) has a small absolute value if |3| is small.

In case m = 2, this is akin to Gel’fond’s solution of Hilbert’s seventh problem
[G 1934]. He used a similar approach later (see references for instance in [G 1952])
when he established the first effective estimates. Baker’s work [B 1966] extends
this method to the general case m ≥ 2. The proof, without any refinement nor
extrapolation, yields, under the notation of Theorem 9.1,

|3| ≥ exp
{
−C(m)Dm2

(log B)m2−m log A1 · · · log Am(log E)−m2+1
}

(see § 14.4.1).
The main new feature of Baker’s method, as opposed to Gel’fond’s method, is

to exploit the fact that the points lie on a complex line. This enabled Baker to use an
extrapolation formula which holds only for functions of a single complex variable.
By means of an induction he increases progressively the number of zeroes of his
auxiliary function, and accordingly he increases the number of equations which are
satisfied by the numbers ct . Finally this yields an estimate

|3| ≥ exp
{−C(m)Dm+2(log B)2 log A1 · · · log Am

}
.

The best known results so far by this method have been described in § 10.4:
substituting (log B)(log E∗) to (log B)2 is achieved by replacing 8(1)

G by a function
of m variables

8
(2)
G (z) =

∑

τ

∑

t

cτ t z
τ
0

m−1∏

i=1

e(ti +tmβi )zi ,

where (τ, t) runs over a finite subset of N × Zm . If 3 = 0, the derivative of order
σ = (σ0, . . . , σm−1) ∈ Nn at the point sλ = (s, sλ1, . . . , sλm−1) (s ∈ Z) is

Dσ8
(2)
G (sλ) =

∑

τ,t

cτ t
τ !

(τ − σ0)!
sτ−σ0

m−1∏

i=1

(ti + tmβi )
σi ·

m∏

i=1

α
λi s
i . (13.15)

This is what Baker, Fel’dman, Stark and others did (with an auxiliary function), and
also what we did (with an interpolation determinant) in Chap. 10.

In Chapters 7 and 9 we used a quite different approach. Transpose (13.14) and
consider numbers

∑

σ

∑

s

cσ s

m−1∏

i=1

(ti + tmβi )
σi ·

m∏

i=1

α
ti s
i (13.16)
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with some algebraic coefficients cσ s , where (σ , s) runs over a finite subset of

Nm−1 × Z. For t ∈ Zm the value 8(1)
S (x t ) of the exponential polynomial

8
(1)
S (z) =

∑

σ

∑

s

cσ s

m−1∏

i=1

(
zσi

i α
szi
i

)

at the point x t ∈ Cm−1, is close to the algebraic number (13.16) if |3| is small (and
is equal if 3 is zero).

For m = 2 this is just the starting point of Schneider’s solution to Hilbert’s seventh
problem [Sch 1934], which has been developed later for getting sharp measures of
linear independence for two logarithms of algebraic numbers in [MiW 1978], [Lau
1994], [LauMN 1995]. The dependence in B is (log B)2, and this is quite comparable
to what can be achieved by Gel’fond’s method alone. The zero estimate is simpler
for Schneider’s method because no derivative is involved. The zero estimate used in
[MiW 1978] is due to D. W. Masser (see also [Ma 1981b]). The improvement in [Lau
1994] arises mainly from using an interpolation determinant in place of an auxiliary
function, while [LauMN 1995] rests on an improved zero estimate of Nesterenko’s
(Proposition 2.12).

This method has been extended to cover the case m ≥ 2 in [W 1991b], [W 1992]
and [W 1993].

In Chap. 7 we used this approach (for m ≥ 2), which is the exact dual to the
Gel’fond-Baker’s method. If you compare the notation of Chap. 7 with (13.16), you
will notice a permutation between (τ, t) and (σ , s), which is of course due to this
duality.

In this duality, the analog of Baker’s refinement (related to the fact that his points
were on a complex line) is that, apart from a single exponential factor

(
α

z1
1 · · ·αzm−1

m−1

)s
= exp(sλz),

we have only polynomial functions (see Chap. 9). This yields an estimate involving
(log B)2, like in [MiW 1978], [Lau 1994], [LauMN 1995] for the case m = 2. In
Chap. 9, in order to replace (log B)2 by (log B)(log E∗), we transposed (13.15). The
identity (

d

dz

)σ (
zτ
∣∣
z=s

=

(
d

dz

)τ (
zσ esz

∣∣
z=0

(for σ , τ in N and s in Z) suggests to consider a complex function of m variables

8
(2)
S (z) =

∑

σ

∑

s

cσ s zσ0
0 esz0

m−1∏

i=1

(
zσi

i α
zi s
i

)
,

(where (σ , s) runs over a finite subset of Nm × Z) and to introduce
(
∂

∂z0

)τ
8

(2)
S (0, t1 + tmβ1, . . . , tm−1 + tmβm−1)

for τ ∈ N and t ∈ Zm .
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This duality between the two main classical methods extends to the very general
setting of Theorem 13.1. Consider the matrix M of § 13.1 together with its transpose:

M =

(B0 B1

B2 L

)
tM =

( tB0
tB2

tB1
tL

)

This transposition exchanges (d0, d1) and (`0, `1) on one hand, permutes r1 and r2

on the other hand, while n, r and r3 are invariant. The quantities

`0d1 + `1d0, d1`1, d1 + `1

are invariant; so the inequality

`0d1 + `1d0 + `1d1 ≤ n(`1 + d1)

(which occurred several times in many disguises in Chap. 11) is invariant by
transposition. This duality establishes a correspondence between methods 1 and
1’ on one hand, 2 and 2’ on the other, for proving Baker’s Theorem (see § 11.4.5
and § 14.4).

The most remarkable fact is the effect of such a transposition on the matrix M
(§ 13.4.1) which gave rise to the interpolation determinant 1ar: the parameters

U, D, E, n, r, r3, u, δ

are left invariant, while the following parameters are exchanged:

B1 Ai j d0 d1 d r1 b1

l l l l l l l
B2 A j i `0 `1 ` r2 b2

Some proofs are auto-dual (to a certain extent): this is the case for the Theorem of
Hermite-Lindemann and for the six exponentials Theorem. One of the main point
in considering this duality is that it enables us to mix the methods: the arithmetic
estimate is invariant by transposition, but this is not exactly true for the analytic
estimate, and this is not true at all for the multiplicity estimate. So there is no
obstruction to use in the same proof the zero estimate related to Schneider’s method,
say, and the analytic upper bound arising from Gel’fond-Baker’s method. This shows
that in spite of the rigidity of the method (alluded to in Lang’s book [L 1966]23),
there are many possible variants. Unfortunately, so far, they do not seem to lead to
substantially different conclusions!

By means of the Fourier-Borel transform (see [LelGru 1986], Chap. 8 and [W
1991a]) we now explain why this correspondence holds for the analytic estimates of
§ 13.2 as well as for the arithmetic estimates of § 13.3 (e.g. Lemma 13.6: see Exercise
13.3). This will explain why the conclusion of Proposition 13.12 is essentially
invariant under transposition: indeed, it is invariant as far as the dependence in D,

23 “The few examples which one has now do suggest an absolute fantastic rigidity in the entire
theory.” [L 1966], Chap. 6, Historical Note.
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B1, B2, Ai j and E is concerned, but it is not invariant if we consider the value of c0

in terms of d, `, d1 and `1 given by (13.13). Clearly, the lack of symmetry occurs in
the term (cZ E )d1 only. It would be nice to have a symmetric multiplicity estimate.

13.7.2 Fourier-Borel Transform

Recall that An denotes the C-vector space of entire functions in Cn . Further, let A′n
denote the space of C-linear maps η: An → C which are bounded as follows: there
exist two positive constants C and R (depending on η) such that, for any F ∈ An ,

|η(F)| ≤ C |F |R (13.17).

The elements of A′n are called analytic functionals . Each η ∈ A′n is determined by
its moments η(zκ ), κ ∈ Nn , as shown by the following lemma:

Lemma 13.18. Let η ∈ A′n and F ∈ An be given. Consider the Taylor expansion at
the origin of F:

F(z) =
∑

κ∈Nn

aκ zκ .

Then the series ∑

κ∈Nn

aκη(zκ )

converges absolutely and the sum is η(F).

Proof. From (13.17) follows

|η(zκ )| ≤ C R‖κ‖,

with some positive constants C and R independent of κ ∈ Nn . Fix R1 > R. Using
Cauchy’s inequalities we deduce

|aκ | ≤ |F |R1 R
−‖κ‖
1 .

Hence
∣∣aκη(zκ )

∣∣ ≤ C |F |R1

(
R

R1

)‖κ‖
·

Fix ε > 0. Let N be a sufficiently large integer, so that

C(2 + N )n|F |R1

(
R

R1

)N

< ε.

Define
G(z) = F(z)−

∑

‖κ‖≤N

aκ zκ .

On one hand we have
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|G|R1 ≤ |F |R1 +
∑

‖κ‖≤N

|aκ |R‖κ‖1 ≤ (2 + N )n|F |R1 .

On the other hand G has a zero at z = 0 of multiplicity ≥ N , and Schwarz’ Lemma
(Lemma 2.4 in one variable suffices) gives

|G|R ≤
(

R

R1

)N

|G|R1 .

Therefore we deduce from (13.17)
∣∣∣∣∣∣
η(F)−

∑

‖κ‖≤N

aκη(zκ )

∣∣∣∣∣∣
=
∣∣η(G)

∣∣ ≤ C |G|R < ε.

¤

It follows from Lemma 13.18 that η is also determined by its values

Fη(ζ ) = η(eζ z)

on the functions z 7→ eζ z , for ζ running over Cn:

Fη(ζ ) =
∑

κ∈Nn

1

κ!
η(zκ )ζ κ .

By Lemma 13.18, this series
∑

κ∈Nn η(zκ )ζ κ/κ! converges absolutely, and condition
(13.17) shows that Fη is an entire function of finite exponential type:

Definition. An entire function8 ∈ An is of finite exponential type if there exist two
positive constants C1 and C2 such that

|8(ζ )| ≤ C1eC2|ζ |

for any ζ ∈ Cn . We denote by A0
n the vector space of entire functions of finite

exponential type.

Notice that any f ∈ A0
n has order of growth ≤ 1.

Definition. The Fourier-Borel Transform of η ∈ A′n is Fη ∈ A0
n .

Conversely, to an entire function 8 in A0
n we associate an analytic functional

η ∈ A′n such that 8 = Fη as follows:

Lemma 13.19. Let 8 be an entire function of finite exponential type. Let

8(ζ ) =
∑

κ∈Nn

aκ
zκ

κ!
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be its Taylor expansion at the origin. Then for any entire function

F(z) =
∑

κ∈Nn

bκ zκ ∈ An

the series
H8(F) =

∑

κ∈Nn

aκbκ

is absolutely convergent and the mapping

F 7−→ H8(F)

belongs to A′n .
Moreover

η 7−→ Fη and 8 7−→ H8

define inverse bijections between A′n and A0
n:

8 = Fη ⇐⇒ η = H8.

Proof. We use Cauchy’s inequality twice: first for F , with R1 > 0:

|bκ | ≤ |F |R1 R
−‖κ‖
1 ,

and then for 8, with % > 0, using the assumption 8 ∈ A0
n:

|aκ | ≤ κ!|8|%%−‖κ‖ ≤ κ!C1eC2%%−‖κ‖.

Therefore ∣∣aκbκ
∣∣ ≤ κ!C1eC2%|F |R1 (R1%)−‖κ‖.

This estimate holds for any R1 > 0, % > 0 and κ ∈ Nn . Fix R1 > C2 and choose
% = ‖κ‖/C2. For any κ ∈ Nn , we get

∣∣aκbκ
∣∣ ≤ uκ |F |R1

with

uκ = C1

(
C2e

R1

)‖κ‖
κ!

‖κ‖‖κ‖ ·

The series
∑

κ uκ is convergent. Let c be its sum. We obtain

∣∣H8(F)
∣∣ ≤

∑

κ∈Nn

∣∣aκbκ
∣∣ ≤ c|F |R1 ,

which proves H8 ∈ A′n .
From the definition of H8 we deduce

H8(zκ ) = Dκ8(0) for any κ ∈ Nn

and therefore
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8(ζ ) =
∑

κ∈Nn

1

κ!
H8(zκ )ζ κ .

Let η ∈ A′n; put 8 = Fη. For any κ ∈ Nn we have

H8(zκ ) = Dκ8(0) = DκFη(0) = η(zκ ),

hence H8 = η.
Conversely, let 8 ∈ A0

n; put η = H8. Then

Fη(ζ ) =
∑

κ∈Nn

1

κ!
η(zκ )ζ κ =

∑

κ∈Nn

1

κ!
H8(zκ )ζ κ = 8(ζ ).

¤

Example 1.
1. For z0 ∈ Cn , denote by δz0 ∈ A′n the analytic functional F 7→ F(z0). Then

Fδz0
(ζ ) = ez0ζ .

Example 2. For η ∈ A′n and 1 ≤ i ≤ n, denote by η ◦ ∂/∂zi the functional

F 7→ η

(
∂

∂zi
F

)
.

Then

Fη◦∂/∂zi (ζ ) = η

(
∂

∂zi
eζ z
)

= η
(
ζi e

ζ z) = ζiη
(
eζ z) = ζiFη(ζ ).

Of course an equivalent statement is

Hζi8 = H8 ◦ ∂

∂zi

for any 8 ∈ A0
n .

Example 3. For any η ∈ A′n and for 1 ≤ i ≤ n, denote by η ◦ zi the functional

F 7→ η(zi F).

Then

Fη◦zi =
∂

∂ζi
Fη.

This relation can be written
H8 ◦ zi = H ∂

∂ζi
8

for any 8 ∈ A0
n , which is proved as follows: for 8 = Fη (so that η = H8) and

κ ∈ Nn ,
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η(zκ ) = Dκ8(0) and η(zi z
κ ) = Dκ

(
∂

∂ζi
8

)
(0),

hence
η ◦ zi = H ∂

∂ζi
8.

4. Let π :Cd → Cn be a linear map and tπ :Cn → Cd its transpose. Define

A′n −→ A′d
η 7−→ π∗η

by
π∗η(F) = η(F ◦ π ) for F ∈ An.

Then
Fπ∗η = Fη ◦ tπ.

In other terms, for 8 ∈ A0
d

H8◦tπ = H8(F ◦ π ) for F ∈ An.

It suffices to check this equality when F(z) = eζ z for ζ ∈ Cn:

H8◦tπ (eζ z) = 8 ◦ tπ (ζ ) = H8

(
ξ 7→ e

tπ (ζ )ξ ) = H8

(
ξ 7→ eζπ (ξ ))

.

Putting these examples together one deduces:

Lemma 13.20.
a) Let u1, . . . , ud0

be elements of Cn , τ ∈ Nd0 and µ ∈ A′n . Define η ∈ A′n by

η(F) = µ
(
(uz)τ F

)
for F ∈ An,

where
(uz)τ = (u1z)τ1 · · · (ud0

z)τd0 .

Then
Fη = D

τ
uFµ.

b) Let w1, . . . w`0
be elements of Cn , σ ∈ N`0 and η ∈ A′n . Define

µ = η ◦D
σ
w ∈ A′n.

Then
Fµ(ζ ) = (wζ )σFη(ζ ).

Corollary 13.21. Letw1, . . . , w`0
, u1, . . . , ud0

, x and y inCn , τ ∈ Nd0 and σ ∈ N`0 .
For z ∈ Cd , write (uz)τ for (u1z)τ1 · · · (ud0

z)τd0 .
a) The Fourier-Borel transform of the analytic functional η ∈ A′n defined by

η(F) = D
σ
w

(
(uz)τ F(z)

∣∣
z=y
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is
Fη(ζ ) = D

τ
u
(
(wz)σ eyz∣∣

z=ζ .

b) We have
D
σ
w

(
(uz)τ exz

)∣∣
z=y

= D
τ
u
(
(wz)σ eyz)∣∣

z=x
.

Proof. (See [W 1991a], lemme 7.6.)
Since Fη(x) = η(exz), part b) follows from part a).
Recall the notation δy for the functional F 7→ F(y). Define µ ∈ A′n by

µ = δy ◦D
σ
w . By part b) of Lemma 13.20, we have

Fµ(ζ ) = F
δy◦Dσ

w
(ζ ) = (wζ )σFδy (ζ ) = (wζ )σ eζ y

.

On the other hand, since
η(F) = µ

(
(uz)τ F)

we deduce from part a) of Lemma 13.20

Fη(ζ ) = D
τ
u
(
(wz)σ eyz∣∣

z=ζ .

¤

Remark. It follows from Corollary 13.21 that the functions 8(1)
G and 8

(2)
G in

Gel’fond’s method (as sketched in § 13.7.1) are the Fourier-Borel transforms of
the analytic functionals

η
(1)
G : F 7−→

∑

t

ct F(x t )

and

η
(2)
G : F 7−→

∑

τ

∑

t

cτ t

(
∂

∂z0

)τ
F(x t )

respectively, while the function8(1)
S and8(2)

S in Schneider’s method are the Fourier-
Borel transforms of the analytic functionals

F 7−→
∑

σ

∑

s

cσ sD
σ F(sλ)

with

σ = (σ1, . . . , σm−1) ∈ Nm−1, λ = (λ1, . . . , λm−1) ∈ Cm−1 for 8
(1)
S ,

σ = (σ0, . . . , σm−1) ∈ Nm, λ = (1, λ1, . . . , λm−1) ∈ Cm for 8
(2)
S .

Part b) of Corollary 13.21 explains why the matrices M which occurred in the
transcendence proofs of Chapters 9 and 10 are transposed one of the other. This is
why the results reached by the two methods are so closed. In § 14.4 we shall go
further and compare the outputs of both methods in the light of Proposition 13.12.
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Exercises

Exercise 13.1. Under the assumptions of § 13.1, denote by

M′ =

(
B′0 B′1

B′2 L′

)

the d × ` matrix whose column vectors are respectively

w′1, . . . , w
′
`0
, η′

1
, . . . , η′

`1
.

a) Check
r = rank(M′) and r3 = rank(L′).

b) Define %1 and %2 by

%1 + r3 = rk

(
B′1
L′

)
and %2 + r3 = rk

(
B′2, L′

)
.

Check
%1 + r3 = dimC (X′) and %2 + r3 = dimC

(
π1(W ′ + X′)

)
.

Deduce
%1 ≤ r1 ≤ r − r3 − %2.

c) Check

dimC
(
X′ ∩ kerπ1

)
= %1 and dimC

(
(W ′ + X′) ∩ kerπ1

)
= r − r3 − %2.

Deduce that r = %1 + %2 + r3 if and only if (W ′ + X′) ∩ kerπ1 ⊂ X′.

Exercise 13.2. Check the following explicit formula for the polynomial P
(σ s)
τ t of Lemma

13.6:

P
(σ s)
τ t = τ !σ !

∑

κ

(
d0∏

h=1

`0∏

k=1

W κhk
hk

κhk!

)(
d1∏

i=1

`0∏

k=1

(ti Wd0+i,k)κd0+i,k

κd0+i,k!

)(
d0∏

h=1

`1∏

j=1

(s j Xhj )
κh,`0+ j

κh,`0+ j !

)
,

where κ runs over the set of elements in Nd`−d1`1 which satisfy

`0∑

k=1

κhk +
`1∑

j=1

κh,`0+ j = τh, (1 ≤ h ≤ d0),

and
d0∑

h=1

κhk +
d1∑

i=1

κd0+i,k = σk, (1 ≤ k ≤ `0).

Exercise 13.3.
a) The polynomial P

(σ s)
τ t of Lemma 13.6 lies in the ring Z[W ,X] involving d1`1 + d0`1 + d1`0

variables. Write these variables in matrices

W =




W11 · · · W1`0

...
. . .

...
Wd1 · · · Wd`0


 and X =




X11 · · · X1`1

...
. . .

...
Xd01 · · · Xd0`1
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and denote by W ′, X ′ the transposed matrices:

W ′ =




W11 · · · Wd1
...

. . .
...

W1`0 · · · Wd`0


 and X ′ =




X11 · · · Xd01

...
. . .

...
X1`1 · · · Xd0`1


 .

Check
P

(σ s)
τ t (W ,X) = P

(τ t)
σ s (W ′,X ′).

Hint. Use Exercise 13.2.

b) Deduce from Corollary 13.21 an analytic proof of a).

Hint. Define

η =
`1∑

j=1

s j (x1 j , . . . , xd0 j , y1 j , . . . , yd1 j ) ∈ Cd .

The value of P
(σ s)
τ t at a point w = (wik), x = (xhj ) is

D
σ
w
(
zτ et z)(η)

d1∏

i=1

`1∏

j=1

e−ti s j yi j .

Introduce variables ζ1, . . . , ζ`. Define v = (v1, . . . , vd0
) where

vh = (wh1, . . . , wh`0 , xh1, . . . , xh`1 ) ∈ C`.
Put also

ξ =
d1∑

i=1

ti (wd0+i,1, . . . , wd0+i,`0 , yi1, . . . , yi`1 ) ∈ C`.

The formula we want to check reads

D
σ
w
(
zτ et z)(η) = D

τ

v
(
ζ σ esζ )(ξ ).

Using Corollary 13.21 with n = d,

uhk = δhk (1 ≤ h ≤ d0, 1 ≤ k ≤ d), x = (0, . . . , 0, t1, . . . , td1 ),

check

D
σ
w
(
zτ et z)(η) =

(
∂

∂z1

)τ1
· · ·
(
∂

∂zd0

)τd0

`0∏

k=1

(
d0∑

h=1

whk zh +
d1∑

i=1

wd0+i,k ti

)σk d0∏

h=1

`1∏

j=1

es j xhj zh ·
d1∏

i=1

`1∏

j=1

eti s j yi j

∣∣∣∣∣
z1=···=zd0 =0

.

Conclude the proof by means of the formula
(
∂

∂z1

)τ1
· · ·
(
∂

∂zd0

)τd0

F(vz + ζ )

∣∣∣∣
z1=···=zd0 =0

= D
σ
v F(ζ ).
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Exercise 13.4. In Proposition 13.8, assume

L =

(
T0 + d0

d0

) d1∏

i=1

(2Ti + 1),

which means that the set {(τ λ, tλ), 1 ≤ λ ≤ L} is
{
(τ , t) ; ‖τ‖ ≤ T0, |ti | ≤ Ti , (1 ≤ i ≤ d1)

}
,

Show that, in the conclusion of Proposition 13.8, the quantity

2U2 = 2d+ D
d1∑

i=1

`1∑

j=1

Ti S j log Ai j

can be replaced by

d+ D
d1∑

i=1

`1∑

j=1

2Ti (Ti + 1)

2Ti + 1
· S j log Ai j .

Hint. See the hint of Exercise 3.8.

Exercise 13.5. Show that D can be replaced by D/2 in all estimates when the number field
K is not contained into R.

Hint. Use Exercise 3.5.

Exercise 13.6. With the notation of Lemma 13.3, let a > 0 be such that

(i0!)1/ i0

(
1− i0 + 1

a

)
≥ i0 + 1

e
·

(For instance a = 8i2
0 will do.) Assume

L ≥ ai0

i0!
(K + i0 + 1)i0 ·

s∏

σ=1

(
Kσ + iσ

iσ

)
.

Check

2
i0
L ≥

(
i0

e

)i0

·
(

L i0+1

∏s
σ=1

(Kσ +iσ
iσ

)
)
.

Hint. Check

M − i0

e
·
(

L∏s
σ=1

(Kσ +iσ
iσ

)
)1/ i0

≥
(

L∏s
σ=1

(Kσ +iσ
iσ

)
)1/ i0

·
(

i0

i0 + 1
· (i0!)1/ i0 − i0

e

)

≥ ai0(K + i0 + 1)

(
1

i0 + 1
− 1

e(i0!)1/ i0

)
,

with
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1

i0 + 1
− 1

e(i0!)1/ i0
≥ 1

a
·

Exercise 13.7. Check that an admissible value for the constant c1 in the definition of S1 from
§ 13.5.2 is

c1 = (1 + η1)(1 + η3)
2d1

d0!
· `0!

2`1
· 1

(d1`1)d1
· cZ E

provided that η3 > 0 satisfies

(1 + η3)−1 ≤
(

1− D log B1

2U

)`0 `1∏

j=1

(
1− log A1 j

2S1 log A11

)
·

Assume further S j ≥ 1 and T0 ≥ d0. Check the inequality η1 ≤ 2d0 (3/2)d1 and show that
η3 = 2` − 1 and

c1 =
2d0 3d1`0!cZ E

d0!(d1`1)d1

are admissible values.

Exercise 13.8.
a) From Theorem 13.1 deduce Theorem 7.10.
b) State and prove a generalization of Theorem 13.1 which includes Fel’dman’s polynomials
(see § 13.6) and implies Theorem 9.1.

Exercise 13.9.
a) The Fourier-Borel transform (in a single variable) of

F 7→
∫ 1

0
F(z)dz is ζ 7→ eζ − 1

ζ
·

b) Given a real valued function ϕ on R (continuous with compact support, for simplicity), the
Fourier-Borel transform of the functional

F 7→
∫ +∞

−∞
ϕ(z)F(i z)dz

is nothing else than the Fourier transform of ϕ, namely

ζ 7→
∫ +∞

−∞
ϕ(z)ei zζdz.

Exercise 13.10. For 8 ∈ A0
n with Taylor expansion

8(ζ ) =
∑

κ∈N n

aκζ
κ ,

define the Laplace transform 8̃ of 8 by

8̃(z) =
∑

κ∈N n

aκ z−κ−1,
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where
z−κ−1 = z−κ1−1

1 · · · z−κn−1
n .

a) Check that 8̃ is analytic in a domain of Cn which contains a closed set of the form
{
z ∈ Cn ; |z j | ≥ R for 1 ≤ j ≤ n

}
.

b) Using Cauchy’s formula, derive, for F ∈ An ,

H8(F) =
1

(2iπ )n

∫

|z1|=R
· · ·
∫

|zn |=R
F(z)8̃(z)dz.

c) Using the special case F(z) = eζ z with ζ ∈ Cn , deduce the inversion formula for Laplace’s
transform

8(ζ ) =
1

(2iπ )n

∫

|z1|=R
· · ·
∫

|zn |=R
eζ z
8̃(z)dz.

Hint. See [LelGru 1986], Chap. 8.



                   

14. Applications to Diophantine Approximation

The purpose of the present chapter is to apply the main result of diophantine
approximation of the previous chapter (Th. 13.1).

The first two sections are devoted to diophantine approximation in dimension 1
(we apply Theorem 13.1 with r = 1). We derive two lower bounds for numbers of
the form

m∑

i=1

n∑

j=1

∣∣λi j − β jλi

∣∣ and
m∑

i=1

n∑

j=1

∣∣λi j − β jβ
′
i

∣∣

respectively, where β j and β ′i are algebraic numbers, while λi and λi j are logarithms
of algebraic numbers.

In § 14.3 we give examples involving several variables. In the next section (§ 14.4)
we come back to the question of measures of linear independence of logarithms
of algebraic numbers: the effective version of the Theorem of the linear subgroup
includes such estimates in a number of ways, and we compare the results and the
methods.

In the present chapter we shall use the following definition:

Definition. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers. Following
[RoyW 1997b], we say that a function ϕ:N×R>0 → R>0 ∪ {∞} is a simultaneous

24 approximation measure for θ if there exist a positive integer D0 together with a
real number h0 ≥ 1 such that, for any integer D ≥ D0, any real number h ≥ h0 and
any m-tuple γ = (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ ) : Q] ≤ D and max
1≤i≤m

h(γi ) ≤ h,

we have
max

1≤i≤m
|θi − γi | ≥ exp

{−ϕ(D, h)
}
.

24 Notice that the meaning of “simultaneous approximation” here is not the usual one related
with rational approximation measure to a tuple of real numbers: in the latter case the control
is on a common denominator of the approximations. For algebraic approximations in higher
degree, one could also introduce the projective height of the point (1: γ1: · · · : γm), but for
our purpose this is not relevant. It would only change some constants (as shown by Exercise
3.3.a), which is not our main concern here.
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The main results of this chapter (namely Theorems 14.1, 14.6, 14.17 and 14.20)
deal with simultaneous approximation of logarithms of algebraic numbers. Let us
fix some notation.

Let m and n be two positive integers. We denote by

Lm,n =
(
λi j

)
1≤i≤m
1≤ j≤n

a m×n matrix with entries in L. We consider a number field K of degree D = [K : Q]
such that the algebraic numbers αi j = eλi j belong to K×. Let Ai j (1 ≤ i ≤ m,
1 ≤ j ≤ n), E be positive real numbers satisfying, for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
the following conditions:

h(αi j ) ≤ log Ai j , |λi j | ≤ D

E
log Ai j and 1 ≤ log E ≤ D log Ai j .

We assume further that the m × n matrix
(
log Ai j

)
1≤i≤m
1≤ j≤n

has rank 1, which can be

written
(log Ai j )(log A11) = (log Ai1)(log A1 j )

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We need some independence condition on these λi j . For simplicity we introduce
the following definition: given a positive real number U , we shall say that the matrix
Lmn satisfies the linear independence condition for U if, for any t ∈ Zm \ {0} and
any s ∈ Zn \ {0} with |t | ≤ U and |s| ≤ U ,

m∑

i=1

n∑

j=1

ti s jλi j 6= 0.

We shall say also that Lmn satisfies the linear independence condition if, for any
U > 0, it satisfies the linear independence condition for U . This means that for any
nonzero tuple t = (t1, . . . , tm) in Zm and any nonzero tuple s = (s1, . . . , sn) in Zn ,
we have

m∑

i=1

n∑

j=1

ti s jλi j 6= 0.

14.1 A Quantitative Refinement to Gel’fond-Schneider’s
Theorem

By the Theorem of Gel’fond-Schneider, if λi j are elements of L, not all zero,
λ1, . . . , λm elements of L and β1, . . . , βn algebraic numbers, not all rational, then
the (m + 1)× (n + 1) matrix
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1 β1 · · · βn

λ1
... λi j

λm




has rank ≥ 2. We show that such a matrix cannot be too close to a rank 1 matrix. In
order to get a sharper result when m and n are large, some independence condition
is clearly necessary.

14.1.1 A Lower Bound for
∑m

i=1

∑n
j=1

∣∣logαi j − β j logαi
∣∣

Our first result deals with the simultaneous approximation of numbers α
β j

i by
algebraic numbers. Since we work with a m × (n + 1) matrix

Lm,n+1 =
(
λi j

)
1≤i≤m
0≤ j≤n

with entries in L, we complete the notation of the introduction as follows: we write
λi , αi , Ai for λi0, αi0 and Ai0 respectively, so that

h(αi ) ≤ log Ai , |λi | ≤ D

E
log Ai and log E ≤ D log Ai .

The number field K contains the algebraic numbers αi = αi0 = eλi and we have

(log Ai j )(log A1) = (log Ai )(log A1 j )

for 1 ≤ i ≤ m and 0 ≤ j ≤ n.

Theorem 14.1. There exists a positive constant c, which depends only on m and
n, with the following property. Let β1, . . . , βn be algebraic numbers in K and B a
positive real number satisfying

B ≥ e and h(1:β1: · · · :βn) ≤ log B.

Define

U mn
1 = D(m+1)(n+1)(log B)n+1

(
m∏

i=1

n∏

j=0

log Ai j

)
(log E)−m−n−1

and assume that the matrix Lm,n+1 satisfies the linear independence condition for
(cU1)2. Assume further

log E ≤ D log B ≤ U1, B ≥ D

and
D log Ai j ≤ B

for 1 ≤ i ≤ m and 0 ≤ j ≤ n. Then
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m∑

i=1

n∑

j=1

∣∣λi j − β jλi

∣∣ ≥ e−cU1 .

Remark 1. To give an explicit numerical value for the constant c is not so important,
but an efficient way of stating that it is effectively computable and that it depends
only on m and n is to produce an explicit admissible value. We shall check the result
with

c = 232m4n2(2m)m .

Remark 2. One may replace the linear independence condition on the matrix Lm,n+1

by the following hypotheses:

for any m-tuple t = (t1, . . . , tm) ∈ Zm\{0} satisfying |ti | ≤ (cU1)2 for 1 ≤ i ≤ m,
we have

t1λ1 + · · · + tmλm 6= 0

and
for any n + 1-tuple s = (s1, . . . , sn+1) ∈ Zn+1 \ {0} satisfying |s j | ≤ (cU1)2 for
1 ≤ j ≤ n + 1, we have

s1β1 + · · · + snβn 6= sn+1.

Plainly, the first condition is satisfied if the numbers λ1, . . . , λm are linearly
independent over Q, and the second if the numbers 1, β1, . . . , βn are linearly
independent over Q.

Remark 3. The conclusion of Theorem 14.1 corresponds to the optimal value for U
given by Proposition 13.12, with

u = mn, δ = mn + m + n + 1, b1 = n + 1 b2 = 0.

14.1.2 Proof of Theorem 14.1

Let us start by checking that there is no loss of generality to assume

D(log B)(log A1) · · · (log Am) ≥ (log Ai )
m log E (14.2)

for 1 ≤ i ≤ m. The proof is based on the remark in § 13.5.3: if, for some i , say
i = m, this condition is not satisfied, then one should just omit the value i = m in the
statement and prove a lower bound for

m−1∑

i=1

n∑

j=1

∣∣λi j − β jλi

∣∣.
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More precisely, assume (without loss of generality) A1 ≤ · · · ≤ Am . Since
D log B ≥ log E , there is at least one integer m ′ in the range 1 ≤ m ′ ≤ m for
which

D(log B)
m ′∏

ι=1

log Aι ≥ (log Am ′ )
m ′ log E .

Let m ′ be the maximal element with this property. In the case m ′ = m there is nothing
to prove. Otherwise from the definition of m ′ and the assumption A1 ≤ · · · ≤ Am

we deduce

D(log B)
m ′∏

ι=1

log Aι < (log Ai )
m ′ log E

for i = m ′ + 1, hence also for any i = m ′ + 1, . . . ,m. Assuming the result holds for
m replaced by m ′, we have

m ′∑

ι=1

n∑

j=1

∣∣λιj − β jλι
∣∣ ≥ e−c′V1 ,

where c′ depends only on m ′ and n, and where V1 is defined by

V m ′n
1 = D(m ′+1)(n+1)(log B)n+1

(
m ′∏

ι=1

n∏

j=0

log Aιj

)
(log E)−m ′−n−1.

We have (
D log B

log E

)m−m ′ m ′∏

ι=1

(log Aι)
m−m ′ <

m∏

i=m ′+1

(log Ai )
m ′ ,

hence
(

D log B

log E

)(m−m ′)(n+1) m ′∏

ι=1

n∏

j=0

(log Aιj )
m−m ′ <

m∏

i=m ′+1

n∏

j=0

(log Ai j )
m ′ ,

which yields V1 < U1.
We use the same argument and check that we may assume without loss of

generality

Dm+1(log B)
m∏

i=1

(
(log Ai0) · · · (log Ain)

) ≥
(

m∏

i=1

log Ai j

)n

(log E)m+1 (14.3)

for 0 ≤ j ≤ n. For n = 1, (14.3) holds because D log B ≥ log E and
D log Ai j ≥ log E . Next, if condition (14.3) is not satisfied for, say, j = n, then
one should work with n replaced by n − 1 and consider rather

m∑

i=1

n−1∑

j=1

∣∣λi j − β jλi

∣∣.

Under condition (14.3) we shall obtain a sharper numerical value for c, namely

c = 232m4n2(2m)m/n.
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There is a symmetry in the statement of Theorem 14.1 which we shall break in
the proof. We may apply Theorem 13.1 either with

d0 = 1, d1 = m, `0 = 0, `1 = n + 1,

or else with
d0 = 0, d1 = n + 1, `0 = 1, `1 = m.

Here we choose the former solution: we set G = Ga × Gm
m and d = m + 1. We also

take G+ = G, G− = {e}, r = r3 = 1, r1 = r2 = 0. It will be convenient to define
βn+1 = 1, A1,n+1 = A10 and to use also the notation, for 1 ≤ i ≤ m,

λi,n+1 = λi , αi,n+1 = αi .

For 1 ≤ j ≤ n + 1, define η
j
∈ K ×Lm and γ

j
∈ G(K ) = K × (K×)m as follows:

η
j

= (β j , λ1 j , . . . , λmj ) and γ
j

= expG η j
= (β j , α1 j , . . . , αmj ).

Hence
η

n+1
= (1, λ1, . . . , λm) and γ

n+1
= (1, α1, . . . , αm).

Next put η′
j

= β jηn+1
(1 ≤ j ≤ n + 1). The vector space

X′ = Cη′
1

+ · · · + Cη′
n+1

= Cη
n+1

has dimension r = 1. Since `0 = 0, we have W = 0, W ′ = 0, we take S0 = 0, and the
parameter B2 (which will play no role) can be selected as

B2 = E1/D + T1 + · · · + Tm .

We are going now to introduce parameters T0, T1, . . . , Tm , S1, . . . , Sn+1. Because of
the assumption (m +1)(S1 + · · ·+ Sn+1) ≤ B1 (which we shall check later) of Theorem
13.1, we define B1 = Bc1 with some constant c1 ≥ 1 which will be explicitly given.

We shall define below two positive real numbers S and U . Instead of giving the
values now, we explain where they come from. We first define T0 as follows:

T0 =

[
U

D log B1

]
,

so that the estimate
DT0 log B1 ≤ U

is satisfied.
Next we set

S j =

[
S

log A10

log A1 j

]
(1 ≤ j ≤ n + 1).

Notice that Sn+1 = [S]. For 1 ≤ i ≤ m and 1 ≤ j ≤ n + 1 we have

S j log Ai j ≤ S log Ai0.
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Therefore if we define T1, . . . , Tm by

Ti =

[
U

2mnDS log Ai0

]
(1 ≤ i ≤ m),

then the condition

D
m∑

i=1

n+1∑

j=1

Ti S j log Ai j ≤ U

is fulfilled.
This shows that our parameters T0, T1, . . . , Tm , S1, . . . , Sn+1 will be known as

soon as S and U are chosen. We take

S =
{
s ∈ Zn+1 ; |s j | ≤ S j (1 ≤ j ≤ n + 1)

}

and
T =

{
t ∈ Zm ; |ti | ≤ Ti (1 ≤ i ≤ m)

}
.

There are two main conditions which will help us to fix S and U . The first one arises
from the hypothesis

(T0 + 1)(2T1 + 1) · · · (2Tm + 1) ≥ 2V

log E

of Theorem 13.1, where V ≤ 33mU . Using the lower bounds 2[x] + 1 ≥ [x] + 1 ≥ x
which hold for any x ≥ 0 (such lousy estimates will occur repeatedly during the
proof), one checks

(T0 + 1)(2T1 + 1) · · · (2Tm + 1) ≥
U m+1

(2mn)m Dm+1Sm(log B1)(log A10) · · · (log Am0)
·

This explains the first main condition relating U and S that we require, namely:

U m ≥ 66m(2mn)m Dm+1Sm(log B1)(log A10) · · · (log Am0)(log E)−1.

Our second main condition will enable us to check

(2S1 + 1) · · · (2Sn+1 + 1) > (m + 1)!2m T0T1 · · · Tm .

Otherwise the conclusion of Theorem 13.1 would be trivial by taking for G∗ the
trivial subgroup {e}.

Since (m + 1)! ≤ 2mm ,

T0T1 · · · Tm ≤ U m+1

(2mn)m Dm+1Sm(log B1)(log A10) · · · (log Am0)

and

(2S1 + 1) · · · (2Sn+1 + 1) > Sn+1 (log A10)n

(log A11) · · · (log A1n)
,
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our second main condition relating U and S will be:

nm Dm+1Sm+n+1(log B1)(log A10)n
m∏

i=1

log Ai0 ≥ 2U m+1
n∏

j=1

log A1 j .

This is why we define S and U as follows:

Smn = c2 Dm+1(log B1)

(
m∏

i=1

n∏

j=0

log Ai j

)
m∏

i=1

(log Ai0)−n · (log E)−m−1

and

U mn = c3 D(m+1)(n+1)(log B1)n+1

(
m∏

i=1

n∏

j=0

log Ai j

)
(log E)−m−n−1

with positive constants c2 and c3 which should satisfy

c3 ≥ c2(66m)n(2mn)mn

and
cm+n+1

2 nm2n ≥ cm+1
3 2mn.

We define

c4 = 33(2m)m+1nm, c3 = cn
4c2, c2 = 33mn+12m2+3mnmm2+2mn+1nm

so that
c2 ≥ cm+1

4 2mn−m2
,

and

c3 = 33mn+n+12m2+4mn+n+1mm2+3mn+n+1nm(n+1) ≤ (66m3n
)mn

(2m)m2
.

We now check the condition (m + 1)(S1 + · · · + Sn+1) ≤ B1. We need to bound S j

from above. From the definitions of S and the inequality S j log Ai j ≤ S log Ai0 we
deduce

Smn
j ≤ c2 Dm+1(log B1)

(
m∏

i=1

(log Ai0) · · · (log Ain)

(log Ai j )n

)
(log E)−m−1.

Using the estimates log E ≤ D log Ai j ≤ B we deduce

(log Ai1) · · · (log Ain)

(log Ai j )n
≤
(

B

log E

)n−1

and log Ai0 ≤ B

D
,

hence
Smn

j ≤ c2 D(log B1)Bmn(log E)−mn−1.

We now use the assumptions D ≤ B and E ≥ e with log B1 = c1 log B and we find

Smn
j ≤ c1c2 Bmn+1 log B.
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Therefore we only need to check
(
(m + 1)(n + 1)

)mn
c1c2 Bmn+1 log B ≤ Bc1mn,

and since we have assumed B ≥ e we deduce that this inequality holds with
c1 = 20m2n. The inequality U ≥ 20D log(4m D) also plainly follows from B ≥ D
and U1 ≥ D log B since c3cn+1

1 > (210m3n)mn .
By the preceding choices, we have U = (c3cn+1

1 )1/mnU1,

Ti =

[(
c4 D(log B1)(log A10) · · · (log Am0)

log E

)1/m 1

2mn log Ai0

]

and S j = [S̃ j ] where

S̃mn
j = c2 Dm+1(log B1)

(
m∏

i=1

(log Ai0) · · · (log Ain)(log Ai j )
−n

)
(log E)−m−1.

Assume now that the conclusion of Theorem 14.1 does not hold. Then

max
1≤ j≤n+1

|η
j
− η′

j
| < e−cU1 .

We wish to check the hypotheses of Theorem 13.1. Hence we want to deduce

max
1≤ j≤n+1

|η
j
− η′

j
| < e−V .

If we get a contradiction with some value of the parameter U , then we shall deduce
the desired result for any c satisfying

c ≥ 33m
(
c3cn+1

1

)1/mn
.

The estimate
cn+1

1 ≤ (400n)mn

shows that the value
c ≤ 232m4n2(2m)m/n

is admissible.
Hence we have checked that if the conclusion of Theorem 14.1 does not hold,

then all the assumptions of Theorem 13.1 are satisfied for

6 =
{(

s1β1 + · · · + sn+1βn+1, α
s1
11 · · ·αsn+1

1,n+1, . . . , α
s1
m1 · · ·αsn+1

m,n+1

)
;

(s1, . . . , sn+1) ∈ S
} ⊂ G(K ).

Therefore there exists a connected algebraic subgroup G∗ of G, which is incompletely
defined by polynomials of degrees ≤ (T0, T1, . . . , Tm) = (T0, T ), such that

Card

(
6 + G∗

G∗

)
H (G∗; T0, T ) ≤ (m + 1)!2m T0T1 · · · Tm .
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Notice that this inequality would be trivial if H (G∗; T0, T ) = 0, that is if one Ti

would vanish. However the inequality T0 ≥ 1 follows from the lower bounds

U1 ≥ D log B, c3 > cmn
1 and U ≥ c1U1 ≥ D log B1,

while condition (14.2) implies Ti ≥ 1 for 1 ≤ i ≤ m, since c1c4 > (2mn)m .
From the inequality

(m + 1)!2m T0T1 · · · Tm < (2S1 + 1) · · · (2Sn+1 + 1)

which we have checked earlier, and since H (G∗; T0, T ) ≥ 1, we deduce

Card

(
6 + G∗

G∗

)
< (2S1 + 1) · · · (2Sn+1 + 1),

hence there exist γ ′ 6= γ ′′ in 6 such that γ = γ ′ − γ ′′ ∈ G∗.
Here comes the final descent. We write G∗ = G∗0×G∗1, where G∗0 is an algebraic

subgroup of G0 = Ga , hence G∗0 is either 0 orGa, while G∗1 is a connected algebraic
subgroup of G1 = Gm

m which is incompletely defined by polynomials of degrees
≤ (T1, . . . , Tm).

We first check G∗0 = Ga, which means G∗0 6= 0. For this it is sufficient to show
that any relation

s1β1 + · · · + sn+1βn+1 = 0

with s ∈ Zn+1 satisfying |s j | ≤ 2S j (1 ≤ j ≤ n + 1) implies s = 0. Using our
assumption

m∑

i=1

n+1∑

j=1

|λi j − β jλi | ≤ e−33mU ,

we deduce, for 1 ≤ i ≤ m,
∣∣∣∣∣

n+1∑

j=1

s jλi j

∣∣∣∣∣ ≤ B1e−33mU .

In order to deduce from Liouville’s inequality (Exercise 3.7.b) that the left hand side
vanishes for at least one index i in the range 1 ≤ i ≤ m, it suffices to check

B1e−33mU < 2−D
n+1∏

j=1

e−D|s j |h(αi j ).

From (14.2) we deduce log E ≤ D log B. Since
(

U

DS

)m

=
c4 D log B1

log E

m∏

i=1

log Ai0 ≥ c1c4

m∏

i=1

log Ai0

and c1c4(8m)m > nm , there is at least one i with 1 ≤ i ≤ m for which

U

DS
≥ (c1c4)1/m log Ai0 ≥ n

8m
log Ai0.
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We bound first log B1 + D log 2 by mU (recall c3 > cmn
1 ), next S j log Ai j by S log Ai0,

and n + 1 by 2n, and we deduce

33mU > log B1 + D log 2 + 2D
n+1∑

j=1

S j log Ai j .

Therefore we may conclude
n+1∑

j=1

s jλi j = 0.

We want to use the condition of linear independence of λi j ; we need to check
2S j ≤ (cU1)2. In fact we shall need later the estimate 2S j ≤ cU which is much
stronger since U < cU1. Indeed, since S j log Ai j ≤ S log Ai0 for 1 ≤ j ≤ n + 1, we
have (

U

DS j

)m

≥ c4 D log B1

log E

m∏

i=1

log Ai j .

We deduce from (14.2) the lower bound D log B ≥ log E ; we also use the
assumptions D log Ai j ≥ log E ≥ 1 and log B1 = c1 log B. We obtain

S j ≤ (c1c4)1/mU.

This completes the proof of our claim G∗0 = Ga.
Since G∗ 6= G, it follows that G∗1 6= G1. Let 61 be the projection of 6 on Gm

m.
For s ∈ Zn+1, define

γ (s) =
(
α

s1
11 · · ·αsn+1

1,n+1, . . . , α
s1
m1 · · ·αsn+1

m,n+1

) ∈ (K×)m,

so that
61 =

{
γ (s) ; s ∈ S

}
.

Define E as the set of s ∈ Zn+1 such that |s j | ≤ 2S j (1 ≤ j ≤ n + 1) and γ (s) ∈ G∗1.
Then, by Lemma 7.8, we have

Card

(
6 + G∗

G∗

)
= Card

(
61 + G∗1

G∗1

)
≥ (2S1 + 1) · · · (2Sn+1 + 1)

(
CardE

)−1
.

We deduce

(2S1 + 1) · · · (2Sn+1 + 1)
(
CardE

)−1
H (G∗; T0, T ) ≤ (m + 1)!2m T0T1 · · · Tm .

Since G∗1 is incompletely defined by polynomials of degrees≤ (T1, . . . , Tm) and
G∗1 6= G1, it follows that Te(G∗1) is contained in some hyperplane t1z1 + · · ·+ tm zm = 0
of Cm = Te(G1) where t ∈ Zm \ {0} satisfies |ti | ≤ Ti (1 ≤ i ≤ m). For each such
hyperplane and each s ∈ E , we have

m∏

i=1

n+1∏

j=1

α
ti s j

i j = 1.
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Hence the number

k(t, s) :=
1

2iπ

m∑

i=1

n+1∑

j=1

ti s jλi j

is a rational integer. For s ∈ E , we have |s j | ≤ 2S j (1 ≤ j ≤ n + 1). From the
assumption |λ j |E ≤ D log Ai j we deduce the upper bound

|k(t, s)| ≤ D

πE

m∑

i=1

n+1∑

j=1

Ti S j log Ai j ≤ U

πe
< U.

We split the proof in three cases:

(i) Assume E contains two Q-linearly independent elements, say s ′ and s ′′. Let
t ∈ Zm \ {0} with |ti | ≤ Ti be such that the hyperplane t1z1 + · · · + tm zm = 0 contains
Te(G∗1). Define

s = k(t, s ′)s ′′ − k(t, s ′′)s ′ ∈ Zn+1 \ {0}.
Then we have

m∑

i=1

n+1∑

j=1

ti s jλi j = 0.

Since |ti | ≤ Ti ≤ U < cU1 and |s j | ≤ 2U S j ≤ (cU1)2, we get a contradiction with
the assumption that the matrix Lm,n+1 satisfies the condition of linear independence
for (cU1)2.

(ii) Assume G∗1 has codimension ≥ 2 in G1. In this case there exist two linearly
independent elements t ′ and t ′′ in Zm \ {0} with |t ′i | ≤ Ti and |t ′′i | ≤ Ti such that
Te(G∗1) is contained in the intersection of the two corresponding hyperplanes. Let
s ∈ E . Define

t = k(t ′, s)t ′′ − k(t ′′, s)t ′.

Then we have
m∑

i=1

n+1∑

j=1

ti s jλi j = 0.

Since |ti | ≤ 2U Ti ≤ (cU1)2 and |s j | ≤ 2S j ≤ cU1, we get again a contradiction
with the assumption of linear independence of the matrix Lm,n+1.

(iii) In the remaining case, we have CardE ≤ max1≤ j≤n+1(2S j + 1) and G∗1 has
codimension 1. By Proposition 5.14 we have

H (G∗; T0, T ) ≥ m!2m−1T0T1 · · · Tm

(
max

1≤i≤m
Ti

)−1

.

Therefore we get

(2S1 + 1) · · · (2Sn+1 + 1) ≤ 2(m + 1)

(
max

1≤i≤m
Ti

)(
max

1≤ j≤n+1
(2S j + 1)

)
.

We bound the left hand side from below:
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(2S1 + 1) · · · (2Sn+1 + 1) ≥ Sn+1 (log A10)n

(log A11) · · · (log A1n)

≥ (m + 1)!2m

(2mn)m

(
U

DS

)m U

D log B1

m∏

i=1

(log Ai0)−1

≥ 2c4U

nm log E
·

Now only we use (14.3) and the inequality c1c2 > 1 to deduce S j ≥ 1. Hence
2S j + 1 ≤ 3S j . Since

Ti S j ≤ U

2mnD log Ai j
≤ U

2mn log E

we again derive a contradiction from the estimate 2mnc4 > 3(m + 1)nm . ¤

14.1.3 Simultaneous Approximation for α
β jβ

′
r

s

We derive from Theorem 14.1 a simultaneous approximation measure for numbers

of the form α
β jβ

′
r

s when αs , β j and β ′r are algebraic numbers (0 ≤ j ≤ n, 1 ≤ r ≤ p,
1 ≤ s ≤ q).

Corollary 14.4. Let β0, . . . , βn be Q-linearly independent algebraic numbers,
β ′1, . . . , β

′
p also Q-linearly independent algebraic numbers and λ1, . . . , λq be Q-

linearly independent elements of L. There exists a constant c > 0 such that the
function

ϕ(D, h) = cD(n+1)(pq+1)/npq h1+(1/n)
(
log h + log D)−1/n

is a simultaneous approximation measure for the (n + 1)pq numbers

eβ jβ
′
rλs (0 ≤ j ≤ n, 1 ≤ r ≤ p, 1 ≤ s ≤ q).

Example. (Compare with [RoyW 1997b], Th. 2.1). Let β be an algebraic number
of degree d and λ a nonzero element of L. Then there exists a positive number
c = c(β, λ) such that

cD(d+1)/(d−1)hd/(d−1)
(
log h + log D)−1/(d−1)

is a simultaneous approximation measure for the d − 1 numbers

eβλ, . . . , eβ
d−1λ.

This follows from Corollary 14.4 by taking n = d − 1, p = d, q = 1,

β j = β j (0 ≤ j ≤ n), β ′r = βr−1 (1 ≤ r ≤ p) and λ1 = λ.
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Proof. We deduce Corollary 14.4 from Theorem 14.1 with m = pq (and the index i ,
1 ≤ i ≤ m is replaced here by (r, s) with 1 ≤ r ≤ p, 1 ≤ s ≤ q).

Replacing if necessary β j by β j/β0 and β ′r by β0β
′
r , there is no loss of generality

to assume β0 = 1.
Assume γrs j are algebraic numbers of height h(γrs j ) ≤ log A (0 ≤ j ≤ n,

1 ≤ r ≤ p, 1 ≤ s ≤ q) in a field of degree ≤ D with

max
0≤ j≤n
1≤r≤p
1≤s≤q

|eβ jβ
′
rλs − γrs j | ≤ e−cU

where
U npq = D(n+1)(pq+1)(log A)(n+1)pq

(
log log A + log D)−pq .

Define λrs j as the logarithm of γrs j which is close to β jβ
′
rλs and take

λrs = λrs0, log Ars j = log A ≥ c0, B = (D log A)c0 , E = (D log A)1/c0

where c0 is a sufficiently large constant (independent of the γrs j ).
For t = (trs) ∈ Zpq and T ≥ 2 with 0 < |t | ≤ T , the lower bound

∣∣∣∣∣
p∑

r=1

q∑

s=1

trsβ
′
rλs

∣∣∣∣∣ ≥ T−c0

holds (see for instance Theorem 9.1). Hence, if there is such a t 6= 0 with T = (cU )2

for which
p∑

r=1

q∑

s=1

trsλrs = 0,

then the conclusion of Corollary 14.4 plainly follows. Otherwise, the required linear
independence condition on the numbers λrs is satisfied, and one may apply Theorem
14.1. This completes the proof of Corollary 14.4. ¤

Remark. This proof is dual of the proof given in [RoyW 1997b] (see the remark at
the end of § 6 p. 407 of [RoyW 1997b]).

14.1.4 Simultaneous Approximation for y j and exi y j

It will be useful to introduce the following definition.

Definition. A n-tuple (θ1, . . . , θn) of complex numbers satisfies a linear indepen-
dence measure condition if for any ε > 0 there exists S0 > 0 such that, for any
S ≥ S0 and any s ∈ Zn satisfying 0 < |s| ≤ S, we have

|s1θ1 + · · · + snθn| ≥ e−Sε .

In particular such a tuple consists ofQ-linearly independent numbers. This linear
independence measure condition will occur as an hypothesis in several results below.
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Often, it would be possible to weaken this condition (for instance asking it holds only
for a restricted range of ε, for instance ε > κ for some explicit κ > 0). In the results
of diophantine approximation, such an hypothesis cannot be completely avoided
(see Exercise 15.12). On the other hand, when it occurs in statements of algebraic
independence (see Chap. 15), this assumption is known as “a technical hypothesis”
and one expects that it is superfluous.

Example. Any tuple (31, . . . , 3n) ofQ-linearly independent elements in L̃ satisfies
a linear independence measure condition. Indeed, if

3i = γi0 +
m∑

j=1

γi jλ j

with γi j ∈ Q (1 ≤ i ≤ n, 0 ≤ j ≤ m) and with λ j ∈ L (1 ≤ j ≤ m), then

n∑

i=1

si3i = β0 +
m∑

j=1

β jλ j ,

where

β j =
n∑

i=1

siγi j (0 ≤ j ≤ m).

From Lemma 3.7 we deduce h(β j ) ≤ c1 log S where c1 does not depend on s, hence
Theorem 9.1 gives

|s131 + · · · + sn3n| ≥ S−c2 ,

a much stronger estimate than what is actually needed.
Here is another example: if θ1, . . . , θn are Q-linearly independent elements in

the Q-vector space spanned by exp(Q), which means

θi =
m∑

j=1

βi j e
γ j (1 ≤ i ≤ n),

with algebraic γ ’s and β’s, then the n-tuple (θ1, . . . , θn) satisfies a linear inde-
pendence measure condition. This result follows from a quantitative refinement to
Lindemann-Weierstraß’ Theorem (works of D. Morduhai-Boltovskoi, C. L. Siegel,
K. Mahler,. . . ); see for instance [Sh 1989], Chap. XIII § 3 Th. I. Further examples
of tuples satisfying a linear independence measure condition can be deduced from
the results of [Sh 1989], Chap. XIII § 3 and § 5 (see also [FNe 1998], Chap. V § 5).

Corollary 14.5. Let m ≥ 1 and k ≥ 2 be positive integers, (x1, . . . , xm) be a
m-tuple of complex numbers satisfying a linear independence measure condition,
and (y1, . . . , yk) be a k-tuple of complex numbers satisfying a linear independence
measure condition. There exists a constant c > 0 such that a simultaneous
approximation measure for the k + km numbers

y j , exi y j (1 ≤ i ≤ m, 1 ≤ j ≤ k)
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is

ϕ(D, h) = cD1+ m+k
m(k−1) h1+ 1

k−1 (h + log D)
1
m + 1

m(k−1) (log h + log D)−
1
m− 1

k−1− 1
m(k−1) ·

Proof. Let γ1, . . . , γk and γi j (1 ≤ i ≤ m, 1 ≤ j ≤ k) be algebraic numbers in a
field of degree ≤ D and heights ≤ h. Our goal is to produce a lower bound for

k∑

j=1

(
|y j − γ j | +

m∑

i=1

|xi y j − γi j |
)
.

Since y1 6= 0 and xi y j 6= 0, there is no loss of generality to assume γ1 6= 0 and γi j 6= 0.
For 1 ≤ i ≤ m and 1 ≤ j ≤ k, let log γi j be the value of the logarithm of γi j which
is closer to xi y j .

In Theorem 14.1, set

n = k − 1, β j =
γ j+1

γ1
(1 ≤ j ≤ n), λi = log γi1 (1 ≤ i ≤ m)

and
λi j = log γi, j+1 (1 ≤ j ≤ n, 1 ≤ i ≤ m).

Next we choose

Ai = Ai j = eh, B = c0 Deh, E =
1

c0
Dh,

where c0 is a sufficiently large positive number which depends only on x1, . . . , xm

and y1, . . . , yk . ¤

14.2 A Quantitative Refinement to Hermite-Lindemann’s
Theorem

By Hermite-Lindemann’s Theorem, for m ≥ 1 and n ≥ 1, when β1, . . . , βn ,
β ′1, . . . , β

′
m are algebraic numbers and λi j are in L and not all zero, the matrix




1 β1 · · · βn

β ′1
... λi j

β ′m




has rank ≥ 2. Theorem 14.6 below provides a lower bound for one at least of the
2× 2 minors.
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14.2.1 A Lower Bound for
∑m

i=1

∑n
j=1

∣∣logαi j − β jβ
′
i

∣∣

Our second main result deals with the simultaneous approximation of numbers eβ jβ
′
i

by algebraic numbers. Recall the notation for m, n, Lmn , K , D, λi j , Ai j and E already
given at the end of the introduction.

Theorem 14.6. There exists a positive constant c, which depends only on m and n,
with the following property. Let β1, . . . , βn , β ′1, . . . , β

′
m be algebraic numbers in K .

Let B and B ′ be positive real numbers satisfying the following conditions:

B ≥ e, B ′ ≥ e, B ≥ D log B ′, B ′ ≥ D log B,

h(1:β1: · · · :βn) ≤ log B and h(1:β ′1: · · · :β ′m) ≤ log B ′.

Define

U mn
2 = Dmn+m+n(log B)n(log B ′)m

(
m∏

i=1

n∏

j=1

log Ai j

)
(log E)−m−n

and assume that the matrix Lmn satisfies the linear independence condition for (cU2)2.
Assume further

log E ≤ D log B ≤ U2, D log B ′ ≤ U2, D log Ai j ≤ B and D log Ai j ≤ B ′

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

m∑

i=1

n∑

j=1

∣∣λi j − β jβ
′
i

∣∣ ≥ e−cU2 .

Remark 1. We shall check the conclusion with

c = 223m3n2(2m)m/n.

This is the only part of the result which is not symmetric by replacing

m, n, β1, . . . , βn, β
′
1, . . . , β

′
m, B, B ′

and the matrix Lmn respectively by

n, m, β ′1, . . . , β
′
m, β1, . . . , βn, B ′, B

and the transposed matrix tLmn .

Remark 2. One may replace the linear independence condition on the matrix Lmn by
the following hypotheses:

for any t ∈ Zm \ {0} satisfying |ti | ≤ (cU2)2 for 1 ≤ i ≤ m, we have

t1β
′
1 + · · · + tmβ

′
m 6= 0
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and

for any s ∈ Zn \ {0} satisfying |s j | ≤ (cU2)2 for 1 ≤ j ≤ n, we have

s1β1 + · · · + snβn 6= 0.

Remark 3. Up to the numerical values of the constants, the estimate is the best one
can expect from Theorem 13.1 since, with the notation of Proposition 13.12, we have

u = mn, δ = mn + m + n, b1 = n b2 = m.

14.2.2 Proof of Theorem 14.6

Thanks to the remark in § 13.5.3, we may assume without loss of generality

D(log B)(log A11) · · · (log Am1) ≥ (log Ai1)m log E (14.7)

for 1 ≤ i ≤ m and

D(log B ′)(log A11) · · · (log A1n) ≥ (log A1 j )
n log E (14.8)

for 1 ≤ j ≤ n.
We apply Theorem 13.1 with d0 = 1, d1 = m, d = m + 1, G = G+ = G0 × G1,

G0 = Ga, G1 = Gm
m, G− = {e}, `0 = 1, `1 = n, r = r3 = 1, r1 = r2 = 0. Define

w1 = (1, β ′1, . . . , β
′
m) ∈ K m+1, W = Kw1

and, for 1 ≤ j ≤ n,

η
j

= (β j , λ1 j , . . . , λmj ) ∈ K ×Lm,

γ
j

= expG η j
= (β j , α1 j , . . . , αmj ) ∈ G(K ) = K × (K×)m .

Next put w′1 = β1w1 and, for 1 ≤ j ≤ n,

η′
j

= β jw1 = (β j , β
′
1β j , . . . , β

′
mβ j ) ∈ K m+1.

The vector spaces

W ′ = Cw′1 and X′ = Cη′
1

+ · · · + Cη′
n

are both equal to Cw1.
We define B1 = Bc1 and B2 = Bc′1 where c1 > 1 and c′1 > 1 are two real numbers

which we are going to fix later. We introduce three positive numbers c2, c3, c4 related
by c3 = cn

4cm
2 and we define S and U by

Sn =
c2 D log B2

log E

(
n∏

j=1

log A1 j

log A11

)
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and

U mn = c3 Dmn+m+n(log B1)n(log B2)m

(
m∏

i=1

n∏

j=1

log Ai j

)
(log E)−m−n

so that (
U

DS

)m

=
c4 D log B1

log E
· (log A11) · · · (log Am1).

Then define

T0 =

[
U

D log B1

]
, S0 =

[
U

D log B2

]
,

Ti =

[
U

mnDS log Ai1

]
(1 ≤ i ≤ m),

S j =

[
S

log A11

log A1 j

]
(1 ≤ j ≤ n),

so that the condition

D
m∑

i=1

n∑

j=1

Ti S j log Ai j ≤ U

is satisfied.
We now want to check

(T0 + 1)(2T1 + 1) · · · (2Tm + 1) ≥ 2V

log E

where V ≤ 33mU . The left hand side is bounded from below by

(T0 + 1)(2T1 + 1) · · · (2Tm + 1) ≥ U m+1

(mn)m Dm+1Sm(log B1)(log A11) · · · (log Am1)
·

Therefore the condition we need reads

U m ≥ 33m(mn)m Dm+1Sm(log B1)(log A11) · · · (log Am1)(log E)−1

and it will hold as soon as

c3 ≥ (33mm+1nm)ncm
2 .

Next we show

(S0 + 1)(2S1 + 1) · · · (2Sn + 1) > (m + 1)!2m T0T1 · · · Tm

On one hand we have

(S0 + 1)(2S1 + 1) · · · (2Sn + 1) >
U

D log B2
· Sn(log A11)n

n∏

j=1

(log A1 j )
−1.

On the other hand (m + 1)!2m ≤ mm2m+1 and
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T0T1 · · · Tm ≤ U m+1

(
mn
)m

Dm+1Sm(log B1)(log A11) · · · (log Am1)
·

Hence the required condition

nm Sm+n Dm(log A11)n(log B1)
m∏

i=1

log Ai1 ≥ 2m+1U m(log B2)
n∏

j=1

log A1 j

will follow if
nmncm+n

2 ≥ 2(m+1)nc3.

This explains the following choice:

c4 = 33mm+1nm, c2 = 33(2m)m+1, c3 = cn
4cm

2 .

We now check that the inequalities

log E ≤ D log B1, log E ≤ D log B2

and

B1 ≥ (m + 1)S∗ + (m + 1)
S0

T ∗
, B2 ≥ T ∗ +

T0

d S∗

are satisfied if one chooses c1 = 12mn and c′1 = 8mn. Recall that T ∗ = T1 + · · · + Tm

and S∗ = S1 + · · · + Sn . Since

Sn
j ≤ c2

D log B2

log E
· (log A11) · · · (log A1n)

(log A1 j )n

we have
S j ≤ (c2 D(log B2)(B ′)n−1)1/n ≤ (c2c′1)1/n B ′(log B ′)1/n

and

(m + 1)S∗ + (m + 1) · S0

T ∗
≤ ((m + 1)(n + 1)c′1 + 2m(m + 1)(c′1)−1

)
c1/n

2 B2

because log B ′ ≤ B. Further we have

5mn(c′1c2)1/n B2 ≤ Bc1

because B ≥ e. Similarly, from the upper bound

T m
i ≤ c4

D log B1

log E
· (log A11) · · · (log Am1)

(mn log Ai1)m
,

we deduce

Ti ≤ c1/m
4

mn
B ′(log B1)1/m

and therefore

T ∗ ≤ 1

n
c1/m

4 (B ′)c′1 (log B1)1/m ≤ B2
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because log B ≤ B ′ and

1

n
(c4c1)1/m ≤ (B ′)c′1−1−1/m .

The connection between U and U2 is

U mn = c3cn
1 (c′1)mU mn

2 .

If the conclusion of Theorem 14.6 does not hold, then we deduce

|w1 − w′1| ≤ e−cU1 and max
1≤ j≤n

|η
j
− η′

j
| < e−cU1 .

The hypotheses of Theorem 13.1 will follow if we take

c ≥ 33mc1/mn
3 c1/m

1 (c′1)1/n.

Since c1/m
1 ≤ 12n, (c′1)1/n ≤ 8m and

c3 ≤ (2m)m2
(2 · 332mn)mn,

we shall obtain the desired result with

c = 223m3n2(2m)m/n.

We have now checked all hypotheses of Theorem 13.1. Hence we obtain an
algebraic subgroup G∗ = G∗0 × G∗1 of G such that

(
S0 + `[0
`
[
0

)
Card

(
6 + G∗

G∗

)
H(G∗; T0, T ) ≤ (m + 1)!2m T0T1 · · · Tm

where

`
[
0 = dimC

(
W + Te(G∗)

Te(G∗)

)
∈ {0, 1}.

Inequalities (14.7) and (14.8) imply Ti ≥ 1 for 1 ≤ i ≤ m and S j ≥ 1 for
1 ≤ j ≤ n respectively. The condition T0 > 0 follows from U > D log B1 and
inequality S0 > 0 follows from U > D log B2.

In particular we have H (G∗; T0, T ) ≥ 1. Therefore

(
S0 + `[0
`
[
0

)
Card

(
6 + G∗

G∗

)
< (S0 + 1)(2S1 + 1) · · · (2Sn + 1).

We check `[0 = 1. Otherwise one would have W ⊂ Te(G∗), which means
(1, β ′1, . . . , β

′
m) ∈ Te(G∗). In this case G∗0 = Ga, hence G∗1 6= G1. Let t1z1+· · ·+tm zm =

0 be an equation of an hyperplane in Te(G1) = Cm containing Te(G∗1), where
t ∈ Zm \ {0} satisfies |ti | ≤ Ti (1 ≤ i ≤ m). We get a relation

t1β
′
1 + · · · + tmβ

′
m = 0,
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and Liouville’s inequality easily yields a contradiction with the hypothesis of linear
independence on the matrix Lmn .

Therefore `[0 = 1, and we obtain

Card

(
6 + G∗

G∗

)
< (2S1 + 1) · · · (2Sn + 1).

Next we check G∗0 = G0. Otherwise we would have G∗0 = {0}, and if 60 denotes the
projection of 6 on G0, then

Card

(
6 + G∗

G∗

)
= Card

(
60 + G∗0

G∗0

)
= Card60 = (2S1 + 1) · · · (2Sn + 1)

because the elements s1β1 + · · · + snβn are pairwise distinct (again this follows from
Liouville’s inequality together with the hypothesis of linear independence on the
matrix Lmn). Hence G∗0 = Ga.

Let 61 denotes the projection of 6 on G1. For each γ ′ 6= γ ′′ in 61 for which
γ ′ − γ ′′ ∈ G∗1, and for each hyperplane of Te(G∗) containing Te(G∗1) of equation
t1z1 + · · · + tm zm = 0, we get a relation

m∏

i=1

n∏

j=1

α
ti s j

i j = 1.

Using the hypothesis of linear independence of λi j together with Liouville’s inequal-
ity and the estimates mnTi S j ≤ U , 2U 2 ≤ c2U 2

1 , we deduce

Card

(
6 + G∗

G∗

)
= Card

(
61 + G∗1

G∗1

)
≥ (2S1 + 1) · · · (2Sn + 1)

max
1≤ j≤n

(2S j + 1)

and
H (G∗; T0, T ) ≥ m!2m−1 T0T1 · · · Tm

max
1≤i≤m

Ti
·

Therefore

(S0 + 1)(2S1 + 1) · · · (2Sn + 1) ≤ 2(m + 1)

(
max

1≤i≤m
Ti

)(
max

1≤ j≤n
(2S j + 1)

)
.

On the other hand combining the inequalities

(S0 + 1)(2S1 + 1) · · · (2Sn + 1) ≥ c2U

log E

and

2(m + 1)(2S j + 1)Ti ≤ 6(m + 1)Ti S j ≤ 6(m + 1)
U

mnD log Ai j
≤ 12U

n log E

with c2 > 12/n, we deduce

2(m + 1)(2S j + 1)Ti < (S0 + 1)(2S1 + 1) · · · (2Sn + 1)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, which is not compatible with the previous estimate.
This contradiction concludes the proof of Theorem 14.6. ¤
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14.2.3 Lower Bound for
∑n

j=1 |λ j − β j |

The next statement is the special case m = 1 of Theorem 14.6. It provides a refinement
to Theorem 8.1 of [RoyW 1997b] (here we introduce several parameters A1, . . . , An

instead of the single A = max1≤ j≤n A j ).

Corollary 14.9. Let n be a positive integer. There exists a positive constant c with
the following property. Let α1, . . . , αn and β1, . . . , βn be algebraic numbers, let D
be the degree of the number field they generate, and let A1, . . . , An , A, B, B ′, E be
real numbers which satisfy

B ≥ e, B ′ ≥ e, A = max
1≤ j≤n

A j ,

h(α j ) ≤ log A j (1 ≤ j ≤ n) and h(1:β1: · · · :βn) ≤ log B.

For 1 ≤ j ≤ n, assume that the number α j is nonzero, choose λ j ∈ L such that
eλ j = α j and assume

|λ j | ≤ D

E
log A j .

Let U be a positive real number satisfying

U ≥ D2+(1/n)(log B)
(
(log B ′)(log A1) · · · (log An)

)1/n
(log E)−1−(1/n) ;

U ≥ D2(log B)(log A)(log E)−1−(1/n).

Further, assume

1 ≤ log E ≤ D log A j ≤ B, log B ′ ≤ D log A,

B ′ ≥ D log A, U ≥ D log B,

log E ≤ D log B ≤ B ′, and log E ≤ D log B ′ ≤ B.

Furthermore, assume
s1β1 + · · · + snβn 6= 0

for any s ∈ Zn \ {0} with
0 < |s| ≤ (cU )2.

Then, we have
n∑

j=1

|λ j − β j | ≥ e−cU

where
c = 224n2.

Proof. We deduce Corollary 14.9 from Theorem 14.1 by taking m = 1, β ′1 = 1. ¤

We deduce a diophantine approximation estimate related with Schanuel’s Con-
jecture (Theorem 2.5 of [RoyW 1997b]).
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Corollary 14.10. Let x1, . . . , xn be complex numbers which satisfy a linear inde-
pendence measure condition. There exists a positive constant c = c(n, x1, . . . , xn)
such that the function

ϕ(D, h) = cD2+(1/n)h(h + log D)(log h + log D)−1

is a simultaneous approximation measure for the 2n numbers

x1, . . . , xn, ex1 , . . . , exn .

Here is an estimate of simultaneous diophantine approximation related to the
Lindemann-Weierstraß’ Theorem:

Corollary 14.11. Let β1, . . . , βm be Q-linearly independent algebraic numbers.
There exists a positive constant c = c(β1, . . . , βm) such that the function

ϕ(D, h) = cD1+(1/m)h(log h + D log D)(log h + log D)−1

is a simultaneous approximation measure for the numbers eβ1 , . . . , eβm .

Finally we deduce from Corollary 14.9 a statement on simultaneous approxima-
tion of logarithms of algebraic numbers:

Corollary 14.12. Let α1, . . . , αm be nonzero algebraic numbers. For 1 ≤ i ≤ m,
let λi be a determination of the logarithm of αi . Assume the numbers λ1, . . . , λm are
Q-linearly independent. Then there exists a positive constant c = c(λ1, . . . , λm) such
that

ϕ(D, h) = cD2+(1/m)(h + log D)(log h + log D)1/m(log D)−1−(1/m)

is a simultaneous approximation measure for the numbers λ1, . . . , λm .

Proof. We permute m and n and take

E = D, B ′ = Dh, B = Deh .

Recall that without loss of generality we may assume D ≥ 2. ¤

Remark. The following estimate, due to N.I. Feld’man ([F 1982], Th. 7.7 Chap. 7
§ 5) is stronger when h > D (the point is that our proof of Theorem 14.6, hence of
Corollary 14.9 and then of Corollary 14.12, does not involve Feld’man’s polynomials;
see Exercise 14.5):

(14.13∗) Letλ1, . . . , λm beQ-linearly independent logarithm of algebraic numbers.
There exists a positive constant c = c(λ1, . . . , λm) such that

cD2+(1/m)(h + log D)(log D)−1
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is a simultaneous approximation measure for the numbers λ1, . . . , λm .

All constants are easy to compute explicitly. Here is an example (see [NeW 1996]
- see also Exercise 14.3):

• Let β be an algebraic number and λ a logarithm of an algebraic number. Define
α = eλ, K = Q(α, β) and D = [K : Q]. Let A, B and E be positive real numbers
satisfying E ≥ e,

log A ≥ max
(
h(α) , D−1 log E , D−1|β|E)

and
log B ≥ h(β) + log+ log A + log D + log E,

where log+ x = log max(1, x). Then

|β − λ| ≥ exp
(
−105500 · D2(log A)(log B)

(
D log D + log E

)
(log E)−2

)
.

14.2.4 Simultaneous Approximation for xi , y j and exi y j

Corollary 14.14. Let m ≥ 1 and n ≥ 1 be positive integers, (x1, . . . , xm) a m-
tuple of complex numbers satisfying a linear independence measure condition and
(y1, . . . , yn) a n-tuple of complex numbers satisfying also a linear independence
measure condition. There exists a constant c > 0 such that a simultaneous
approximation measure for the m + n + mn numbers

xi , y j , exi y j (1 ≤ i ≤ m, 1 ≤ j ≤ n)

is
ϕ(D, h) = cD1+ m+n

mn h(h + log D)
m+n
mn (log h + log D)−

m+n
mn ·

For D > eh , the measure is simply

c′D1+ m+n
mn h

with another constant c′.

Proof. Let β1, . . . , βn , β ′1, . . . , β
′
m and γi j (1 ≤ i ≤ m, 1 ≤ j ≤ n) be algebraic

numbers in a field of degree ≤ D and heights ≤ h. Our goal is to produce a lower
bound for

m∑

i=1

|xi − β ′i | +
n∑

j=1

|y j − β j | +
m∑

i=1

n∑

j=1

|xi y j − γi j |.

There is no loss of generality to assume γi j 6= 0. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let
λi j be the value of the logarithm of γi j which is closer to xi y j .

In Theorem 14.6, set
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Ai j = eh, B = (Deh)c0 , E =
1

c0
Dh,

where c0 is a sufficiently large positive number which depends only on x1, . . . , xm

and y1, . . . , yn . ¤

14.2.5 Simultaneous Approximation for logα1, logα2, αβ1 and αβ2

In this section we consider the special case m = n = 2 of Theorem 14.6.

Corollary 14.15. Let K be a number field of degree D, β, β ′1, β
′
2 be elements of K ,

λ1, λ2 λ
′
1, λ
′
2 elements in L such that the algebraic numbers

α1 = eλ1 , α2 = eλ2 , α′1 = eλ
′
1 , α′2 = eλ

′
2

are in K . Assume λ1, λ2 are linearly independent over Q and β is irrational. Let
B ≥ e and B ′ ≥ e be real numbers with

h(β) ≤ log B, h(1:β ′1:β ′2) ≤ log B ′.

Let A1, A2, A′1, A′2 be positive numbers, all ≥ e2, and E a real number ≥ e, which
satisfy

(log A1)(log A′2) = (log A2)(log A′1)

and, for i = 1, 2,
h(αi ) ≤ log Ai , h(α′i ) ≤ log A′i ,

and

|λi | ≤ D

E
log Ai , |λ′i | ≤

D

E
log A′i .

Assume

log E ≤ D log Ai ≤ min{B, B ′}, log E ≤ D log A′i ≤ min{B, B ′},
log E ≤ D log B ′, log B ′ ≤ B, log B ≤ B ′

and

log E ≤ D(log B) · log A1

log A2

, log E ≤ D(log B) · log A2

log A1
·

Define

U = D2(log B)1/2(log B ′)1/2
(
(log A1)(log A2)(log A′1)(log A′2)

)1/4
(log E)−1.

Then

|λ1 − β ′1| + |λ2 − β ′2| + |βλ1 − λ′1| + |βλ2 − λ′2| > exp{−230U }.

Remark. By Corollary 14.15, a matrix of the form
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( 1 β ′1 β ′2
1 λ1 λ2

β λ′1 λ′2

)

cannot be too close to a rank 1 matrix.

Example 14.16. Let λ1, λ2 be two elements of L which are linearly independent over
Q and let θ be a complex irrational number which satisfies a linear independence
measure condition. Then there exists a constant c > 0 such that the function

ϕ(D, h) = cD2(h + log D)h1/2(log D)−1

is a simultaneous approximation measure for the five numbers λ1, λ2, θ , eθλ1 , eθλ2 .

This follows from Corollary 14.15 by considering the rank 1 matrix
( 1 1 θ

λ1 λ1 θλ1

λ2 λ2 θλ2

)
.

Several applications of Theorem 14.6 with m = n = 2 are given in Exercise 14.4.

14.3 Simultaneous Approximation in Higher Dimension

In the two previous sections, we were dealing with rank one matrices. We consider
now higher values for r . In § 14.3.1 we take d0 = `0 = 0, while in § 14.3.2 we study
the opposite extreme case where d0 = `0 = r .

14.3.1 Simultaneous Approximation of Logarithms by Complex Numbers

By Theorem 12.17, a m × n matrix Lmn with entries in L which satisfies the linear
independence condition has rank≥ mn/(m+n). We produce a quantitative refinement
to this statement, namely a lower bound for the distance between a matrix with entries
in L and a matrix (with complex entries) of given rank r < mn/(m + n).

Theorem 14.17. For any pair (m, n) of positive integers, there exists a positive
constant c with the following property. Let Lmn be a m × n matrix with entries in L.
Recall the notation for K , D, Ai j and E in the introduction of this chapter. Further,
let r be a real number in the range

0 ≤ r <
mn

m + n

and let U3 be a real number satisfying

U3 ≥ D log D
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and

U mn−r (m+n)
3 ≥ Dmn

(
m∏

i=1

n∏

j=1

log Ai j

)
(log E)−r (m+n).

Assume further that Lmn satisfies the linear independence condition for (cU3)2.
Then for any m × n complex matrix

M =
(

xi j

)
1≤i≤m
1≤ j≤n

of rank r we have
m∑

i=1

n∑

j=1

∣∣λi j − xi j

∣∣ ≥ e−cU3 .

Proof. From the assumptions D log Ai j ≥ log E we deduce

U mn−r (m+n)
3 ≥ (log E)mn(log E)−r (m+n),

hence U3 ≥ log E .
We first show that we may assume, without loss of generality,

U r
3 (log A11) · · · (log Am1) ≥ (log Ai1)m(log E)r (1 ≤ i ≤ m).

We proceed by induction on m. Assume

U r
3 (log A11) · · · (log Am1) < (log Am1)m(log E)r .

Taking into account the definition of U3, we deduce

Drn
m∏

i=1

(log Ai1)n−r ·
n∏

j=1

(log A1 j )
r < (log Am1)mn−r (m+n)(log E)rn(log A11)rn.

One deduces that the number V > 0 defined by

V mn−r (m+n)−n+r = D(m−1)n
m∏

i=1

n∏

j=1

(log Ai j )(log E)−r (m+n)+r

satisfies V < U , and this allows us to apply the remark in § 13.5.3.
For the same reason we may assume

U r
3 (log A11) · · · (log A1n) ≥ (log A1 j )

n(log E)r (1 ≤ j ≤ n).

From the condition on U3 one deduces

U m−r
3 (log E)r (log A11)m ≥ Dm(log A11) · · · (log Am1)(log A1 j )

m

for 1 ≤ j ≤ n.
We start with the easy case where all entries xi j of M are zero: in this special case

Liouville’s inequality (Exercise 3.7.a) gives
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m∑

i=1

n∑

j=1

∣∣λi j

∣∣ ≥ 2−D max
1≤i≤m
1≤ j≤n

A−D
i j .

Next we remark that we may, without loss of generality, replace the number r by the
rank of the matrix M.

Let c0 be a sufficiently large integer. How large it should be can be explicitly
written in terms of m and n only.

We shall apply Theorem 13.1 with d0 = `0 = 0, d = d1 = m, G = G+ = Gm
m,

G− = {e}, ` = `1 = n, r3 = r , r1 = r2 = 0,

η
j

= (λi j )1≤i≤m, η′
j

= (xi j )1≤i≤m (1 ≤ j ≤ n).

Since d0 = `0 = 0 we set T0 = S0 = 0. Therefore the parameters B1 and B2 will play
no role, but for completeness we set

B1 = B2 = mnE
(

D max
1≤i≤m
1≤ j≤n

Ai j

)mn
.

Let U be a real number satisfying

U ≥ cmn(r+1)
0 U3.

Define a real number S by

Sm =
U m−r (log E)r

cr+1
0 Dm(log A11) · · · (log Am1)

.

Next, let V = c0U ,

Ti =

[
U

mnDS log Ai1

]
(1 ≤ i ≤ m)

and

S j =

[
S · log A11

log A1 j

]
(1 ≤ j ≤ n).

From the preliminary reduction we infer S j ≥ 1 for 1 ≤ j ≤ n and Ti ≥ 1 for
1 ≤ i ≤ m. From the definitions of U and S one deduces

D
m∑

i=1

n∑

j=1

Ti S j log Ai j < U,

(2T1 + 1) · · · (2Tm + 1) > 2

(
V

log E

)r

and
m!2m T1 · · · Tm < (2S1 + 1) · · · (2Sn + 1).

We take
T1 = Zm[T ], S1 = Zn[S],
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so that
H (G; T1) = Card(T1) = (2T1 + 1) · · · (2Tm + 1)

and
Card(S1) = (2S1 + 1) · · · (2Sn + 1).

Define

6 =
{(
α

s1
11 · · ·αsn

1n, . . . , α
s1
m1 · · ·αsn

mn

) ∈ (K×)m ; s ∈ Zn[S]
}
.

Assume that the conclusion of Theorem 14.17 does not hold for c = cmn(r+1)+1
0 .

Then the hypotheses of Theorem 13.1 are satisfied, and we deduce that there
exists a connected algebraic subgroup G∗ of G, which is incompletely defined by
polynomials of multidegree ≤ T , such that

Card

(
6 + G∗

G∗

)
H (G∗; T ) ≤ m!2m T1 · · · Tm .

Here T stands for the m-tuple (T1, . . . , Tm).
Since H (G∗; T ) ≥ 1 we deduce

Card

(
6 + G∗

G∗

)
< (2S1 + 1) · · · (2Sn + 1).

Hence 6[2] ∩ G∗(K ) 6= {e}. We deduce that there exist s ∈ Zn[2S] \ {0} and
t ∈ Zm[T ] \ {0} with

m∑

i=1

n∑

j=1

ti s jλi j ∈ 2π
√−1Z.

Let us check, by contradiction, that G∗ has codimension 1. We already know G∗ 6= G.
If the codimension of G∗were≥ 2, we would have two linearly independent elements
t ′ and t ′′ in Zm[T ] such that the two numbers

a′ =
1

2π
√−1

m∑

i=1

n∑

j=1

t ′i s jλi j and a′′ =
1

2π
√−1

m∑

i=1

n∑

j=1

t ′′i s jλi j

are in Z. Notice that

max{|a′|, |a′′|} ≤ 1

πE
D

m∑

i=1

n∑

j=1

Ti S j log Ai j <
1

2
U ·

We eliminate 2π
√−1: set t = a′′t ′ − a′t ′′, so that

m∑

i=1

n∑

j=1

ti s jλi j = 0

and
0 < |t | ≤ U max

1≤i≤m
Ti < U 2.
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This is not compatible with our hypothesis that the matrix Lmn satisfies the linear
independence condition for (cU3)2.

Hence G∗ has codimension 1 in G. Therefore

H (G∗; T ) ≥ 2m−1T1 · · · Tm

max1≤i≤m Ti
·

A similar argument shows that any s ′, s ′′ in Zn[2S] for which
m∑

i=1

n∑

j=1

ti s
′
jλi j ∈ 2π

√−1Z and
m∑

i=1

n∑

j=1

ti s
′′
j λi j ∈ 2π

√−1Z

are linearly dependent over Z. From Lemma 7.8 we deduce

Card

(
6 + G∗

G∗

)
≥ (2S1 + 1) · · · (2Sn + 1)

max1≤ j≤n(2S j + 1)
·

Therefore

(2S1 + 1) · · · (2Sn + 1) ≤ 2

(
max

1≤i≤m
Ti

)(
max

1≤ j≤n
(2S j + 1)

)
.

Since

(2S1 + 1) · · · (2Sn + 1) >

(
V

log E

)r

and
Ti S j ≤ U

D log Ai j
≤ U

log E
,

we get a contradiction. This completes the proof of Theorem 14.17. ¤

Remark. The linear independence condition on Lmn can be much weakened. For
instance when Ai j = A is independent on i, j (hence T1 = · · · = Tm and S1 = · · · = Sn)
the assumption which is needed in the proof is the following:

For any algebraic subgroup G∗ of G = Gm
m, we have

Card

(
6 + G∗

G∗

)
≥ (2S + 1)nm[/m

where m[ = dim(G/G∗).

For instance this condition is satisfied if we assume that the subgroup 0 of G(K )
generated by

(α1 j , . . . , αmj ) ∈ (K×)m (1 ≤ j ≤ n)

satisfies

rankZ

(
0

0 ∩ G∗(K )

)
≥ n

m
dim(G/G∗)

for any algebraic subgroup G∗ of G.

Theorem 14.17 yields the following statement, which extends Theorem 2.3 of
[RoyW 1997b] to higher dimension (replacing rank one matrices by matrices of
arbitrary ranks, which amounts to deal with several variables instead of just one):
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Corollary 14.18. Let m, n and r be positive rational integers with mn > r (m + n).
Define

κ =
mn

mn − r (m + n)
·

Let M = (xi j ) 1≤i≤m
1≤ j≤n
∈ Matm×n(C) satisfying the following technical condition: for any

sufficiently large integers T and S, and any t ∈ Zd \ {0}, s ∈ Z` \ {0} satisfying
|t | ≤ T and |s| ≤ S, we have

∣∣∣∣∣
m∑

i=1

n∑

j=1

ti s j xi j

∣∣∣∣∣ ≥ exp{−c(T S)1/5}. (14.19)

Then there exists a positive constant c such that

c(Dh)κ
(
log h + log D

)1−κ

is a simultaneous approximation measure for the mn numbers exi j , (1 ≤ i ≤ m,
1 ≤ j ≤ n).

One should not pay too much attention to the exponent 1/5 in the technical
hypothesis (14.19): one could weaken this assumption by replacing 1/5 by a slightly
larger constant; but one cannot completely omit such a condition (see Exercise 14.7).

Proof. We apply Theorem 14.17. Since xi j are fixed, the condition

h ≥ max
1≤i≤m
1≤ j≤n

E

D
|λi j |

is satisfied with E = (Dh)1/2. Also we may assume that the linear independence
condition on the matrix Lmn is satisfied, because for |t | ≤ (cU3)2 and |s| ≤ (cU3)2,
applying (14.19) with T = S = (cU3)2 gives (if the conclusion of Corollary 14.18
does not hold) ∣∣∣∣∣

m∑

i=1

n∑

j=1

ti s jλi j

∣∣∣∣∣ ≥ exp{−2c(T S)1/5} > 0.

¤

Remark. Let us consider the case r = 1. Corollary 14.18 is a quantitative refinement
to the six exponentials Theorem (see [MiW 1977]). In this case the assumption
(14.19) can be written more simply: writing xi j = uiv j with ui and v j in C
(see Exercice 1.9), we need only to assume that each of the tuples (u1, . . . , um)
and (v1, . . . , vn) satisfies a linear independence measure condition. See [RoyW
1997b], Theorem 2.3. See also [RoyW 1997b], Theorem 2.4 for another equivalent
formulation in terms of lower bounds for 2× 2 minors in a matrix whose entries are
logarithms of algebraic numbers.
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14.3.2 Simultaneous Approximation of Logarithms by Algebraic Numbers

Let Lmn be a matrix with entriesλi j inL. We approximate simultaneously the numbers
λi j by algebraic numbers βi j . If r denotes the rank of the matrix

B =
(
βi j
)

1≤i≤m
1≤ j≤n

,

then the matrix (
B B
B Lmn

)

is close to the rank r matrix (
B B
B B

)
.

Theorem 14.20. There exists a constant c > 0 which depends only on n and m
with the following property. Let Lmn be a matrix with entries in L and let K , D, Ai j

(1 ≤ i ≤ m, 1 ≤ j ≤ n) and E satisfy the conditions stated in the introduction.

Further, let B =
(
βi j

)
1≤i≤m
1≤ j≤n

be a rank r matrix with entries in the number field K . Let

B be a positive real numbers satisfying, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the following
conditions:

h(βi j ) ≤ log B, B ≥ log Ai j , B ≥ D and B ≥ e.

Let U4 be a positive real number satisfying

U mn
4 ≥ Dmn+r (m+n)(log B)r (m+n)

(
m∏

i=1

n∏

j=1

log Ai j

)
(log E)−r (m+n).

Assume Lmn satisfies the linear independence condition for (cU4)2. Assume further-
more

log E ≤ D log B ≤ U4.

Then
m∑

i=1

n∑

j=1

∣∣λi j − βi j

∣∣ ≥ e−cU4 .

Remark. In case r = 1, Theorem 14.20 is nothing else than the special case of
Theorem 14.6 where B = B ′ (cf. Exercise 1.9).

Proof of Theorem 14.20. Since D log B ≥ log E , there is no loss of generality to
assume

(D log B)r (log A11) · · · (log Am1) ≥ (log Ai1)m(log E)r (1 ≤ i ≤ m)

and
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(D log B)r (log A11) · · · (log A1n) ≥ (log A1 j )
n(log E)r (1 ≤ j ≤ n).

We are going to apply Theorem 13.1 with

d0 = `0 = r, d1 = m, `1 = n,

G = G+ = Gr
a ×Gm

m, G− = {e}, r3 = r, r1 = r2 = 0.

Since B has rank r we may assume that the matrix
(
βi j

)
1≤i, j≤r

is regular. Define

wk = w′k =
(
β1k, . . . , βrk, β1k, . . . , βmk

) ∈ K r+m (1 ≤ k ≤ r ),

η
j

=
(
β1 j , . . . , βr j , λ1 j , . . . , λmj

) ∈ K r ×Lm, (1 ≤ j ≤ n)

and
η′

j
=
(
β1 j , . . . , βr j , β1 j , . . . , βmj

)
(1 ≤ j ≤ n).

Further, let

γ j = expG(η
j
) =

(
β1 j , . . . , βr j , α1 j , . . . , αmj

) ∈ K r × (K×)m (1 ≤ j ≤ n).

Next define
B1 = B2 = Bc0 , U = c6m

0 U4 and V = c0U.

Set

T0 = S0 =

[
U

c0 D log B

]
·

Notice that the hypotheses of Theorem 14.20 imply T0 ≥ c0 and S0 ≥ c0. Define
T1, . . . , Tm , S1, . . . , Sn by

Ti =

[
c2

0

(
D log B

log E

)r/m

·
(
(log A11) · · · (log Am1)

)1/m

log Ai1

]
(1 ≤ i ≤ m)

and

S j =

[
c4m

0

(
D log B

log E

)r/n

·
(
(log A11) · · · (log A1n)

)1/n

log A1 j

]
(1 ≤ j ≤ n).

Notice that we have Ti ≥ c0 and S j ≥ c0. We take

T1 = Zm[T ], S1 = Zn[S]

and
6 =

{
γ

s1
1 · · · γ sm

m ; s ∈ Zn[S]
} ⊂ G(K ) = K r × (K×)m .

One easily checks

D
m∑

i=1

n∑

j=1

Ti S j log Ai j < U,
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(
T0 + r

r

)
(2T1 + 1) · · · (2Tm + 1) ≥ 2

(
V

log E

)r

and (
S0 + r

r

)
(2S1 + 1) · · · (2Sn + 1) ≥ c0T r

0 T1 · · · Tm .

The hypotheses

U ≥ D log D, U ≥ log E, B ≥ S j +
S0

T ∗

of Theorem 13.1 are satisfied because

U ≥ D log B, U ≥ D log Ai j ≥ log E, B ≥ D and B ≥ log Ai j .

Hence we may apply Theorem 13.1 and deduce the existence of an algebraic
subgroup G∗ of G satisfying

(
S0 + `[0
`
[
0

)
M[H (G∗; T0, T ) ≤ (m + r )!

r !
2m T r

0 T1 · · · Tm,

where

M[ = Card

(
6 + G∗

G∗

)

and

`
[
0 = dimC

(
W + Te(G∗)

Te(G∗)

)
·

Define

d∗0 = dim(G∗0), d∗1 = dim(G∗1), d[0 = dim(G0/G∗0), d[1 = dim(G1/G∗1)

and d∗ = d∗0 + d∗1 = dim(G∗), d[ = d[0 + d[1 = dim(G/G∗).
We first notice that `[0 ≥ d[0. Indeed the restriction to W of the projection

Cr+m → Cr on the first r components is surjective. Hence the restriction to W [

of the projection Cd[ → Cd[0 is also surjective, hence the dimension `[0 of W [ is at
least d[0.

Therefore we obtain M[ < (2S1 + 1) · · · (2Sn + 1). From the linear independence
condition on Lmn one deduces, like in the proof of Theorem 14.17, that G∗1 has
codimension 1 and that

M[ ≥ (2S1 + 1) · · · (2Sn + 1)

max1≤ j≤n(2S j + 1)
·

The final contradiction is reached, again, as in the proof of Theorem 14.17. ¤

The next statement combines the special cases of Theorems 14.17 and 14.20
where Ai j is independent of i and j .
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Corollary 14.21. Let m, n and r be positive rational integers. Define

θ =
r (m + n)

mn
·

There exists a positive constant c with the following property. Let B be a m×n matrix
of rank≤ r with coefficients βi j in a number field K . For 1 ≤ i ≤ m and 1 ≤ j ≤ n,
let λi j be a complex number such that the number αi j = eλi j belongs to K× and such
that the matrix L = (λi j ) 1≤i≤m

1≤ j≤n
satisfies the linear independence condition. Define

D = [K : Q]. Let h1, h2 and E be positive real numbers satisfying the following
conditions:

h1 ≥ h(αi j ), h1 ≥ E

D
|λi j |, h1 ≥ log E

D
and

h2 ≥ h(βi j ), h2 ≥ log h1 h2 ≥ log D, h2 ≥ 1

D
log E , E ≥ e

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

m∑

i=1

n∑

j=1

∣∣λi j − βi j

∣∣ ≥ e−c8

where

8 =





Dh1(Dh2)θ (log E)−θ if
Dh1

log E
≥
(

Dh2

log E

)1−θ
,

max
{

D log D ; (Dh1)1/(1−θ )(log E)−θ/(1−θ )
}

if
Dh1

log E
<

(
Dh2

log E

)1−θ
·

Proof. From Theorem 14.20 with Ai j = eh1 (1 ≤ i ≤ m, 1 ≤ j ≤ n) and B = e2h2

we deduce that the conclusion of Corollary 14.21 holds with 8 replaced by

max
{

D1+θh1hθ2(log E)−θ , Dh2
}
.

This proves the desired result in the case

Dh1

log E
≥
(

Dh2

log E

)1−θ
·

Assume now
Dh1

log E
<

(
Dh2

log E

)1−θ
·

In this case we have 8 < Dh2, hence a further argument is necessary.
Since Dh1 ≥ log E and Dh2 ≥ log E we deduce θ < 1. We apply Theorem

14.17 with Ai j = eh1 (1 ≤ i ≤ m, 1 ≤ j ≤ n) and U3 = 8. Thanks to the definition
of 8 we have



                   

14.3 Simultaneous Approximation in Higher Dimension 531

8 ≥ D log D, 8 ≥ log E and 8m−r (log E)r ≥ (Dh1)m .

¤

From Corollary 14.21 one deduces the following variant of Theorem 10.1 in
[RoyW 1997b]:

Corollary 14.22. Let m and n be positive integers and let L = (λi j ) 1≤i≤m
1≤ j≤n

be a m × n

matrix of rank r with coefficients in L which satisfies the linear independence
condition. Set κ = (1/m) + (1/n). Then, there exists a positive constant c such
that the function

ϕ(D, h) = cDrκ+1(h + log D)rκ (log D)−rκ

is a simultaneous approximation measure for the mn numbers λi j (1 ≤ i ≤ m,
1 ≤ j ≤ n).

Remark. Using Dirichlet’s box principle (see § 15.2.1), it is easy to check that any
simultaneous approximation measure ϕ(D, h) is bounded from below by c(D)h,
where c(D) depends only on D and on the given tuple. Therefore, under the
assumptions of Corollary 14.22, one deduces rκ ≥ 1. This is nothing else than
Theorem 1.16.

Proof of Corollary 14.22. We apply Theorem 14.20 with h1 a sufficiently large
constant, E = D, h2 = h + log(Dh1) and θ = rκ . ¤

The assumption in Corollaries 14.21 and 14.22 that the matrix L satisfies the linear
independence condition is clearly too strong. On one hand, according to Theorem
14.20, it suffices to assume the linear independence condition for (cφ)2 in Corollary
14.21 and for

(
cϕ(D, h)

)2
in Corollary 14.22. On the other hand, on the qualitative

side, Corollary 12.18 involving the structural rank is stronger than Theorem 1.16
which assumes a linear independence condition (see also the remark after the proof
of Theorem 14.17). While Corollary 14.22 is a quantitative sharpening to Theorem
1.16, the next result is a quantitative sharpening to Corollary 12.18.

Theorem 14.23. Let λ1, . . . , λn be elements of L and let M be a matrix with
coefficients in the Q-vector space spanned by λ1, . . . , λn . Assume

rank(M) ≤ 1

2
rstr(M).

Then there exists a positive constant c which depends only on λ1, . . . , λn and M such
that

cD3/2(h + log D)
(
h + D(log D)−1

)1/2
(log D)−1/2

is a simultaneous approximation measure for (λ1, . . . , λn).
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In other terms, under the assumptions of Theorem 14.23, a simultaneous
approximation measure for (λ1, . . . , λn) is

ϕ(D, h) =





cD2(h + log D)(log D)−1 if h ≤ D(log D)−1,

cD3/2h3/2(log D)−1/2 if h ≥ D(log D)−1.

Proof. Without loss of generality we may assume that M is a square m×m matrix of
structural rank m. By Corollary 12.18 the assumption rank(M) ≤ (1/2)rstr(M) means
that M has rank m/2.

Since M has coefficients in the Q-vector space spanned by λ1, . . . , λn , starting
from algebraic approximations to λ1, . . . , λn , one deduces algebraic approximations
βi j to the coefficientsλi j of M. We repeat the proof of Theorem 14.20 with n = m = 2r
(hence G0 = Gm/2

a and G1 = Gm
m), taking E = D, B = Deh while Ai j are constants,

but now U is defined by

U = c6m
0 D3/2(h + log D)

(
h + D(log D)−1

)1/2
(log D)−1/2.

The proof of Theorem 14.20 would require only

U ≥ c6m
0 D2(h + log D)(log D)−1,

and indeed this condition will be also sufficient here for almost all the proof, apart
from the very end of it.

Define

T0 = S0 =

[
U

c0 D(h + log D)

]
,

Ti =

[
c2

0

(
D(h + log D)

log D

)1/2
]

(1 ≤ i ≤ m)

and

S j =

[
c4m

0

(
D(h + log D)

log D

)1/2
]

(1 ≤ j ≤ n).

Define also w1, . . . , wr in K r+m , η
1
, . . . , η

m
in K r × Lm , η′

1
, . . . , η′

m
in Cr+m ,

γ
1
, . . . , γ

m
in G(K ) = K r × (K×)m and 6 ⊂ G(K ) as in the proof of Theorem

14.20. Again by Theorem 13.1 we deduce the existence of an algebraic subgroup G∗
of G which satisfies

(
S0 + `[0
`
[
0

)
M[ ≤ (m + r )!

r !
2d[1 T

d[0
0 T

d[1
1 ,

where
`
[
0 = dimC(W [), M[ = Card(6[),

W [ =
W + Te(G∗)

Te(G∗)
, 6[ =

6 + G∗

G∗
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and

d[0 = dim(G[
0), d[1 = dim(G[

1), G[
0 =

G0

G∗0
, G[

1 =
G1

G∗1
·

We are looking firstly for a lower bound for `[0, and secondly for a lower bound for
M[.

We already know from the proof of Theorem 14.20 that `[0 ≥ d[0. However here
we need more.

Set

G[ =
G

G∗
= G[

0 × G[
1

and d[ = d[0 + d[1 = dim(G[). Denote by

π0 : Cr+m −→ Cr and π
[
0 : Te(G[) −→ Te(G[

0)

the projections with kernels {0} × Cm and Te(G[
1) respectively, and by

g0 : Cr −→ Te(G[
0) and g : Cr+m −→ Te(G[)

the projections whose kernels are Te(G∗0) and Te(G∗) respectively. Since the diagram

W ⊂ Cr+m
π0−−−−→ Cr

g

y

y g0

W [ ⊂ Te(G[) −−−−→
π
[

0

Te(G[
0)

commutes, since g(W ) = W [ and since g0 ◦ π0(W ) = Te(G[
0), we have

`
[
0 = d[0 + dimC

(
W [ ∩ ker(π [0)

)
.

We shall derive below a lower bound for W [∩ker(π [0), but we first estimate M[ from
below.

Denote by Y the Q-vector space spanned by the vector columns y
1
, . . . , y

m
of

M in Cm , set

Y [ =
Y + Te(G∗1)

Te(G∗1)
⊂ Te(G[

1)

and denote by `[1 the dimension of Y [ over Q. Since M is Q-equivalent to a matrix
(

A B
C 0

) }m − d[1
}d[1

︸︷︷︸ ︸︷︷︸
`
[
1 m − `[1

,
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we have
m = rstr(M) ≤ m − d[1 + `[1,

which implies `[1 ≥ d[1.
Denote by 8 the subgroup of ϕ ∈ Zm for which yϕ = 1 for any y ∈ G∗1. Since

G∗1 has codimension d[1 in G1 and is incompletely defined in G1 by polynomials of
degrees ≤ T1, there is a basis ϕ

1
, . . . , ϕ

d[1
of 8 with ϕ

j
∈ Zm[T1] (1 ≤ j ≤ d[1).

The linear map
g1 : Cm −→ Cd[1

z 7−→ ϕ
j
z

is surjective with kernel Te(G∗1). We identify Te(G[
1) with Cd[1 , so that g = g0 × g1.

The kernel �[ ⊂ Te(G[) of the exponential map of G[ is �[ = {0} × �[1, where

�
[
1 =

(
2iπZ

)d[1 . For y ∈ Cm we have

expG1
(y) ∈ G∗1(C) ⇐⇒ g1(y) ∈ �[1.

For simplicity of notation, we permute (if necessary) the column vectors of M so
that g1(y

1
), . . . , g1(y

`
[

1

) areQ-linearly independent in Y [. Moreover we may assume

that for an index κ in the range 0 ≤ κ ≤ `[1, we have

`
[

1−κ∑

j=1

s jγ j
6∈ G∗(K )

for any s ∈ Z`[1−κ [S1] \ {0}, while for 1 ≤ k ≤ κ there exists sk ∈ Z`
[

1−κ+1[S1] \ {0}
such that

`
[

1−κ∑

j=1

s jkγ j
+ s`[1−κ+k,kγ `[1−κ+k

∈ G∗(K ).

From Lemma 7.8 we deduce

M[ ≥ S
`
[

1−κ
1 .

Therefore we have

S
`
[

0
0 S

`
[

1−κ
1 ≤ c′T

d[0
0 T

d[1
1

with some constant c′ depending only on m.
Let us check

dimC
(
W [ ∩ ker(π [0)

) ≥ κ.
For 1 ≤ k ≤ κ define

uk =
`
[

1−κ∑

j=1

s jk g(η
j
) + s`[1−κ+k,k g(η

`
[

1−κ+k
)

and
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vk =
`
[

1−κ∑

j=1

s jk g(w j ) + s`[1−κ+k,k g(w`[1−κ+k)

in Te(G[). Since expG[ (uk) = e we have uk ∈ �[. Notice that �[ ⊂ ker(π [0). Since
π0(η

j
) = π0(w j ) we also have vk ∈ ker(π [0), hence

vk ∈ W [ ∩ ker(π [0) for 1 ≤ k ≤ κ.
We want to check that v1, . . . , vκ areC-linearly independent. We consider the κ×d[1
matrix whose column vectors are g1(u1), . . . , g1(uκ ). The entries of this matrix are
in 2iπZ. Since y

1
, . . . , y

`
[

1

areQ-linearly independent, it follows that the rank of this

matrix is κ . Let A be a square regular κ×κ submatrix; denote by B the corresponding
matrix obtained by replacing u j by v j . Then

∣∣det(A)− det(B)
∣∣ ≤ c′′(T S)me−U < 2π.

Since det(A) is a nonzero integral multiple of 2π , we deduce det(B) 6= 0, hence
v1, . . . , vκ are C-linearly independent in Cd[ .

This completes the proof of the claim dimC
(
W [ ∩ ker(π [0)

) ≥ κ , and therefore

`
[
0 ≥ d[0 + κ .

Now comes the extra condition for which we needed to take U so large: since

U ≥ c6m
0 D3/2(h + log D)3/2(log D)−1,

we have
S0 ≥ S1,

and we deduce that the inequalities `[1 ≥ d[1, `[0 ≥ d[0 + κ and

S
`
[

0
0 S

`
[

1−κ
1 ≤ c′T

d[0
0 T

d[1
1

are not compatible. This completes the proof of Theorem 14.23. ¤

Remark. In the special case where λ1, . . . , λn are all real numbers, the proof
simplifies notably and produces the simultaneous approximation measure

cD2(h + log D)(log D)−1

(cf. [RoyW 1997b], remark pp. 423–424). Indeed in this special case we have κ = 0
and therefore the condition S0 ≥ S1 is not needed.

Using Proposition 12.25, one deduces from Theorem 14.23 a refinement of
Theorem 2.8 in [RoyW 1997b]:

Corollary 14.24. Let n ≥ 2 be an integer and λ1, . . . , λn beQ-linearly independent
elements of L. Assume that there exists a nonzero homogeneous polynomial Q in
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Q[X1, . . . , Xn] of degree 2, such that Q(λ1, . . . , λn) = 0. Then there exists a positive
constant c such that the function

cD2(h + log D)3/2(log D)−3/2

is a simultaneous approximation measure for the n-tuple (λ1, . . . , λn).

14.4 Measures of Linear Independence of Logarithms (Again)

We investigate, by means of Proposition 13.12, the best possible results one may
expect from Theorem 13.1 for the problem of measures of linear independence of
logarithms of algebraic numbers, using anyone of the methods described in § 11.4.
We take G− = {0} and G+ = G in Theorem 13.1, in order to apply Proposition 13.12.
Next (§ 14.4.5) we explain why other choices for G− and G+ may be needed. Finally
(§ 14.4.6) we provide further historical comments on the subject.

Proposition 13.12 indicates some limit for the range of application of Theorem
13.1. The estimates which follow are, to a certain extent, the best possible ones which
can be reached by applying Theorem 13.1 - it does not mean that they follow actually
from Theorem 13.1! To prove the corresponding estimates require some more work,
which was done in Chapters 7, 9 and 10 for some cases. As we shall see, it turns out
that the results which have been achieved in these chapters are very close to the limit
indicated by Proposition 13.12. Even the numbers c0 below (which depend only on
the number m of logarithms) are not very far from (i.e. not much smaller than) the
values which actually can be achieved.

14.4.1 Homogeneous Linear Forms: Gel’fond-Baker’s Method

Start with a linear form β1 X1 + · · · + βm Xm with algebraic coefficients and consider
a point (λ1, . . . , λm) in Lm where it does not vanish. Set

3 = β1λ1 + · · · + βmλm,

as in Theorems 7.1 and 9.1 for instance. Assume βm = −1.

1 The hyperplane W in Cm of equation

β1z1 + · · · + βm−1zm−1 = zm

is rational over Q and contains the point

η′
1

= (λ1, . . . , λm−1, λm +3)

The number |3| estimates the distance between η′
1

and the point

η
1

= (λ1, . . . , λm−1, λm) ∈ Lm .
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Notice that the functions
ez1 , . . . , ezm

take algebraic values at the point η
1

(and therefore also at the points sη
1

for s ∈ Z).
The restriction to W of these functions give rise to the m functions of m − 1

variables
ez1 , . . . , ezm−1 , eβ1z1+···+βm−1zm−1 ,

which satisfy differential equations with algebraic coefficients. This amounts to take
a basis of W , namely

wk = (ek, βk) (1 ≤ k ≤ m − 1),

where e1, . . . , em−1 is the canonical basis of Cm−1. Let us build the m × m matrix
whose column vectors are the coordinates of w1, . . . , wm−1, η

1
in Cm :

B2 =

(
Im−1

β1 · · · βm−1

)
, L =



λ1
...
λm




and

M =
(

B2 L
)

=




λ1

Im−1
...

λm−1

β1 · · · βm−1 λm


 .

The main point in introducing M is that its determinant is just −3.
In connection with Chap. 13, define d0 = 0, d = d1 = m, G = Gm

m, `0 = m − 1,
`1 = 1, ` = m, r1 = 0, r2 = m − 2, r3 = 1, r = m − 1. Hence w1, . . . , wm−1 are in
K m , η

1
in Lm and

γ
1

= expG η1
= (α1, . . . , αm) ∈ (K×)m .

The matrix M′ which approximates M (see Exercise 13.1) is

M′ =
(

B2 L′
)

where L′ is the same column matrix as L apart from the entry λm which is replaced
by λm +3. Notice that the determinant of M′ is zero.

These facts have been the basis of the proof of homogeneous Baker’s Theorem
in § 10.1.1.

With the notation of Proposition 13.12, we have

u = 1, δ = m + 2, b1 = 0, b2 = 2.

This explains how to reach the estimate

|3| ≥ exp{−c0 Dm+2(log B)2(log A1) · · · (log Am)(log E)−m−1}
with
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c0 =
m!2m

4m

(
2mm−2(12m + 9)

(m − 2)!

)m+1

·

Notice that the right hand side is larger than (m!)mmm2
.

Remark. The main point in Baker’s method, compared with Gel’fond’s one, is the
fact that r3 = 1. In particular this enables Baker to use Schwarz’ lemma for functions
of a single variable, and this tool enables him to extrapolate (see § 10.3). It is also
possible to extrapolate with interpolation determinants when r3 = 1, but this is not
so easy as with an auxiliary function.

However one could work with what may be called “Gel’fond’s method in several
variables”, that means using only r = r3 = m and r1 = r2 = 0. In this case one gets
u = 1, δ = m2, b2 = m(m − 1), and the estimate reads

|3| ≥ exp{−cDm2
(log B)m2−m(log A1) · · · (log Am)(log E)−m2+1}.

2 Like in §§ 10.1.2 and 10.2.1, we start with the functions

z0, ez1 , . . . , ezm

and the hyperplane W in Cm+1 of equation

β1z1 + · · · + βm−1zm−1 = zm .

The number |3| estimates the distance of the point

η
1

= (1, λ1, . . . , λm−1, λm)

from W , because
η′

1
= (1, λ1, . . . , λm−1, λm +3)

belongs to W .
Take d0=1, d1 = m, hence G = Ga × Gm

m, d = m + 1; then put `1 = 1, `0 = m,

` = m + 1, r1 = 0, r2 = m − 1, r3 = 1, r = m. Let w1, . . . , wm in Qm+1
and η

1
in

Q×Lm be the column vectors of the (m + 1)× (m + 1) matrix

M =

(B0 B1

B2 L

)

with
B0 =

(
1 0 · · · 0

)
B1 =

(
1
)

B2 =




0
... Im−1

0 β1 · · · βm−1


 L =



λ1
...
λm


 .
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Introduce also

M′ =

(B0 B1

B2 L′

)
=




1
λ1

Im
...

λm−1

0 β1 · · · βm−1 λm +3



.

Then
u = 1, δ = m + 2, b1 = b2 = 1,

which yields

|3| ≥ exp{−c0 Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1}
with

c0 =
m!mmm(m + 1)!m

4m

(
2(m + 1)m−1(12m + 21)

(m − 1)!

)m+1

·

Once more, the right hand side is > m!mmm2
. If we compute the value of C(m) in

Theorem 9.1 by means of the arguments in § 10.2, one should not expect to reach
the sharp estimate of Proposition 9.18.

The parameters Ai , B, E∗ and E are the same as in Theorem 9.1. However, if one
does not uses Fel’dman polynomials, one needs to assume E∗ ≥ log B (cf. Exercise
14.5).

Remark. A variant of this method (see § 11.4.1) can be worked out starting with the
matrix 



β1 · · · βm 0
λ1

Im
...
λm




in place of M.

14.4.2 Homogeneous Linear Forms: Schneider’s Method

1’ The dual of method 1 involves the matrix

M =




β1

Im−1
...

βm−1

λ1 · · · λm−1 λm




which is just the transposed of the matrix from method 1 . The parameters are now
d0 = m − 1, d1 = 1, hence d = m, and `0 = 0, `1 = ` = m. This means that we
consider the functions
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z1, . . . , zm−1, ezm

and the hyperplane V in Cm of equation

λ1z1 + · · · + λm−1zm−1 = zm .

The m column vectors of M are the coordinates in Cm of the points

η
j

= (e j , λ j ) (1 ≤ j ≤ m − 1) and η
m

= (β1, . . . , βm−1, λm)

(where e1, . . . , em−1 is, as usual, the canonical basis of Cm−1). For 1 ≤ j ≤ m we

have η
j
∈ Qm−1 ×L = LG . Moreover η

1
, . . . , η

m−1
belong to V, as does

η′
m

= (β1, . . . , βm−1, λm +3).

Here again we introduce a matrix M′, with zero determinant, which differs from M
only because λm in M is replaced by λm + 3. Hence the distance between the two
matrices M and M′ is just |3|.

This yields r3 = 1, r = m− 1, r1 = m− 2, r2 = 0, hence u = 1, δ = m + 2, b1 = 2,
b2 = 0, and the value of U is the same as in method 1 , apart from the constant c0

which is now:

c0 =
(m − 1)!mm!mm

4m

(
2(12m + 9)

(m − 2)!

)m+1

·

Now the right hand side is > 4(6m3)m+1. This corresponds to the method which is
described in Chap. 7 of [W 1992].

2’ Finally the proof given in § 9.2 is the dual of 2 and requires d0 = m, d1 = 1,
d = m + 1, `0 = 1, `1 = m. We consider the functions

z0, z1, . . . , zm−1, ezm

and the hyperplane V in Cm+1 of equation

λ1z1 + · · · + λm−1zm−1 = zm .

The first column vector of the matrix

M =

(B0 B1

B2 L

)
=




0
β1

Im
...

βm−1

1 λ1 · · · λm−1 λm




is given by the coordinates in Cm+1 of the point

w1 = (1, 0, . . . , 0, 1)

which lies in Qm+1
, while the m last column vectors are the coordinates in Cm+1 of

the points
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η
j

= (0, e j , λ j ) (1 ≤ j ≤ m − 1), η
m

= (0, β1, . . . , βm−1, λm)

where e1, . . . , em−1 is again the canonical basis of Cm−1. Since LG = Qm ×L, for
1 ≤ j ≤ m − 1 we have η

j
∈ V ∩LG . Moreover

η′
m

= (0, β1, . . . , βm−1, λm +3) ∈ V.

We can apply Proposition 13.12 with

M′ =

(B0 B1

B2 L′

)
, L′ = ( λ1 · · · λm−1 λm +3 ) ,

r3 = 1, r = m, r1 = m − 1 and r2 = 0. Again the value of U is the same as in method
2 , apart from the value of c0 which is now:

c0 =
m!mmm(m + 1)!

4m

(
2(12m + 21)

(m − 1)!

)m+1

·

When m is large the right hand side is not less than 43(6m3)m+1.

Remark. Once more, a variant of this method (compare with § 11.4.2) can be
deduced from the following remark: the determinant of the matrix

(B0 B1

B2 L

)
=




β1
... Im
βm

0 λ1 · · · λm




is (−1)m+1(β1λ1 + · · · + βmλm).

14.4.3 Affine Linear Forms: Gel’fond-Baker’s Method

Consider now a linear combination of 1 and logarithms of algebraic numbers with
algebraic coefficients

3 = β0 + β1λ1 + · · · + βm−1λm−1 + βmλm

with, say, βm = −1.

2 We modify the homogeneous method by considering the hyperplane W of
equation

β0z0 + β1z1 + · · · + βm−1zm−1 = zm

in Cm+1. Take d0 = 1, d1 = m, d = m + 1, G = Ga ×Gm
m, `0 = m, `1 = 1, ` = m + 1,

r1 = 0, r2 = m − 1, r3 = 1, r = m. Let w1, . . . , wm , η
1

be the elements of Cm+1

whose coordinates are the column vectors of the (m + 1)× (m + 1) matrix
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M =




1
λ1

Im
...

λm−1

β0 · · · βm−1 λm



.

Hence
γ

1
= expG η1

= (β0, α1, . . . , αm) ∈ Q× (Q×)m .

With the notation of Proposition 13.12, we have

u = 1, δ = m + 2, b1 = b2 = 1,

which gives

|3| ≥ exp{−c0 Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1}
where

c0 =
(m!m(m + 1)!)m

4m

(
2(m + 1)m−1(12m + 21)

(m − 1)!

)m+1

·
The right hand side is > m!mmm2

.
Other square matrices than M have determinant ±3. An example is

M̃ =




β1 · · · βm −β0

λ1

Im
...
λm


 .

Here there is no need to assume βm = −1 in the definition of 3. The choice of
the starting matrix may influence the final estimate: in M̃, the algebraic numbers
β1, . . . , βm arise in the upper left corner, which is the matrix B0 of § 13.1. Therefore
their height will be taken care of either by the parameter B1 or B2, as we wish. While
in M the same algebraic numbers arise in B2, so we have no choice: the height is
controlled by B2.

A slight modification enables us to include also the coefficientβ0 into B0: consider
the (m + 2)× (m + 2) matrix




1 0 · · · 0 1
β0 β1 · · · βm 0
0 1 · · · 0 λ1
...

...
. . .

...
...

0 0 · · · 1 λm




associated to the parameters d0 = 2, d1 = m, `0 = m + 1, `1 = m. The number 3 is
considered as the value, at the point (1, 0, λ1, . . . , λm), of the linear form

β0z−1 − z0 + β1z1 + · · · + βm zm .

This is related with the improvement, by N. Hirata-Kohno [Hir 1991], of the estimate
in [PW 1988c] giving measures of linear independence of logarithms on commutative
algebraic groups.
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14.4.4 Affine Linear Forms: Schneider’s Method

2’ Consider the hyperplane of equation

z0 + λ1z1 + · · · + λm−1zm−1 = zm

in Cm+1 and transpose the matrix M occurring in 2 :

tM =




β0

β1

Im
...

βm−1

1 λ1 · · · λm−1 λm




with d0 = m, d1 = 1, d = m +1, G = Gm
a ×Gm, `0 = 1, `1 = m, ` = m +1, r1 = m−1,

r2 = 0, r3 = 1, r = m.
With the notation of Proposition 13.12, we still have

u = 1, δ = m + 2, b1 = b2 = 1,

which again leads to the estimate (under the condition E∗ ≥ log B) from Chap. 9:

|3| ≥ exp{−c0 Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1}
where

c0 =
(m!)m(m + 1)!mm+1

4m

(
2(12m + 21)

(m − 1)!

)m+1

·

For large values of m the right hand side is > 7(6m3)m+1.
A variant of this method involves the transposed of the matrix M̃ in 2 :

tM̃ =




β1
... Im
βm

−β0 λ1 · · · λm


 .

It is interesting to compare methods 2 and 2’ when m = 1, namely for λ − β0

(related to the Hermite-Lindemann’s Theorem). The lack of symmetry suggests to
replace β0 by β ′0β

′′
0 and to consider for instance either the matrix




β ′0
β1

Im
...

βm−1

β ′′0 λ1 · · · λm−1 λm




or its transpose. Unfortunately it seems that one does not reach anything more than
with the two trivial decompositions (β ′0, β

′′
0 ) = (β0, 1) and (β ′0, β

′′
0 ) = (1, β0).
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14.4.5 The Subgroups G+ and G−

Proposition 13.12 involves only the algebraic subgroup G∗ = {0} of G. However the
conclusion of Theorem 13.1 introduces an algebraic subgroup G∗ of G, G∗ 6= G,
which may have a positive dimension, and we need to take it into account. The idea
for applying Theorem 13.1 is to use it first with G+ = G and G− = {0}, and to consider
the possible G∗ which may appear in the conclusion. Such a G∗ is an obstruction
subgroup for the given situation. We consider the “worst” one. Depending on the
case, it will be such an obstruction subgroup of minimal or maximal dimension.
Next we repeat the proof starting with either G− = {0}, G+ = G∗ or else G− = G∗,
G+ = G. The former situation occurred in Chap. 9, the latter in Chap. 10. We explain
here what happened.

Looking for a lower bound for the modulus of

3 = β0 + β1λ1 + · · · + βm−1λm−1 − λm,

method 2’ of § 14.4.4 involves the algebraic group G = Gm
a ×Gm, the hyperplane

V of equation
z0 + λ1z1 + · · · + λm−1zm−1 = zm

in Cm+1 and the subgroup Zη
1

+ · · · + Zη
m

of Qm ×L, where

η
j

= (0, e j , λ j ) (1 ≤ j ≤ m), η
m

= (β0, β1, . . . , βm−1, λm).

Notice that V contains η
1
, . . . , η

m−1
as well as

η′
m

= (β0, β1, . . . , βm−1, λm +3).

Denote by Y the subgroupZm−1+Z(β1, . . . , βm−1) ofCm−1. An obstruction subgroup
in this case is an algebraic subgroup G∗ = G∗0 ×G∗1 of G, of dimension ≤ m, where
the algebraic subgroup G∗0 of G0 = Gm

a is nothing else than a vector subspace ofCm .
The projection onto {0} × Cm−1 associates to G∗0 a vector subspace of Cm−1 which
contains “many” points

(s1 + smβ1, . . . , sm−1 + smβm−1) ∈ Y (|s j | ≤ S j , 1 ≤ j ≤ m).

The existence of such a vector subspace ofCm−1 is bad for the multiplicity estimate,
but it is good for the transcendence proof because we wish to use the information
provided by as many such points as possible. Hence we repeat the transcendence
argument (i.e. we apply Theorem 13.1), taking for G+ such an obstruction subgroup
G∗ of G of minimal dimension. This is what we did implicitly in Chap. 9. In fact, we
had G = Gm

a ×Gm and G+ = G+
0 ×Gm; because of this special and simple situation,

a change of basis enabled us to work directly with Gn
a × Gm, where n = dim(G+

0).
This is why G+ did not appear explicitly in Chap. 9.

In Chap. 10 the situation is different. Starting with the same 3, method 2 of
§ 14.4.3 involves the linear algebraic group G = Ga ×Gm

m and the hyperplane W of
Cm+1 of equation
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zm = β0z0 + β1z1 + · · · + βm−1zm−1,

which contains the point

(1, λ1, . . . , λm−1, λm +3)

close to
(1, λ1, . . . , λm−1, λm) ∈ Q×Lm

if |3| is small. In this situation, Theorem 13.1 yields an obstruction subgroup G∗
of G such that Te(G∗) is contained in W and H (G∗; T ) is “small”. This last bit of
information means that we don’t have many independent monomials at our disposal
with G∗. On may expect that G/G∗ will provide more monomials. Indeed, we take
for G− such an obstruction subgroup G∗ of maximal dimension and we repeat the
argument, using Theorem 13.1 with G+ = G. The details have been given in Chap. 10.

Of course in the real life we do not repeat the construction: we immediately
start with the right choice of G+ and G−, and the above initial construction just
corresponds to the easiest situation where G− = {0} and G+ = G.

14.4.6 Further Historical Comments

We described in § 11.4 several methods for proving Baker’s Theorems 1.5 and 1.6, and
we have just seen that they yield effective measures of linear independence. We now
describe their developments and compare their respective merit. A general comment
before we consider each method separately: because of applications (especially
to solving explicitly diophantine equations), a special attention has been paid in
published papers to the quality of the numerical estimates. The number of variables
of the analytic functions occurring in the proof is one of the main limitation for getting
small absolute constants. There is a discrepancy between proofs involving a single
variable and proofs which require more than one variable. Part of the explanation is
that complex analysis in one variable is better understood than in higher dimension.
Therefore the estimates for |β1λ1 + β2λ2| involving a dependence (log B)2 on the
height B of β1 and β2 involve quite small numerical absolute constants, because the
proof requires only exponential functions in a single variable [LauMN 1995]. Using
two variables, one can either get estimate for the same linear combination in two
logarithms with only log B, or else get lower bounds for linear combination of three
logarithms with (log B)2. Since both proofs involve the same number of variables,
one should not be surprised that the numerical estimates one gets involve constants
of comparable size.

Method 1
This method was initiated by A. O. Gel’fond for his proof of the transcendence

of αβ in 1934, and soon after for proving effective measures of linear independence
for two logarithms. In [S 1967], A. Schinzel produced the first explicit estimates and
gave several arithmetic applications.
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For several logarithms, this is also the method which enabled A. Baker in his
first paper on this topic ([B 1966], I) to prove his homogeneous Theorem 1.5.

Using 1 , one gets a lower bound for a measure of homogeneous linear
independence of two logarithms with a dependence on the height B of the coefficients
which is exp{−c(log B)2}. This is the best estimate which can be achieved so far with
this method. This explains why Gel’fond could not do better.

On the other hand, as pointed out in (10.14), one may use Fel’dman’s polynomial
and replace B by

max
1≤ j≤m−1

{ |bm |
log A j

+
|b j |

log Am

}
·

This is done in [Sp 1982], Chap. III.
This method has not been widely used for proving measures of homogeneous

independence for several logarithms. It should be expected that essentially the same
estimates can be achieved as with method 1’ , apart from the numerical constant
(which is the strong point of 1’ ).

Method 2
Method 2 (and variants of the same) have been described in Chap. 10. This is

certainly the method which has been the more widely used in papers dealing with
“lower bounds for linear forms in logarithms” or with “logarithmic forms”, [B 1966],
[F 1968], [B 1972], [Sho 1974], [B 1975], Chap. 2, [LoxV 1976], [Sho 1976], [T
1976], [B 1977], [V 1977], [L 1978] (Chap. VIII, X and XI), [W 1980], [Lox 1986],
[Wü 1988], [PW 1988a], [PW 1988b], [Y 1989], [BlaGMMS 1990], [BWü 1993],
[BeBGMS 1997], [Mat 1998], [Y 1998] and [FNe 1998], Chap. 4, § 2.

This method has been extended to commutative algebraic groups in [Wü 1988],
[PW 1988c], and [Hir 1991] (see also [D 1995] for explicit estimates in the elliptic
case).

The surveys by A. Baker in [B 1977] and Fel’dman and Nesterenko in Chap. 4 § 1
of [FNe 1998] consider almost exclusively method 2 . Also the methods described
in [L 1978] are only variants of 1 and 2 .

Method 1’
Chapters 6, 7 and 9 described method 1’ (see also Chap. 7 and 9 of [W 1992]).

This method was initiated in [MiW 1978] for studying linear combinations of
two logarithms. The numerical estimates of [MiW 1978] have been improved in
[Lau 1994] and [LauMN 1995]. The sharpest known numerical explicit measures of
linear independence for two or three logarithms (which occur in many applications)
all involve method 1’ : for three logarithms, see [BeBGMS 1997] (there are also
unpublished manuscript by P. Voutier). The paper [BeBGMS 1997] deals with
b1 logα1 + b2 logα2 + b3 logα3 where b1, b2, b3, α1, α2, α3 are positive rational
numbers (in connection with Catalan’s Conjecture), while Voutier’s papers consider
the more general situation where α1, α2, α3 are algebraic numbers. The numerical
estimate in [LauMN 1995] for two logarithms is so sharp that one may sometimes use
it for three or more logarithms, by grouping terms; this corresponds to a degenerate
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linear combination, and P. Voutier provides a systematic treatment of this degenerate
case for any number of logarithms.

It should be pointed out that this method does not extend (so far) to commutative
algebraic groups, apart from the elliptic case with complex multiplication (see [Y
1985]).

Method 2’
Method 2’ , which was used in Chap. 9, is dual of 2 . It was introduced in

[W 1979a], Chap. 6, for giving a new proof of Baker’s qualitative result. It has been
worked out in a quantitative form when β0 = 0 in [W 1991b] and [W 1993], and for
the general case in [W 1992], Chap. 11.

p-Adic Estimates
Several authors considered p-adic measures of linear independence of logarithms

of algebraic numbers, including

• K. Mahler, A. O. Gel’fond, and A. Schinzel and A. Brumer using method 1 .
• J. H. Coates, V. G. Sprindžuk, R. M. Kaufman, A. J. van der Poorten, J. H. Loxton,

and later Yu Kunrui, by means of method 2 . Surveys with references on this
topic are included in [V 1977] and [Y 1989]. Yu Kunrui found an efficient way
of avoiding the assumption that the αi are close to 1 modulo p. In [Y 1998]-I he
extended the work of Baker and Wüstholz [BWü 1993] to the p-adic case, and
in [Y 1998]-II he did the same for the paper of Matveev [Mat 1998].
• Dong Pingping [Dpp 1995], with method 1’ for an arbitrary number of loga-

rithms, and Y. Bugeaud and M. Laurent [BuLau 1996] for linear combinations
of two logarithms only (p-adic analog of the main result of [LauMN 1995]).

Measures of Simultaneous Approximation
At an early stage of the theory, K. Ramachandra [R 1969b] obtained a compara-

tively sharp lower bound by considering several linear forms. He was using method
2 . His result was improved later in [Lox 1986] and [PW 1988b], again with method
2 . Further, J. H. Loxton gave arithmetic applications. Dong Pingping’s p-adic result
in [Dpp 1995] includes lower bound for simultaneous linear forms in logarithms.

Open Problems

We propose a simple but far reaching conjectural measure of linear independence for
logarithms of algebraic numbers. There is no need to distinguish between general
case, homogeneous case, rational case or whatever.

Conjecture 14.25. There exist two positive absolute constants c1 and c2 with the
following property. Let λ1, . . . , λm be logarithms of algebraic numbers with αi = eλi

(1 ≤ i ≤ m), let β0, . . . , βm be algebraic numbers, D the degree of the number field
Q(α1, . . . , αm, β0, . . . , βm) and finally let h ≥ 1/D satisfy
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h ≥ max
1≤i≤m

h(αi ), h ≥ 1

D
max

1≤i≤m
|λi | and h ≥ max

0≤ j≤m
h(β j ).

1) Assume that the number

3 = β0 + β1λ1 + · · · + βmλm

is nonzero. Then
|3| ≥ exp

{−c1m D2h
}
.

2) Assume λ1, . . . , λm are linearly independent over Q. Then

m∑

i=1

|λi − βi | ≥ exp
{−c2m D1+(1/m)h

}
.

In the special case D = 1 and β0 = 0, Conjecture 1.11 is more precise than part
1 of Conjecture 14.25. On the other hand for D = 1, m = 1, β0 6= 0, both parts 1 and
2 of Conjecture 14.25 reduce to an open problem of Mahler [M 1967]:

(?) Does there exist an absolute constant c > 0 such that, for any positive rational
integers a and b,

|eb − a| ≥ a−c?

If |eb − a| is small, then b and log a are of the same order of magnitude, hence one
can replace a−c = e−c log a in the right hand side by e−cb. For the same reason, since
|eb − a|/a = |eb−log a − 1| is close to |b− log a|, one can replace |eb − a| in the left
hand side by |b− log a| (replacing at the same time c by c + 1 in the right hand side).

The best known estimate in this direction is due to Mahler [M 1967]:

|eb − a| ≥ a−c log log a

and
|b − log a| ≥ b−cb

for a ≥ 3. K. Mahler found a sharp explicit numerical value for c, namely c = 33
(for both estimates), provided that a is sufficiently large. A refinement is due to
F. Wielonsky [Wi 1999]: for sufficiently large a, these estimates hold with c = 20.

In Chap. 15 we shall see that part 2 of Conjecture 14.25, dealing with a
simultaneous approximation measure for logarithms of algebraic numbers, would
imply results of algebraic independence for logarithms of algebraic numbers.
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Exercises

Exercise 14.1.
a) Deduce from Theorem 14.1 the following measure of linear independence of two logarithms:

Let β be an algebraic number and λ1, λ2 elements of L. Define αi = eλi and D =
[Q(α1, α2, β) : Q]. Let A1, A2, B and E be positive real numbers satisfying

B ≥ e, B ≥ D, E ≥ e, B ≥ E1/D, B ≥ D log Ai ≥ log E,

h(αi ) ≤ log Ai , |λi | ≤ D

E
log Ai and h(β) ≤ log B

for i = 1 and i = 2. If βλ1 6= λ2, then

|λ2 − βλ1| ≥ exp
{− 230 D4(log B)2(log A1)(log A2)(log E)−3}.

Hint. Let
U = 230 D4(log B)2(log A1)(log A2)(log E)−3.

If there exists (s1, s2) ∈ Z2 \ {0} such that s1λ1 = s2λ2 and |s j | ≤ U 2, then apply Liouville’s
estimate (Exercise 3.7.a and Proposition 3.14) to deduce

|λ2| ≥ 2−D A−D
2 and |s2 − βs1| ≥ (2U 2)−D B−D .

b) We have shown in Chap. 9 how to improve (log B)2 to (log B) log log B, and even to log B.
Use the same method and improve Theorem 14.1.
c) Produce a dual (in the sense of § 13.7) proof of Theorem 14.1 and compare the results.

Exercise 14.2. Deduce from Theorem 14.1 the following result:

Let (θ1, . . . , θm) be a m-tuple of Q-linearly independent complex numbers satisfying
a linear independence measure condition. Let β0, . . . , βn be Q-linearly independent
algebraic numbers. There exists a constant c > 0 such that

ϕ(D, h) = cD(m+1)(n+1)/mnh1+(1/n)(log h + log D)−1/n

is a simultaneous approximation measure for the m(n + 1) numbers

eβ j θi (0 ≤ j ≤ n, 1 ≤ i ≤ m).

Hint. Replacing if necessary β j by β j/β0 and θi by θiβ0, one may assume β0 = 1. Define
U = ϕ(D, h). Assume |eβ j θi − αi j | ≤ e−U for some nonzero algebraic numbers αi j . Define
λi j ∈ L by the conditions eλi j = αi j and |λi j − β jθi | ≤ e−2U/3. Further, let λi = λi0,

Ai j = eh, E = (Dh)1/c0 , B = (Dh)c0 ,

for some suitable constant c0 > 1.
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Let β be an algebraic number of degree d, a a nonzero complex number and log a a nonzero
logarithm of a such that (1, log a) satisfies a linear independence measure condition. Write az

for ez log a . Deduce that there exists c > 0 such that

cD(d+1)/(d−1)hd/(d−1)(log h + log D)−1/(d−1)

is a simultaneous approximation measure for the d numbers

a, aβ , . . . , aβ
d−1
.

Hint. Take n = d − 1, m = d,

β j = β j (0 ≤ j ≤ n), θi = β i−1 log a (1 ≤ i ≤ m).

(Compare with [RoyW 1997b], Th. 2.1).

Exercise 14.3.
a) Deduce from Theorem 14.6 a lower bound for |λ− β| as follows:

Let β be an algebraic number and λ a nonzero element of L. Define α = eλ and
D = [Q(α, β) : Q]. Let A, B and E be positive real numbers satisfying

B ≥ e, B ≥ D, E ≥ e, B ≥ E1/D, B ≥ D log A ≥ log E,

h(α) ≤ log A, |λ| ≤ D

E
log A and h(β) ≤ log B

Then

|λ− β| ≥ exp
{− 230 D3(log A)(log B)(log log A + log D)(log E)−3}.

b) Compare this result with [NeW 1996] and with the special case m = 1 of Theorem 9.1 (see
Remark 2 in § 9.4.1); deduce an improvement of Theorem 14.1.

Exercise 14.4. In this exercise, we say that a function φ:N × Rm
>0 → R>0 ∪ {∞} is a

simultaneous approximation measure for θ if there exist a positive integer D0 together with a
real number h0 ≥ 1 such that, for any integer D ≥ D0, any real numbers hi ≥ h0 (1 ≤ i ≤ m)
and any m-tuple γ = (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ ) : Q] ≤ D and h(γi ) ≤ hi (1 ≤ i ≤ m),

we have
max

1≤i≤m
|θi − γi | ≥ exp

{− φ(D; h1, . . . , hm)
}
.

When φ(D; h1, . . . , hm) depends only on D and h = max{h1, . . . , hm), the function ϕ:N ×
R>0 → R>0 ∪ {∞} defined by ϕ(D, h) = φ(D; h, . . . , h) is a simultaneous approximation
measure for θ , by the earlier definition in the introduction of this chapter.
Deduce from Theorem 14.6 with m = n = 2 the following results.
a) Let r be a nonzero rational number. There exists a constant c = c(r ) such that the function

φ(D; h1, h2, h3) = cD2(h1 + log(Dh2h3)
)
(h1 + h2)1/2(h2 + h3)1/2( log(Dh2)

)−1

is a simultaneous approximation measure for the three numbers e, eer
, ee2r

.
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Hint. The rank one matrix here is
(

1 1 er

1 1 er

er er e2r

)
.

b) Let λ be a nonzero element of L and let β be a nonzero algebraic number. There exists a
constant c = c(λ, β) such that the function

cD2(h1 + log(Dh2h3)
)
h1/2

2 h1/2
3 (log D)−1

is a simultaneous approximation measure for the three numbers λ, eβ and eλ
2/β .

Remark. An example is π , e and eπ
2
.

Hint. Here the rank one matrix is



1 β λ
1 β λ

λ
β

λ λ2

β


 .

c) Assuming one could avoid the assumption that the matrix (log Ai j ) has rank 1 in Theorem
14.6, show that in place of

cD2h(h + log D)(log D)−1,

one would obtain the following simultaneous approximation measure for the numbers λ, eβ

and eλ
2/β :

cD2h1/2(h + log D)(log D)−1.

d) Let λ be a nonzero element of L. There exists a constant c = c(λ) > 0 such that

φ(D; h1, h2, h3) = cD2(h1 + log(Dh2h3)
)
h1/2

2 (h2 + h3)1/2(log D)−1

is a simultaneous approximation measure for the numbers λ, eλ
2

and eλ
3
.

Hint. Consider the matrix (
1 λ λ2

1 λ λ2

λ λ2 λ3

)

which has rank 1.

e) Let β be an irrational quadratic number and let λ be a nonzero logarithm of an algebraic
number. There exists a positive constant c = c(β, λ) such that

φ(D; h1, h2) = c max
{

Dh1, D2h2
(
h1 + log(Dh2)

)1/2(
log(Dh1h2)

)1/2(
log(Dh2)

)−1}

is a simultaneous approximation measure for the two numbers λ and eβλ. In particular for
h1 = h2 the measure is

cD2h(h + log D)1/2(log h + log D)−1/2.

Hint. Observe that the matrix
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(
1 λ βλ
1 λ βλ
β βλ β2λ

)

has rank 1. Compare with [RoyW 1997b], Th. 2.7.

f) Let λ1, λ2, λ3, λ4 be nonzero elements of L such that both numbers λ1/λ2 and λ1/λ3 are
irrational. Assume λ1λ4 = λ2λ3. Then a simultaneous approximation measure for the four
numbers λ1, λ2, λ3, λ4 is

cD2(h + log D)(log D)−1.

Exercise 14.5. Using Feld’man’s Delta polynomials (see § 13.6), improve:

a) Theorem 14.1, in the special case where β1, . . . , βn are rational integers.
b) Theorem 14.6, when either one or both of the tuples of algebraic numbers (β1, . . . , βn)

and (β ′1, . . . , β
′
m) consist of rational integers.

Deduce a refinement of Corollary 14.12 which contains the result (14.13) of Fel’dman
concerning the simultaneous approximation measure for logarithms of algebraic numbers.

Exercise 14.6. a) Using Theorem 14.6, show that a simultaneous approximation measure for
the p + q numbers

λ1, . . . , λp, eβ1 , . . . , eβq

when λ1, . . . , λp are Q-linearly independent in L and β1, . . . , βq are Q-linearly independent
in Q is

cD2+κhqκ (h + log D)(log h + log D)κ (log D)−1−κ ,

where κ = 1/(p + q) and where c > 0 depends only on λ1, . . . , λp , β1, . . . , βq .

Hint. Choose for instance n = 1 and m = p + q.

b) Deduce that, for λ ∈ L \ {0} and β ∈ Q \ {0}, a simultaneous approximation measure for
λ and eβ is

c(λ, β)D5/2h1/2(h + log D)(log h + log D)1/2(log D)−3/2.

c) Show that for any β ∈ Q \ {0}, a simultaneous approximation measure for π and eβ is

c(β)D2h1/2(h + log D)(log h + log D)1/2.

Exercise 14.7. Check that Corollary 14.18 does not hold without condition (14.19).

Hint. If (p0, . . . , pm) ∈ Zm with p0 6= 0 and (q0, . . . , qn) ∈ Zn with q0 6= 0 satisfy

max
1≤i≤m

∣∣∣∣xi − pi

p0

∣∣∣∣ ≤ ε and max
1≤ j≤n

∣∣∣∣y j − q j

q0
log 2

∣∣∣∣ ≤ ε

with 0 < ε ≤ 1, then
max
1≤i≤m
1≤ j≤n

∣∣exi y j − 2pi q j /p0q0
∣∣ ≤ cε

where
c = max

1≤i≤m
1≤ j≤n

(|xi | + |y j | + 1)e(|xi |+1)(|y j |+1).
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Exercise 14.8. Deduce from Theorem 9.1 the approximation measures displayed in table
14.26 (with the definition of simultaneous approximation measure given in the introduction,
but here m = 1 and θ ∈ C). The numbers

c1 and c2 are absolute constants,
c3(λ) depends on λ ∈ L \ {0},
c4(β) depends on β ∈ Q×,
c5(λ) depends on λ ∈ L \ 2iπQ ,
c6(λ1, λ2) depends on λ1, λ2 which are Q-linearly independent in L,
c7(β, λ) depends on β ∈ Q \ Q and λ ∈ L \ {0}.

Table 14.26. Approximation measures (Exercise 14.8).

θ ϕ(D, h)

π c1 D2(h + log D) log D

eπ c2 D3h(log h + log D) log D

λ c3(λ)D3(h + log D)(log D)−1

eβ c4(β)D3h

λ/π c5(λ)D3(h + log D)(log D)

λ1/λ2 c6(λ1, λ2)D4(h + log D)(log D)−2

eβλ c7(β, λ)D4h(log h + log D)(log D)−2
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15. Algebraic Independence

Liouville’s inequality which has been used many times so far (namely Lemma 2.1)
involves polynomial approximations : a tuple θ = (θ1, . . . , θm) of complex numbers
for which there are polynomials f ∈ Z[X1, . . . ,Xm] such that | f (θ )| is small but
not zero contains at least one transcendental element. The converse is also true,
and this yields a transcendence criterion. A similar statement holds for algebraic
approximations to a complex number: a number θ ∈ C is transcendental if and only
if there are algebraic numbers γ such that |θ − γ | is small but not zero. One deduces
that numbers θ1, . . . , θm belonging to a field of transcendence degree 1 admit good
simultaneous approximations by algebraic numbers γ1, . . . , γm , where the quality of
the approximation, namely the number max1≤i≤m |θi − γi |, is controlled in terms of
the degree [Q(γ1, . . . , γm) : Q].

We explain these results in § 15.1, and we prove them in § 15.2. Several
applications are given to algebraic independence results in § 15.3: Lindemann-
Weierstraß’ Theorem, values of the exponential function in a single variable or
in several variables. We complete this chapter with further conjectures, especially
concerning large transcendence degree (§ 15.4) and further results (§ 15.5).

15.1 Criteria: Irrationality, Transcendence, Algebraic
Independence

Given a certain tuple θ = (θ1, . . . , θm) of complex numbers, one wishes to produce a
lower bound for the transcendence degree of the field K = Q(θ ) over Q. We denote
this transcendence degree by trdegQK .

Proofs are not included in this section: they are postponed to § 15.2.

15.1.1 Irrationality Criterion, Linear Independence and Simultaneous
Rational Approximation

As a warm up, we start by proving a criterion which ensures that one element at
least in some set of real numbers is irrational.

Lemma 15.1. Let ϑ1, . . . , ϑm be real numbers. The following assertions are equiv-
alent.
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(i) One at least of the numbers ϑ1, . . . , ϑm is irrational, that is

Q(ϑ1, . . . , ϑm) 6= Q.

(i i) For any ε > 0 there exist rational integers p1, . . . , pm, q in Z with q > 0 such
that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi

q

∣∣∣∣ ≤
ε

q
·

(i i i) There exist infinitely many tuples (p1, . . . , pm, q) in Zm+1 with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi

q

∣∣∣∣ ≤ q−1−(1/m).

(iv) For any integer Q > 1 there exists a tuple (p1, . . . , pm, q) in Zm+1 with
1 ≤ q < Qm such that

0 < max
1≤i≤m

∣∣qϑi − pi

∣∣ ≤ 1

Q
·

Remark 1. In the case m = 1 these conditions are also equivalent to a refined estimate
in (i i i), viz. 0 < |ϑ− p/q| < 1/

√
5q2. This is a well known result from diophantine

approximation due to A. Hurwitz (see for instance [Sc 1980], Chap. I § 2 Th. 2.F).

Remark 2. There is a gap between the exponent of q in (i i) which is−1 and in (i i i)
which is −1− (1/m). We shall discuss this matter later (§ 15.1.2).

Definition. A measure of irrationality of an irrational real number ϑ is a mapping
ψ :N → R>0 such that, for any (p, q) ∈ Z2 with sufficiently large q > 0, say
q ≥ q0(ϑ), ∣∣∣∣ϑ −

p

q

∣∣∣∣ ≥
1

ψ(q)
·

By Hurwitz’ result quoted in Remark 1, any measure of irrationality ψ of an
irrational real number satisfies

ψ(q) ≥ √5q2 for any q ≥ q0(ϑ).

Of course one could define the measure of irrationality ψ of ϑ to be

ψ(q) =
q

||qϑ ||
,

where || · || denotes the distance to the nearest integer. However one often prefers to
work with increasing functions, so that one may restrict the condition in the definition
of ψ to relatively prime integers (p, q). For any q0 > 0, an increasing irrationality
measure for ϑ is
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ψ(q) = max
1≤q1≤q

q1

‖q1ϑ‖ ·

A real number is a Liouville number (see (§ 3.5.3) if and only if, for any κ > 0, the
function defined for q ≥ 2 by q 7→ qκ is not a measure of irrationality of ϑ .

On the opposite, for any ε > 0 there exists a set of real numbers of Lebesgue’s
measure 0 such that, for any ϑ ∈ R outside this set, there exists c(ϑ) > 0 such that
c(ϑ)q−2−ε is a measure of irrationality of ϑ (see for instance [Sc 1980], Chap. III,
§ 3).

In the definition of measure of irrationality we assumed that q is sufficiently large;
this condition may be omitted, but it is convenient, for instance when the measure
involves quantities like log q or log log q, to know that q is at least e or ee, say.

Remark. From Lemma 15.1 one easily deduces the following statement:

• Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm be a m-tuple of real numbers. Denote by r + 1 the
dimension of the Q-vector space spanned by 1, ϑ1, . . . , ϑm and assume r ≥ 1
(which means that one at least of ϑ1, . . . , ϑm is irrational). Then there exist two
constants c > 0 et Q0 > 0 such that, for any integer Q ≥ Q0, there exists a tuple
(p1, . . . , pm, q) in Zm+1 with 1 ≤ q < Qr such that

0 < max
1≤i≤m

∣∣qϑi − pi

∣∣ ≤ c

Q
·

Therefore, given a tuple ϑ ∈ Rm and a positive real number k, if one can prove that
there exists c > 0 such that, for any (p1, . . . , pm, q) ∈ Zm+1 with sufficiently large
q,

max
1≤i≤m

∣∣∣ϑi − pi

q

∣∣∣ > cq−1−(1/k),

then
dimQ

(
Q +Qϑ1 + · · · +Qϑm

) ≥ 1 + k.

This sufficient condition for linear independence is not necessary: the set 2 of
numbers ∞∑

n=0

εn2−n! with εn ∈ {−1,+1} for any n ≥ 1

contains uncountably many numbers, hence spans a Q-vector space of infinite
dimension; moreover for any m-tuple ϑ ∈ 2m , truncating the series with 0 ≤ n ≤ N
produces good simultaneous rational approximations with q = 2N !.

On the other hand (see [Sc 1980], Chap. III, § 3), for almost all tuples ϑ ∈ Rm ,
for any ε there exists c = c(ϑ, ε) > 0 such that

max
1≤i≤m

∣∣∣ϑi − pi

q

∣∣∣ > cq−1−(1/m)−ε

for any (p1, . . . , pm, q) ∈ Zm+1 with q > 1.
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Our main concern in this chapter is to study a similar situation where rational
approximations to a tuple (ϑ1, . . . , ϑm) of real numbers is replaced by algebraic
approximations to a tuple (θ1, . . . , θm) of complex numbers. At the same time, linear
independence is replaced by algebraic independence. In place of rational numbers
pi/q we shall consider algebraic numbers γi , and the role of the dimension of the
Q-vector space spanned by 1, ϑ1, . . . , ϑm will be played (at least conjecturally) by
the transcendence degree of the field Q(θ1, . . . , θm) over Q.

15.1.2 Transcendence Criterion: Polynomial Approximation

Our next goal is to extend Lemma 15.1 and get a criterion for transcendence. When
dealing with a single complex number θ , we may replace the condition of rational
approximation θ− p/q either by a condition of algebraic approximation, considering
|θ − γ | with algebraic γ ’s, or else replace the degree 1 polynomial q X − p by a
polynomial of arbitrary degree. In the first case, replacing p/q by an algebraic
number, one deals with algebraic points, that is in dimension 0, while in the second
case we deal with hypersurfaces, that is in codimension 1. Of course in a space of
dimension 1 (which was the case for rational approximation) there is no difference,
but in higher dimensional space there is a big difference. One may expect that
intermediate situations are also relevant, and indeed this is the case. But we postpone
this discussion to § 15.5 and for the time being we consider only the two extreme
cases.

It turns out that the codimension one case is much easier. So we start with
polynomial approximation . The next result is a transcendence criterion . We already
stated part of it (namely (i i)⇒ (i)) as Lemma 2.1, which was proved in § 3.5.

Proposition 15.2. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers. The
following assertions are equivalent.
(i) One at least of the numbers θ1, . . . , θm is transcendental, that is

trdegQQ(θ ) ≥ 1.

(i i) For any κ > 0 there exist a positive integer T and a polynomial f ∈
Z[X1, . . . ,Xm] such that deg f ≤ T , H( f ) ≤ eT and

0 < | f (θ )| ≤ e−κT .

(i i i) For any κ < 1/2 there exists a positive integer T0 such that, for any T ≥ T0

there is a polynomial f ∈ Z[X1, . . . ,Xm] satisfying deg f ≤ T , H( f ) ≤ eT and

0 < | f (θ )| ≤ e−κT 2
.

(iv) For any H ≥ 1 and D ≥ 1 there exists a polynomial f ∈ Z[X1, . . . ,Xm] of
total degree ≤ D and usual height H( f ) ≤ H such that

0 < | f (θ )| ≤ √2(1 + |θ |)D H−(D−1)/2.
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Remark. There is a big gap between (i i) and (i i i). First of all, (i i i) claims the
existence of a dense sequence of polynomials (for each T there is a polynomial f ),
while in (i i) the sequence of polynomials may be lacunary (there exist T and f ).
Moreover the quality of approximation given by (i i i) is much better than in (i i).
In fact (iv) is more precise than (i i i), and there are many intermediate statements
between (iv) and (i i) which are of course also equivalent. The fact that there are
many such variants is due to the occurrence of two parameters, the degree and the
height. We chose (i i i) for simplicity of comparison with (i i).

This gap between (i i i) and (i i) is a lucky event: in order to prove the transcendence
of one at least among the numbers θ1, . . . , θm , it is sufficient to produce a sequence
of polynomials which enables one to check (i i). By (i i i), not only such a sequence
does exist, but indeed there are sequences of polynomials satisfying much stronger
requirements.

Finally we notice that the gap between (i i i) and (i i) in Proposition 15.2 occurs
at the second level of the exponential, while in Lemma 15.1 it occurred only at the
first level.

15.1.3 Transcendence Measures and Measures of Algebraic Approximation

Let us make a small digression. Assume that we have proved that property (i i) in
Proposition 15.2 holds for a certain tuple (θ1, . . . , θm). Then one knows that (i i i)
also holds, and one may be tempted to feel that our proof of the weaker assertion (i i)
has given all its juice. Often, this is not the case. Indeed (i i i) asserts the existence
of a polynomial f with the given property, but the proof of (i) ⇒ (i i i) rests on
Dirichlet’s box principle, and essentially nothing more is known about f .

On the opposite, it is often possible to construct an explicit sequence of
polynomials which enables one to check (i i). In the previous chapters we gave many
such examples by means of either interpolation determinants or auxiliary functions25.

Such an explicit sequence of polynomial approximations may turn out to be useful
to produce a quantitative refinement to assertion (i) of Proposition 15.2, namely a
measure of simultaneous approximation for θ = (θ1, . . . , θm) (a similar phenomenon
related to Lemma 15.1 is described in Exercise 15.2).

Proposition 15.3. Let θ = (θ1, . . . , θm) ∈ Cm be a m-tuple of complex numbers,
γ = (γ1, . . . , γm) ∈ Qm

a m-tuple of algebraic numbers and f ∈ Z[X1, . . . ,Xm] a
polynomial such that f (γ ) 6= 0. Define D, L , d, µ and ε by

D = [Q(γ ) : Q], µ = Dh(1: γ1: · · · : γm),

d = deg f, L = L( f ) and ε =
1

2
L−De−dµ.

25 In spite of the fact that the construction of auxiliary functions also rests on Dirichlet’s box
principle, the resulting polynomials carry essentially the same amount of information as one
gets from alternants or interpolation determinants.



             

560 15. Algebraic Independence

Assume | f (θ )| ≤ Lε. Then

|θ − γ | ≥ ε

d(1 + |θ |)d−1
·

Hence, if we know explicitly polynomials f ∈ Z[X] for which | f (θ)| is small,
then in order to obtain a measure of approximation for θ it is sufficient to check it
for the roots of these approximating polynomials f . Explicit polynomials f are very
useful if we can also get further information on their zeroes. A simple case (Exercise
15.5) occurs when we can produce a lower bound for | f (θ )|: this ensures that f does
not vanish in a small neighborhood of θ .

An example of application of Proposition 15.3 to a measure of linear indepen-
dence of logarithms is given in Exercise 15.4. We come back to this question in
§ 15.5.2.

Definition. Given a transcendental complex number θ , a transcendence measure
for θ is a mapping 8:N× R>0 → R>0 such that, for any sufficiently large positive
integer D, any sufficiently positive real number H and any nonzero polynomial
f ∈ Z[X] of degree ≤ D and usual height H( f ) ≤ H , we have

| f (θ )| ≥ exp{−8(D, H )}.

For any fixed D ≥ 1 and H ≥ 1, the set of algebraic numbers of degree ≤ D
and usual height ≤ H is finite. Hence the number

8θ (D, H ) := max
{− log | f (θ )| ; f ∈ Z[X], deg f ≤ D, H( f ) ≤ H

}

is well defined, and 8 is a transcendence measure for θ if and only if there exist D0

and H0 such that 8θ (D, H ) ≤ 8(D, H ) for all D ≥ D0 and H ≥ H0.

Remark 1. If 8 is a transcendence measure for θ , then for any sufficiently large D,
the mapping q 7→ ψ(q) = q exp{8(D, q)} is an irrationality measure for θ .

Remark 2. From Proposition 15.2 one deduces the lower bound

8(D, H ) ≥ D − 1

2
log H − D log

(
1 + |θ |)− 1

2
log 2.

Remark 3. We insist that D is an upper bound for the degree of f , and is not assumed
to be the exact degree (similarly for H ). This remark shows that the condition D and
H are sufficiently large is not restrictive.

It is customary to define transcendence measure, as we did, with the usual height.
It will be more convenient for our purpose to use Mahler’s measure for the next
definition.
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Definition. Given a transcendental complex number θ , a measure of algebraic
approximation for θ is a mapping ψ :N× R>0 → R>0 such that there exists c > 0
with the following property: for any D ∈ N and µ ∈ R with D ≥ c and µ ≥ cD,
and for any algebraic number γ of degree [Q(γ ) : Q] ≤ D and Mahler’s measure
M(γ ) ≤ eµ, we have

|θ − γ | ≥ exp{−ψ(D, µ)}.

Remark. The estimates are sensitive to the choice of height, because the inequalities
(3.12) relating h and log H for instance involve the exact degree d of α, and not an
upper bound for d. By (3.12), if an algebraic number γ has degree d ≤ D and absolute
logarithmic height≤ h, then its usual height is bounded by H(γ ) ≤ 2dedh ≤ 2DeDh .
But on the other side if we know an upper bound d ≤ D for the degree and H(γ ) ≤ H
for the usual height, one gets only the estimate

h(γ ) ≤ 1

d
log H +

1

2d
log(d + 1) ≤ log H +

1

2d
log(d + 1)

for the absolute logarithmic height (here the lower bound d ≥ 1 is used, not the
upper bound d ≤ D). This is why it is of the utmost importance to produce
(when possible) not only upper bounds, but also lower bounds for the degrees of
algebraic approximations. When no lower bound is available for the degree, it makes
a difference to phrase the results in terms of the absolute logarithmic height or else in
terms of the logarithm of Mahler’s measure. We choose the latter for a reason which
will appear in § 15.4 (in connection with large transcendence degree).

We have required the conditions D and µ/D are sufficiently large by analogy
with the conditions D and h are sufficiently large which appeared in Chap. 14. One
might relax the condition on µ and require only that µ is sufficiently large (recall
Lehmer’s Problem in § 3.6.2: Mahler’s measure should not be too small for nonzero
algebraic numbers which are not roots of unity; diophantine approximation by roots
of unity are not excluded here!)

Notice that if ψ(D, µ) is a measure of algebraic approximation for θ , then for
any fixed sufficiently large D > 0 the mapping q 7→ exp

{
ψ(D, log q)

}
is a measure

of irrationality for θ .

A classical problem is, given a transcendental number θ , to produce a transcen-
dence measure (that is an admissible function 8) as well as a measure of algebraic
approximation (that is an an admissible function ψ). See for instance [FNe 1998],
Chap. 2. Close connections between transcendence measures and measures of alge-
braic approximation have been established by N. I. Fel’dman as soon as 1951 (see
Chap. 7 § 1 Lemma 1.7 in [F 1982]; see also Exercise 15.14).

To begin with, the easy part: starting from an algebraic approximation γ to
θ , the minimal polynomial f ∈ Z[X ] produces a polynomial approximation to θ
(see (15.12) below). Therefore, using only the information provided by irreducible
polynomials in the definition of 8, one deduces:
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Lemma 15.4. Let θ ∈ C be a transcendental number. There exists a constant c > 0
such that, if 8(D, H ) is a transcendence measure for θ , then the function

ψ(D, µ) = 8
(
D, 2Deµ

)
+ µ + cD

is a measure of algebraic approximation for θ .

The other direction is not so easy: if f is a polynomial approximation to θ ,
then a root γ of f at minimal distance of θ is a good candidate for an algebraic
approximation to θ . However two difficulties occur: the first one is that several roots
of f may contribute to the smallness of | f (θ )|, the second one is that f may have
a high multiplicity of zero at γ . With respect to the first one, it is useful to use
Liouville’s inequality and to produce a lower bound for the distance between two
roots of f ; but such an estimate is not always sharp enough and one cannot always
avoid considering several roots of f . For the second one, one remarks that if f
vanishes at γ with multiplicity say k, then | f (θ )| may be compared with |θ − γ |k
rather than with |θ −γ |. However in this case the degree of γ is at most (1/k) deg f ,
and moreover the first k derivatives of f at θ also are small; so some extra information
is available.

Lemma 15.5. For any transcendental number θ ∈ C there exists a constant c > 0
with the following property. Let ψ(D, µ) be a measure of algebraic approximation
for θ , which satisfies the two following conditions:
(i) for any sufficiently large µ the mapping D 7→ ψ(D, µ) is non-decreasing,
(i i) For any k ≥ 1 and any sufficiently large d and µ, kψ(d, µ) ≤ ψ(kd, kµ).
Then the function

8(D, H ) = ψ
(
D, log(DH )

)
+ 2D log H + 3D log D

is a transcendence measure for θ .

Remark 1. An error term D log H in the conclusion of Lemma 15.5 cannot be omitted
(see Exercise 15.6). On the other hand it is not known whether the error term 3D log D
can be avoided.

Remark 2. Further properties (invariance under finite extension) of transcendence
measures and measures of algebraic approximation are given in Proposition 15.19
and Exercise 15.7.

15.1.4 Transcendence Criterion: Algebraic Approximation to a Single Number

We start with the case m = 1 of Proposition 15.2. Conditions (i i), (i i i) and (iv)
involve a polynomial f such that | f (θ )| is small. Considering a root γ of f which
is at minimal distance of θ , one may expect to be able to replace the corresponding
assertion by the requirement that there exists an algebraic number γ which is close
to θ .
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Indeed, Lemmas 15.4 and 15.5 relate the problem of finding an algebraic
approximation to θ (i.e. γ ∈ Q such that |θ − γ | is small) and the problem of
finding a polynomial approximation (that is f ∈ Z[X ] such that | f (θ )| is small).

It turns out that the transcendence criterion involving algebraic approximations
is not exactly the analog one might expect at first glance to Proposition 15.2: there
exists a complex number θ such that, for any ε > 0, for infinitely many integers
T > 0, and for any algebraic number γ satisfying [Q(γ ) : Q] ≤ T and H(γ ) ≤ eT ,
we have

|θ − γ | ≥ e−T 1+ε

(see Exercise 15.8).
In view of such examples, when considering algebraic approximations, one

cannot ask a condition as strong as the analog of property (i i i) in Proposition 15.2:
the sequence of algebraic approximations may be lacunary.

Theorem 15.6. Let θ be a complex number. The following assertions are equivalent.
(i) θ is transcendental.
(i i) For any c > 0 there exist a positive integer T and an algebraic number γ such
that [Q(γ ) : Q] ≤ T , H(γ ) ≤ eT and

0 < |θ − γ | ≤ e−cT .

(i i i) For any sufficiently large positive number c0 and any sequences (Dν)ν≥1 of
positive integers and (µν)ν≥1 of real numbers satisfying

c0 ≤ Dν ≤ Dν+1 ≤ 2Dν, c0 Dν ≤ µν ≤ µν+1 ≤ 2µν (ν ≥ 1)

and
lim
ν→∞µν =∞,

for infinitely many ν there exists an algebraic number γ such that

1

c0
Dν ≤ [Q(γ ) : Q] ≤ Dν, M(γ ) ≤ eµν

and
0 < |θ − γ | ≤ e−Dνµν/c0 .

Remark 1. In this book, for proving that some complex numbers are transcendental,
we used mainly the transcendence Criterion 15.2 involving polynomial approxima-
tion (for instance in Chapters 2 and 6). In fact the implication (i i)⇒ (i) of Theorem
15.6 is also a very useful tool to prove transcendence results. See for instance Chap. 2
of [FNe 1998].

Remark 2. As pointed out earlier, one strong difference between Proposition 15.2 and
Theorem 15.6 is that, in the latter one, condition (i i i) involves only infinitely many
ν’s, and not all sufficiently large ν’s. Another important difference is that no statement
like condition (iv) of Proposition 15.2 is known for algebraic approximation. There
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are variants of the equivalent conditions in Theorem 15.6 which are not immediate
consequences of (i i i) (see Exercise 15.10).

Remark 3. From Theorem 15.6 we deduce a lower bound for any measure of algebraic
approximation ψ of a complex transcendental number θ : if (Dν)ν≥1 and (µν)ν≥1 are
two sequences satisfying the conditions in (i i i), then

lim sup
ν→∞

1

Dνµν
ψ(Dν, µν) > 0.

For instance any measure of algebraic approximation for a complex transcendental
number of the form

ψ(D, µ) = κDa(Db + µc)

with constants κ , a, b and c has c ≥ 1 and a + b ≥ 1 + (b/c).
The dependence on the degree plays a fundamental role in this chapter. This

is somehow a recent feature: earlier authors did not pay so much attention on the
degree in their estimates as they did for the height. Their first goal was to get sharp
irrationality measures, and then a natural extension is to consider approximation by
algebraic numbers of bounded degree. It turns out that it is also useful to consider,
for instance, approximation by algebraic numbers of bounded (absolute logarithmic)
height. However one cannot expect too good algebraic approximations by numbers
of bounded degree in general, unless one deals with Liouville-like numbers.

Remark 4. The set of Liouville numbers is uncountable, but nevertheless it is a rather
small subset of R: for instance it has Lebesgue’s measure 0 ([Sc 1980], Chap. III,
§ 3). It is not so surprising that the study of rational approximation is in general
not sufficient to decide whether a number is transcendental or not. For instance, if
one wishes to prove that a complex number is not quadratic, one might expect that
approximation by quadratic numbers should come into the picture.

One could be tempted to dub Generalized Liouville Number a complex number
θ which admits algebraic approximations which are good enough so that Liouville’s
estimate

|α − β| ≥ 2−D+1M(α)−DM(β)−D for α 6= β and D = [Q(α, β) : Q]

is sufficient to prove that θ is transcendental. However Theorem 15.6 tells us that
any transcendental complex number satisfies this condition!

Here is a better definition for Liouville number in an extended sense, as suggested
by M. Laurent in [Lau 1999]: it is a complex number θ for which there exists a
sequence (γν)ν≥1 of algebraic numbers such that γν 6= θ for ν ≥ 1 and

1

[Q(γν) : Q] · log M(γν)
log |θ − γν | → −∞ as ν →∞.

In other words such a number θ has much better algebraic approximations than those
furnished by condition (iii) of Theorem 15.6.
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An early result on this topic is due to E. Wirsing [Wir 1961] (see also [Sc 1980],
Chap. VIII, Th. 3B).

Let ϑ be a real transcendental number. There exists a positive constant c = c(ϑ)
such that, for any positive integer D, there exist infinitely many γ ∈ Q satisfying
[Q(γ ) : Q] ≤ D and

|ϑ − γ | ≤ cH(γ )−(D+3)/2.

A similar statement holds for a complex number θ with (D + 3)/2 replaced by
(D/4) + 1.

A refinement has been achieved by H. Davenport and W. M. Schmidt ([Sc 1980],
Chap. VIII, Th. 3A) for quadratic approximations: for D = 2 they get the conclusion
with the exponent −3 (and this is best possible: see [Sc 1980], Chap. VIII, Th. 2A).
More precisely:

• Let ϑ be a real number which is neither rational nor quadratic. There exist
infinitely many rational or real quadratic γ such that

|ϑ − γ | ≤ 18 max{1 , |ϑ |2}H(γ )−3.

In [Wir 1961], E. Wirsing conjectured that his result should hold with the exponent
(D + 3)/2 replaced by D + 1 (or at least for D + 1− ε). This is known only for D = 1
(by Dirichlet’s Theorem) and for D = 2 (by Davenport-Schmidt). In spite of some
improvements of this exponent by V. Bernik and K. Tishchenko for small values of
D, this problem is still open for D ≥ 3.

Here we are not concerned with the best possible value for the exponent. In
[LauRoy 1999b], M. Laurent and D. Roy provided an extra information, namely the
lower bound for the degree of the approximant γ which occurred in condition (iii) of
Theorem 15.6 (further related recent results are due to Y. Bugeaud and O. Theulié).

Corollary 15.7. There exist absolute constants c1, c2 and c3 with the following
property. For any complex transcendental number θ and for any integer D ≥ c1,
there exist infinitely many γ ∈ Q satisfying

c2 D ≤ [Q(γ ) : Q] ≤ D and |θ − γ | ≤ M(γ )−c3 D.

From Corollary 1, § 2 of [LauRoy 1999b], one deduces that

c1 = 26, c2 = 10−3, c3 = 2 · 10−3

are admissible values.

Thanks to the lower bound for the degree, up to numerical constants the same
result holds with M(γ ) replaced by H(γ ). An instructive example is proposed by
M. Laurent in Exercise 15.9.
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One deduces Corollary 15.7 from the implication (i i i)→ (i) in Theorem 15.6 by
choosing for (Dν)ν≥1 a constant sequence Dν = D and, say, µν = ν. If one chooses
instead Dν = ν and µν/Dν constant, one deduces Th. 3.2 in [RoyW 1997a]:

Corollary 15.8. There exist absolute constants c1 and c2 with the following property:
for any complex transcendental number θ , for any real number h ≥ c1 and for
infinitely many positive integers d, there exists an algebraic number γ ∈ Q of degree
d satisfying

h(γ ) ≤ h and |θ − γ | ≤ e−c2d2h .

By Corollary 2 in [LauRoy 1999b], one can take c1 = 2000, c2 = 2 · 10−6.

15.1.5 Algebraic Independence: Simultaneous Diophantine Approximation

In § 15.1.4, we considered a single number θ , while Proposition 15.2 involved a tuple
θ = (θ1, . . . , θm). Assume now that θ is a m-tuple of complex numbers such that the
field Q(θ ) has transcendence degree 1 over Q. Let {θ0} be a transcendence basis.
Then each θi (1 ≤ i ≤ m) is algebraic over Q(θ0). For 1 ≤ i ≤ m, let gi ∈ Z[X, Y ]
be a nonzero polynomial such that gi (θ0, θi ) = 0. By Theorem 15.6, (i)⇒ (i i i), θ0

admits good algebraic approximations γ0. If γ0 ∈ Q is sufficiently close to θ0, then
the polynomial gi (γ0, Y ) ∈ Q[Y ] does not vanish, it has a root γi which is close
to θi , and this produces an algebraic approximation to θi (if some θi is algebraic,
then γi = θi is a perfect approximation!). Hence the m-tuple γ = (γ1, . . . , γm) is a
simultaneous algebraic approximation to θ in the sense that one has a good control
of the degree [Q(γ ) : Q].

Proposition 15.9. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers such that

trdegQQ(θ ) = 1.

There exists a constant c > 0 with the following property. Let (Dν)ν≥1 and (µν)ν≥1

be two sequences of real numbers satisfying

c ≤ Dν ≤ Dν+1 ≤ 2Dν and cDν ≤ µν ≤ µν+1 ≤ 2µν (ν ≥ 1).

Assume also that the sequence (µν)ν≥1 is unbounded. Then for infinitely many ν there
exists a m-tuple γ = (γ1, . . . , γm) of algebraic numbers satisfying

1

c
Dν ≤ [Q(γ ) : Q] ≤ Dν, [Q(γ ) : Q] max

1≤i≤m
h(γi ) ≤ µν

and
max

1≤i≤m
|θi − γi | ≤ e−Dνµν/c.

An explicit value for c follows from Theorem 1 in [LauRoy 1999b].
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Notice that we do not need to impose the condition max1≤i≤m |θi − γi | > 0 since
we assumed not all of the θi to be algebraic. One of the main difficulties in applying
the transcendence criteria 15.2 or 15.6 is to check the nonvanishing condition for
either | f (θ1, . . . , θm)| or |θ−γ |. This is the place where the zero estimate is required
in transcendence proofs. But Proposition 15.9 does not involve such a condition.

Proposition 15.9 is a convenient tool for proving that the transcendence degree
of some field Q(θ1, . . . , θm) is at least 2.

Definition. In this chapter we shall say that a function ψ :N × R>0 → R>0 is a
measure of simultaneous approximation for a tuple (θ1, . . . , θm) ∈ Cm if there exists
c > 0 such that, for any positive integer D, any positive real numberµ, and any tuple
(γ1, . . . , γm) of algebraic numbers satisfying D ≥ c, µ ≥ cD,

[Q(γ1, . . . , γm) : Q] ≤ D and [Q(γ1, . . . , γm) : Q] max
1≤i≤m

h(γi ) ≤ µ

the inequality
max

1≤i≤m
|θi − γi | ≥ exp{−ψ(D, µ)}

holds.

Let us compare with the definition introduced in Chap. 14 involving a function
ϕ(D, h), where h is an upper bound for max1≤i≤m h(γi ).

• Let ψ(D, µ) be a measure of simultaneous approximation for the tuple
(θ1, . . . , θm). Then the function ϕ(D, h) = ψ(D, Dh) satisfies the condition of
the introduction of Chap. 14, namely: for D ≥ D0, h ≥ h0 and γ ∈ Qm

with

[Q(γ ) : Q] ≤ D and max
1≤i≤m

h(γi ) ≤ h,

we have
max

1≤i≤m
|θi − γi | ≥ exp

{−ϕ(D, h)
}
.

• Conversely, let ϕ(D, h) be a function which satisfies the condition in the
introduction of Chap. 14. Assume that the inequality

ϕ(D1, h1) ≤ ϕ(D2, h2)

holds for any D1, D2, h1 and h2 satisfying

Di ≥ D0, hi ≥ h0 (i = 1, 2), D2 ≥ D1 and D2h2 ≥ D1h1.

Then the function ψ(D, µ) = ϕ(D, D0µ/D) is a measure of simultaneous
approximation for the tuple (θ1, . . . , θm).

Indeed, let D ≥ D0, µ ≥ h0 D and γ ∈ Qm
satisfy

[Q(γ ) : Q] ≤ D and [Q(γ ) : Q] max
1≤i≤m

h(γi ) ≤ µ.
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Define
D′ = [Q(γ ) : Q], D′′ = max{D′, D0} and h =

µ

D′
·

We have

D′′ ≥ D0, h ≥ h0 D

D′
≥ h0,

[Q(γ ) : Q] ≤ D′′ and max
1≤i≤m

h(γi ) ≤ h.

Therefore
max

1≤i≤m
|θi − γi | ≥ exp

{−ϕ(D′′, h)
}
.

Since h = µ/D′ and D′′ ≤ D0 D′, the assumption on ϕ with D1 = D′′, D2 = D,
h1 = h and h2 = D0µ/D yields

ϕ(D′′, h) ≤ ϕ
(

D,
D0µ

D

)
·

¤
It is easy to check that any of the functions ϕ(D, h) occurring in Chap. 14 satisfies

the condition ϕ(D1, h1) ≤ ϕ(D2, h2) for D2 ≥ D1 and D2h2 ≥ D1h1, hence the
function ψ(D, µ) = ϕ(D, D0µ/D) is a measure of simultaneous approximation for
the corresponding tuple. Moreover in each single example one can take for D0 either
1 or 2. So there is no harm to work with ψ(D, µ) in place of ϕ(D, h).

Therefore one deduces from Proposition 15.9:

Corollary 15.10. Let θ be a m-tuple of complex numbers and ψ a measure of
simultaneous approximation. Let (Dν)ν≥1 and (µν)ν≥1 be sequences satisfying the
conditions of Proposition 15.9 above, namely

c ≤ Dν ≤ Dν+1 ≤ 2Dν and cDν ≤ µν ≤ µν+1 ≤ 2µν (ν ≥ 1)

and the sequence (µν)ν≥1 is unbounded. Assume

lim
ν→∞

1

Dνµν
ψ(Dν, µν) = 0.

Then
trdegQQ(θ ) ≥ 2.

Taking either for (Dν)ν≥1 or else for (µν/Dν)ν≥1 a (sufficiently large) constant
sequence, we deduce from Corollary 15.10 that any measure of simultaneous
approximation ψ of a m-tuple of complex numbers θ for which

trdegQQ(θ ) = 1

satisfies

lim inf
D→∞

1

D
lim sup
µ→∞

1

µ
ψ(D, µ) > 0
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and

lim inf
h→∞

1

h
lim sup

D→∞
1

D2
ψ(D, Dh) > 0.

For any m ≥ 2 one can show (see Exercise 15.12) the existence of m-tuples θ
of algebraically independent numbers which satisfy the conclusion of Proposition
15.9. Hence Corollary 15.10 is not a criterion for transcendence degree ≤ 1: it is a
sufficient condition, but not a necessary one.

Proposition 15.9 has many interesting applications. For instance, assuming part 2
of Conjecture 14.25, Corollary 15.10 shows that two linearly independent logarithms
of algebraic numbers are algebraically independent.

We propose a few such examples in § 15.3. Further applications of the present
method are given in [RoyW 1997a] and [RoyW 1997b].

15.2 From Simultaneous Approximation to Algebraic
Independence

The main purpose of this section is to provide complete proofs of the results stated
in § 15.1.

15.2.1 Proof of the Irrationality Criterion

Proof of Lemma 15.1. The easiest implication is (i i i)⇒ (i i): given ε > 0, we have
q−1−(1/m) < ε/q as soon as q > ε−m .

For the proof of (i i) ⇒ (i), we assume that (i) does not hold and we write
ϑi = ai/b with a1, . . . , am, b in Z and b > 0. Then for any ε < 1/b, the condition

max
1≤i≤m

∣∣∣∣ϑi − pi

q

∣∣∣∣ ≤
ε

q
·

implies |ai q − bpi | < 1 for 1 ≤ i ≤ m, hence ai q − bpi = 0 and pi/q = ai/b = ϑi

(1 ≤ i ≤ m). This shows that (i i) does not hold either.
We prove now the implication (i)⇒ (iv).
Consider the mapping q 7→ ξq from the finite set {0, 1, . . . , Qm} to the cube

C = [0, 1]m inRm which sends q to ξq =
({qϑ1}, . . . , {qϑm}

)
, where {x} denotes the

fractional part of x ∈ R:

x = [x] + {x}, [x] ∈ Z, 0 ≤ {x} < 1.

We decompose the cube C into Qm cubes

Ci1...im =
m∏

ν=1

[
iν
Q

, iν + 1

Q

]
⊂ C (0 ≤ iν ≤ Q − 1, 1 ≤ ν ≤ m).

By Dirichlet’s box principle, there exist two integers q1 6= q2 in the interval [0, Qm]
such that ξq1 and ξq2 belong to the same cube Ci1...im . Then, taking q = |q1 − q2|,
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we have 1 ≤ q < Qm , and if pi is an integer which is at minimal distance of qϑi

(1 ≤ i ≤ m), then (p1, . . . , pm, q) is a solution to (iv). Assumption (i) is used only
to check that not all qϑi − pi are zero.

Finally we prove the implication (iv)⇒ (i i i). Let
(

p(ν)
1 , . . . , p(ν)

m , qν
)

(1 ≤ ν ≤
N ), be a given finite set of tuples in Zm+1 with qν > 0 such that, for 1 ≤ ν ≤ N , the
number

ην = max
1≤i≤m

∣∣qνϑi − p(ν)
i

∣∣

satisfies 0 < ην < 1/2. Notice that in this case, for 1 ≤ i ≤ m and 1 ≤ ν ≤ N ,
p(ν)

i is the only integer in the interval
(
qνϑi − (1/2), qνϑi + (1/2)

)
; hence the tuple(

p(ν)
1 , . . . , p(ν)

m , qν
)

is completely determined by qν .
Let Q be an integer satisfying Q > 1/ην for every ν = 1, . . . , N , so that Q > 2.

From (iv) we deduce that there exists a tuple (p1, . . . , pm, q) satisfying 1 ≤ q < Qm

and
0 < max

1≤i≤m
|qϑi − pi | ≤ Q−1.

Since Q−1 < min1≤ν≤N ην , we deduce (p1, . . . , pm, q) 6= (
p(ν)

1 , . . . , p(ν)
m , qν

)
for

1 ≤ ν ≤ N . Hence q 6= qν . Finally we have also Q−1 ≤ q−1/m . ¤

Remark. The proof of (i) ⇒ (iv) shows that for any tuple (ϑ1, . . . , ϑm) of real
numbers and any integer Q > 1, there exist rational integers q, p1, . . . , pm with
1 ≤ q < Qm such that

max
1≤i≤m

|qϑi − pi | ≤ 1

Q
·

Assumption (i) was used only to check that the left hand side is not zero. See [Sc
1980], Chap. II § 1 Th. 1.A

Notice also that by using Lemma 4.11 with

µ = m, ν = m + 1, U = 2, ` = Qm+1, X = Qm,

vi j = δi j (1 ≤ i, j ≤ m)

(Kronecker’s diagonal symbol) and

vm+1, j = {ϑ j } (1 ≤ j ≤ m),

one obtains a slightly weaker result, namely with

1 ≤ q ≤ Qm and max
1≤i≤m

|qϑi − pi | ≤ 2

Q
·



                

15.2 From Simultaneous Approximation to Algebraic Independence 571

15.2.2 Dirichlet’s Box Principle

Lemma 15.11. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers, H and D
positive integers. There exists a nonzero polynomial f ∈ Z[X1, . . . , Xm], of total
degree ≤ D and usual height H( f ) ≤ H , such that

| f (θ )| ≤ cH−
1
2 (D+m

m )+1,

where
c =
√

2
∑

i1+···+im≤D

|θ i1
1 · · · θ im

m |.

Proof. We are going to apply Lemma 4.12 with

X = H, ν =

(
D + m

m

)
, µ = 1,

U = log

(
c√
2

)
, V = − log c +

(
1

2

(
D + m

m

)
− 1

)
log H.

If ν = 1, just take for f the constant polynomial equal to 1. Assume now ν ≥ 2.
Then we have

√
2HeU+V + 1 = cHeV + 1 = H ν/2 + 1 ≤ (H + 1)ν/2.

Write the unknown polynomial f as

f (X1, . . . , Xm) =
∑

i1+···+im≤D

ai1···im X i1
1 · · · X im

m .

Then the hypotheses of Lemma 4.12 are satisfied for

{u11, . . . , uν1} =
{
θ

i1
1 · · · θ im

m ; i1 + · · · + im ≤ D
}
.

One deduces that there exists a ν-tuple (ai1···im ) in Zν which provides a solution f .
¤

Proof of Proposition 15.2. In § 3.5 we already proved (i i)⇒ (i). The implications
(iv)⇒ (i i i) and (i i i)⇒ (i i) are easy: the first one is a consequence of the following
observation: for 0 < κ < 1/2 and for sufficiently large T we have

1

2
T +

1

2
log 2 + T log(1 + |θ |) ≤

(
1

2
− κ

)
T 2.

For the second one, take, say, κ = 1/4 and any T ≥ max{4c ; T0}.
We now prove (i)⇒ (iv) as follows. Assume (i) holds. Let θ ∈ {θ1, . . . , θm} be

transcendental. Use Lemma 15.11 with m replaced by 1, so that
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1

2

(
D + m

m

)
− 1 =

D − 1

2
,

and (iv) follows. ¤

Remark. For m = D = 1, Lemma 15.11 tells nothing. The point is that for real
numbers the exponent 1

2

(D+m
m

)−1 can be replaced by
(D+m

m

)−1. See Exercise 15.13.

15.2.3 Measures of Simultaneous Approximation

Proof of Proposition 15.3. The conclusion is true when |θ − γ | ≥ 1, hence without
loss of generality we may assume |θ − γ | < 1. From the assumption f (γ ) 6= 0 we
derive, by way of Proposition 3.14 (Liouville’s inequality):

| f (γ )| ≥ L1−de−dµ = 2Lε.

We use the following simple estimate (compare with Lemma 13.10)

| f (θ )− f (γ )| ≤ d Lrd−1|θ − γ |
with r = max{1, |θ |, |γ |} ≤ 1 + |θ |. Hence

2Lε ≤ | f (γ )| ≤ | f (θ )| + d Lrd−1|θ − γ | ≤ Lε + d Lrd−1|θ − γ |.
We deduce at once

drd−1|θ − γ | ≥ ε.
¤

15.2.4 Deducing a Measure of Algebraic Approximation from a Transcendence
Measure

Proof of Lemma 15.4. We start with the following remark (see Lemma 13.10): if
f ∈ C[X ] is a nonzero polynomial of degree D and length L , γ a root of f and if
θ ∈ C satisfy |θ − γ | ≤ 1, then

| f (θ )| ≤ |θ − γ |L D(1 + |θ |)D−1. (15.12)

Let θ be a transcendental number and 8(D, H ) a transcendence measure for θ . Let
γ be an algebraic number of degree ≤ D and Mahler’s measure M(γ ) ≤ eµ. The
minimal polynomial f ∈ Z[X ] of γ has usual height H( f ) ≤ 2Deµ and length
L( f ) ≤ (D + 1)H( f ). Using (15.12) together with the definition of8(D, H ) we get

|θ − γ | ≥ exp{−ψ(D, µ)}
where

ψ(D, µ) = 8(D, 2Deµ) + µ + D log 2 + (D − 1) log(1 + |θ |) + log
(
D(D + 1)

)
.

This yields the desired result with c = 1 + log(1 + |θ |). ¤
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15.2.5 Deducing a Transcendence Measure from a Measure of Algebraic
Approximation

Using (15.12) one gets a polynomial approximation to θ starting from an algebraic
one. The converse requires some more work. The first result, due to Fel’dman, has
been refined by G. V. Chudnovsky by means of his semi-discriminant [Ch 1984],
Chap. 1 § 1, and then by G. Diaz and M. Mignotte [DiMi 1991]:

Lemma 15.13. Let f ∈ Z[X ] be a nonzero polynomial of degree D. Let θ be a
complex number, γ a root of f at minimal distance of θ and k the multiplicity of γ
as a root of f . Then

|θ − γ |k ≤ D3D−2H( f )2D| f (θ )|.

Proof. We order the distinct roots of f as follows: α1 = γ is a root of f which
is at minimal distance of θ , next α2, . . . , αd are the conjugates of α, and finally
αd+1, . . . , αm are the other roots of f . For 1 ≤ j ≤ m denote by k j the multiplicity
of α j as a root of f , so that k1 = · · · = kd = k and

f (X ) = a0

m∏

j=1

(X − α j )
k j .

We may assume that the leading coefficient a0 is > 0. If

g(X ) = a
d∏

i=1

(X − αi )

denotes the minimal polynomial of γ (with a > 0), then gk divides f in Z[X ].
For 1 ≤ i ≤ d, the first term in the Taylor expansion of f (X ) at the point αi is

bi (X − αi )
ki ,

where

bi =
1

k!
· dk

dzk
f (αi ) ∈ Q(αi ).

We claim that the number
A = aD−2k |b1 · · · bd |

is a nonzero rational integer. It is plain that it is a nonzero rational number; we need
only to check that it is an algebraic integer. In the case d = 1 this follows from the
fact that ak divides a0. Assume now d ≥ 2, so that D ≥ dk ≥ 2k. Write

bi = a0

∏
1≤ j≤m

j 6=i

|αi − α j |k j .

The polynomial
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d∏

i=1

∏
1≤ j≤m

j 6=i

(X i − X j )
k j

has degree ≤ D + (d − 2)k in each of the variables X1, . . . , Xd , while its degree
is ≤ dk j with respect to X j for d < j ≤ m. For any λ1, . . . , λd , µ1, . . . , µm

nonnegative integers satisfying λi ≤ D − 2k (1 ≤ i ≤ d) and µ j ≤ dk j

(1 ≤ j ≤ m), the numbers

aD−2kα
λ1
1 · · ·αλd

d and ad
0α

µ1
1 · · ·αµm

m

are algebraic integers (see Lemma 3.1); hence so is their product, and therefore A is
an algebraic integer. This proves our claim A ∈ Z.

Since
|θ − γ | = min

1≤ j≤m
|θ − α j |,

for 2 ≤ j ≤ m we have

|γ − α j | ≤ |γ − θ | + |θ − α j | ≤ 2|θ − α j |,
so that

| f (θ )| = a0|θ − γ |k
m∏

j=2

|θ − α j |k j ≥ 1

2D−k
a0|θ − γ |k

d∏

j=2

|γ − α j |k j .

We multiply both sides by the number

B = 2D−kaD−2kad−1
0

d∏

i=2

∏
1≤ j≤m

j 6=i

|αi − α j |k j

= 2D−kaD−2k |b2 · · · bd |
.

We find
A|θ − γ |k ≤ B| f (θ )|.

Since

|bi | ≤
D∑

j=k

(
j

k

)
H( f ) (max{1, |αi |})D−k

≤
(

D + 1

k + 1

)
H( f ) (max{1, |αi |})D−k

we have

B ≤ 2D−k

(
D + 1

k + 1

)d−1

H( f )d−1M(γ )D−k,

and we get the upper bound

|θ − γ |k ≤ | f (θ )|2D−k

(
D + 1

k + 1

)d−1

H( f )d−1M(γ )D−k .
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Since γ is root of f we have M(γ ) ≤ M( f ). Also we have M( f ) ≤ DH( f ); this
follows from (3.12) if D ≥ 2, and it is trivial if D = 1. Let us check

2D−k

(
D + 1

k + 1

)d−1

DD−k ≤ D3D−2.

If k = 1, then using the inequality

(D + 1)D−1 ≤ DD

we deduce from d ≤ D:

2D−1

(
D(D + 1)

2

)d−1

DD−1 ≤ (D + 1)D−1 D2D−2 ≤ D3D−2.

If k ≥ 2, then (
D + 1

k + 1

)
≤ Dk+1

4

and

2D−k

(
D + 1

k + 1

)d−1

DD−k ≤ 2D−k−2d+2 D(d−1)(k+1)+D−k

≤ 2D−k−2d+2 Dd−2k−1

because kd ≤ D. Finally

2D−k−2d+2 Dd−2k−1 ≤ DD−2

because D ≥ kd ≥ 2d ≥ 2.
From D − k + d − 1 ≤ 2D we conclude

|θ − γ |k ≤ | f (θ )|D3D−2H( f )2D.

This completes the proof of Lemma 15.13. ¤

Remark. A refinement of Lemma 15.13 (due to N. I. Fel’dman, K. Mahler and
G. Diaz) for separable polynomials is proposed as Exercise 15.14.

Proof of Lemma 15.5. Let f ∈ Z[X ] be a nonzero polynomial of degree ≤ D and
usual height ≤ H . We want to estimate | f (θ )| from below. Using Lemma 15.13 we
find a root γ of f of multiplicity k ≥ 1 with

|θ − γ |k ≤ | f (θ )|D3D H 2D.

Denote by d the degree of γ . Notice that kd ≤ D and

M(γ )k ≤ M( f ) ≤ DH,

so that

M(γ ) ≤ eµ where µ :=
1

k
log(DH ).
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On the other hand we have

|θ − γ | ≥ exp{−ψ(d, µ)}.
From the assumptions on ψ we derive

kψ(d, µ) ≤ ψ(kd, kµ) ≤ ψ(D, kµ) = ψ
(

D, log(DH )
)
.

¤

15.2.6 Deducing an Algebraic Approximation from a Polynomial
Approximation

The proof of implication (i)⇒ (iv) of Proposition 15.2 given in § 15.2.2 was easy.
The proof of (i)⇒ (i i i) in Theorem 15.6 is more subtle. We need preliminary results.
The first one (see [RoyW 1997a], Lemma 3.4) is an upper bound for the resultant
R(F,G) of two polynomials F and G in one variable.

Lemma 15.14. Let θ be a complex number and t a positive real number. Let

F(X ) = a0

m∏

i=1

(X − αi ) and G(X ) = b0

n∏

j=1

(X − β j )

be nonconstant polynomials in C[X ] of degree m and n respectively. Let f and g be
integers in the ranges 0 ≤ f ≤ m, 0 ≤ g ≤ n; assume

|θ − αi | ≤ t for 1 ≤ i ≤ f, |θ − αi | ≥ t for f < i ≤ m

and similarly

|θ − β j | ≤ t for 1 ≤ j ≤ g, |θ − β j | ≥ t for g < j ≤ n.

Then there is a root γ of the product FG which satisfies

|θ − γ | f g|R(F,G)| ≤ 2mn M(F)n−g M(G)m− f |F(θ )|g|G(θ )| f .

Proof. Define first pi = |θ−αi | for i = 1, . . . ,m, next q j = |θ−β j | for j = 1, . . . , n
and finally

ρ = min
{

min
1≤i≤m

|θ − αi | , min
1≤ j≤n

|θ − β j |
}
.

We take for γ a root of FG so that ρ = |θ − γ |.
From the estimate

|αi − β j | ≤ pi + q j ≤ 2 max{pi , q j }
we deduce
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∏
1≤i≤ f
g< j≤n

|αi − β j | ≤
( n∏

j=g+1

2q j

) f
and

∏
f<i≤m
1≤ j≤g

|αi − β j | ≤
( m∏

i= f +1

2pi

)g
.

Since
(2ρ)|αi − β j | ≤

(
2 min{pi , q j }

)(
2 max{pi , q j }

)
= (2pi )(2q j ),

we also have

(2ρ) f g
∏

1≤i≤ f
1≤ j≤g

|αi − β j | ≤
( f∏

i=1

2pi

)g( g∏

j=1

2q j

) f
.

Finally the estimate

|αi − β j | ≤ |αi | + |β j | ≤ 2 max{1, |αi |}max{1, |β j |},
implies

∏
f<i≤m
g< j≤n

|αi − β j | ≤ 2(m− f )(n−g)
( m∏

i= f +1

max{1, |αi |}
)n−g( n∏

j=g+1

max{1, |β j |}
)m− f

≤ 2(m− f )(n−g)
(M(F)

|a0|
)n−g(M(G)

|b0|
)m− f

.

Since

|F(θ )| = |a0|
m∏

i=1

pi , |G(θ )| = |b0|
n∏

j=1

q j

and
|R(F,G)| = |a0|n|b0|m

∏

i, j

|αi − β j |,

Lemma 15.14 follows. ¤

Here is a consequence of Lemma 15.14.

Corollary 15.15. Let θ be a complex number, F and G ∈ Z[X ] be nonconstant
relatively prime polynomials. Denote by β one of the roots of G at minimal distance
of θ . Assume that there are at least s roots α of F (counting multiplicities) satisfying

|θ − α| ≤ |θ − β|.
Then

1 ≤ 2(deg F)(deg G) M(F)deg G M(G)deg F |G(θ )|s .

Proof. This follows from Lemma 15.14 by taking t = |θ − β|, g = 0 and f is the
number of roots α of f such that θ − α| ≤ t . The conclusion is trivial if |G(θ )| ≥ 1,
and otherwise since s ≤ f we have |G(θ )| f ≤ |G(θ )|s . ¤
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We now combine Lemma 15.11 and Corollary 15.15 to prove:

Lemma 15.16. Let θ ∈ C. For each integer D ≥ 4 and each real number
µ ≥ max{600, |θ |, D}, there exists a nonzero polynomial Q ∈ Z[X ], which is a
power of an irreducible polynomial, such that

deg Q ≤ D, log M(Q) ≤ µ
and

|Q(θ )| ≤ e−Dµ/48.

Proof. We first apply Lemma 15.11 with m = 1 and

H =

[
eµ√
D + 1

]
·

We produce a nonzero polynomial f ∈ Z[X ] of degree ≤ D and usual height
H( f ) ≤ H such that

| f (θ )| ≤ √2(1 + |θ |)D H−(D−1)/2.

This polynomial f has Mahler’s measure M( f ) bounded by
√

D + 1H ≤ eµ.
Moreover, as soon as D ≥ 4 and µ ≥ max{600, |θ |, D} we have

eµ/24 ≥ √2D(1 + |θ |)
and √

2(1 + |θ |)D(D + 1)(D−1)/2eµ/2 ≤ eDµ/6,

hence
| f (θ )| ≤ e−Dµ/3.

We decompose f as a product of powers of irreducible polynomials over Z[X ]:

f = aQ1 · · · Qr ,

where a is a positive integer and Q1, . . . , Qr are pairwise relatively prime. If r ≤ 4,
then

min
1≤i≤r
|Qi (θ)| ≤ e−Dµ/3r ≤ e−Dµ/12,

hence one at least of Q1, . . . , Qr satisfies the conclusion of Lemma 15.16. On the
other hand if r ≥ 5, we order Q1, . . . , Qr so that the function

i 7→ dist
(
θ, Z (Qi )

)
:= min

{|θ − γ | ; γ ∈ C, Qi (γ ) = 0
}

is non-decreasing:

dist
(
θ, Z (Q1)

) ≤ · · · ≤ dist
(
θ, Z (Qr )

)
.

We apply Corollary 15.15 with F = Q1 · · · Q4, G = Q5 · · · Qr and s = 4. Hence
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|G(θ )|−4 ≤ 2(deg F)(deg G) M(F)deg G M(G)deg F .

From the assumption µ ≥ D we deduce that the right hand side is bounded by eDµ.
Therefore

|F(θ )| ≤ | f (θ )| · |G(θ )|−1 ≤ e−Dµ/3eDµ/4 ≤ e−Dµ/12,

and again, one at least of Q1, . . . , Q4 satisfies the conclusion of Lemma 15.16. ¤

Here is another application of Lemma 15.14 (see Lemma 3.10 of [RoyW 1997a]
and Lemma 3 of [LauRoy 1999b]).

Lemma 15.17. For any λ > 0 there exist positive numbers D0 = D0(λ) and κ = κ(λ)
with the following property. Let D be a positive integer, µ a positive real number
with

µ ≥ D ≥ D0,

θ a complex number and F,G ∈ Z[X ] relatively prime polynomials satisfying

deg F ≤ D, log M(F) ≤ µ and log |F(θ )| ≤ −λDµ

deg G ≤ D, log M(G) ≤ µ and log |G(θ )| ≤ −λDµ.

Then there is a root γ of FG such that

log |θ − γ | ≤ −κDµ.

Proof. Let s0 be the positive integer in the range

6

λ
≤ s0 <

6

λ
+ 1.

We shall prove the result with D0 = 3/λ and κ = 2λ/s0.
Denote by d the degree of FG (hence d ≤ 2D) and choose an ordering γ1, . . . , γd

of the roots of FG (counting multiplicities) so that

|θ − γ1| ≤ · · · ≤ |θ − γd |.
From the assumption |F(θ )| ≤ 1 we deduce |θ − γ1| ≤ 1. Define γ = γ1,
s = min{d, s0} and t = |θ − γs |. We apply Lemma 15.14 with f + g = s: since
(deg F)(deg G) ≤ d2/4 ≤ dµ/2, we obtain

|θ − γ | f g ≤ 2d2/4edµe−λs Dµ ≤ e−λs Dµ+(3dµ/2).

We conclude thanks to the estimates f g ≤ s2/4 and

4λs D ≥ 6d + κDs2.

¤
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Remark. The hypotheses of Lemma 15.17 imply λ < 6. Indeed, for λ ≥ 6, in
the proof we have s0 = 1, hence f g = 0, and applying Lemma 15.14 provides a
contradiction.

The fact that the hypotheses of Lemma 15.17 cannot be satisfied when λ is large
follows from Gel’fond’s Lemma V in Chap. III § 4 of [G 1952]. The main point here
is that we get some information even when λ is small.

The following result (Lemma 4 of [LauRoy 1999b]) is the main tool providing a
lower bound for the degree of the approximating algebraic number. The basic remark
is that, given two relatively prime polynomials F and G, the three polynomials F ,
G and F + G are pairwise relatively prime. Moreover

|(F + G)(θ )| ≤ |F(θ )| + |G(θ )|.

Lemma 15.18. For any λ > 0 there exist positive numbers c1, c2 and c3 with the
following property. Let D be a positive integer, µ a positive real number with

µ ≥ D ≥ c1,

θ a complex number and F,G ∈ Z[X ] relatively prime polynomials satisfying

deg F ≤ D, log M(F) ≤ µ and log |F(θ )| ≤ −λDµ,

deg G ≤ D, log M(G) ≤ µ and log |G(θ )| ≤ −λDµ.

Then there exists a root γ of the product FG(F + G) which satisfies

c2 D ≤ [Q(γ ) : Q] ≤ D, log M(γ ) ≤ 2µ and log |θ − γ | ≤ −c3 Dµ.

By Lemma 4 of [LauRoy 1999b], for 0 < λ < 1/2 one may take

c1 =
9

λ
, c2 =

2

5
λ2 and c3 =

4

25
λ2.

Proof. As soon as c1 ≥ D0(λ), we may apply Lemma 15.17 to the pair (F,G) and
produce a root γ1 of FG such that

[Q(γ1) : Q] ≤ D , log M(γ1) ≤ µ
and

log |θ − γ1| ≤ −κ1 Dµ

where κ1 = κ(λ) is the constant of Lemma 15.17 associated with λ. Permuting F
and G if necessary, we may assume F(γ1) = 0.

Notice that the two polynomials G, F + G are relatively prime and that

deg(F + G) ≤ D, log M(F + G) ≤ 2µ

and
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log |F(θ ) + G(θ )| ≤ −1

2
λDµ

provided that c2
1 ≥ (2/λ) log 2. We apply Lemma 15.17 once more, to the pair

(G, F + G), with µ replaced by 2µ and we get a root γ2 of their product G(F + G)
with

[Q(γ2) : Q] ≤ D , log M(γ2) ≤ 2µ and log |θ − γ2| ≤ −c3 Dµ,

where

c3 = min

{
κ1, 2κ

(
λ

4

)}
·

Since F and G(F + G) are relatively prime, we have γ1 6= γ2. It is now sufficient
to check that the number δ := max{[Q(γ1) : Q], [Q(γ2) : Q]} satisfies δ ≥ c2 D: the
result will follow with γ ∈ {γ1, γ2}. Using the estimate δ ≤ D ≤ µ, we deduce from
Liouville’s inequality (Chap. 3, (3.13) and Lemma 3.8)

log |γ1 − γ2| ≥ −[Q(γ1, γ2) : Q]h(γ1 − γ2)

≥ −[Q(γ1, γ2) : Q]
(
(log 2) + h(γ1) + h(γ2)

)

≥ −δ2 log 2− 3δµ ≥ −4δµ.

On the other hand
|γ1 − γ2| ≤ |θ − γ1| + |θ − γ2|,

hence

log |γ1 − γ2| ≤ log 2− c3 Dµ ≤ −1

2
c3 Dµ

as soon as c3c2
1 ≥ 2 log 2. We conclude δ ≥ c2 D with c2 = c3/8. ¤

Proof of Theorem 15.6. We start with the implication (i i i)⇒ (i i). Fix c > 0. Choose
in (i i i) for instance Dν = ν, µν = 2c2

0ν. Let ν be a sufficiently large integer such that
the existence of γ is guaranteed by (i i i), with [Q(γ ) : Q] ≤ ν, M(γ ) ≤ eµν and

0 < |θ − γ | ≤ e−ν
2
.

From (3.12) we deduce

H(γ ) ≤ 2DνM(γ ) ≤ 2Dνeµν ≤ (2e2c2
0
)ν
.

Since ν is sufficiently large, (i i) follows with T = ν(2c2
0 + log 2) > c.

The proof of (i i)⇒ (i) is also easy: by Lemma 3.14, if θ and γ are two distinct
algebraic numbers which generate a number field of degree D, then

|θ − γ | ≥ 2−D+1e−Dh(θ )e−Dh(γ ).

From (3.12) we deduce, with d = [Q(γ ) : Q],
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h(γ ) ≤ 1

d
log H(γ ) +

1

2d
log(d + 1) ≤ log H(γ ) + 1.

Define d0 = [Q(θ ) : Q], h0 = h(θ ). Notice that D = [Q(θ, γ ) : Q] is bounded by
D ≤ d0d. Now if d ≤ T and H(γ ) ≤ eT , we have

Dh(γ ) ≤ d0dh(γ ) ≤ d0(d + log H
(
γ )
) ≤ 2d0T,

Dh(θ ) ≤ d0dh0 ≤ d0h0T

and
(D − 1) log 2 ≤ D ≤ d0d ≤ d0T .

Therefore if θ is algebraic and if we set c = d0(h0 + 3), then for any integer T and
any algebraic number γ of degree ≤ T and usual height ≤ eT with θ 6= γ we have

|θ − γ | ≥ e−cT .

Finally we prove (i)⇒ (i i i), following [LauRoy 1999b], Th. 2. We setλ = 1/200
and we denote by c1, c2, c3 the constants associated with λ by Lemma 15.18. Let ν0

be a sufficiently large integer. Lemma 15.16 shows that for each ν ≥ ν0 there exists
a nonzero polynomial Qν ∈ Z[X ], which is a power of an irreducible polynomial,
such that

deg Qν ≤ Dν, log M(Q) ≤ 1

2
µν

and
log |Qν(θ )| ≤ −2λDνµν .

If ν > ν ′ are such that the polynomials Qν and Qν ′ are not relatively prime, then Qν

and Qν ′ are powers of the same irreducible polynomial in Z[X ] and then

log |Qν ′ (θ )|
deg Qν ′

=
log |Qν(θ )|

deg Qν

≤ −2λµν .

Since µν tends to infinity with ν and Qν ′ (θ ) /= 0 (recall that θ is transcendental), for
each ν ′ > 0 this inequality can hold only for finitely many ν. It follows that there
are infinitely many integers ν such that Qν−1 and Qν are relatively prime. We apply
Lemma 15.18 to the two polynomials F = Qν−1 and G = Qν with D = Dν and
µ = µν/2. Notice that Dν−1µν−1 ≥ Dνµν/4, hence

log |Qν−1(θ )| ≤ −1

2
λDνµν .

We get an algebraic number γ which satisfies

c2 Dν ≤ [Q(γ ) : Q] ≤ Dν, log M(γ ) ≤ µν
and

log |θ − γ | ≤ −c3

2
Dνµν .

Property (iv) of Theorem 15.6 follows as soon as

c0 ≥ max
{

2, c1,
1

c2

, 2

c3

}
·

¤
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15.2.7 From a Single Number to a Tuple

In this section we prove Proposition 15.9.
Let θ = (θ1, . . . , θm) be a tuple of complex numbers such that Q(θ ) has

transcendence degree 1 over Q. One at least of the numbers θ1, . . . , θm , say θ1, is
transcendental. For 1 ≤ i ≤ m, θi is a root of a nonzero polynomial Fi (θ1, Y ), where
Fi ∈ Z[X, Y ]. On the other hand, since θ1 is transcendental, Theorem 15.6 shows
that it has good algebraic approximations. Let γ1 be one of them. For sufficiently
small |θ1−γ1|, F(γ1, Y ) is a nonzero polynomial which has a root γi close to θi . Then
γ = (γ1, . . . , γm) is a simultaneous algebraic approximation to θ . This argument will
enable us to complete the proof of Proposition 15.9.

We provide the details of the proof following [RoyW 1997b], § 1 c Prop. 1.3.
A slightly different argument is given in [RoyW 1997a], § 3 (i). For another proof
using Chow forms, see [LauRoy 1999b], Lemme 7 and § 6.

Lemma 15.19. Let

f (X ) = a0 Xd + · · · + ad = a0(X − α1) · · · (X − αd )

be a polynomial in C[X ] of degree d ≥ 1 without multiple root. Set

r =
1

2
min
i 6= j
|αi − α j |, r0 = max{|α1|, . . . , |αd |}, R = max{1, r + r0},

η =
|a0|rd

(d + 1)Rd
and c =

r

η
·

Let ã0, . . . , ãd be complex numbers satisfying

max
0≤i≤d

|ai − ãi | < η.

Then the polynomial
f̃ (X ) = ã0 Xd + · · · + ãd

can be written
f̃ (X ) = ã0(X − α̃1) · · · (X − α̃d )

with
max

1≤ j≤d
|α j − α̃ j | ≤ c max

0≤i≤d
|ai − ãi |.

Proof of Lemma 15.19. Put

ε = max
0≤i≤d

|ai − ãi |.

From the assumptions
|a0 − ã0| ≤ ε < η < |a0|

we deduce ã0 6= 0.
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For |z| ≤ R, we have

| f (z)− f̃ (z)| ≤ ε(1 + R + · · · + Rd ) < |a0|rd .

For |z − αi | = r , we have

| f (z)| = |a0|
d∏

j=1

|z − α j | ≥ |a0|rd .

Since the upper bound | f (z) − f̃ (z)| < | f (z)| holds for |z − αi | = r , we deduce
(Rouché’s theorem) that f̃ has a single zero α̃i in the disc |z − αi | < r . Hence

f̃ (X ) = ã0(X − α̃1) · · · (X − α̃d )

with { |̃αi − αi | < r for 1 ≤ i ≤ d,
|̃α j − αi | ≥ r for 1 ≤ i 6= j ≤ d.

On one hand we have

| f (̃α j )| = |a0|
d∏

i=1

|̃α j − αi | ≥ |a0|rd−1 |̃α j − α j |

and on the other

| f (̃α j )| = | f (̃α j )− f̃ (̃α j )| ≤ ε(d + 1)Rd .

This completes the proof of Lemma 15.19. ¤

Lemma 15.20. Let F ∈ Z[X1, . . . , Xn, Y ] be a polynomial in n + 1 variables
of degree D j in X j , (1 ≤ j ≤ n), and let α1, . . . , αn , β be algebraic numbers
which satisfy F(α1, . . . , αn, β) = 0. Assume that F(α1, . . . , αn, Y ) is not the zero
polynomial in Q(α1, . . . , αn)[Y ]. Then

h(β) ≤ 2 log L(F) + 2
n∑

j=1

D j h(α j ).

Proof of Lemma 15.20. Let t be the degree of F in the variable Y . Write α for
(α1, . . . , αn), X for (X1, . . . , Xn), and write

F(X , Y ) = Y t Qt (X ) + Y t−1 Qt−1(X ) + · · · + Q0(X ).

Since F(α, Y ) ∈ Q(α)[Y ] is not the zero polynomial and since F(α, β) vanishes,
at least one of the numbers Qt (α), . . . , Q1(α) is not zero. Denote by m the largest
index j , (1 ≤ j ≤ m) such that Q j (α) 6= 0. From F(α, β) = 0 we deduce

−βm Qm(α) = βm−1 Qm−1(α) + · · · + βQ1(α) + Q0(α).

Define
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Q̃(X , Y ) = Y m−1 Qm−1(X ) + · · · + Y Q1(X ) + Q0(X ),

so that
−βm Qm(α) = Q̃(α, β).

An upper bound for h(βm) is

h(βm) = h
(
βm Qm(α)Qm(α)−1

)

≤ h
(
βm Qm(α)

)
+ h
(
Qm(α)

)

= h
(
Q̃(α, β)

)
+ h
(
Qm(α)

)
.

Using Lemma 1.5, we bound h
(
Q̃(α, β)

)
and h

(
Qm(α)

)
from above:

h
(
Qm(α)

) ≤ log L(Qm) +
n∑

j=1

(degX j
Qm)h(α j )

and

h
(
Q̃(α, β)

) ≤ log L(Q̃) +
n∑

j=1

(degX j
Q̃)h(α j ) + (degY Q̃)h(β).

The degrees degX j
Qm and degX j

Q̃ are bounded by degX j
F = D j . Also we have

degY Q̃ ≤ m − 1. Coming back to h(βm), we deduce

mh(β) = h(βm) ≤ log L(Qm) + log L(Q̃) + 2
n∑

j=1

D j h(α j ) + (m − 1)h(β).

Hence

h(β) ≤ log L(Qm) + log L(Q̃) + 2
n∑

j=1

D j h(α j ).

Since L(Qm) + L(Q̃) ≤ L(F), we see that log L(Qm) + log L(Q̃) is bounded by
2 log L(F), which yields the desired estimate. ¤

Lemma 15.21. Let θ1, . . . , θn+1 be complex numbers. Write θ for the tuple
(θ1, . . . , θn). Assume θn+1 is algebraic over the field Q(θ ). There exist positive con-
stants η0, c0, c1, c2 with the following property. Let γ = (γ1, . . . , γn) be a tuple of
algebraic numbers such that |θ − γ | < η0. Then there exists an algebraic number
γn+1 which satisfies

[Q(γ , γn+1) : Q(γ )] ≤ c1, h(γn+1) ≤ c2 max
1≤i≤n

h(γi )

and
|θn+1 − γn+1| ≤ c3|θ − γ |.

Proof of Lemma 15.21. Let F ∈ Z[X , Y ] be a polynomial in n + 1 variables such
that F(θ, Y ) is irreducible in Q(θ )[Y ] and F(θ, θn+1) = 0. Write
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F(X , Y ) = a0(X )Y d + · · · + ad (X )

and define f (Y ) = F(θ, Y ). Let η and c be the constants of Lemma 15.19 attached
to f . By continuity there exists η0 > 0 such that the condition |θ − γ | < η0 implies
max0≤i≤d |ai (θ )− ai (γ )| ≤ η. Let γn+1 be a root of f (whose existence is given by
Lemma 15.19) which satisfies

|θn+1 − γn+1| ≤ c max
0≤i≤d

|ai (θ )− ai (γ )|.

Since γn+1 is a root of f we have

[Q(γ , γn+1) : Q(γ )] ≤ d.

From Lemma 15.20 we deduce

h(γn+1) ≤ c2 max
1≤i≤n

h(γi ).

This completes the proof of Lemma 15.21. ¤

Proof of Proposition 15.9. Let θ = (θ1, . . . , θm) be a tuple of complex numbers such
thatQ(θ ) has transcendence degree 1. Without loss of generality we may assume that
θ1 is transcendental over Q. Let c0 be a sufficiently large number (depending only
on θ1) for which property (iii) of Theorem 15.6 holds. Next, let C be a sufficiently
large number. The constants c4 and c5 below will depend on θ , not on C .

Given the sequences (Dν)ν≥1 and (hν)ν≥1 satisfying the assumptions of Proposi-
tion 15.9, define

D′ν =
Dν

C
and µ′ν =

µν

C
·

From Theorem 15.6 we deduce that for infinitely many ν ≥ 1, there is an algebraic
number γ1 satisfying

1

c0
D′ν ≤ [Q(γ1) : Q] ≤ D′ν, M(γ1) ≤ eµ

′
ν

and
0 < |θ1 − γ1| ≤ e−D′νµ′ν/c0 .

We fix a sufficiently large ν in this infinite sequence, and also we fix a γ1 as above.
Notice that

h(γ1) ≤ 1

[Q(γ1) : Q]
log M(γ1) ≤ c0

D′ν
· µ′ν .

We use Lemma 15.21 with n = 1: for each i = 2, . . . ,m there exists an algebraic
number γi satisfying

[Q(γ1, γi ) : Q(γ1)] ≤ c4, h(γi ) ≤ c5h(γ1)

and
|θi − γi | ≤ c6|θ1 − γ1|.
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We deduce, for the m-tuple γ = (γ1, . . . , γm),

1

c0
D′ν ≤ [Q(γ ) : Q] ≤ cm−1

4 D′ν,

[Q(γ ) : Q] max
1≤i≤m

h(γi ) ≤ cm−1
4 D′ν max

1≤i≤m
h(γi )

≤ cm−1
4 c5 D′νh(γ1)

≤ cm−1
4 c5c0µ

′
ν

and
|θ − γ | ≤ c6e−D′νµ′ν/c0 .

Since γ1 6= θ1, we also have

max
1≤i≤m

|θi − γi | > 0.

Finally for sufficiently large C we have

cm−1
4 D′ν ≤ Dν and cm−1

4 c5c0µ
′
ν ≤ µν .

¤

Remark. From Lemma 15.21 we also deduce the following statement (Proposition
1.3 of [RoyW 1997b]). Let θ1, . . . , θm be complex numbers, not all of which are
algebraic, and let n be an integer in the range 1 ≤ n ≤ m. Assume each of the
numbers θn+1, . . . , θm is algebraic over the field Q(θ1, . . . , θn). Then there exist
positive constants c7, c8 and c9 such that, if ψ(D, µ) is a measure of simultaneous
approximation for the m-tuple (θ1, . . . , θm), then c7 + ψ(c8 D, c9µ) is a measure of
simultaneous approximation for the n-tuple (θ1, . . . , θn).

15.3 Algebraic Independence Results: Small Transcendence
Degree

We combine here some of the simultaneous approximations measures obtained in
Chap. 14 with the results of § 15.1 and deduce results of algebraic independence.

The underlying principle of Corollary 15.10 is that any measure of simultaneous
approximation ψ(D, µ) better than Dµ for θ implies that Q(θ ) has transcendence
degree ≥ 2. Under the notation of Chap. 14, we are looking at simultaneous
approximation measure ϕ(D, h) better than D2h. Often, it is sufficient to fix the
parameter h (sufficiently large) and to make D tend to infinity. In terms of ψ this
amounts to take for µ a constant multiple of D.

We give a collection of examples related to estimates which have been established
in Chap. 14.
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15.3.1 On the Lindemann-Weierstraß Theorem

Let us prove the special case n = 2 of Theorem 1.3:

• Let β1, β2 be two nonzero algebraic numbers whose quotient β1/β2 is irrational.
Then the two numbers eβ1 and eβ2 are algebraically independent.

Thanks to Corollary 15.10, this result follows from Corollary 14.11, where we have
proved the existence of a constant c > 0 such that

ψ(D, µ) = cD1/2µ(logµ + D log D)(logµ)−1

is a measure of simultaneous approximation for eβ1 , eβ2 .
The first proof of this special case of the Lindemann-Weierstraß’ Theorem along

Gel’fond’s method is due to G. V. Chudnovsky [Ch 1984], Chap. 7 Th. 10.6.
On the other hands several quantitative refinements of Lindemann-Weierstraß’

Theorem are known; in particular a completely explicit measure of algebraic
independence (see § 15.5.2) have been derived by A. Sert [Sert 1999].

15.3.2 Algebraic Independence of α
β jβ

′
r

s

Combining Corollary 15.10 with Corollary 14.4, we deduce the following result:

Theorem 15.22. Let β0, . . . , βn be Q-linearly independent algebraic numbers,
β ′1, . . . , β

′
p also Q-linearly independent algebraic numbers and λ1, . . . , λq be Q-

linearly independent elements of L. Assume npq > pq + n. Then two at least of the
(n + 1)pq numbers

eβ jβ
′
rλs (0 ≤ j ≤ n, 1 ≤ r ≤ p, 1 ≤ s ≤ q)

are algebraically independent.

Equality npq = pq + n + 1 holds for and only for the following triples (n, p, q):

(2, 1, 3), (3, 1, 2), (3, 2, 1) and (2, 3, 1).

We give an example of each.

Taking (n, p, q) = (2, 1, 3), we deduce Corollary 7.2.4 of [W 1974]:

Corollary 15.23. Let β1, β2 be algebraic numbers such that 1, β1, β2 areQ-linearly
independent and let λ1, λ2, λ3 be Q-linearly independent elements in L. Then two
at least of the six numbers

eλiβ j (i = 1, 2, 3, j = 1, 2)

are algebraically independent.
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Taking (n, p, q) = (3, 1, 2), we deduce Corollary 7.2.5 of [W 1974]:

Corollary 15.24. Let β1, β2, β3 be algebraic numbers such that 1, β1, β2, β3 areQ-
linearly independent and let λ1, λ2 be Q-linearly independent elements in L. Then
two at least of the six numbers

eλiβ j (i = 1, 2, j = 1, 2, 3)

are algebraically independent.

Taking (n, p, q) = (3, 2, 1), we deduce:

Corollary 15.25. Let β and β ′ be two quadratic numbers with [Q(β, β ′) : Q] = 4.
Let λ ∈ L \ {0}. Then two at least of the three numbers

eβλ, eβ
′λ, eββ

′λ

are algebraically independent.

For instance two at least of the three numbers

2
√

2, 2
√

3, 2
√

6

are algebraically independent.
Finally, taking (n, p, q) = (2, 3, 1), we obtain a result of Gel’fond:

• If λ = logα is a nonzero logarithm of an algebraic number and if β is a
cubic irrational number, then the two numbers αβ = eβλ and αβ

2
= eβ

2λ are
algebraically independent.

For instance the two numbers 2
3√2 and 2

3√4 are algebraically independent.
More generally, the following result of Gel’fond’s [G 1952] is deduced from

Theorem 15.22 with n = d − 1, p = d, q = 1:

Corollary 15.26. Let β an algebraic number of degree d ≥ 3 and let λ ∈ L \ {0} .
Then two at least of the d − 1 numbers

eβλ, . . . , eβ
d−1λ

are algebraically independent.
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15.3.3 Algebraic Independence of Exponentials and Logarithms

Here is the Linear Subgroup Theorem in transcendence degree 1 (Theorem 1.1 of
[RoyW 1997a]). For a subfield K of C, define

LK = exp−1(K×) =
{
z ∈ C ; ez ∈ K×

}
.

Theorem 15.27∗. Let d0 and d1 be nonnegative integers with d = d0 + d1 > 0, G
the algebraic group Gd0

a ×Gd1
m , K a subfield of C of transcendence degree ≤ 1 over

Q, W a vector subspace of Cd defined over K , Y a finitely generated subgroup of
K d0 × (LK )d1 and Ya a subgroup of Y contained in K d0 × Ld1 . Assume that the
dimension n of the vector subspace of Cd spanned by W ∪ Y satisfies n < d/2.
Assume also that no algebraic subgroup G∗ of G, defined over K and distinct from
G itself, has a tangent space Te(G∗) which contains W ∪ Y . Then there exists an
algebraic subgroup G∗ = G∗0 × G∗1 of G, where G∗0 is an algebraic subgroup of Gd0

a

of codimension d[0 and G∗1 is an algebraic subgroup of Gd1
m of codimension d[1 with

d[ = d[0 + d[1 > 0, such that, if we set

W [ =
W

W ∩ Te(G∗)
, Y [ =

Y

Y ∩ Te(G∗)
, Y [

a =
Ya

Ya ∩ Te(G∗)
,

`
[
0 = dimC(W [), `

[
1 = rankZ(Y [), `[a = rankZ(Y [

a ),

and if n[ denotes the dimension of the subspace of Cd[ spanned by W [ ∪Y [, then we
have d[ > 2n[ > `

[
0 and

d1

d − 2n
≥ d[1

d[ − 2n[
≥ `

[
1

2n[ − `[0
·

Moreover, if either d[0 < n[, or `[0 < n[, or else `[a > 0, then we have the strict
inequality

d[1
d[ − 2n[

>
`
[
1

2n[ − `[0
·

We refer to [RoyW 1997a] for a proof of Theorem 15.27. The main tools are
Theorem 13.1 and Corollary 15.10, but an extra argument is necessary for the
following reason. The algebraic independence method we have described so far
in this chapter rests on measures of simultaneous approximation. These measures
are not valid without some technical assumption (the linear independence measure
condition of Chap. 14, say). It is easy to prove Theorem 15.27 under such an extra
hypothesis, but it is possible also to avoid it as follows. In the transcendence argument,
when using Theorem 13.1, we had algebraic data wk and η

j
, and complex data w′k

and η′
j
. The algebraic subgroup G∗ of G which occurs in the conclusion of Theorem

13.1 is related to the algebraic data, and this is where the technical assumption
comes from. In order to avoid it, one needs to lift this obstructing subgroup and get a
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subgroup of G which is related to the complex data w′k and η′
j
. That this is possible

in transcendence degree 1 (i.e. for function fields in one variable) is explained in § 3
of [RoyW 1997a].

We now state the special case n = 1 of Theorem 15.27; it is the main result
concerning small transcendence degree (i.e. algebraic independence of at least two
numbers in certain sets) for values of the exponential function in a single variable
(not including Lindemann-Weierstraß Theorem).

Corollary 15.28. Let m and n be two positive integers, {x1, . . . , xm} and {y1, . . . , yn}
two families of Q-linearly independent complex numbers. Denote by K1 the field
generated over Q by the mn numbers exp(xi y j ) (1 ≤ i ≤ m, 1 ≤ j ≤ n). Define
also

K2 = K1(x1, . . . , xm), K3 = K2(y1, . . . , yn).

We set
κ1 = mn, κ2 = κ1 + m, κ3 = κ2 + n.

Hence, for h = 1, 2, 3, the field Kh is obtained by adjoining κh elements to Q. Then
the transcendence degree of Kh over Q is ≥ 2 in each of the following cases:

(a) h = 1, 2 and κh ≥ 2(m + n);
(b) h = 3 and κ3 > 2(m + n);
(c) h = 3, κ3 = 2(m + n) and xi y1 ∈ L for i = 1, . . . ,m.

Remark. Here are a few references for a direct proof of this result: [T 1971], [Br
1974b], Chap. 7 of [W 1974], Chap. 12 of [B 1975], [Br 1979], Corollaire 1.2 of
[RoyW 1997a], Chap. 6 of [FNe 1998] and Chap. 13 of [NeP 2000].

Proof of Corollary 15.28 as a consequence of Theorem 15.27 (Following [RoyW
1997a]). We take n = 1, d0 is 0 or 1, and `0 is also 0 or 1. Define

w =

{
(x1, . . . , xd ) if d0 = 0,
(1, x1, . . . , xd ) if d0 = 1,

W =

{
0 if `0 = 0,
Cw if `0 = 1

and
η

j
= y jw (1 ≤ j ≤ `1).

In the conclusion of Theorem 15.27 we have n ≥ n[ > 0, hence n[ = 1, and

d1

d − 2
≥ d[1

d[ − 2
≥ `

[
1

2− `[0
·

Since d[ = d[1 + d[0 with 0 ≤ d[0 ≤ d0, one easily deduces from the inequality
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d1(d[ − 2) ≥ d[1(d − 2)

that d[0 = d0 and d[1 = d1, hence d[ = d and G∗ = 0. Therefore `[0 = `0, `[1 = `1 and

d1

d − 2
≥ `1

2− `0
·

Therefore when n = 1 the assumption that the field K of Theorem 15.27 has
transcendence degree ≤ 1 implies

`1d + d1`0 ≤ 2(d1 + `1).

The conclusion of case (b) in Corollary 15.28 plainly follows. Moreover we get strict
inequality when either d0 = 0 or `0 = 0, and this covers case (a). In case (c) we also
have strict inequality because `a > 0. ¤

Theorem 15.22 also follows from the lower bound for κ2 in Corollary 15.28.
Therefore Corollary 15.25 is a consequence of the lower bound for κ2 in Corollary
15.28, but in fact it is also a consequence of the lower bound for κ1 with m = n = 4,

x1 = 1, x2 = β, x3 = β ′, x4 = ββ ′, y j = x jλ ( j = 1, 2, 3, 4).

As a further example of the lower bound for κ2 one deduces from Corollary 15.28
a stronger form of Corollary 15.26:

• Let λ ∈ C× be a nonzero complex number and β an algebraic number of degree
d ≥ 3. Then two at least of the d numbers

eλ, eβλ, . . . , eβ
d−1λ

are algebraically independent.

Finally another consequence of the lower bound for κ2 is Corollary 7.2.6 of [W
1974]:

Corollary 15.29. Let β be an irrational algebraic number and let λ1, λ2 be Q-
linearly independent elements in L. Then two at least of the five numbers

λ1

λ2

, eλ1β, eλ2β, eλ1β
2
, eλ2β

2

are algebraically independent.

For instance two at least of the three numbers

log 2

log 3
, 2i , 3i

are algebraically independent.



                  

15.3 Algebraic Independence Results: Small Transcendence Degree 593

Remark. Using Corollary 15.10, one deduces also Corollary 15.29 from Corollary
14.5: indeed if we set k = 4, m = 2,

x1 = λ2, x2 = βλ2, y1 = 1, y2 =
λ1

λ2

, y3 = β, y4 = βy2,

then Corollary 14.5 shows that a simultaneous approximation measure for the five
numbers occurring in Corollary 15.29 is

ϕ(D, h) = cD2h4/3(h + log D)3/4(log h + log D)−1,

which is o(D2) for fixed h and for D→∞.

15.3.4 Quadratic Relations Between Logarithms of Algebraic Numbers

The only known information so far in direction of Conjecture 1.15 (on the algebraic
independence of logarithms of algebraic numbers) which does not follow from the
results of Chapters 11 and 12 is the following (see [RoyW 1997a], [RoyW 1997b]).

Theorem 15.30. Let λ1, . . . , λn be elements of L and E the Q-vector subspace
of C spanned by these elements. Assume26 that the field k = Q(λ1, . . . , λn) has
transcendence degree 1 over Q. Then the rank of any nonzero matrix M with entries
in E satisfies

rank(M) >
1

2
rstr(M),

where rstr(M) is the structural rank of M with respect to k.

By Proposition 12.25, it follows that if λ1, . . . , λn are Q-linearly independent
elements of L satisfying

trdegQQ(λ1, . . . , λn) = 1,

then for any nonzero homogeneous polynomial Q ∈ Q[X1, . . . , Xn] of degree 2,
we have Q(λ1, . . . , λn) 6= 0. It would be interesting to extend this statement to
nonhomogeneous quadratic polynomials. For instance taking Q(X1, X2) = X2

1− X2

would yield the transcendence of the number eλ
2

for any λ ∈ L \ {0}. So far the
transcendence of eπ

2
is still an open problem.

A simple corollary of Theorem 15.30 is the transcendence of one at least of the
two numbers

eλ
2
, eλ

3

for λ ∈ L \ {0}; this corollary is also a consequence of part c) in Corollary 15.28,
and a direct transcendence proof (not passing through algebraic independence) has
been given in Chap. 11 (see Exercise 11.8).

Theorem 15.30 clearly follows by combining Theorem 14.23 with Corollary
15.10. Another proof of Theorem 15.30 as a consequence of Theorem 15.27 is given
in [RoyW 1997a], § 1, together with further similar results.

26 Beware: Conjecture 1.15 predicts that these assumptions are satisfied only for n = 1.
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15.3.5 Open Problems

The best known measure of simultaneous algebraic approximation for the two
numbers π and eπ is the one which is valid more generally for λ and eβλ when
β is a quadratic number and λ a nonzero logarithm of an algebraic number, namely
(see Exercise 14.4.e)

cD1/2µ(µ + D log D)1/2(logµ)−1/2.

This measure is not strong enough to yield a result of algebraic independence.
The algebraic independence of the two numbers π and eπ has been proved by
Nesterenko using modular forms [Ne 1996] (see also [NeP 2000]), and the algebraic
independence of λ and eβλ is not yet proved in general.

In the same way, the best known measures of simultaneous approximation,
which are stated in Exercise 14.4, are not strong enough to solve the following
open problems:

(?) Two at least of the three numbers e, ee, ee2
are algebraically independent.

(?) Two at least of the three numbers π , e, eπ
2

are algebraically independent.

Partial results are known and follow from the measures of simultaneous approxima-
tion proved in Chap. 14 (see Exercise 15.15).

Further conjectures are as follows:

(?) Each of the numbers ee, ee2
, eπ

2
is transcendental

(?) The numbers e and π are algebraically independent

So far, the best known unconditional measure of simultaneous approximation for
the two numbers e and π is

cD1/2µ1/2(µ + D log D)(logµ)1/2

with some absolute constant c > 0 (see Exercise 14.6.c).
According to part 2 of Conjecture 14.25 there should exist a positive constant c

such that cD1/2µ is a measure of simultaneous approximation for each of the pairs
(e, π ), (eπ , π ) and (e, ee). One expects that the same holds for other similar pairs of
complex numbers, like for almost all elements of C2.

15.4 Large Transcendence Degree: Conjecture on Simultaneous
Approximation

It is a challenge to extend the previous discussion to higher transcendence degree. So
far the connection (see § 15.2) between simultaneous approximation and algebraic
independence has been established only for small transcendence degree (Proposition
15.9). The following statement would provide results of large transcendence degree
(compare with [RoyW 1997b], Conjecture 1.7, [Lau 1998], § 4.2, and [Roy 2000a]).
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Conjecture 15.31. Let θ = (θ1, . . . , θm) be a tuple of complex numbers such that the
number

t = trdegQQ(θ )

is ≥ 1. There exist two positive constants c1 and c2 with the following property. Let
(Dν)ν≥1 and (µν)ν≥1 be sequences of real numbers satisfying Dν ≥ c1, µν ≥ c1,

c1 ≤ Dν ≤ Dν+1 ≤ 2Dν, and c1 Dν ≤ µν ≤ µν+1 ≤ 2µν (ν ≥ 1).

Assume also
lim
ν→∞µν =∞.

Then for infinitely many ν there exists a m-tuple γ = (γ1, . . . , γm) of algebraic
numbers satisfying

[Q(γ ) : Q] ≤ Dν, [Q(γ ) : Q] max
1≤i≤m

h(γi ) ≤ µν

and
max

1≤i≤m
|θi − γi | ≤ e−c2 D1/t

ν µν .

A discussion of this topic as well as further related issues is given in [W 2000].

Remark 1. By Proposition 15.9, a stronger result holds for t = 1, since one obtains
also a lower bound for [Q(γ ) : Q]. It has been shown by D. Roy [Roy 2000a] that
such a lower bound for the degree cannot be expected for t ≥ 2. One cannot replace
the condition

[Q(γ ) : Q] max
1≤i≤m

h(γi ) ≤ µν by max
1≤i≤m

h(γi ) ≤ µν

Dν

(compare with [RoyW 1997b], Conjecture 1.7).

Remark 2. A heuristic motivation for the exponent 1/t if given by M. Laurent in
[Lau 1998], § 4.2 p. 325 (see below the end of § 15.5.1).

Remark 3. Let θ ∈ Cm be a tuple of complex numbers with a measure of simultaneous
approximation ψ(D, µ). Assume that for any sufficiently large D1, D2 and µ1, µ2

satisfying D1 ≤ D2 and µ1 ≤ µ2, we have

ψ(D1, µ1) ≤ ψ(D2, µ2).

Assume further that there exist sequences (Dν)ν≥1 and (µν)ν≥1 like in Conjecture
15.31, namely with Dν ≥ c1, µν ≥ c1 Dν ,

Dν ≤ Dν+1 ≤ 2Dν, and µν ≤ µν+1 ≤ 2µν (ν ≥ 1),

such that, for a positive real number k,
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lim
ν→∞

1

D1/k
ν µν

ψ(Dν, µν) = 0.

Then, by Conjecture 15.31,

trdegQQ(θ ) ≥ [k] + 1.

In loose terms, Conjecture 15.31 means that any simultaneous approximation
measure better than D1/kµ for θ should imply trdegQQ(θ ) > k.

Remark 4. Assuming Conjecture 15.31, one deduces Lindemann-Weierstraß’ The-
orem from Corollary 14.11 as follows: one applies Remark 3 to the function

ψ(D, µ) = C D1/mµ(logµ + D log D)(logµ)−1

with k = m − 1, taking for instance the sequences Dν = log ν and µν = ν.

Remark 5. Combining Conjecture 15.31 with Conjecture 14.25 (part 2), one deduces
Conjecture 1.15 on algebraic independence of logarithms of algebraic numbers. More
generally, if we take Conjectures 14.25 and 15.31 for granted, then one deduces
Schanuel’s Conjecture 1.14 under the hypothesis that x1, . . . , xn satisfy a linear
independence measure condition.

Here is another consequence of Conjecture 15.31, which includes results due to
G. Diaz and P. Philippon.

Theorem 15.32∗. Under the notation and hypotheses of Corollary 15.28, assume
that both tuples (x1, . . . , xm) and (y1, . . . , yn) satisfy a linear independence measure
condition. Then for i = 1, 2, 3 the transcendence degree ti of the field Ki satisfies

t1 ≥
[ mn

m + n

]
provided that mn > m + n,

t2 ≥
[mn + m

m + n

]
provided that m ≥ 2

and
t3 ≥ mn

m + n
·

For further references, including previous statements of Chudnovsky ([Ch 1984],
Chap. 1), more recent results by W. D. Brownawell (where a weaker technical
assumption is shown to be sufficient) – as well as quantitative refinements, we refer
for instance [FNe 1998] and Chap. 14 of [NeP 2000].

.

Remark. In some cases it is possible to obtain a strict inequality for t3. Also
extensions to higher dimensional situation are known.
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Here is a consequence of Theorem 15.32, where the technical hypothesis does
not appear explicitly (they are in fact a consequence of the assumptions):

Under the assumptions of Theorem 15.22, the transcendence degree of the field
generated by the (n + 1)pq numbers

eβ jβ
′
rλs (0 ≤ j ≤ n, 1 ≤ r ≤ p, 1 ≤ s ≤ q)

is at least [
npq

pq + n + 1

]
+ 1.

Notice that this statement also follows directly from Conjecture 15.31 by means of
Corollary 14.4.

A special case is the following result of G. Diaz [Di 1989]:

Under the assumptions of Corollary 15.26, the transcendence degree of the field

Q
(
eλ, eβλ, . . . , eβ

d−1λ
)

is at least [(d + 1)/2].

The so-called Problem of Gel’fond and Schneider is to show that this transcendence
degree is d − 1. See [FNe 1998], Chap. 6 and [NeP 2000], Chap. 14.

Proof of (15.32) as a consequence of Conjecture 15.31.
(1) Since mn > m + n we already know (six exponentials Theorem) t1 ≥ 1. By
Corollary 15.28 we also have t1 ≥ 2 as soon as mn ≥ 2(m + n). Incidentally,
for these two results (small transcendence degree), no technical assumption (linear
independence measure condition) is required.

The assumption mn > m + n allows us to define

κ =
mn

mn − m − n
·

Applying Corollary 14.18 with r = 1, d = m, ` = n, we deduce that a measure of
simultaneous approximation for the numbers exi y j is

cµκ
(
logµ

)1−κ
.

Since this function is increasing, we may apply Remark 3 above for the sequences
Dν = ν and µν = ν log log ν with k > 0 defined by

κ = 1 +
1

k
, viz. k =

1

κ − 1
=

mn

m + n
− 1.

We deduce that the transcendence degree t1 of the field K1 over Q is ≥ [k] + 1.

(2) Here we apply Corollary 14.5, but we permute the role of x and y (which means
that we replace (m, k) by (n,m)). Under the assumptions of Theorem 15.32, assuming
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m ≥ 2, a measure of simultaneous approximation for the mn + m numbers xi , exi y j

is cψ(D, µ) with

ψ(D, µ)n(m−1) = µmn(µ + D log D)m(logµ)−m−n.

Since both functions D 7→ ψ(D, µ) and µ 7→ ψ(D, µ) are increasing, and since

ψ(D, D) ≤ c′D1+(1/k)(log D)−1/(m−1) with k =
m + n

n(m − 1)
,

we deduce from Conjecture 15.31 that the transcendence degree t2 of the field K2

satisfies t2 ≥ [k] + 1.

(3) Combining Corollary 14.14 and Conjecture 15.31 with

ψ(D, log D) = c′D1+ mn
m+n log D,

we deduce
t3 ≥ mn

m + n
·

¤

15.5 Further Results and Conjectures

15.5.1 Further Criteria for Algebraic Independence

Historically, the first result of algebraic independence was Lindemann-Weierstrass’
Theorem 1.3. However, as pointed out in § 1.1, this statement is equivalent to a result
of linear independence. Further more general results of algebraic independence of
values of the so-called E-functions were achieved in 1929, and then in 1949, by C.L.
Siegel. Later, A.B. Šidlovskiı̆ and his school developed extensively this theory; but
we shall not tell more about this theme here (see [Sh 1989], as well as [FNe 1998],
Chap. 5).

Another method of algebraic independence was introduced by K. Mahler in the
1930’s, and it is very efficient for studying the values of functions satisfying certain
functional equations; again, we shall not expand on this topic (see [Ni 1996]).

The method of algebraic independence of the present chapter has its main source
in the work of A.O. Gel’fond around 1950 [G 1952] (see also [FNe 1998] and [NeP
2000]). Among the tools he introduced are a zero estimate (see Exercise 2.9) and a
transcendence criterion. The next statement also introduces multiplicities, following
[LauRoy 1999a] and [LauRoy 2000]. For σ ∈ Nn we denote, as usual, by Dσ the
derivative operator (d/d X1)σ1 · · · (d/d Xn)σn on the space C[X1, . . . , Xn].

Theorem 15.33∗. Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers. The
following properties are equivalent.
(i) trdegQQ(θ ) ≥ 2.
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(i i) There exists a sequence ( fν)ν≥1 of polynomials inZ[X1, . . . ,Xm] and a sequence
(tν)ν≥1 of real numbers such that

deg fν + log H( fν) ≤ tν, lim
ν→∞ tν =∞

and
0 < | fν(θ)| < e−3tν max{tν−1,tν ,tν+1}.

(i i i) There exist sequences (dν)ν≥1, (sν)ν≥1 of positive integers, sequences (Hν)ν≥1,
(Vν)ν≥1 of real numbers and a sequence ( fν)ν≥1 of polynomials in Z[X1, . . . ,Xm]
satisfying

dν
sν
≤ dν+1

sν+1

, log Hν

sν
≤ log Hν+1

sν+1

,

Vν
sν
≤ Vν+1

sν+1

,

lim sup
ν→∞

Vνsν
dν log Hν

=∞,
and

deg fν ≤ dν, H( fν) ≤ Hν, 0 < max
‖σ‖<sν

∣∣∣∣
1

σ !
Dσ fν(θ )

∣∣∣∣ ≤ e−Vν+1 .

(iv) For any sequences (dν)ν≥1 and (sν)ν≥1 of positive integers and (Hν)ν≥1 of real
numbers satisfying

1 ≤ dν
sν
≤ dν+1

sν+1
≤ 2

dν
sν

, log Hν

sν
≤ log Hν+1

sν+1
≤ 2

log Hν

sν
, log Hν ≥ dν ≥ 2,

there exists a sequence ( fν)ν≥1 of polynomials in Z[X1, . . . ,Xm] such that

deg fν ≤ dν, H( fν) ≤ Hν, 0 < max
‖σ‖<sν

∣∣∣∣
1

σ !
Dσ fν(θ )

∣∣∣∣ ≤ H
−d2

ν /4s2
ν

ν .

(v) There exists a constant c(θ ) > 0 with the following property. For any integers
D, S with 1 ≤ S ≤ D and any real number H ≥ 1, there exists a polynomial
f ∈ Z[X1, . . . ,Xm] such that

deg f ≤ D, H( f ) ≤ H

and

0 < max
‖σ‖<S

∣∣∣∣
1

σ !
Dσ f (θ )

∣∣∣∣ ≤ −c(θ )D H−κ ,

where

κ =
(D + 1)(D + 2)

2S(S + 1)
− 1.

Remark 1. The implications (v) ⇒ (iv) ⇒ (i i i) and (v) ⇒ (i i) in Theorem 15.33
are trivial. Implication (i i) ⇒ (i) is a variant of Gel’fond’s criterion in [G 1952],
Chap. III, § 4, Lemma VII (see also [Br 1974a], [W 1974], Chap. 5, [Br 1979],
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[F 1982], Chap. 9, Lemma 3.9, [FNe 1998], Chap. 6, § 1.3, Lemma 6.3 and [NeP
2000]). Implication (i i) ⇒ (i) is the transcendence criterion of [LauRoy 1999a]
and [LauRoy 2000] involving multiplicities. Finally (i)⇒ (v) follows from Lemma
15.11 with

µ =

(
S + 1

2

)
, ν =

(
D + 2

2

)
, U = Dc1(θ ), N = [log H ].

¤

Remark 2. Notice again the gap between the estimates in (iv) and (iii): the former
estimate involves (dν/sν)2 log Hν , the latter (dν/sν) log Hν .

His criterion enabled Gel’fond to prove that some fields have transcendence
degree at least 2. One main obstruction to extend Gel’fond’s algebraic independence
method to large transcendence degree was the following (see [Cas 1957], Chap. V
Th. XIV and [P 1986b], Appendix):

• Let m ≥ 2 be an integer and ϕ:N→ R>0 a positive valued function. There exist
algebraically independent numbers θ1, . . . , θm with the following property: for
any positive integer N , there are m − 1 linear forms in three variables

L i (X0, X1, X i ) = ai X0 + bi X1 + ci X i ∈ Z[X0, X1, X i ] (2 ≤ i ≤ m)

with integer coefficients of absolute values bounded by N such that ci 6= 0 and

|L i (1, θ1, θi )| ≤ ϕ(N ) (2 ≤ i ≤ m).

We refer to Chap. 6 of [FNe 1998] for further comments and references on this topic,
including Lang’s transcendence type [L 1966], Chudnovsky’s results of algebraic
independence ([Ch 1984], Chap. 3 and 4), Philippon’s Criterion [P 1986b] and
further developments until 1997. See also [NeP 2000], Chap. 8.

The results of the present chapter have already been extended in several directions.
In [LauRoy 2000], M. Laurent and D. Roy have introduced multiplicities in
Philippon’s criterion [P 1986b] for algebraic independence. This enabled them to
prove results on large transcendence degrees by means of interpolation determinants
and also to deduce the following result, which can be seen as a step towards general
conjectures of simultaneous algebraic approximation.

Theorem 15.34∗. Let θ ∈ Cm . Let (Dν)ν≥1 be a non-decreasing sequence of positive
integers, and let (hν)ν≥1 be a sequence of real numbers ≥ 1 such that (Dνhν)ν≥1 is
non-decreasing and unbounded. Then, for infinitely many ν, there exists a nonzero
polynomial P ∈ Q[X1, . . . , Xm] of degree≤ Dν and height h(P) ≤ hν which admits
at least one zero a ∈ Cm with
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max
1≤i≤m

|θi − ai | ≤ exp
(
− 1

8(m + 1)!
Dm+1
ν−1 hν−1

)
.

Since a is a zero of P , for m = 1 (and only in this case) we deduce a ∈ Qm
.

One would like to construct several independent such polynomials P with a common
zero in Qm

close to θ . If one could obtain an ideal having a set of common zeroes
of dimension 0, one could conclude a ∈ Qm

. As pointed out by M. Laurent and
D. Roy, this provides a heuristic justification for the exponent 1/t in Conjecture
15.31. Indeed, assume t = m (by Proposition 15.19, this assumption involves no loss
of generality), so that θ1, . . . , θm are algebraically independent. Lemma 15.11 shows
that there exists a nonzero polynomial of degree ≤ D1 and logarithmic height ≤ h1

such that
|P(θ )| ≤ e−c3 Dm+1

1 h1 .

One would like to produce not only one, but several such polynomials, and
being optimistic, one might expect that the associated hypersurfaces should define,
by intersection, an algebraic point γ = (γ1, . . . , γm) ∈ Qm

at a distance ≤
exp{−c4 Dm+1

1 h1} of θ . Given that γ ∈ Qm
is a common root of a collection of

polynomials P , each of degree ≤ D1 and height ≤ h1, the degree D = [Q(γ ) : Q]
should then be bounded by c5 Dm

1 and the height h = max h(γi ) by c6h1. Replacing
D1 and h1 in terms of h and D with D = c5 Dm

1 and h = c6h1 explains the exponent
1/m.

15.5.2 Quantitative Estimates: Measures of Algebraic Independence

Let θ = (θ1, . . . , θm) ∈ Cm . By Proposition 15.2, in order to prove that one at least
of the numbers θ1, . . . , θm is transcendental, it suffices to construct a polynomial f
in the ring Z[X1, . . . ,Xm] with suitable bounds for the degree and height such that
| f (θ )| is sufficiently small but nonzero. Often27 the transcendence method provides
a sharper result: for any θ̃ ∈ Cm sufficiently close to θ , there exists such a polynomial
f̃ (depending on θ̃ ) which satisfies the same bound for | f̃ (θ )| but also does not vanish
at θ̃ . From such a statement one deduces a measure of simultaneous approximation
for θ (see Proposition 15.3). As an example, one may reach easily measures of linear
independence of logarithms of algebraic numbers (see Exercise 15.4) which may be
not the sharpest known, but are far from being trivial.

In the criterion of algebraic independence of Philippon (see [FNe 1998], Theorem
6.11, [NeP 2000], Chap. 8 and [LauRoy 2000]) which extends Theorem 15.33
to higher transcendence degree, the hypothesis involves a family of polynomials

27 As shown by Exercise 15.12, under a general framework involving linearly independent
numbers – like the six exponentials Theorem 1.12, or its extensions either in several variables
from Chap. 4 and Chap. 11 or to algebraic independence in Theorem 15.27 – one cannot
expect a quantitative refinement, unless some extra hypothesis – e.g. a linear independence
measure condition – is assumed.
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whose set of common zeroes in a neighborhood of θ is finite. The quantitative
refinements of this criterion due to P. Philippon, E. M. Jabbouri, M. Ably, C. Jadot
and Y. V. Nesterenko (see [FNe 1998], Theorem 6.17 and Chap. 6, § 5.2; see also
Chap. 8 of [NeP 2000] and [W 1999], § 2.2) requires that these polynomials have
no common zeros, at least near θ . There is a simple case where this condition is
fulfilled: when one can produce a single polynomial with not only an upper bound
for | f (θ )| but also a lower bound for the same.

In such circumstances one derives a measure of algebraic independence for
(θ1, . . . , θm). Such measures are defined in a general framework by Nesterenko and
Philippon by means of Chow forms (see ([FNe 1998], Chap. 6, § 3, [P 1997], [P
1998], [P 1999a], [P 2000], [P 1999b], [LauRoy 2000] and [NeP 2000], Chap. 8), but
we give here a definition only in the simplest case, for an algebraically independent
tuple.

Definition. Let θ = (θ1. . . . , θm) be a m-tuple of algebraically independent complex
numbers. A measure of algebraic independence for θ is a mapping 8:N× R>0 →
R>0 such that, for any sufficiently large integer D, any sufficiently large real number
H and any nonzero polynomial f ∈ Z[X1, . . . ,Xm] of total degree ≤ D and usual
height H( f ) ≤ H , we have

| f (θ )| ≥ exp{−8(D, H )}.

In case m = 1, a measure of algebraic independence for θ ∈ C \ Q is nothing
else than a transcendence measure for θ . From Lemma 15.11 one easily deduces
that a measure of algebraic independence for a m-tuple of algebraically independent
complex numbers satisfies

8(D, H ) ≥
(

1

2

(
D + m

m

)
− 1

)
log H − cD

where c depends only on θ .
It is easy (Exercise 15.12) to construct a m-tuple of algebraically independent

complex numbers for which any measure of algebraic independence grows as fast
as desired. On the other hand it is likely that almost all θ (for Lebesgue’s measure)
in Cm has a measure of algebraic independence bounded by c(θ )Dm log H (see

[Ch 1984], [Am 1988] and Chap. 15 of [NeP 2000]). Moreover one can expect that
numbers arising from values of the exponential or logarithmic function (and their
iterates) at algebraic points also have such a measure of algebraic independence. In
this direction we propose an quantitative sharpening to Schanuel’s Conjecture:

Conjecture 15.35. Let x1, . . . , xn be Q-linearly independent complex numbers
which satisfy a linear independence measure condition. Let d be a positive integer.
Then there exists a positive number C = C(x1, . . . , xn, d) with the following
property: for any integer H ≥ 2 and any n + 1 tuple P1, . . . , Pn+1 of polynomials in
Z[X1, . . . , Xn, Y1, . . . , Yn] with degrees≤ d and usual heights≤ H , which generate
an ideal of Q[X1, . . . , Xn, Y1, . . . , Yn] of rank n + 1, we have
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n+1∑

j=1

∣∣Pj (x1, . . . , xn, ex1 , . . . , exn )
∣∣ ≥ H−C .

The linear independence measure condition cannot be omitted, as shown for
instance by examples of A. Bijlsma [Bi 1977].

A simple consequence of Conjecture 15.35 is the following:

(?) Let P ∈ Z[X1, . . . , Xm] be a nonzero polynomial and K a number field. There
exists a positive constant C with the following property. Let λ1, . . . , λm be
elements of L such that αi = eλi is in K for 1 ≤ i ≤ m. Let A ≥ e be a positive
number such that

A ≥ max
1≤i≤m

h(αi ) and A ≥ max
1≤i≤m

|λi |.

If the number 4 = P(λ1, . . . , λm) is nonzero, then

|4| ≥ A−C .

For instance any nonzero determinant

1 =

∣∣∣∣
log a1 log a2

log a3 log a4

∣∣∣∣

with ai ∈ Z, ai ≥ 2 should be bounded from below by

|1| ≥ (max{a1, a2, a3, a4}
)−C

for some absolute constant C > 0.

We started with a criterion 15.1 for irrationality, involving rational approxima-
tions. We have considered two generalizations of this initial situation: either involving
polynomial approximations, that is looking for |P(θ1, . . . , θm)|, or algebraic approx-
imations, that is looking for

max{|θ1 − γ1|, . . . , |θm − γm |}.
The former deals with hypersurfaces (codimension 1), the latter with points (dimen-
sion 0). Of course in dimension 1 both coincide, but this is no longer the case in
higher dimension. Further generalizations are possible, and interesting; they involve
approximations by cycles of a given dimension (see Philippon’s papers [P 1997], [P
1998], [P 1999a], [P 2000], [P 1999b]).

In the classical theory of simultaneous rational approximation, given a tuple
(ϑ1, . . . , ϑm) of real numbers, Khinchine’s transference theorem ([Cas 1957],
Chap. V § 3 Th. IV) exhibits a duality between lower bounds for

q 7−→ min
(p1,...,pm )∈Zm

max
1≤i≤m

∣∣∣∣ϑi − pi

q

∣∣∣∣
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and for
(p1, . . . , pm) 7−→ min

q∈Z
|p1ϑ1 + · · · + pmϑm + q|.

It is not known whether there is a similar transference theorem in the context of
algebraic diophantine approximation: one would like to replace pi/q by algebraic
numbers on one hand, p1 X1 + · · · + pm Xm + q by a polynomial of arbitrary degree
on the other. However a partial result is available. For P ∈ Z[X1, X2], define

t(P) = deg P + log L(P). For γ = (γ1, γ2) ∈ Q2
define

t(γ ) = [Q(γ ) : Q]
(
1 + h(1: γ1: γ2)

)
.

P. Philippon proves in [P 2000]:

• For any θ = (θ1, θ2) ∈ C2 and µ ≥ 3 there exist positive constants c1, . . . , c7

with the following property.
� If there exists a nonzero polynomial P ∈ Z[X1, X2] with t(P) ≥ c1 and

|P(θ )| ≤ exp
{−c2t(P)µ

}
,

then there exists γ ∈ Q2
with P(γ ) = 0 and

|θ − γ | ≤ exp
{−c3t(γ )2µ/(µ+1)

}
.

� Conversely, if there exists γ ∈ Q2
with t(γ ) ≥ c4 and

|θ − γ | ≤ exp
{−c5t(γ )µ/2

}
,

then there exists a polynomial P ∈ Z[X1, X2] such that P(γ ) = 0 and
t(P) ≤ c6t(γ )1/2, hence

|P(θ )| ≤ exp
{−c7t(P)µ

}
.

This sharpens (and corrects) a statement in [Ch 1984], Chap. 4 p. 180. For µ = 3, it
follows that there is equivalence between a measure of algebraic independence and
a measure of simultaneous approximation in the case where the exponents for these
estimates are optimal:

|θ − γ | ≥ exp
{−ct(γ )3/2

}
and |P(θ )| ≥ exp

{−ct(P)3
}
.

A survey on algebraic independence of transcendental numbers is given in [W
1999]. Further information on the topics discussed in the present chapter is given in
[W 2000].
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15.5.3 An Arithmetic Criterion for the Values of the Exponential Function

We conclude by quoting the following recent result of D. Roy [Roy 2000c]:

• Schanuel’s Conjecture 1.14 is equivalent to Conjecture 15.36 below.

Denote by D the derivation

D =
∂

∂X0
+ X1

∂

∂X1

on the field C(X0, X1).

Conjecture 15.36 (Roy). Let ` be a positive integer, y1, . . . , y` Q-linearly inde-
pendent complex numbers, α1, . . . , α` nonzero complex numbers and s0, s1, t0, t1, u
positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1} < u
and

max{s0, s1 + t1} < u < 1
2 (1 + t0 + t1).

(15.37)

Assume that, for any sufficiently large positive integer N , there exists a nonzero
polynomial PN ∈ Z[X0, X1] with partial degree ≤ N t0 in X0, partial degree ≤ N t1

in X1 and height H(PN ) ≤ eN , which satisfies
∣∣∣∣∣
(
Dk PN

)(∑̀

j=1

m j y j ,
∏̀

j=1

α
m j

j

)∣∣∣∣∣ ≤ exp(−N u)

for any integers k, m1, . . . ,m` in N with k ≤ N s0 and max{m1, . . . ,m`} ≤ N s1 .
Then, we have

trdegQQ(y1, . . . , y`, α1, . . . , α`) ≥ `.

The proof that Conjecture 15.36 implies Schanuel’s Conjecture uses Proposition
4.10. For the converse, D. Roy establishes the following criterion concerning the
values of the exponential function.

Theorem 15.38. (Roy). Let (y, α) ∈ C × C×, and let s0, s1, t0, t1, u be positive
real numbers satisfying the inequalities (15.37). Then the following conditions are
equivalent:

(a) The number αe−y is a root of unity.

(b) For any sufficiently large positive integer N , there exists a nonzero polynomial
QN ∈ Z[X0, X1] with partial degree ≤ N t0 in X0, partial degree ≤ N t1 in X1

and height H(QN ) ≤ eN such that
∣∣(Dk QN )(my, αm)

∣∣ ≤ exp(−N u)

for any k,m ∈ N with k ≤ N s0 and m ≤ N s1 .
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Again, the proof that (a) implies (b) uses Proposition 4.10. For the reverse
implication, D. Roy establishes a new interpolation lemma for holomorphic functions
of two complex variables.

For R > 0 denote by B(0, R) the polydisc

B(0, R) = {(z1, z2) ∈ C2 ; |z1| ≤ R, |z2| ≤ R}.
For a continuous function F : B(0, R)→ C, put

|F |R = sup{|F(z1, z2)| ; |z1| = |z2| = R}.

Proposition 15.39. Let {u, w} be a basis of C2, let v ∈ C2 and let a be the complex
number for which v − au ∈ Cw. Then there exists a constant c ≥ 1, which depends
only on u, v and w and satisfies the following property. For any integer N ≥ 1 such
that

min
{
|m + na| ; m, n ∈ Z, 0 < max{|m|, |n|} < N

}
≥ 2−N ,

for any pair (r, R) of real numbers with R ≥ 2r and r ≥ cN , and for any continuous
function F : B(0, R)→ C which is holomorphic inside B(0, R), we have

|F |r ≤
(cr

N

)N 2

max
0≤k<N2

0≤m,n<N

{
1

k!

∣∣∣Dk
wF(mu + nv)

∣∣∣ N k

}
+
(cr

R

)N 2

|F |R .

This statement includes a Schwarz’ Lemma for functions of two variables.
This work is a first step in a very promising new direction.

Exercises

Exercise 15.1.
a) Deduce from Proposition 15.2 the following result:

Let θ = (θ1, . . . , θm) be a m-tuple of complex numbers. There exists a positive constant
c = c(θ ) depending only on the m-tuple θ with the following property. If there exist a
polynomial f ∈ Z[X1, . . . , Xm] and an integer T > 0 such that deg f ≤ T , H( f ) ≤ eT

and
0 < | f (θ )| ≤ e−cT ,

then θ1, . . . , θm are not all algebraic.

Hint. Compare with Exercise 2.2.

b) Is this constant c(θ ) effectively computable in terms of θ?

Hint. The answer to question b) depends on your definition of effectively computable.
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Exercise 15.2.
a) Let ϑ be a real number, a/b and p/q two rational numbers, and κ a real number in the
interval 0 < κ < 1. Assume a/b 6= p/q and

∣∣∣ϑ − a

b

∣∣∣ ≤ κ

bq
·

Check ∣∣∣∣ϑ −
p

q

∣∣∣∣ ≥
1− κ

bq
·

b) Let ϑ be a real number, k a positive integer, c1, c2, τ1, τ2 positive real numbers. Define

κ =
k(τ1 + 1)

τ2
·

Assume that for each sufficiently large real number H , there exists a polynomial P ∈ Z[X ]
such that

deg P ≤ k, H(P) ≤ H

and
c1 H−τ1 ≤ |P(ϑ)| ≤ c2 H−τ2 .

Then there exists c0 > 0 such that, for any p/q ∈ Q with q > 0, we have
∣∣∣∣ϑ −

p

q

∣∣∣∣ ≥
c0

qκ
·

Hint. First deduce from Exercise 2.1 that ϑ is irrational. Next assume
∣∣∣∣ϑ −

p

q

∣∣∣∣ <
c0

qκ

for some p/q. Define H = (2c2qk)1/τ2 . Taking

0 < c0 ≤ min
1≤q≤q0

qκ
∣∣∣∣ϑ −

p

q

∣∣∣∣

for some suitable q0 ≥ 1 check that there is no loss of generality in assuming that H is
sufficiently large, say H ≥ H0. Deduce that such a P exists. Check (see for instance Lemma
13.10) ∣∣∣∣P(ϑ)− P

(
p

q

)∣∣∣∣ ≤ c3eH

∣∣∣∣ϑ −
p

q

∣∣∣∣

for some c3 > 0. Deduce that if c0 is sufficiently small, then P(p/q) is not zero. Finally use
the estimate |P(p/q)| ≥ 1/qk and conclude.

Remark. Compare with [FNe 1998], Chap. 2, § 4, Proposition 2.1.

Exercise 15.3.
a) Let θ be a transcendental number, γ an algebraic number of degree D and Mahler’s measure
M(γ ), and f ∈ Z[X] a polynomial of degree d and length L( f ) = L . Further let K be a positive
integer, K ≤ d. Define
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ε =
1

2
L−DM(γ )−d .

Assume f (γ ) 6= 0 and

max
0≤k<K

∣∣∣∣
1

k!

dk

dzk
f (θ )

∣∣∣∣ ≤
1

2
Lε.

Check
|θ − γ |K ≥ ε(d

K

)
(1 + |θ |)d−K

·

b) Include multiplicities in Proposition 15.3 – which amounts to extend part a) of the present
exercise to the simultaneous approximation of several numbers.

Exercise 15.4.
a) Combining Proposition 2.11 with Proposition 15.3, deduce a measure of linear independence
for two logarithms.

Hint. Use the explicit construction of f given either by § 2.5.3 or, if α1, α2 and β are real, by
§ 2.3.2 or § 2.4.2.

b) Improve the estimate obtained in a) for the special case m = 2 by using Exercise 15.3 in
place of Proposition 15.3.
c) Do the same, starting with Corollary 6.7, Proposition 10.3, Exercises 10.1.b and 15.3.b, for
a measure of linear independence of logarithms of algebraic numbers λ1, . . . , λm .

Exercise 15.5.
a) Let θ ∈ Cm be a m-tuple of complex numbers, c1, c2, u1 and u2 positive real numbers with
1 < u2 ≤ u1. Assume that there exists a sequence (Pn)n≥1 satisfying, for any sufficiently large
n,

deg Pn ≤ n, log H(Pn) ≤ n,

and
e−c1 N u1 ≤ |Pn(θ)| ≤ e−c2 N u2

.

Show that there exists a constant c3 > 0 such that the function

ψ(D, µ) = cµu1/(u2−1)

is a measure of simultaneous approximation for θ .
b) Assume that the hypotheses of a) are satisfied with the condition deg Pn ≤ n replaced by
deg Pn ≤ c0 where c0 is a positive constant. Show that the conclusion holds with

ψ(D, µ) = c max
{

Du1/(u2−1) ; (µ/D)u1
}
.

c) Assume that the hypotheses of a) are satisfied with the condition log H(Pn) ≤ n replaced
by log H(Pn) ≤ nu2 . Show that the conclusion holds with

ψ(D, µ) = c(D)µu1/(u2−1)

where c(D) is a positive function which depends only on D.

Exercise 15.6. Show that the error term D log H in the conclusion of Lemma 15.5 cannot be
omitted.

Hint. Consider the polynomial X D + aX − 1 where a and D are sufficiently large positive
integers; see [DiMi 1991].
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Exercise 15.7. Let θ1 and θ2 be two transcendental complex numbers.
a) Check that the following conditions are equivalent.

(i) The numbers θ1 and θ2 are algebraically dependent (over Q).
(i i) The two fields Q(θ1) and Q(θ2) have the same algebraic closure.

(i i i) The number θ1 is algebraic over the field Q(θ2).
(iv) The number θ2 is algebraic over the field Q(θ1).

b) Assume θ1 and θ2 are algebraically dependent. Show that there exists a constant c with the
following property. Let 81(D, H ) be a transcendence measure for θ1. Define

82(D, H ) = 81(cD, H c) + cD log(DH ).

Let P ∈ Z[X1, X2] be a polynomial of total degree ≤ D and usual height ≤ H such that
P(θ1, θ2) 6= 0. Then

|P(θ1, θ2)| ≥ exp{−82(D, H )}.

Hint. Let A ∈ Z[X1, X2] be an irreducible polynomial such that A(θ1, θ2) = 0. Introduce the
resultant with respect to X2 of A and P .

Deduce that 82(D, H ) is a transcendence measure for θ2.
c) Extend these results by considering a m-tuple of complex numbers (θ1, . . . , θm) and an
integer n in the range 1 ≤ n ≤ m assuming that each of the numbers θn+1, . . . , θm is algebraic
over the field Q(θ1, . . . , θn).

Hint. Compare with Proposition 15.19.

Exercise 15.8. Let ϕ:R>0 −→ R>0 be an increasing unbounded function.
a) Construct a complex number θ such that, for infinitely many integers T > 0, for any
algebraic number γ satisfying [Q(γ ) : Q] ≤ T and H(γ ) ≤ eT , the inequality

|θ − γ | ≥ e−Tϕ(T )

holds.

Hint. Without loss of generality we may assume that ϕ has an inverse ϕ−1. For sufficiently
large n, define ψ(n) = 1 + [2ϕ−1(2n)]. Choose

θ =
∑

k≥0

2−nk with nk+1 = nkψ(nk).

Check the property with T = nk+1/(2nk).

b) Give an example of a complex number θ satisfying the following property.

For any h ≥ 1 there exist infinitely many D > 0 such that, if γ is an algebraic number of
degree ≤ D and logarithmic height h(γ ) ≤ h, then

|θ − γ | ≥ e−h Dϕ(D).

c) Give an example of a complex number θ satisfying the following property.
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For any ε > 0 and any D ≥ 1 there exist infinitely many integers h > 0 such that, if γ is
an algebraic number of degree ≤ D and logarithmic height h(γ ) ≤ h, then

|θ − γ | ≥ e−(1+ε)Dh .

Hint. Choose
θ =

∑

k≥0

2−nk with
nk+1

nk
−→∞

and check the property for

h =
1 + nk+1

D(1 + ε)

and any sufficiently large k.

Exercise 15.9. (Following M. Laurent [Lau 1999]). Consider the Liouville number

ϑ =
∑

j≥1

2− j!.

For any integer k ≥ 1, define

βk =
k∑

j=1

2− j! and τk = k! log 2.

For any positive integer d and any positive real number µ, define

Adµ =
{
α ∈ Q ; [Q(α) : Q] ≤ d, log M(α) ≤ µ, |ϑ − α| ≤ edµ/2 000}

and

A∗dµ =

{
α ∈ Adµ ; [Q(α) : Q] ≥ d

4 000

}
·

a) Assume

k > 14 000, d > 4 000, µ ≥ 6 000 τk and µ + 2τkd ≤ τk+1.

Check that either Adµ = ∅ or else Adµ = {βk}. Check also A∗dµ = ∅.
If, moreover, µ ≥ 2 000 τk+1/d, then Adµ = ∅.
b) Assume

k > 14 000, 2 ≤ d ≤ k and 2τk ≤ µ ≤ 1 000 τk .

Check that A∗dµ contains a root of the polynomial

(X − βk−1)d + X − βk .

Exercise 15.10. Let ϑ be a real number.
a) Let d be a positive integer. Show that the following conditions are equivalent.
(i) The number ϑ either is transcendental or else is algebraic of degree > d (that is: the field
Q(ϑ) is not an algebraic number field of degree ≤ d).
(i i) For any c > 0 there exists an integer H > 0 and a polynomial f ∈ Z[X ] of degree ≤ d
and height ≤ H such that

0 < | f (ϑ)| ≤ c

H d−1
·
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(i i i) For any positive integer H there exists a polynomial f ∈ Z[X ] of degree≤ d and height
≤ H such that

0 < | f (ϑ)| ≤ 1 + |ϑ | + · · · + |ϑ |d
H d

·

b) Assume |ϑ | < 1. Let H ≥ 2 be a positive integer. Show that the following conditions are
equivalent.
(i) The number ϑ either is transcendental or else is algebraic of height H(ϑ) > H .
(i i) For any c > 0 there exists an integer d > 0 and a polynomial f ∈ Z[X ] of degree ≤ d
and height ≤ H such that

0 < | f (ϑ)| ≤ c

H d−1
·

(i i i) For any positive integer d there exists a polynomial f ∈ Z[X ] of degree ≤ d and height
≤ H such that

0 < | f (ϑ)| ≤ d + 1

H d
·

c) Extend these statements a) and b) to complex numbers, and also to tuples of either real or
complex numbers.
d) Produce similar results for algebraic approximation in place of polynomial approximation.
In other terms, statements a) and b) above are related to Proposition 15.2; one requires similar
statements related to Theorem 15.6.

Exercise 15.11. Show that there exists an absolute constant c > 0 with the following property.
For any complex number θ and any sufficiently large real number T (depending on θ ) there
is an algebraic number γ such that the number

t(γ ) = [Q(γ ) : Q] + log H(γ )

satisfies t(γ ) ≤ T and
|θ − γ | ≤ e−ct(γ )T .

Hint. This result is due to A. Durand [Dur 1990], p.94–96. See also [LauRoy 1999a],
Proposition 2.

Exercise 15.12. Show that the converse of Proposition 15.9 does not hold.

Hint. Let ϕ:N → N be an increasing function such that ϕ(D)/D→∞ as D tends to infinity.
Let 8:N → N be another positive valued increasing function such that

8(n + 1) ≥ 2ϕ(2n8(n))

for all n ≥ 0. For a ∈ R in the range 0 ≤ a < 1/2, define

ξa =
∑

n≥1

[na]2−8(n) and θa = 2ξa .

Check that the family {θa ; 0 ≤ a < 1/2} is algebraically independent. Moreover, for any
m ≥ 1 and any tuple (a1, . . . , am) of real numbers in the range [0, 1/2), show that there exist
infinitely many integers D > 0 having the following property: there exist algebraic numbers
γ1, . . . , γm of absolute logarithmic height ≤ 1 such that

[Q(γ1, . . . , γm) : Q] ≤ D and
m∑

i=1

|θai − γi | ≤ e−ϕ(D).
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Remark. Another solution is suggested in [RoyW 1997b].

Exercise 15.13. Let ϑ1, . . . , ϑm be real numbers, H and D positive integers. Show that there
exists a nonzero polynomial f ∈ Z[X1, . . . , Xm], of total degree ≤ D and usual height
H( f ) ≤ H , such that

| f (ϑ1, . . . , ϑm)| ≤ cH−(D+m
m )+1, where c =

∑

i1+···+im≤D

|ϑ i1
1 · · ·ϑ im

m |.

Deduce the following refinement of Proposition 15.2 for real tuples:

Let ϑ1, . . . , ϑm be real numbers. The following assertions are equivalent.
(i) The numbers ϑ1, . . . , ϑm are not all algebraic.
(i i) For any H ≥ 1 and D ≥ 1 there exists f ∈ Z[X ] of degree≤ D and height H( f ) ≤ H
such that

0 < | f (ϑ1, . . . , ϑm)| ≤ (1 + |ϑ | + · · · + |ϑ |D)H−D .

Exercise 15.14.
a) Let f ∈ C[X ] be a nonzero polynomial of degree d ≥ 2 with complex roots α1, . . . , αd

and leading coefficient a0 > 0:

f (X ) = a0(X − α1) · · · (X − αd ).

Check that the discriminant D( f ) of f

D( f ) = a2d−2
0

d∏

i=2

i−1∏

j=1

(αi − α j )
2

satisfies the estimate √|D( f )| ≤ dd/2M( f )d−1.

Hint. (See [M 1964]).
The absolute value of the d × d determinant

∣∣∣∣∣∣

1 α1 · · · αd−1
1

...
...

. . .
...

1 αd · · · αd−1
d

∣∣∣∣∣∣

is
d∏

i=2

i−1∏

j=1

|αi − α j |.

Estimate this number by means of Hadamard’s inequality (cf. the proof of Lemma 3.25).

b) Check, for any θ ∈ C and any integer s in the range 1 ≤ s ≤ d − 1,
√|D( f )| min

1≤k≤d
|θ − αk |s(s+1)/2 ≤ | f (θ )|s2ds−s(s+1)/2(d − s)(d−s)/2M( f )d−s−1.

Hint. (The case s = 1 is due to N. I. Fel’dman; see [F 1982], Lemma 1.7, Chap. 7 § 1. The
general case is due to G. Diaz [Di 1997b], Lemme 2).
Assume (without loss of generality)
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|θ − α1| ≤ |θ − α2| ≤ · · · ≤ |θ − αd |.
Consider the polynomial

g(X ) = a0(X − αs+1) · · · (X − αd ).

Since
√|D( f )| = ad−1

0

d∏

i=2

i−1∏

j=1

|αi − α j |,

we can write √|D( f )| = as
01
√|D(g)|

where
√|D(g)| = ad−s−1

0

d∏

i=s+2

i−1∏

j=s+1

|αi − α j |.

and

1 =
s∏

j=1

d∏

i= j+1

|αi − α j |

is a product of ds − s(s + 1)/2 factors. From the inequalities

|α1 − α j | ≤ 2|θ − α j | and |θ − α1|s−i+1 ≤ |θ − αi |s−i+1

for 1 ≤ j ≤ d and 1 ≤ i ≤ s, deduce

as1
(
2|θ − α1|

)s(s+1)/2 ≤ 2ds | f (θ )|s .

c) Let f ∈ Z[X ] be a nonzero polynomial of degree ≤ d without multiple root and let θ ∈ C
satisfy | f (θ)| ≤ 1. Denote by γ a root of f at minimal distance of θ . Check, for any integer
s ≥ 1,

|θ − γ |s(s+1)/2 ≤ 2dsdd/2M( f )d | f (θ )|s .

Hint. See G. Diaz [Di 1997b].

Exercise 15.15. Define

ψ(D, µ) = D1/2(µ + D log D)µ1/2(log D)−1.

a) From Exercise 14.4.b, deduce that if the number eπ
2

is algebraic, then there is an absolute
constant c > 0 such that cψ(D, µ) is a measure of simultaneous approximation for the two
numbers e and π . Therefore, under the assumption that eπ

2
is algebraic, it follows that e and

π are algebraically independent.
b) Assume Theorem 14.6 holds also when the matrix

(
log Ai j

)
has rank 2 instead of 1. Show

that cψ(D, µ) is a measure of simultaneous approximation for the three numbers π , e and
eπ

2
. Deduce that two at least of these numbers are algebraically independent.

Remark. This result is not yet proved: the best known measure of simultaneous approximation
for the three numbers π , e and eπ

2
is given by Exercise 14.4.b, namely

cµ(µ + D log D)(log D)−1.
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c) Let λ be a nonzero element of L. Using Exercise 14.4.d, show that if the number eλ
2

is
algebraic then cψ(D, µ) (with a suitable constant c depending only on λ) is a measure of
simultaneous approximation for the two numbers λ and eλ

3
. Deduce that if the number eλ

2
is

algebraic, then the two numbers λ and eλ
3

are algebraically independent (cf [Br 1974b] and
[W 1974]).
d) Assume that in Theorem 14.6 the assumption that the matrix

(
log Ai j

)
has rank 1 can

be omitted. Deduce that for any nonzero α ∈ Q and any nonzero logarithm logα of α, the
transcendence degree of the field

Q
(

logα, αlogα, α(logα)2)

is ≥ 2.
e) Let λ1, λ2 be two elements of L which are linearly independent over Q and let θ be
a complex irrational number which satisfies a linear independence measure condition. Show
thatψ(D, µ) is a measure of simultaneous approximation for the numbers λ1, λ2, θ , eθλ1 , eθλ2 .
Deduce that two at least of these five numbers are algebraically independent.

Hint. See Example 14.16.

f) Using Theorem 15.6, show that ψ cannot be a measure of transcendence for e. Deduce that
for any r ∈ Q×, one at least of the two numbers er , e2r is transcendental

Hint. Take in e)
λ1 = er , λ2 = e2r , θ = e−r ,

so that
eθλ1 = e, eθλ2 = eer

.

g) For β ∈ Q , β 6= 0 and λ ∈ L, λ 6= 0, assuming that the number β−1λ2 is in L, show that the
function ψ is a measure of simultaneous approximation for the two numbers λ and eβ , hence
they are algebraically independent

Hint. Choose in e)

λ1 = λ, λ2 = β−1λ2, θ =
β

λ
·

h) Let λ1, λ2, λ3, λ4 be nonzero elements of L such that λ1λ4 = λ2λ3. Assume both numbers
λ1/λ2 and λ1/λ3 are irrational. Deduce from Exercise 14.4.f that two at least of the four
numbers λ1, λ2, λ3, λ4 are algebraically independent.
i) Compare these results of algebraic independence with [Br 1974b] and [W 1974].

Exercise 15.16. Let λ ∈ L\{0} be a nonzero logarithm of an algebraic number and b ∈ C \Q
be a complex irrational number.
a) Deduce from the four exponentials Conjecture that one at least of the two numbers eλb, eλ/b

is transcendental.
b) Prove the conclusion unconditionally (i.e. without assuming the four exponentials Conjec-
ture) in each of the following cases:

(i) b = λ′/β with λ′ ∈ L and β ∈ Q .
(i i) b and λ are algebraically dependent.

c) Assume λ 6∈ R. Show that either e|λ| is transcendental, or λ and λ are algebraically
independent.

Hint. See [Di 1997a].
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[C 1874] Cantor, G. – Über eine Eigenschaft der Inbegriffes aller reellen algebrais-
chen Zahlen. J. reine angew. Math., 77 (1874), 258–262=Ges. Abh., 1932,
116–118.

[CaStr 1982] Cantor, D. C.; Straus, E. G. – On a conjecture of D. H. Lehmer. Acta Arith.
42 (1982/83), no. 1, 97–100. Correction, ibid., 42 (1983), no. 3, 327.

[Cas 1957] Cassels, J. W. S. – An Introduction to Diophantine Approximation.
Cambridge Tracts in Mathematics and Mathematical Physics, No. 45,
Cambridge University Press, New York, 1957. Reprint of the 1957 edition:
Hafner Publishing Co., New York, 1972.

[Ch 1984] Chudnovsky, G. V. – Contributions to the theory of transcendental
numbers. Translated from the Russian by G. A. Kandall. Math. Surveys
Monographs, 19, Amer. Math. Soc., Providence, R.I., 1984.

[Co 1997] Corvaja, P. – Autour du théorème de Roth. Monatsh. Math. 124 (1997),
no. 2, 147–175.

[D 1995] David, S. – Minorations de formes linéaires de logarithmes elliptiques.
Mém. Soc. Math. France (N.S.) No. 62 (1995).

[DP 1999] David, S.; Philippon, P. – Minorations des hauteurs normalisées des sous-
variétés des tores, Ann. Scuola Norm. Pisa (4) 28 (1999), 489-543.

[Di 1989] Diaz, G. – Grands degrés de transcendance pour des familles d’exponen-
tielles. J. Number Theory 31 (1989), no. 1, 1–23.

[Di 1997a] Diaz, G. – La conjecture des quatre exponentielles et les conjectures de D.
Bertrand sur la fonction modulaire. J. Théor. Nombres Bordeaux 9 (1997),
no. 1, 229–245.

[Di 1997b] Diaz, G. – Une nouvelle propriété d’approximation diophantienne. C. R.
Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 969–972.

[DiMi 1991] Diaz, G.; Mignotte, M. – Passage d’une mesure d’approximation à une
mesure de transcendance. C. R. Math. Rep. Acad. Sci. Canada 13 (1991),
no. 4, 131–134.

[Do 1978] Dobrowolski, E. – On the maximal modulus of conjugates of an algebraic
integer. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978),
no. 4, 291–292.

[Do 1979] Dobrowolski, E. – On a question of Lehmer and the number of irreducible
factors of a polynomial. Acta Arith. 34 (1979), no. 4, 391–401.

[Dpp 1991] Dong, Pingping – Minoration de combinaisons linéaires de deux loga-
rithmes p-adiques. Ann. Fac. Sci. Toulouse Math. (5) 12 (1991), no. 2,
195–250.

[Dpp 1992] Dong, Pingping – Minorations de combinaisons linéaires de logarithmes
p-adiques de nombres algébriques. C. R. Acad. Sci. Paris Sér. I Math. 315
(1992), no. 5, 503–506.

[Dpp 1995] Dong, Pingping – Minorations de combinaisons linéaires de logarithmes
p-adiques de nombres algébriques. Dissertationes Math. (Rozprawy Mat.)
343 (1995), 97 pp.

[Du 1993] Dubickas, A. – On a conjecture of A. Schinzel and H. Zassenhaus. Acta
Arith. 63 (1993), no. 1, 15–20.

[Du 1995] Dubickas, A. – On algebraic numbers of small measure. Liet. Mat. Rink.
35 (1995), no. 4, 421–431; Engl. transl., Lithuanian Math. J. 35 (1995),
no. 4, 333–342 (1996)



      

618 References

[Dur 1990] Durand, A. – Quelques aspects de la théorie analytique des polynômes. I,
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