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Fascicule 3

Valeurs spéciales de polylogarithmes multiples

par

M. WALDSCHMIDT

Mélanges, automates, intégrales de Chen et polylogarithmes

Ce troisième fascicule est consacré au produit de mélange de deux séries, aux d’automates,
aux intégrales de Chen et aux relations de mélanges des polylogarithmes multiples en une
variable.

1. Mélanges et automates

Les références principales pour l’interprétation du produit de mélange de deux séries en
termes d’automates et les applications aux identités syntaxiques sont [Lo 2002] 1.3 et [J 1980].

Dans le cours du 14 mars les exemples suivant sont traités:

1. Mélange de deux éléments de K < X >

2. L’identité x∗0x(x1 · · ·xn) = x∗0x1x∗0x2 · · ·x∗0xnx∗0
3. L’identité (x0 + x1)∗ = x∗0xx∗1
4. L’identité (1 + x0)xx∗0 = (x∗0)2

5. L’identité x∗0x(x0x1)∗ = (x0 + x0x∗0x1)∗ = (2x0 + x0x1 − x2
0)
∗(1− x0)

6. L’identité (x0x1)∗x(−x0x1)∗ = (−4x2
0x

2
1)
∗ (cet exemple est détaillé ci-dessous)

There is a description of the shuffle product in terms of automata due to Schutzenberger
(see [R 1993]). Here is an example of a so-called “syntaxic” identity (Minh-Petitot):

Lemma 1.1. The following identity holds:

(x0x1)
!x(−x0x1)

! = (−4x2
0x

2
1)

!.

Sketch of proof. Following [Lo 2002], we associate to a finite automaton the series in the
algebra K << X >> which is the sum of the labels of its successful paths. Hence the series
associated to the automaton ⇐=

=⇒ 1
x1←−−−−

−−−−→
x0

2
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is
S1 = e + x0x1 + (x0x1)

2 + · · · + (x0x1)
n + · · · = (x0x1)

!,

while the series associated to ⇐=

=⇒ A
x1←−−−−

−−−−→−x0

B

is
SA = e− x0x1 + (x0x1)

2 + · · · + (−x0x1)
n + · · · = (−x0x1)

!.

The following automaton is the cartesian product of the automata associated with S1 and SA:

⇐=

=⇒ 1A
x1←−−−−−−−−→
x0

2A

−x0

" # x1 −x0

" # x1

1B
x1←−−−−−−−−→
x0

2B

hence the associated series S1A is the shuffle product S1A = S1xSA. One computes it by
solving a system of linear (noncommutative) equations as follows. Define also S1B , S2A and
S2B as the series of labels of the paths starting at the corresponding state and ending at a
terminal state. Then

S1A = e− x0S1B + x0S2A,

S1B = x1S1A + x0S2B ,

S2A = x1S1A − x0S2B ,

S2B = x1S1B + x1S2A.

In general, if Σp is the series associated with a state p, and if the edges with origin p are
xi : p → pi (1 ≤ i ≤ m), then

Σp =

{
x1Σp1 + · · · + xmΣpm + e if p is a terminal state,
x1Σp1 + · · · + xmΣpm otherwise.

One could as well for each state p consider the series Σ′p of labels of the paths starting at an
initial state and ending at p, and solve the corresponding system

Σ′p =

{
Σ′q1

y1 + · · · + Σ′q!
y" + e if p is an initial state,

Σ′q1
y1 + · · · + Σ′q!

y" otherwise,

where yj : qj → p (1 ≤ j ≤ !) are the edges with end p.
In the present situation one deduces

S1A = e− x0(S1B − S2A), S1B − S2A = 2x0S2B ,

S2B = x1(S1B + S2A), S1B + S2A = 2x1S1A

and therefore
S1A = e− 4x2

0x
2
1S1A,

which completes the proof of Lemma 1.1.
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2. Chen Iterated Integrals

Quelques références sur les intégrales itérées de Chen:

• [Ch 1954], [Ch 1971]

• [K 1995] Chap. XIX, § 11)

• [Lo 2002] exercice 6.3.8

• Le § 2 de [G 1997] et le § 2 de [G 1998]

• et les travaux de Ree (1958) et Fliess (1981) (voir les références dans [Lo 2002])

Chen iterated integrals are defined by induction as follows. Let ϕ1, . . . ,ϕp be holomorphic
differential forms on a simply connected open subset D of the complex plane and let x and y
be two elements in D. Define, as usual,

∫ y
x ϕ1 as the value, at y, of the primitive of ϕ1 which

vanishes at x. Next, by induction on p, define

∫ y

x
ϕ1 · · ·ϕp =

∫ y

x
ϕ1(t)

∫ t

x
ϕ2 · · ·ϕp.

By means of a change of variables

t '−→ x + t(y − x)

one can assume x = 0, y = 1 and D contains the real segment [0, 1]. In this case the integral
is nothing else than ∫

∆p

ϕ1(t1)ϕ2(t2) · · ·ϕp(tp),

where the domain of integration ∆p is the simplex of Rp defined by

∆p =
{
(t1, . . . , tp) ∈ Rp , 1 > t1 > · · · > tp > 0

}
.

The next statement is due to Kuo-Tsai Chen [Ch 1954] and [Ch 1971]; see also [B2 2001],
§ 2, Prop. 1 and [K 1995].

Lemma 2.1. For complex numbers x0, x1 and x, and differential forms ϕ1, . . . ,ϕp,

∫ x1

x0

ϕ1 · · ·ϕp =
p∑

j=0

∫ x1

x
ϕ1 · · ·ϕj

∫ x

x0

ϕj+1 · · ·ϕp.
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Démonstration. As we have seen, using if necessary a change of variables, we may assume
x0 and x1 are real with x0 < x1, and the differential forms are holomorphic on an open set
containing the real segment [x0, x1]. The simplex

∆p(x0, x1) =
{
(t1, . . . , tp) ; x1 > t1 > · · · > tp > x0

}
is the disjoint union of the Cartesian products

∆j(x, x1)×∆p−j(x0, x) =
{
(t1, . . . , tp) ; x1 > t1 > · · · > tj > x > tj+1 > · · · > tp > x0

}
for j = 0, 1, . . . , p, hence∫ x1

x0

ϕ1 · · ·ϕp =
p∑

j=0

∫
∆j(x,x1)×∆p−j(x0,x)

ϕ1 · · ·ϕp

and ∫
∆j(x,x1)×∆p−j(x0,x)

ϕ1 · · ·ϕp =

∫ x1

x
ϕ1 · · ·ϕj

∫ x

x0

ϕj+1 · · ·ϕp.

Remark. The result does not hold with∫ x1

x
ϕ1 · · ·ϕj

∫ x

x0

ϕj+1 · · ·ϕp.

For instance ∫ 1

0
t1dt1dt2 =

1

3
,

∫ 1/2

0
t1dt1dt2 =

1

24
,

∫ 1

1/2
t1dt1dt2 =

5

48
,

and ∫ 1

1/2
t1dt1

∫ 1/2

0
dt2 =

3

16
,

∫ 1/2

0
t1dt1

∫ 1

1/2
dt2 =

1

16
·

One should be careful with the definition of Chen integral, where the conventions differ from
one author to another (compare our definition with [K 1995]).

The product of two integrals is a Chen integral, and more generally the product of two
Chen integrals is a Chen integral. This is where the shuffle comes in.

Lemme 2.2. Let ϕ1, . . . ,ϕp+q be differential forms with p ≥ 0 and q ≥ 0. Then∫ 1

0
ϕ1 · · ·ϕp

∫ 1

0
ϕp+1 · · ·ϕp+q =

∫ 1

0
ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q.
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Démonstration. We assume, as we may without loss of generality, x0 = 0 and x1 = 1.
Define ∆′

p,q as the subset of ∆p × ∆q of those elements (z1, . . . , zp+q) for which we have
zi += zj for 1 ≤ i ≤ p < zj ≤ p + q. Hence∫ 1

0
ϕ1 · · ·ϕp

∫ 1

0
ϕp+1 · · ·ϕp+q =

∫
∆p×∆q

ϕ1 · · ·ϕp+q =

∫
∆′

p,q

ϕ1 · · ·ϕp+q.

Now ∆′
p,q is the disjoint union of the subsets ∆σ

p,q defined by

∆σ
p,q =

{
(t1, . . . , tp+q) ; 1 > tσ(1) > · · · > tσ(p+q) > 0

}
,

for σ running over Sp,q. Recall (see § 1.4) that Sp,q is the set of permutations of {1, . . . , p+q}
satisfying

σ(1) < σ(2) < · · · < σ(p) et σ(p + 1) < σ(p + 2) < · · · < σ(p + q).

Hence ∫
∆′

p,q

ϕ1 · · ·ϕp+q =
∑

σ∈Sp,q

∫
∆σ

p,q

ϕ1 · · ·ϕp+q.

Since ∫
∆σ

p,q

ϕ1 · · ·ϕp+q =

∫ 1

0
ϕσ(1) · · ·ϕσ(p+q)

and ∑
σ∈Sp,q

ϕσ(1) · · ·ϕσ(p+q) = ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q,

Lemma 2.2 follows.

The next easy result will be used to prove a duality theorem (§ 8.2) relating the multiple
zeta values.

Lemma 2.3. Let ϕ1, . . . ,ϕp be differential forms which are holomorphic in a simply connected
open set D and let x0, x1 two complex numbers in D. Then∫ x1

x0

ϕ1 · · ·ϕp = (−1)p

∫ x0

x1

ϕp · · ·ϕ1.

Démonstration. Assuming (without loss of generality) x0 = 0 and x1 = 1, the result
follows by means of the change of variables

tj '→ 1− tp+1−j (1 ≤ j ≤ p).
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3. Polylogarithms and Zeta Values

In this section, s is a positive integer and z a complex number. In general we assume
|z| < 1, unless s ≥ 2 where the condition |z| ≤ 1 will turn out to be sufficient. Define

Lis(z) =
∑
n≥1

zn

ns
·

For s ≥ 2 we have Lis(1) = ζ(s). An equivalent definition for these functions Lis is given by
induction on s, starting from

(3.1) Li1(z) =
∑
n≥1

zn

n
= − log(1− z),

and using the differential equations

z
d

dz
Lis(z) = Lis−1(z) (s ≥ 2),

together with the initial conditions Lis(0) = 0.
Therefore Lis is given by integral formulae as follows. For s = 1 we can write

Li1(z) = − log(1− z) =

∫ z

0

dt

1− t
,

where the complex integral is over any path from 0 to z inside the unit circle. Following
[L 1981](∗), we shall denote by log z the logarithm of a nonzero complex number z with
argument in (−π,+π], so that for instance log(−1) = iπ, and we extend the definition of
Li1(z) for any z ∈ C \ {1} by setting Li1(z) = − log(1− z).

From the differential equations one deduces (cf. [L 1981], (1.3))

Li2(z) =

∫ z

0
Li1(t)

dt

t
=

∫ z

0

dt

t

∫ t

0

du

1− u
,

and by induction, for s ≥ 2, (cf. [L 1981], (7.2))

Lis(z) =

∫ z

0
Lis−1(t)

dt

t
=

∫ z

0

dt1
t1

∫ t1

0

dt2
t2

· · ·
∫ ts−2

0

dts−1

ts−1

∫ ts−1

0

dts
1− ts

·

These formulae are valid for |z| < 1, but for s ≥ 2 they also yield a definition of Lis(z) as an
analytic function in any simply connected domain contained in C \ {0, 1}.

(∗) In fact one should consider not only one fixed determination of the logarithm, and of each
Lis, but all of them; this gives rise to variation of Hodge structures which yield to deep and
quite interesting studies. See for instance § 2 of [G 1997], or the paper Function Theory of
polylogarithms by S. Bloch, Chap. 12 of [L 1991], pp. 275–285.
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4. Multiple Polylogarithms in One Variable, Multiple Zeta Values and Shuffle

Let k, s1, . . . , sk be positive integers. Write s in place of (s1, . . . , sk). One defines a
complex function of one variable by

Lis(z) =
∑

n1>n2>···>nk≥1

zn1

ns1
1 · · ·nsk

k

·

This function is analytic in the open unit disc, and, in the case s1 ≥ 2, it is also continuous
on the closed unit disc. In the latter case we have

ζ(s) = Lis(1).

For k = 1, we recover the functions studied in § 1. In the same way as in § 1, one can also
define in an equivalent way these functions by induction on the number p = s1 + · · ·+ sk (the
weight of s) as follows. If s1 ≥ 2, we plainly have

(4.1) z
d

dz
Li(s1,...,sk)(z) = Li(s1−1,s2,...,sk)(z).

If s1 = 1, writing
∞∑

n1=n2+1

zn1−n2−1 =
1

1− z
,

we find

(4.2) (1− z)
d

dz
Li(1,s2,...,sk)(z) = Li(s2,...,sk)(z).

Together with the initial conditions Lis(0) = 0, these differential equations (4.1) and (4.2)
determine all the Lis.

For s = (s1, . . . , sk), we set

ωs = ωs1−1
0 ω1 · · ·ωsk−1

0 ω1.

This is a non-commutative product of differential forms, the total number of factors ωi is the
weight p of s, and the number of factors ω1 is the depth k of s.

Using Chen’s integrals, we can write

(4.3) Lis(z) =

∫ z

0
ωs.

Example 1. For any n ≥ 1 we have

(4.4) Li{1}n
(z) =

1

n!

(− log(1− z)
)n

.
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For n = 1 this is (3.1). By induction, (4.4) follows from (4.2):

Li{1}n
(z) =

∫ z

0
Li{1}n−1(t)

dt

1− t
·

An equivalent formulation for (4.4) is given by writing that the generating series is

(4.5)
∞∑

n=0

Li{1}n
(z)xn = (1− z)−x.

The constant term Li{1}0(z) is 1.
A direct proof of (4.5) can also be obtained (see Theorem 8.1 of [B3L 2001]) by expanding

the polynomial

(−1)m

(−x

m

)
=

x

m
·

m−1∏
i=1

(
1 +

x

i

)
using

m−1∏
i=1

(
1 +

x

i

)
=

∑
n≥0

xn
∑

i1,...,in
m>i1>···>in≥1

1

i1 · · · in ·

From (4.4) one deduces

(−1)nLi{1}n
(−1) = Li{1}n

(1/2) =
1

n!
(log 2)n,

which generalize the relations

∞∑
m=1

(−1)m−1

m
=

∞∑
m=1

1

m2m
= log 2.

Remark. Thanks to the Binomial Theorem (see for instance [GR 1990], (1.3.1)), we also have

(1− z)−x = 2F1

(
x , γ

γ

∣∣∣z)
= 1F0

(
x

−
∣∣∣z)

.

Example 2. Catalan constant is defined as

G =
∑
n≥0

(−1)n

(2n + 1)2
·

Since

ik − (−i)k =

 0 if k ≡ 0 or 2 (mod 4)
2i if k ≡ 1 (mod 4)
−2i if k ≡ −1 (mod 4),
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we also have
Li2(i)− Li2(−i) = 2iG.

From

Li2(1)− Li2(−1) =
3

2
ζ(2) = 2

∑
k≥0

1

(2k + 1)2

we deduce

Li2(i) + Li2(−i) = −1

4
ζ(2),

hence

Li2(i) = −1

8
ζ(2) + iG.

Example 3. Let us check (see [B3L 2001], Th. 10.3)

(4.6) Li(2,1)(−1) =
1

8
ζ(2, 1).

We have

Li(2,1)(z) =

∫ z

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
1− t3

=

∫ z

0

dt1
t1

∫ t1

0
− log(1− t2)

dt2
1− t2

=
1

2

∫ z

0

(
log(1− t)

)2 dt

t
·

Denote by J(z) this function. We claim:

(4.7) J(−z) = −J(z) +
1

4
J(z2) + J

(
2z

z + 1

)
− 1

8
J

(
4z

(z + 1)2

)
.

Since the right hand side takes the value J(1)/8 at z = 1, this will complete the proof of
(4.6). Now (4.7) follows from the fact that both sides vanish at z = 0 and have the same
derivative.

We have seen in § 3 (cf. (4.3)) that for s of weight p, Lis(z) is the Chen integral from 0
to z of a product of p terms

ωs = ωs1−1
0 ω1 · · ·ωsk−1

0 ω1.

Define ys = xs−1
0 x1 for s ≥ 1 and

ys = ys1 · · · ysk = xs1−1
0 x1 · · ·xsk−1

0 x1

for s = (s1, . . . , sk). Further, introduce the notation:

(4.8) L̂iys(z) = Lis(z).
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This defines L̂ix(z) when x ∈ X∗x1 is a word in x0 and x1 which ends with x1. In other terms

L̂ix(z) =

∫ z

0
ωε1 · · ·ωεp

when x = xε1 · · ·xεp , where each εi is 0 or 1, and εp = 1 (otherwise the integral does not
converge). If k is the number of x1, we define positive integers s1, . . . , sk by writing

x = xs1−1
0 x1 · · ·xsk−1

0 x1,

and then
L̂ix(z) = Lis(z), ζ̂(x) = ζ(s).

By linearity we extend the definition of L̂iw(z) and ζ̂(w) to H1 = Qe + Q〈x0, x1〉x1: for
convergence, we need that each monomial ends with x1 (however see § 6)

L̂iS(z) =
∑

w∈X∗
(S|w)L̂iw(z) for S =

∑
w∈X∗

(S|w)w ∈ H1.

Consider now the product of two Lis with the same argument z:

Lis(z)Lis′(z) =

∫ z

0
ys

∫ z

0
ys′ .

Lemme 2.2 shows that the right hand side can be written as a linear combination of Chen
integrals. We repeat the proof of this lemma for our application.

For simplicity consider the special case where z is real, 0 < z < 1. One may deduce the
general case of a complex z either by modifying suitably the argument, or else by using analytic
continuation.

The product ysys′ is a word of weight p + p′, when p is the weight of s and p′ the weight
of s′. For 0 < z < 1 we integrate over the Cartesian product

∆p(z)×∆p′(z) ={
(t1, . . . , tp, u1, . . . , up′) ; z > t1 > · · · > tp > 0, z > u1 > · · · > up′ > 0

}
.

Clearly, this product is a disjoint union of simplices (we may ignore the tuples for which one
ti is equal to one uj , since they do not contribute to the integral). A few special cases were
already given in § 0. For instance, when k = k′ = 1 and s1 = s′1 = 1, we get

(
Li1(z)

)2
=

∫ z

0

dt

1− t

∫ z

0

du

1− u
=

∫
z>t>u>0

ω2
1 +

∫
z>u>t>0

ω2
1 = 2Li(1,1)(z).

By induction, for n ≥ 1, we infer

Li{1}n−1(z)Li1(z) = nLi{1}n
(z),
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hence

Li{1}n
(z) =

1

n!

(
Li1(z)

)n

(cf. (4.4)).
In the next example we keep k = k′ = 1 and s1 = 1, but with s2 = 2; we get

Li1(z)Li2(z) = Li(1,2)(z) + 2Li(2,1)(z).

For our last example we take k = k′ = 1, s1 = s′1 = 2 and we get

(
Li2(z)

)2
=

∫
z>t1>t2>0

ω0(t1)ω1(t2)

∫
z>u1>u2>0

ω0(u1)ω1(u2)

= 2Li(2,2)(z) + 4Li(3,1)(z).

This shows that the product Lis(z)Lis′(z) is a linear combination of Liσ(z), with positive
coefficients, the sum of the coefficients being the binomial coefficient (p+p′)!/p!p′!.According
to the definition of the shuffle product (§ 1), if both w and w′ end with x1, then∫ z

0
w ·

∫ z

0
w′ =

∫ z

0
wxw′.

From Lemma 2.2 one readily deduces:

Proposition 4.9. For any w and w′ in Q〈x0, x1〉x1,

(4.10) L̂iw(z)L̂iw′(z) = L̂iwxw′(z).

In particular, for z = 1, we find

(4.11) ζ̂(ys)ζ̂(ys′) = ζ̂(ysxys′)

whenever s1 ≥ 2 and s′1 ≥ 2.
These are the first standard relations between multiple zeta values.
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