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Abstract. We establish several new measures of simultaneous algebraic approximations for families of complex
numbers(θ1, . . . , θn) related to the classical exponential and elliptic functions. These measures are completely
explicit in terms of the degree and height of the algebraic approximations. In some instances, they imply that the
fieldQ(θ1, . . . , θn) has transcendance degree≥2 overQ. This approach which is ultimately based on the technique
of interpolation determinants provides an alternative to Gel’fond’s transcendence criterion. We also formulate
a conjecture about simultaneous algebraic approximation which would yield higher transcendance degrees from
these measures.
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Introduction

For a complex numberθ , Dirichlet’s box principle provides a polynomial with rational
integer coefficients whose value at the pointθ is “small”. If the numberθ is algebraic, this
polynomial may be a multiple of the minimal polynomial ofθ overZ. On the other hand, if
θ is transcendental, one gets an algebraic approximation toθ by taking a root of this poly-
nomial. More generally, whenθ1, . . . , θn are complex numbers in a field of transcendence
degree 1 overQ, it is possible to construct sequences(γ (N)1 , . . . , γ (N)n ), (N ≥ 1) of simul-
taneous algebraic approximations toθ1, . . . , θn. Therefore if we can prove forθ1, . . . , θn

a sharp measure of simultaneous approximation, namely if we can bound from below the
quantity max1≤i≤n |θi − γi | in terms of the heights ofγi and the degree of the number field
Q(γ1, . . . , γn), one deduces that at least two of the numbersθi are algebraically independent.

∗Work of this author partially supported by NSERC and CICMA.
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This argument enables one to deduce algebraic independence results from diophantine
estimates without using Gel’fond’s transcendence criterion. We develop this point of view
by considering a few examples. For instance we deduce Gel’fond’s result, which states that
the two numbers 2

3√2 and 2
3√4 are algebraically independent, from the following diophantine

estimate:if γ1 andγ2 are algebraic numbers with bounded absolute logarithmic height,

and if D denotes the degree of the number fieldQ(γ1, γ2) overQ, then

|2 3√2− γ1| + |2
3√4− γ2| > exp{−C D2(log D)−1/2},

where the constant C depends only on the heights of the numbersγ1 andγ2. The main point
in this lower bound is that the function inside the exponent is bounded byo(D2). In the first
section, we produce a criterion which yields the algebraic independence of two numbers,
provided that they satisfy a suitable measure of simultaneous approximation. In Section 2 we
consider values of the usual exponential function: for numbers of the shapeexi yj , we obtain
a measure of simultaneous approximation, assuming that the complex numbersxi as well as
yj satisfy a “technical” condition (namely a measure of linear independence). This technical
hypothesis cannot be omitted, as we show with an example involving Liouville numbers.
Also in Section 2 we give a diophantine estimate related to the Lindemann-Weierstraß
theorem:for Q-linearly independent algebraic numbersβ1, . . . , βn, there exists a positive
constant C= C(β1, . . . , βn) such that, if γ1, . . . , γn are algebraic numbers satisfying

[Q(γ1, . . . , γn) : Q] ≤ D and max
1≤i≤n

h(γ j ) ≤ h,

then

|eβ1 − γ1| + · · · + |eβn − γn|
≥ exp

{−C D1+(1/n)h(logh+ D log D)(logh+ log D)−1
}
.

The best known measures of simultaneous approximation for pairs of numbers like(π, eπ ),
or (e, π), are not yet sufficient to deduce algebraic independence. The same is true for
Q-linearly independent logarithms of algebraic numbers logα1, . . . , logαn. However we
get a sufficiently sharp estimate which implies a result of algebraic independence if we
assume that there exists a nonzero homogeneous quadratic polynomialQ which vanishes at
the point(logα1, . . . , logαn): under this assumption, we prove that for algebraic numbers
γ1, . . . , γn with logarithmic height≤ log D in a field of degree≤D overQ, we have

n∑
j=1

| logα j − γ j | ≥ e−C D2
,

whereC depends only on logα1, . . . , logαn andQ.
The next Section (3) deals with elliptic functions. We replace the usual exponential

function exp(z) = ez by a Weierstraß elliptic function℘. Finally in Section 4 we propose
a measure of simultaneous approximation for the two numbersπ and0(1/4) by algebraic
numbers of bounded absolute logarithmic height:

|π − γ1| + |0(1/4)− γ2| > exp{−C D3/2 log D}.
The second part of this paper (Sections 5 to 11) includes the proofs.
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Here we consider only complex numbers, but the same method yields diophantine ap-
proximation estimates as well as results of algebraic independence forp-adic fields also.

1. Simultaneous approximation of complex numbers

a) Algebraic approximation to a complex number

Let θ be a complex number. Using Dirichlet’s box principle, we deduce that for any integer
D ≥ 1 and any real numberH ≥ 1, there exists a nonzero polynomialf ∈ Z[X], of degree
≤D and usual height (maximum absolute value of its coefficients)≤H , such that

| f (θ)| ≤
√

2(1+ |θ | + · · · + |θ |D)H−(D−1)/2.

We shall keep in mind only the weaker assertion:for anyθ ∈ C, there exist three positive
constants D0, H0 and c1 such that, for any D ≥ D0 and any H ≥ H0, there exists a
polynomial f ∈ Z[X], f 6= 0, of degree≤D and usual height≤H satisfying

| f (θ)| ≤ e−c1D log H

(admissible values areD0 = 2, H0 = 185 max{1, |θ |}20 andc1 = 1/5).
On the other hand, if the numberθ is algebraic, one deduces from Liouville’s inequality

that for any nonzero polynomialf ∈Z[X] of degree≤D and usual height≤H , either
f (θ) = 0, or else

| f (θ)| ≥ e−c2(D+log H),

with c2 = d+ log H(θ), whered denotes the degree ofθ andH(θ) its usual height (which
is the usual height of its minimal polynomial overZ). Therefore, providedD and H are
sufficiently large, the polynomial which arises from the pigeonhole principle vanishes atθ

(assumingθ is algebraic).
Liouville’s inequality can be phrased in terms of diophantine approximation by algebraic

numbers:if θ is an algebraic number, there exists a constant c3 > 0 such that, for any
algebraic numberγ of degree≤D and usual height≤H with γ 6= θ, the inequality

|θ − γ | ≥ e−c3(D+log H)

holds.
Sometimes it is more convenient to use the absolute logarithmic height h(γ ) instead of

the usual heightH(γ ): if the minimal polynomial ofγ overZ is

a0Xd + a1Xd−1+ · · · + ad−1X + ad = a0

d∏
j=1

(X − γ j )

with d = [Q(γ ) : Q] anda0 > 0, Mahler’s measureof γ is

M(γ ) = a0

d∏
j=1

max{1, |γ j |},
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and theabsolute logarithmic heightof γ is

h(γ ) = 1

d
log M(γ ).

In order to get an upper bound for h(γ ), we need an upper bound for M(γ ), and alower
bound ford. This is the reason why we use different letters to denote the exact degreed of
γ and an upper boundD for the same degree. Using the estimates

2−d H(γ ) ≤ M(γ )≤ H(γ )
√

d + 1,

we deduce (cf. [32], Lemma 3.11)

1

d
log H(γ )− log 2≤ h(γ ) ≤ 1

d
log H(γ )+ 1

2d
log(d + 1).

Liouville’s inequality (see for instance [9], Lemma 9.2, and [32], Lemma 3.14) gives

|θ − γ | ≥ exp{−δ(h(γ )+ h(θ)+ log 2)}

with δ = [Q(γ, θ) : Q]. We setd = [Q(γ ) : Q] andd0 = [Q(θ) : Q]. Hence we have
δ ≤ d0d and

|θ − γ | ≥ exp{−c4d(h(γ )+ 1)},

with c4 = d0 max{1, h(θ)+ log 2}. Therefore we can choosec3 = (3/2)c4. Finally, if we
definec5 = 2c4, we conclude:

Liouville’s inequality. If θ is an algebraic number, there exists a positive constant c5

such that, for any rational integer D≥ 1 and any real number h≥ 1, if γ is an algebraic
number, distinct fromθ, of degree≤D and absolute logarithmic heighth(γ )≤ h, then

|θ − γ | ≥ exp{−c5Dh}.

We now consider the approximation of atranscendentalcomplex number by algebraic
numbers.

Definition. Let θ be a complex number. A functionϕ : N × R+ → R+ ∪ {∞} is an
approximation measure forθ if there exist a positive integerD0 and a real numberh0 ≥ 1
such that, for any rational integerD≥ D0, any real numberh ≥ h0 and any algebraic
numberγ satisfying

[Q(γ ) : Q] ≤ D and h(γ )≤ h,

the following inequality holds:

|θ − γ | ≥ exp{−ϕ(D, h)}.
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This definition is slightly different from the corresponding one in [29], but is more
convenient for our present purpose. We allow the value∞ forϕ so that algebraic numbers are
not excluded. The conditionD≥ D0 is unimportant (algebraic numbers of small degree are
not excluded). However, by assumingh≥ h0, we do not take into account some refinements
which may occur when one considers the approximation of complex numbers by algebraic
numbers of small absolute height (for instance by algebraic numbers of bounded Mahler’s
measure).

Examples. Here are a few approximation measures which are known for various transcen-
dental numbers.

• The following approximation measure forπ is due to N.I. Fel’dman (Theorem 5.7 of [9],
Chap. 7, p. 120). An explicit value for the constantC is produced in [29], Theorem 3.1
and [18], Theorem 2.

There exists an absolute constant C such that the function

C D2(h+ log D) log D

is an approximation measure for the numberπ .

• Letα be a nonzero algebraic number and logα a nonzero determination of its logarithm.
Again N.I. Fel’dman (Theorem 8.7 of [9], Chap. 7, p. 135) proved an approximation
measure for logα. An explicit value forC = C(logα) is given in [29], Theorem 3.6 and
[18], Theorem 5b.

There exists a constant C= C(logα) such that the function

C D3(h+ log D)(log D)−1

is an approximation measure forlogα.

• Let β be a nonzero algebraic number. The best known approximation measure foreβ is
due to G. Diaz [8], Cor. 2 (a refinement of the explicit constantC = C(β) is given in
[18], Theorem 5a):

There exists a constant C= C(β) such that the function

C D2h(logh+ D log D)(logh+ log D)−1

is an approximation measure for the number eβ .

Other approximation measures are given in [29] and in [6] (see especially [6], Theorem 2.4,
p. 41, Theorems 2.5, 2.7 and 2.8, p. 45 and Theorem 2.10, p. 47, for the numberse, eπ

andαβ).
A natural question is to askwhat is the best possible approximation measure for a

transcendental number? One expects that a function whose growth rate is slower thanD2h
cannot be an approximation measure (compare with conjecture 1.7 below). In terms of the
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usual height, this limit corresponds to the functionD log H . The first precise statement in
this direction is due to Wirsing ([34], inequality (4’)):

Let θ be a transcendental complex number. For any rational integer D≥ 2 there exist
infinitely many algebraic numbersγ satisfying

[Q(γ ) : Q] ≤ D and |θ − γ | ≤ M(γ )−D/4.

Here is a variant of Wirsing’s result which is proved in [21], Th´eorème 3.2.

Theorem 1.1. Letθ be a transcendental number andϕ an approximation measure forθ .
Then, for sufficiently large h,

lim sup
D→∞

1

D2
ϕ(D, h) ≥ 10−7h.

Here is the main idea of the proof for Theorem 1.1 as well as for Wirsing’s theorem. We
start from a polynomial produced by Dirichlet’s pigeonhole principle and we select a root
at minimal distance fromθ . The arguments are similar to those which occur in the proof of
Gel’fond’s criterion([11], Chap. III, Section 4, Lemma VII, p. 148). In fact, this criterion
of Gel’fond has been formulated by Brownawell in terms of algebraic approximation to a
complex number([5], Theorem 2).

b) Simultaneous approximation of several complex numbers

In the previous subsection we considered the approximation to a single complex numberθ .
Now we consider simultaneous approximation to numbersθ1, . . . , θn. We first extend the
definition of approximation measure to the case of several numbers.

Definition. Let θ1, . . . , θn be complex numbers. A functionϕ : N × R+ → R+ ∪ {∞}
is ameasure of simultaneous approximation forθ1, . . . , θn if there exists a positive integer
D0 together with a real numberh0 ≥ 1 such that, for any integerD ≥ D0, any real number
h ≥ h0 and anyn-tuple(γ1, . . . , γn) of algebraic numbers satisfying

[Q(γ1, . . . , γn) : Q] ≤ D and max
1≤i≤n

h(γi )≤ h,

we have

max
1≤i≤n

|θi − γi | ≥ exp{−ϕ(D, h)}.

There exists a finite measure of simultaneous approximation for the numbersθ1, . . . , θn

provided they are not all algebraic.
An alternative definition consists of replacing max1≤i≤n h(γi )≤ h by an upper bound

for the height of the projective point(1 : γ1 : · · · : γn) (see for instance [32], Chap. 3,
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Section 2). However, for our present purpose, this does not make a difference, since

max
1≤i≤n

h(γi ) ≤ h(1 : γ1 : · · · : γn) ≤ h(γ1)+ · · · + h(γn).

It makes a difference only when sharp estimates for the constants are considered, like in the
work of Schmidt.

Examples. Measures of simultaneous approximation are given in [9], [16], [22] and [23].
We shall see several other examples. To begin with, here is a result due to N.I. Fel’dman
([9], Theorem 7.7, p. 128).

Let α1, . . . , αn be nonzero algebraic numbers. For1 ≤ i ≤ n, let logαi be a deter-
mination of the logarithm ofαi . Assume the numberslogα1, . . . , logαn areQ-linearly
independent. Then there exists a positive constant C such that

C D2+1/n(h+ log D)(log D)−1

is a measure of simultaneous approximation for the numberslogα1, . . . , logαn.

Forn = 1 we recover Fel’dman’s above mentioned approximation measure for the number
logα.

We shall deduce from Theorem 1.1 the following corollary.

Corollary 1.2. Let θ1, . . . , θn be complex numbers andϕ : N× R+ → R+ a measure of
simultaneous approximation forθ1, . . . , θn. Assume

lim inf
h→∞

1

h
lim sup

D→∞

1

D2
ϕ(D, h) = 0.

Then the fieldQ(θ1, . . . , θn) has transcendence degree≥2 overQ.

In the next Section (Section 2 below) we shall show by an example that this sufficient
condition is not necessary: there exist fields of transcendence degree 2 which are gener-
ated by complex numbersθ1, . . . , θn which are simultaneously very well-approximated by
algebraic numbers.

c) Specialization lemma

We deduce Corollary 1.2 from Theorem 1.1. It is plainly sufficient to prove the following
result.

Proposition 1.3. Let n and m be positive integers with1 ≤ n ≤ m and letθ1, . . . , θm

be complex numbers. Assume thatθn+1, . . . , θm are algebraic over the fieldQ(θ1, . . . , θn).
Under these assumptions, there exist three positive constants c0 ∈ R, c1 ∈ N and c2 ∈ R,
which depend only onθ1, . . . , θm, such that, if ϕ(D, h) is a simultaneous approximation
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measure for these m numbers, then c0 + ϕ(c1D, c2h) is a simultaneous approximation
measure forθ1, . . . , θn.

Roughly speaking, Proposition 1.3 means that, up to constants, a simultaneous approxi-
mation measure depends only on a transcendence basis of the fieldQ(θ1, . . . , θn).

The proof of Proposition 1.3 will rest on several preliminary lemmas.

Lemma 1.4. Let

f (T) = a0Td + · · · + ad = a0(T − ζ1) · · · (T − ζd)

be a polynomial with complex coefficients and degree d≥ 1. Assume f is separable(i.e.,
has no multiple root). There exist two positive constants c= c( f ) andη = η( f ) such that,
if ã0, . . . , ãd are complex numbers satisfying

max
0≤i≤d

|ai − ãi | < η,

then the polynomial

f̃ (T) = ã0Td + · · · + ãd

can be written

f̃ (T) = ã0(T − ζ̃1) · · · (T − ζ̃d)

with

max
1≤ j≤d

|ζ j − ζ̃ j | ≤ c max
0≤i≤d

|ai − ãi |.

Proof: (Compare with [10], Chap. I, Lemma 8.7 and Corollary 8.8). We shall obtain
explicit values forη andc. Set

r = 1

2
min
i 6= j
|ζi − ζ j |, r0 = max{|ζ1|, . . . , |ζd|}, R= max{1, r + r0}

and define

η = |a0|r d

(d + 1)Rd
, c = r/η.

For |z| ≤ R, we have

| f (z)− f̃ (z)| ≤ max
0≤i≤d

|ai − ãi |(1+ R+ · · · + Rd) < |a0|r d.

For |z− ζi | = r , we have

| f (z)| = |a0|
d∏

j=1

|z− ζ j | ≥ |a0|r d.
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According to Rouch´e’s theorem, since the estimate| f (z) − f̃ (z)| < | f (z)| holds for z
on the circumference of the disk|z− ζi | ≤ r , the two functionsf and f̃ have the same
number of zeroes in this open disk. Hencef̃ has a single zerõζi in the same disk. For
i 6= j , according to the definition ofr , we also have|ζ̃ j − ζi | ≥ r . Therefore

| f (ζ̃ j )| = |a0|
d∏

i=1

|ζ̃ j − ζi | ≥ |a0|r d−1|ζ̃ j − ζ j |.

On the other hand

| f (ζ̃ j )| = | f (ζ̃ j )− f̃ (ζ̃ j )| ≤ max
0≤i≤d

|ai − ãi |(d + 1)Rd.

This completes the proof of Lemma 1.4. 2

Lemma 1.5. Let P ∈ Z[Y1, . . . ,Ym] be a polynomial in m variables of degree Dj in Yj ,

(1≤ j ≤ m). Letγ1, . . . , γm be algebraic numbers. Then

h(P(γ1, . . . , γm)) ≤ log L(P)+
m∑

j=1

Dj h(γ j ).

Proof: See for instance [32], Lemma 3.6. 2

Lemma 1.6. Let F ∈ Z[X1, . . . , Xn, T ] be a polynomial in n+ 1 variables of degree
D j in X j , (1 ≤ j ≤ n), and let α1, . . . , αn, β be algebraic numbers which satisfy
F(α1, . . . , αn, β) = 0. Assume that F(α1, . . . , αn, T) ∈ Q(α1, . . . , αn)[T ] is not the
zero polynomial. Then

h(β) ≤ 2 log L(F)+ 2
n∑

j=1

Dj h(α j ).

Proof: (We are thankful to Guy Diaz who kindly provided us with the following proof).
Let t be the degree ofF in the variableT . Write α for (α1, . . . , αn), X for (X1, . . . , Xn),
and write

F(X, T) = Tt Qt (X)+ Tt−1Qt−1(X)+ · · · + Q0(X).

SinceF(α, T) ∈ Q(α)[T ] is not the zero polynomial and sinceF(α, β) vanishes, at least
one of the numbersQt (α), . . . , Q1(α) does not vanish. Denote bym the largest indexj ,
(1≤ j ≤ m) such thatQj (α) 6= 0. FromF(α, β) = 0 we deduce

−βmQm(α) = βm−1Qm−1(α)+ · · · + βQ1(α)+ Q0(α).

Define

Q̃(X, T) = Tm−1Qm−1(X)+ · · · + T Q1(X)+ Q0(X),

so that

−βmQm(α) = Q̃(α, β).
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An upper bound for h(βm) is

h(βm) = h(βmQm(α)Qm(α)
−1) ≤ h(βmQm(α))+ h(Qm(α)) = h(Q̃(α, β))+ h(Qm(α)).

Using Lemma 1.5, we bound h(Q̃(α, β)) and h(Qm(α)) from above:

h(Qm(α)) ≤ log L(Qm)+
n∑

j=1

(
degX j

Qm
)
h(α j )

and

h(Q̃(α, β)) ≤ log L(Q̃)+
n∑

j=1

(
degX j

Q̃
)
h(α j )+ (degT Q̃)h(β).

The degrees degX j
Qm and degX j

Q̃ are bounded by degX j
F = Dj . Also we have degT Q̃ ≤

m− 1. Coming back to h(βm), we deduce

mh(β) = h(βm) ≤ log L(Qm)+ log L(Q̃)+ 2
n∑

j=1

Dj h(α j )+ (m− 1)h(β).

Hence

h(β) ≤ log L(Qm)+ log L(Q̃)+ 2
n∑

j=1

Dj h(α j ).

Since L(Qm)+ L(Q̃) ≤ L(F), we see that log L(Qm)+ log L(Q̃) is bounded by 2 log L(F),
which yields the desired estimate. 2

Remark. The proof of Lemma 5 in [2] (which deals with the casen = 1) yields, under
the assumptions of Lemma 1.6, the following upper bound for Mahler’s measure ofβ:

M(β) ≤ L(F)d
n∏

j=1

M(α j )
Dj ,

whered = [Q(α1, . . . , αn) : Q]. The advantage of Lemma 1.6 is to produce an upper
bound for h(β) which does not depend ond.

Proof of Proposition 1.3: By induction, it is sufficient to deal with the casem= n+ 1.
Write θ for (θ1, . . . , θn). Let F ∈ Z[X1, . . . , Xn, T ] be a nonzero polynomial of degreed
in T such thatf (T) = F(θ, T) ∈ C[T ] is separable, of degreed, and hasθn+1 as a root.
Denote byη andc the constants related tof by Lemma 1.4. Write

F(X1, . . . , Xn, T) =
d∑

j=0

aj (X1, . . . , Xn)T
d− j .
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There exists a positive constantc3 such that, for any θ ′ = (θ ′1, . . . , θ
′
n) ∈ Cn satisfying

max1≤i≤n |θi − θ ′i | ≤ 1, we have

max
0≤ j≤d

|aj (θ )− aj (θ
′)| ≤ c3 max

1≤i≤n
|θi − θ ′i |.

Sincea0(θ ) 6= 0, there exists a constantc4 > 0 such thata0(θ
′) 6= 0 for max1≤i≤n |θi−θ ′i | ≤

c4.
Let γ1, . . . , γn be algebraic numbers, D a positive integer andh ≥ 1 a real number such

that

max
1≤i≤n

h(γi )≤ h, [Q(γ1, . . . , γn) : Q] ≤ D and max
1≤i≤n

|θi − γi | < min{1, η/c3, c4}.

Sincea0(γ1, . . . , γn) 6= 0, we haveF(γ1, . . . , γn, T) 6= 0. Using Lemma 1.4 we see that
the polynomialF(γ1, . . . , γn, T) has a rootγn+1 which satisfies

|θn+1− γn+1| ≤ c5 max
1≤i≤n

|θi − γi |

with c5 = max{1, cc3}. Since

[Q(γ1, . . . , γn, γn+1) : Q(γ1, . . . , γn)] ≤ d,

we have [Q(γ1, . . . , γn, γn+1) : Q] ≤ d D. Using Lemma 1.6 we bound h(γn+1) by c2h
with

c2 = 2 log L(F)+ 2
n∑

j=1

degX j
F.

By assumption, for sufficiently largeD andh, we have

max
1≤i≤n+1

|θi − γi | ≥ exp{−ϕ(d D, c2h)}.

Hence

max
1≤i≤n

|θi − γi | ≥ c−1
5 exp{−ϕ(d D, c2h)},

which gives the desired estimate withc1 = d andc0 = logc5. 2

d) Large transcendence degrees

In the present paper we consider only “small transcendence degrees”. However we are
tempted to propose the following conjecture.

Conjecture 1.7. Let a≥ 1, b ≥ 1 be real numbers andθ1, . . . , θn be complex numbers.
Denote by t the transcendence degree overQ of the fieldQ(θ1, . . . , θn). Letϕ be a simul-
taneous approximation measure for these n numbers. Let(Dν)ν≥1 be a non-decreasing
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sequence of positive integers and(hν)ν≥1 be a non-decreasing sequence of positive real
numbers with Dν + hν →∞. Assume

Dν+1 ≤ aDν and hν+1 ≤ bhν, (ν ≥ 1).

Then

lim sup
ν→∞

1

D1+(1/t)
ν hν

ϕ(Dν, hν) > 0.

According to Proposition 1.3, it would be sufficient to establish this result under the
assumption thatθ1, . . . , θn are algebraically independent(that isn = t).

2. Usual exponential function in a single variable

a) The numbers aβ
j

In 1949 Gel’fond (see [11], Chap. III, Section 4) established the algebraic independence of
the two numbersαβ andαβ

2
whenα is a nonzero algebraic number (with a determination

logα 6= 0 of its logarithm, giving rise toαβ = exp(β logα)), andβ is a cubic irrational
algebraic number. Here, we deduce this algebraic independence result from a simultaneous
approximation estimate for the two numbersαβ andαβ

2
. Like Gel’fond, we consider the

more general situation whereβ is algebraic of degreed ≥ 2.

Theorem 2.1. Let a be a nonzero complex number andβ an algebraic number of degree
d ≥ 2. Choose a nonzero determinationloga for the logarithm of a. There exists a positive
constant C such that

C D(d+1)/(d−1)hd/(d−1)(log D + logh)−1/(d−1)

is a simultaneous approximation measure for a,aβ, . . . ,aβ
d−1

.

Notice that for eachh ≥ h0, there exists a positive constantC(h) such that this approxi-
mation measure is bounded byC(h)D(d+1)/(d−1)(log D)−1/(d−1). If d ≥ 3, this function is
o(D2). From Corollary 1.2 we deduce:

Corollary 2.2. Let a be a nonzero complex number, loga a nonzero determination of its
logarithm andβ an algebraic number of degree d≥ 3. Then at least two of the d numbers
a, aβ,aβ

2
, . . . ,aβ

d−1
are algebraically independent. In particular, if a is algebraic andβ

is cubic irrational, then the two numbers aβ and aβ
2

are algebraically independent.

Ford = 2 anda = α algebraic, Theorem 2.1 gives the following approximation measure
for αβ whenβ is a quadratic irrational number:

C D3h2(log D + logh)−1.
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b) An effective version of the six exponentials theorem

Thesix exponentials theorem, due to Lang and Ramachandra (see for instance [1], Theo-
rem 12.3, or [28], Cor. 2.2.3) states that

if x1, . . . , xd areQ-linearly independent and y1, . . . , y` are alsoQ-linearly independent,
with d` > d+ `, then at least one of the d̀numbersexp(xi yj ), (1≤ i ≤ d, 1≤ j ≤ `)
is transcendental.

We give a simultaneous approximation measure for thesed` numbers, assuming an extra
“technical hypothesis”. Next we show that such a hypothesis cannot be omitted.

Definition. Let n be a positive integer,ν a positive real number andx1, . . . , xn complex
numbers. We say thatx1, . . . , xn satisfy a measure of linear independence with exponent
ν if there exists a positive integerT0 satisfying the following property: for anyn-tuple
(t1, . . . , tn) ∈ Zn and any real numberT ≥ T0 with

0< max{|t1|, . . . , |tn|} ≤ T,

we have

|t1x1+ · · · + tnxn| ≥ exp(−Tν).

According to this definition, if the numbersx1, . . . , xn satisfy a measure of linear inde-
pendence, then they are linearly independent overQ.

Theorem 2.3. Let d and̀ be positive integers satisfying d` > d + `. Set

κ = d`

d`− d − ` .

Let x1, . . . , xd be complex numbers which satisfy a measure of linear independence with
exponent1/(3d), and also let y1, . . . , y` be complex numbers which satisfy a measure of
linear independence with exponent1/(3`). Then, there exists a positive constant C such
that

C(Dh)κ(log D + logh)1−κ

is a simultaneous approximation measure for the d` numbers exi yj , (1≤ i ≤ d, 1≤ j ≤ `).

Remark. Earlier estimates of this type were known ([16, 22, 23]), but with a weaker
dependence onD. Because of that, they are not sufficient to prove results of algebraic
independence.

Assumingd` ≥ 2(d+ `), for fixedh the simultaneous approximation measure is bounded
by o(D2). Therefore, in this case, at least two of thed` numbers exp(xi yj ), (1 ≤ i ≤ d,
1 ≤ j ≤ `) are algebraically independent. We remark that this algebraic independence
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result is known, given only thatx1, . . . , xd on one side,y1, . . . , y` on the other, are linearly
independent overQ. Here we need to add technical hypotheses (measures of linear inde-
pendence). In fact, these conditions are similar to those which occur in the known results for
large transcendence degrees [6, 31] (see also the comment after the proof of Theorem 2.4).
However, for small transcendence degrees, these extra conditions (which Gel’fond needed
in his original work—cf. [11], Chap. III, Section 4, Theorems I, II and III), have been shown
to be unnecessary by Tijdeman [24] (see also [28], Chap. 7). The underlying method of the
present work also enables us to avoid these assumptions for small transcendence degrees
[21]. But in order to do so, we need to bypass Theorem 2.3.

The proof of Theorem 2.3 relies on the following statement which does not require a
diophantine hypothesis.

Denote by Im(z) the imaginary part of a complex numberz.

Theorem 2.4. Let d, ` andκ be as in Theorem2.3. There exists a positive constant C
which satisfies the following property. Letλi j , (1≤ i ≤ d, 1≤ j ≤ `) be complex numbers
whose exponentialsγi j = eλi j are algebraic. Assume that the d numbersλ11, . . . , λd1

are linearly independent overQ, and also that thè numbersλ11, . . . , λ1` are linearly
independent overQ. Let D be the degree of the number field generated overQ by the d̀
numbersγi j , (1 ≤ i ≤ d, 1 ≤ j ≤ `), and let h≥ 3, E ≥ e, F ≥ 1 be real numbers
satisfying

max
1≤i≤d
1≤ j≤`

h(γi j )≤ h, max
1≤i≤d
1≤ j≤`

|λi j | ≤ Dh/E and F= 1+ max
1≤i≤d
1≤ j≤`

|Im(λi j )|.

Then, we have

max
1≤i≤d
1≤ j≤`

|λi j λ11− λi 1λ1 j | ≥ exp{−C(Dh)κ(log E)1−κFκ/m},

where m= max{d, `} − 1.

The conclusion is a lower bound for at least one of the 2× 2 minors of the matrix
(λi j )1≤i≤d,1≤ j≤`. Extensions of this result to minors of larger size can also be produced—
the corresponding algebraic independence statements are given in [21].

Remark. One can prove variants of Theorems 2.3 and 2.4 which contain Gel’fond’s alge-
braic independence results concerning the numbersxi , exi yj , (resp.xi , yj , exi yj )—see [11],
Chap. III, Section 4, Theorems I, II and III. More generally, one can prove simultaneous
approximation measures which contain the results of algebraic independence obtained by
Chudnovski using Baker’s method in Chapter 3 of [6]. By the way, it is necessary to add
the assumptionr2 > 0 in Theorem 3.1, p. 136 of [6]: it was not known at that time that
the two numbersπ andeπ are algebraically independent; and it is still unknown that, for
β a quadratic irrational number andλ a nonzero logarithm of an algebraic number, the two
numbersλ andeβλ are algebraically independent.
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c) Liouville numbers

We show that the conclusion of Theorem 2.3 may fail if we omit the hypotheses concerning
measures of linear independence.

Let φ be a strictly increasing functionN→ N and let(un)n≥0 be a bounded sequence of
rational integers:|un| ≤ c1 for all n ≥ 0. Assumeun 6= 0 for an infinite set ofn (hence
c1 ≥ 1). Consider the number

ξ =
∑
n≥0

un

2φ(n)
.

For N ≥ 0, define

qN = 2φ(N), pN =
N∑

n=0

un2φ(N)−φ(n).

Then(pN,qN) ∈ Z2, qN > 0 and∣∣∣∣ξ − pN

qN

∣∣∣∣ =
∣∣∣∣∣∑
n>N

un2−φ(n)
∣∣∣∣∣ ≤ c1

∑
n≥N+1

2−φ(N+1)−n+N+1 ≤ 2c1

2φ(N+1)
.

From the upper bound

|ea − eb| ≤ |a− b|max{ea, eb} for real numbersa andb,

we deduce

|2ξ − 2pN/qN | < c2

2φ(N+1)

with a constantc2= 21+2c1c1 independent ofN. For a/b ∈ Q, we have h(2a/b) =
(a/b) log 2, hence the absolute logarithmic height of the algebraic number 2pN/qN is bounded
independently ofN by

h(2pN/qN ) ≤ 2c1 log 2,

while its degree is≤qN .
Let d be a positive integer. Defined sequences(u(d)in )n≥0, (1≤ i ≤ d) by

u(d)in =
{

1 if n ≡ i (mod d),
0 otherwise,

(1≤ i ≤ d)

and set

ξid =
∑
n≥1

u(d)in

2φ(n)
=
∑
q≥0

1

2φ(qd+i )
, (1≤ i ≤ d).
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Define, forN ≥ 1,

p(d)i N =
N∑

n=1

u(d)in 2φ(N)−φ(n).

We get

max
1≤i≤d

∣∣∣∣ξid − p(d)i N

qN

∣∣∣∣ < 2

2φ(N+1)
.

Moreover, assumeφ(n+ 1)− φ(n)→∞ asn→∞. Then, for any tuple(t1, . . . , td) of
rational integers, not all of which are zero, the numbert1ξ1d+ · · · + tdξdd has a lacunary
2-adic expansion. Hence it is irrational, and therefore does not vanish (in fact if the func-
tion φ grows sufficiently fast, this number is transcendental). It follows that the numbers
ξ1d, . . . , ξdd are linearly independent overQ.

Definex1, . . . , xd by xi = ξid , (1 ≤ i ≤ d) and definey1, . . . , y` by yj = ξ j ` log 2 for
1 ≤ j ≤ `. The transcendence degreet overQ of the field generated by thed` numbers
exi yj satisfiest ≥ 1 providedd` > d + ` and satisfiest ≥ 2 providedd` ≥ 2(d + `) (cf.
[4] and [28], Chap. 7). Define furtherai N = p(d)i N , bj N = p(`)j N andγi j = 2ai N bj N /q2

N . We get

max
1≤i≤d

∣∣∣∣xi − ai N

qN

∣∣∣∣ ≤ 2

2φ(N+1)
, max

1≤ j≤`

∣∣∣∣yj − bj N

qN
log 2

∣∣∣∣ ≤ 2 log 2

2φ(N+1)

and

max
1≤i≤d
1≤ j≤`

|exi yj − γi j | ≤ 8 log 2

2φ(N+1)
.

The absolute logarithmic height of the numbersγi j is bounded independently ofN:

h(γi j ) ≤ log 2.

The field generated overQ by thed` numbersγi j has degree≤q2d`
N = 4d`φ(N) overQ. If

ϕ(D, h) is a simultaneous approximation measure for thed` numbersexi yj , then for any
h ≥ max{h0, log 2} and anyD ≥ max{D0, 4d`φ(N)}, we have

ϕ(D, h) ≥ φ(N + 1) log 2− 2.

We can choose forφ a function such that

lim sup
N→∞

φ(N + 1)

24d`φ(N)
= ∞.

In this case lim supN→∞ D−2ϕ(D, h) = ∞, hence the hypothesis of Corollary 1.2 is not
satisfied. Therefore we cannot deduce from Corollary 1.2 the algebraic independence of at
least two of these numbers.
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The argument used for lifting the obstructing subgroup in [21] shows that the underlying
method to the present work yields not only simultaneous approximation measures, but also
results of algebraic independence without technical hypothesis.

Remark. Consider the number

θ =
∑
n≥0

1

2φ(n)
,

whereφ :N→ N is a strictly increasing function, such that

φ(n+ 1) ≥ n2φ(n)

for all n ≥ 0. Define two sequences(Dν)ν≥1 and(hν)ν≥1 by

Dν = ν and hν = ν−1/2φ(ν) (ν ≥ 1).

ThenDν + hν → ∞ for ν → ∞. However,for any positive real number C and for any
sufficiently largeν, there is no algebraic numberγ of degree≤Dν and height≤hν which
satisfies

|θ − γ | ≤ exp
{−C D2

νhν
}
.

We prove this claim by contradiction. Assume such aγ exists for some value ofν with
ν ≥ max{16, 2C−2}. We compareγ to the rational number

α =
ν∑

n=1

1

2φ(n)
.

Sinceh(α) = φ(ν) log 2> hν , we haveγ 6= α. From Liouville’s inequality we deduce

log |γ − α| ≥ −Dν(log 2+ φ(ν) log 2+ hν) ≥ −νφ(ν).
This is not possible, according to the following computation:

log |γ − α| ≤ log 2+ log max{|θ − γ |, |θ − α|}
≤ log 2+max{−Cν3/2φ(ν),−φ(ν + 1) log 2+ log 2}
< −νφ(ν).

This example shows that the conditionhν+1 ≤ bhν in Conjecture 1.7 cannot be omitted.

d) Schanuel’s conjecture

Let x1, . . . , xn beQ-linearly independent complex numbers. Schanuel’s conjecture (see
[13], Chap. 3, Historical Note) states that the transcendence degree overQ of the field
Q(x1, . . . , xn, ex1, . . . ,exn) is ≥ n. Here we produce a simultaneous approximation mea-
sure for the 2n numbersx1, . . . , xn, ex1, . . . ,exn . If we selectxi = ξin, (1 ≤ i ≤ n), with
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the previously defined numbersξin, we see that the hypothesis of linear independence for
the numbersxi is not sufficient to get any estimate at all. This is why we assume a measure
of linear independence.

Theorem 2.5. Let x1, . . . , xn be complex numbers which satisfy a measure of linear
independence with exponent2n+ 1. There exists a positive constant C= C(n) such that
the function

C D2+1/nh(h+ log D)(logh+ log D)−1

is a simultaneous approximation measure for the2n numbers x1, . . . , xn, ex1, . . . ,exn.

We shall also prove a variant of this statement, where no technical hypothesis is needed:
we produce a lower bound for

n∑
i=1

|βi − logαi |

when logα1, . . . , logαn are logarithms of algebraic numbers, whileβ1, . . . , βn are
Q-linearly independent algebraic numbers (see Theorem 8.1 below).

e) Lindemann-Weierstraß theorem

Chudnovsky [7] has shown how to prove the Lindemann-Weierstraß theorem on the alge-
braic independence of the numberseβ1, . . . ,eβn by means of Gel’fond’s method. Here is a
simultaneous approximation measure for these numbers.

Theorem 2.6. Letβ1, . . . , βn beQ-linearly independent algebraic numbers. There exists
a positive constant C= C(β1, . . . , βn) such that the function

C D1+(1/n)h(logh+ D log D)(logh+ log D)−1

is a simultaneous approximation measure for the numbers eβ1, . . . ,eβn .

The estimate is not sharp enough to apply Corollary 1.2 to the numbersθi = eβi , (1≤ i≤
n). However the function

ϕ(D, h) = C D1+(1/n)h(logh+ D log D)(logh+ log D)−1

satisfies, forn ≥ 2,

lim sup
D→∞

1

D1+1/(n−1)
lim sup

h→∞

1

h
ϕ(D, h) = 0.

Therefore Conjecture 1.7 would enable us to deduce the Lindemann-Weierstrass theorem
from Theorem 2.6.
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f) Other examples

Theorem 2.5 contains many results of simultaneous approximation. In certain cases the
estimate can be refined. Here is a first example.

Theorem 2.7. Letβ be an irrational quadratic number and letλ be a nonzero logarithm
of an algebraic number. There exists a positive constant C= C(β, λ) such that

C D2h(h+ log D)1/2(logh+ log D)−1/2

is a simultaneous approximation measure for the two numbersλ and eβλ.

If we chooseλ = 2iπ andβ = i , we deduce the existence of a positive absolute constant
C such that

C D2h(h+ log D)1/2(logh+ log D)−1/2

is a simultaneous approximation measure forπ and eπ . This is so far the best known
estimate, but it is not sharp enough to yield the algebraic independence of the two numbers
π andeπ . We come back to this question in Section 4.

As far as the two numberse andπ are concerned, we do not know anything better than
the above mentioned individual approximation measures foreand forπ , due to Fel’dman—
also, we do not know anything better than Theorem 2.7 concerning a simultaneous approx-
imation measure for the three numberse, π andeπ .

The measure of simultaneous approximation for the numbers logα1, . . . , logαn due to
Fel’dman (cf. Section 1) is not sufficient to settle the open problem of the existence of
two algebraically independent logarithms of algebraic numbers. However we can improve
Fel’dman’s measure for largeD by adding a hypothesis.

Theorem 2.8. Let n ≥ 2 be an integer andλ1, . . . , λn beQ-linearly independent loga-
rithms of algebraic numbers. Assume that there exists a nonzero homogeneous polynomial
Q ∈ Q[X1, . . . , Xn] of degree2, such that Q(λ1, . . . , λn) = 0. Then there is a positive
constant C such that the function

C D2(h+ log D)2(log D)−2

is a simultaneous approximation measure for the numbersλ1, . . . , λn.

Therefore, under the assumptions of this Theorem 2.8, at least two of the numbers
λ1, . . . , λn are algebraically independent (cf. [20], Theorem 2, and [21]).

3. Elliptic functions

Elliptic analogues of all results in the preceding section can be proved. The estimates are
sharper in the CM case. Here is the analogue of Theorem 2.1 for elliptic functions.
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Theorem 3.1. Let ℘ be a Weierstraß elliptic function with algebraic invariants g2 and
g3, let u be a complex number and letβ be an algebraic number. Assume that none of
the numbers u, βu, . . . , βd−1u is a pole of℘. There exists a positive constant C with the
following property:
a) if β is of degree d≥ 3 overQ, the function

C D(d+1)/(d−2)hd/(d−2)(log D + logh)−2/(d−2)

is a simultaneous approximation measure for the d numbers℘(β i u), (0≤ i ≤ d − 1).

b) If the elliptic curveE associated with℘ has complex multiplication, and ifβ is of degree
d ≥ 2 over the field of endomorphisms ofE, the function

C D(d+1)/(d−1)hd/(d−1)(log D + logh)−1/(d−1)

is a simultaneous approximation measure for the d numbers℘(u), ℘ (βu), . . . ,
℘ (βd−1u).

The assumption thatnone of the numbers u, βu, . . . , βd−1u is a pole of℘ is not a serious
restriction: if for instanceu is pole of℘, we deduce a simultaneous approximation measure
for the remainingd − 1 numbers℘(βu), . . . , ℘ (βd−1u) by applying the theorem withu
replaced byu/n, wheren is a sufficiently large integer.

In the CM case, the estimate is the same as in the exponential case. In fact we shall
give a single proof for the two statements (Theorems 2.1 and 3.1). From Theorem 3.1 we
deduce the algebraic independence of at least two of the numbers℘(β i u), (0≤ i ≤ d−1),
providedβ is of degree≥5 overQ in the general case, and providedβ is of degree≥3 over
the field of endomorphisms in the CM case. In particular, in the CM case, we deduce the
algebraic independence of the two numbers℘(βu) and℘(β2u) when℘(u) is an algebraic
number andβ a cubic irrational number. These algebraic independence results are due to
Masser and W¨ustholz [14].

In the same way we can produce other diophantine approximation estimates which yield
algebraic independence results. Elliptic analogues of Theorems 2.3 and 2.4 can be proved,
as well as simultaneous approximation measures related to results by Chudnovsky [6, 7]
and Tubbs [25, 26].

4. Gamma function

Our last theorem deals with periods of elliptic integrals of first or second kind.

Theorem 4.1. Let℘ be a Weierstraß elliptic function with algebraic invariants g2 and g3.
Denote by(ω1, ω2) a fundamental pair of periods of℘, and byη1, η2 the corresponding
quasi-periods of the Weierstraß zeta function associated with℘:

ζ ′ = −℘, ζ(z+ ωi ) = ζ(z)+ ηi , (i = 1, 2).
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There exists a positive constant C such that

C D3/2(h+ log D)3/2

is a simultaneous approximation measure for the four numbersω1, ω2, η1, η2.

We deduce a well known result due to Chudnovsky [6] (Chap. 1, Section 2, Theorem 1):
the fieldQ(ω1, ω2, η1, η2) has transcendence degree≥2 overQ. In the CM case, the
transcendence degree is 2.

Theorem 4.1 shows that there exists an absolute positive constantC satisfying the fol-
lowing property:let γ1 andγ2 be algebraic numbers. Define

h = max{3, h(γ1), h(γ2)} and D = [Q(γ1, γ2) : Q].

Then

|0(1/4)− γ1| + |π − γ2| ≥ exp
{−C D3/2(h+ log D)3/2

}
.

It follows that the two numbers0(1/4) and π are algebraically independent(cf. [6],
Chap. 7, Section 1, Cor. 1.7).

Remarks.

1. One can prove a more general statement than Theorem 4.1 which deals with the universal
extension of an abelian variety of dimensiong by Gg

a. The corresponding result of
algebraic independence is stated by Chudnovsky in [6], Introduction, Theorem 9, p. 9.

2. Very recently, dramatic progress has been achieved on this topic. The story started with
the solution by Barr´e-Sirieix et al. [2] of a conjecture of Mahler (in the complex case)
and Manin (in thep-adic case) on the transcendence of the values of the modular function
J(q) for algebraicq with 0 < |q| < 1. This work gave the impetus to Nesterenko’s
proof of the algebraic independence of the three numbersπ , eπ and0(1/4) (see [17]).
At the same time, Nesterenko produces diophantine approximation results, including a
measure of algebraic independence. A slightly different approach is used by Philippon
[19] who also produces diophantine estimates, including a simultaneous approximation
measure for these three numbers:for any ε > 0 there exists a positive constant C(ε)
such that the function

C(ε)(Dh)(4/3)+ε

is a simultaneous approximation measure for the three numbersπ, eπ and0(1/4).

Conjecture 1.7 suggests that such a measure for three numbers with an exponent<3/2 can
take place only when these numbers are algebraically independent. On the other hand this
estimate does not include the simultaneous approximation measure forπ andeπ which we
have deduced from Theorem 2.7, nor the simultaneous approximation measure forπ and
0(1/4) which follows from Theorem 4.1.
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5. A special case of the explicit algebraic subgroup theorem

The main tool in the proof of each of the above results is Theorem 2.1 of [33]. This theorem
provides an explicit version of the algebraic subgroup theorem, in the context of an arbitrary
commutative algebraic group. For the convenience of the reader, we prove here a special
case of this theorem that is sufficient for the proof of all our results, with the exception of
Theorem 4.1. The proof of the latter, given in Section 11, relies directly on Theorem 2.1 of
[33]. We try to conform, as much as possible, with the notations of [33].

Let d0, d1 andd2 be integers≥0 whose sumd is positive, letK ⊂ C be a number field,
let D be its degree overQ, and letE ⊂ P2 be an elliptic curve defined by a Weierstraß
equation

E : X0X2
2 − 4X3

1 + g2X2
0X1+ g3X3

0 = 0 (5.1)

with g2, g3 ∈ K . PutG0 = Gd0
a andn = d1 + d2. We embedG0 in Pd0 andGm in P1 in

such a way that their exponential maps be given respectively by

expG0

(
z1, . . . , zd0

) = (1 : z1 : · · · : zd0

)
and expGm

(z) = (1 : ez).

We also denote by℘ the Weierstraß℘-function attached toE, so that the exponential map
of E, fromC toE(C), is given, away from the poles of℘, by

expE(z) = (1 : ℘(z) : ℘ ′(z)).

The product

G = G0×Gd1
m × Ed2

therefore embeds intoPd0 × (P1)
d1 × (P2)

d2. Its exponential map

expG : TG(C) = Cd → G(C)

is given by the product of the exponential maps of its factors. For simplicity however,
we often identifyG0(C) with the additive groupCd0 andGm(C) with the multiplicative
groupC×.

Given an algebraic subsetV of G, we denote byH(V; T0, T1, . . . , Tn) the product by
(dim V)! of the homogeneous part of degree dimV of its Hilbert-Samuel polynomial (with
respect to the above embedding ofG). Given a finitely generated subgroup0 of G(K ),
a finite set of generatorsγ1, . . . , γ` of 0, and positive integersS1, . . . , S̀ , we denote by
0(S1, . . . , S̀ ) the set of all elements of0 of the form s1γ1 + · · · + s̀ γ` with integral
coefficientssj satisfying 0≤ sj < Sj for j = 1, . . . , `. WhenS1 = · · · = S̀ = S, we
simply denote this set by0(S). Similarly, if Y is a subgroup ofCd generated by a given
finite set of pointsη1, . . . , η`, we defineY(S1, . . . , S̀ ) as the set of all linear combinations
of these points with integral coefficients in the same range. Finally, we denote by|z| the
supremum norm of a pointz of Cd:

|(z1, . . . , zd)| = max
1≤i≤d

|zi |.

This definition applies in particular to elements ofZd.



SIMULTANEOUS APPROXIMATION AND ALGEBRAIC INDEPENDENCE 401

Forw = (α1, . . . , αd) ∈ K d, we denote byh(1 : w) the absolute logarithmic height of
the projective point(1 : α1 : · · · : αd).

Theorem 5.1. There exist positive constants C1 = C1(d) ≥ e and C2 = C2(d, `,E) with
the following property. Let̀0 and`1 be integers≥ 0, let w′1, . . . , w

′
`0

andη′1, . . . , η
′
`1

be
elements ofCd, letw1, . . . , w`0 be elements of Kd, and letη1, . . . , η`1 be elements ofCd

whose imagesγ1, . . . , γ`1 underexpG all belong to G(K ). Denote by r the dimension of
the subspace ofCd generated byw′1, . . . , w

′
`0

andη′1, . . . , η
′
`1

. Denote by W the subspace
of Kd generated byw1, . . . , w`0, and denote by0 the subgroup of G(K ) generated by
γ1, . . . , γ`1. Assume thatη′1, . . . , η

′
`1

do not all belong toCd0 × {0}n. Suppose that we are
given real numbers A1, . . . , An ≥ e2, B1, B2 ≥ 2d and E≥ e, integers S0, S1, . . . , S̀ 1 ≥ 1
and T0, T1, . . . , Tn ≥ 1, and real numbers U,V > 0. Suppose B2 ≥ C2 if d2 > 0. Write

η j =
(
β1,`0+ j , . . . , βd0,`0+ j , u1 j , . . . ,unj

)
for j = 1, . . . , `1, and suppose

log

(
`1∑

j=1

Sj

)
+

`1∑
j=1

h
(
βi,`0+ j

) ≤ log B1, (1≤ i ≤ d0),

h(1 : w j ) ≤ log B2, (1≤ j ≤ `0),

max

{
`1∑

j=1

Sj h(e
ui j ),

E

D

`1∑
j=1

Sj |ui j |
}
≤ log Ai , (1≤ i ≤ d1),

C2 max
1≤ j≤`1

{
S2

j (h(℘ (ui j ))+ 1),
E2

D
S2

j |ui j |2
}
≤ log Ai , (d1 < i ≤ n).

Suppose also

|w′j − w j | ≤ e−2V (1≤ j ≤ `0) and |η′j − η j | ≤ e−2V (1≤ j ≤ `1),

and that the parameters satisfy

D log B1 ≥ log E, D log B2 ≥ log E, B2 ≥ dS0+ T0+ T1+ · · · + Tn, (5.2)

DT0 log B1 ≤ U, DS0 log B2 ≤ U,
n∑

i=1

DTi log Ai ≤ U, C1U ≤ V (5.3)

and the main condition

1

8 · 3d2
exp

(
U

2D

)
>

(
T0+ d0

d0

)
(T1+ 1) · · · (Tn + 1) ≥ 4

(
V

log E

)r

. (5.4)

Then, there exists a connected algebraic subgroup G∗ of G, distinct from G, incompletely
defined in G by polynomials of multidegree

≤(T0, T1, . . . , Td1, 2Td1+1, . . . ,2Tn
)
,



402 ROY AND WALDSCHMIDT

such that, if we put

`∗0 = dim
K
((W + TG∗(K ))/TG∗(K )),

we obtain

S
`∗0
0 Card

(
0(S1, . . . , S̀ 1)+ G∗(K )

G∗(K )

)
·H(G∗; T0, T1, . . . , Tn) ≤ 6d2d!

d0!
Td0

0 T1 · · · Tn.

Proof: Let M = S1 · · · S̀ 1, and letS be the set of all pointss= (s1, . . . , s̀ 1) ∈ Z`1 with
0 ≤ sj < Sj , (1 ≤ j ≤ `1). Choose an enumerations1, . . . , sM of S in such a way that, if
sk = (s1k, . . . , s̀ 1k), then, fork = 1, . . . , `1, we have

η′k =
`1∑

j=1

sjkη
′
j and ηk =

`1∑
j=1

sjkη j .

Use the same formulas, to defineη′k andηk for k = `1+ 1, . . . ,M , and putγk = expG(ηk)

for k = 1, . . . ,M . Then the set6 = {γ1, . . . , γM} is simply0(S1, . . . , S̀ 1). We now show
that these data and the present choice of parameters satisfy all constraints in Theorem 2.1
of [33].

We first verify the height constraints in Section 2e) of [33]. Fori = 1, . . . ,d0, the
point ofPM(K ) whose coordinates are 1 and the linear combinations

∑`1
j=1 sjβi,`0+ j with

coefficients(s1, . . . , s̀ 1) ∈ S has height

≤ log

(
`1∑

j=1

Sj

)
+

`1∑
j=1

h
(
βi,`0+ j

) ≤ log B1.

For anyi = 1, . . . ,d1 and any(s1, . . . , s̀ 1) ∈ S, we have

h

(
exp

(
`1∑

j=1

sj ui j

))
≤

`1∑
j=1

Sj h(e
ui j ) ≤ log Ai ,

E

D

∣∣∣∣∣ `1∑
j=1

sj ui j

∣∣∣∣∣ ≤ E

D

`1∑
j=1

Sj |ui j | ≤ log Ai ,

and 2/D ≤ 2≤ log Ai . Similarly, Section 4c) of [33] shows that there is a positive constant
C3 = C3(E) such that for anyi = d1+ 1, . . . ,n and any(s1, . . . , s̀ 1) ∈ S, we have

h

(
expE

(
`1∑

j=1

sj ui j

))
≤ `2

1C3 max
1≤ j≤`1

{
S2

j (h(expE(ui j ))+ 1)
}

≤ `2
1C2

3 max
1≤ j≤`1

{
S2

j (h(℘ (ui j ))+ 1)
}

≤ log Ai ,
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1

D
H+

(
Ed

∣∣∣∣∣ `1∑
j=1

sj ui j

∣∣∣∣∣+ 2

)
≤ C3

(d`1+ 1)2

D
max

1≤ j≤`1

max
{
1, E2S2

j |ui j |2
} ≤ log Ai ,

and

1

D
H−

(
d

∣∣∣∣∣ `1∑
j=1

sj ui j

∣∣∣∣∣
)
≤ C3 ≤ log Ai ,

providedC2 ≥ max{`2
1C2

3, (d`1+ 1)2C3}.
The conditions in Section 2f) of [33] are fulfilled because of (5.2), (5.3) and the hypothesis

B2 ≥ C2 if d2 > 0. Moreover, the assumption that not all ofη′1, . . . , η
′
M belong toCd0×{0}n

implies that the integerr3 defined in Section 2c) is positive. Therefore, since the Hilbert-
Samuel function ofG verifies(

T0+ d0

d0

) n∏
i=1

(Ti + 1)≤ H(G ; T0, . . . , Tn) ≤ 3d2

(
T0+ d0

d0

) n∏
i=1

(Ti + 1),

the main constraint in Section 2g) is satisfied if

1

8 · 3d2
exp

(
U

2D

)
>

(
T0+ d0

d0

) n∏
i=1

(Ti + 1) ≥ 4

(
T0+ r1

r1

)(
dS0+ r2

r2

)(
V

log E

)r3

.

This last condition follows from (5.4) because we haver1+ r2+ r3 = r ,(
T0+ r1

r1

)
≤ (2T0)

r1 ≤
(

2U

D log B1

)r1

≤
(

V

log E

)r1

,

and (
dS0+ r2

r2

)
≤ ((d + 1)S0)

r2 ≤
(
(d + 1)U

D log B2

)r2

≤
(

V

log E

)r2

,

providedC1 ≥ d + 1. Finally, for any(s1, . . . , s̀ 1) ∈ S, we have∣∣∣∣∣ `1∑
j=1

sj η
′
j −

`1∑
j=1

sj η j

∣∣∣∣∣ ≤
(

`1∑
j=1

Sj

)
e−2V ≤ B1e−2V ≤ e−V ,

sinceB1 ≤ eU . Thus, all the hypotheses of Theorem 2.1 of [33] are satisfied. The conclusion
follows. 2

6. Proofs of Theorems 2.1 and 3.1

We prove simultaneously both theorems. LetD be a positive integer, letc0, h be positive
real numbers withh ≥ c0 ≥ 3, and letγ0, . . . , γd−1 be algebraic numbers with

max{h(γ0), . . . ,h(γd−1)}≤ h and [Q(γ0, . . . , γd−1) : Q] ≤ D.
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In the case of Theorem 2.1, we assume

max
0≤i≤d−1

∣∣aβ i − γi

∣∣ ≤ e−4V

where

Vd−1 = c9d−1
0 Dd+1hd(log D + logh)−1. (6.1)

In the case of Theorem 3.1, we denote byE the elliptic curve associated to the function℘.
For part a), we assume

max
0≤i≤d−1

|℘(β i u)− γi | ≤ e−4V (6.2)

where

Vd−2 = c9d−2
0 Dd+1hd(log D + logh)−2.

For part b), we assume that (6.2) holds withV given by (6.1). We will derive a contradiction
assuming thatc0 is sufficiently large (depending only onβ and loga for Theorem 2.1, on
β, u andE for Theorem 3.1). SinceV is an increasing function ofD, we may assume
D = [Q(γ0, . . . , γd−1) : Q].

In the situation of Theorem 2.1, we putA = Z, k = Q, Ä = 2π
√−1Z, % = 1 and

ν = 1, and we apply Theorem 5.1 with the group

G = Ga× G1, where G1 = Gd
m.

Thus, we haved0 = 1, d1 = d, d2 = 0 and, in the notations of Theorem 5.1,d is replaced
by d+ 1. We putu = loga, and, for 0≤ i ≤ d− 1, we denote byui the determination of
the logarithm ofγi which is closest toβ i u. Then, we have

max
0≤i≤d−1

|β i u− ui | ≤ e−3V , (0≤ i ≤ d − 1). (6.3)

In the situation of Theorem 3.1, we denote byÄ the group of periods ofE. For part a), we
put A = Z, k = Q, % = 2 andν = 1. For part b), we choose a non trivial endomorphism of
E corresponding to some imaginary quadratic numberτ , and we putA = Z[τ ], k = Q(τ ),
% = ν = 2. For both, we apply Theorem 5.1 with the group

G = Ga× G2, where G2 = Ed.

Thus, we haved0 = 1, d1 = 0, d2 = d and again, in the notations of Theorem 5.1,d is
replaced byd + 1. For i = 0, . . . ,d − 1, we denote byui the complex number which is
closest toβ i u and satisfies℘(ui ) = γi . Then (6.3) holds in this case as well.

In all cases, we haveν = [k : Q], % = rankZ Ä andd > %/ν. Moreover,β is algebraic
overk of degreed. So, we can write

βd = b0+ b1β + · · · + bd−1β
d−1, (6.4)
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with b0, b1, . . . ,bd−1 ∈ k. We define recursively complex numbersud, . . . ,u2d−2 by the
conditions

ui+d = b0ui + b1ui+1+ · · · + bd−1ui+d−1, (0≤ i ≤ d − 2).

We put`0 = 0, `1 = νd, and

η′j = (β j−1;β j−1u, β j u, . . . , β j+d−2u), (1≤ j ≤ d),

η j = (β j−1; u j−1, u j , . . . ,u j+d−2), (1≤ j ≤ d).

If ν = 2, we also define

η′d+ j = τη′j and ηd+ j = τη j , (1≤ j ≤ d).

Thanks to (6.3) and (6.4), these points satisfy

|η′j − η j | ≤ e−2V , (1≤ j ≤ `1).

Moreover, sinceη′1, . . . , η
′
`1

generate a subspace ofCd+1 of dimension 1, we haver = 1.
Let 0 be the subgroup ofG(C) generated by the points expG(η j ), (1 ≤ j ≤ `1), and let
K be the smallest extension ofk such thatG is defined overK and0 ⊂ G(K ). Then, the
degree ofK overQ satisfies

D ≤ [K : Q] ≤ c0D.

The parameterV defined above is given in all cases by

Vd−%/ν = c9d−%/ν
0 Dd+1hd(log D + logh)−%/ν.

DefineU = c−1
0 V and the remaining parameters by

T0 =
[

U

c3
0D(log D + logh)

]
, T1 = · · · = Td = T = [(c5

0D
)1/d]

,

S0 = 1, S1 = · · · = S̀ 1 = S=
[(

U

c3
0DT h

)1/%]
,

A1 = · · · = Ad = exp{c0S%h}, B1 = Sc0, B2 = exp{U/(c0D)}, E = (Dh)1/%.

Then,S0, S, T0 andT are positive integers andSsatisfies

(Dh)1/(dν) ≤ S≤ (Dh)c0.

Moreover, one verifies that all the conditions of Theorem 5.1 are fulfilled, and that we have

Sdν > 6d2(d + 1)!T0Td. (6.5)
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This last condition ensures that the conclusion of Theorem 5.1 is non trivial as we will now
see.

Theorem 5.1 shows that there exists an algebraic subgroupG∗ = G∗0 × G∗% of G =
Ga × G%, which is defined overK , which is also incompletely defined by equations of
multidegrees≤ (T0, %T, . . . , %T), with G∗ 6= G, such that

Card

(
0(S)+ G∗(K )

G∗(K )

)
≤ 6d2(d + 1)!T

d∗0
0 × Td∗% ,

whered∗0 is the codimension ofG∗0 in Ga, while d∗% is the codimension ofG∗% in G%. Note
that, because of (6.5), the right hand side of this inequality is<S`1. Moreover, since
1, β, . . . , βd−1 are linearly independent overk, the projection of0(S) on the factorGa of
G has cardinalityS`1. We deduceG∗0 = Ga andd∗0 = 0. Let0% be the projection of0
on the factorG%. For j = 1, . . . , `1, we denote byyj the element ofCd formed by the
lastd coordinates ofη j . Then, the points expG%

(yj ), (1 ≤ j ≤ `1), constitute a system of
generators of0%, and we have

Card

(
0(S)+ G∗(K )

G∗(K )

)
= Card

(
0%(S)+ G∗%(K )

G∗%(K )

)
≥ S`1 Card(E)−1

whereE denotes the set of pointss= (s1, . . . , s̀ 1) ∈ Z`1 with |s| < Sand

expG%

(
`1∑

j=1

sj η j

)
∈ G∗%(K ) (6.6)

(compare with Lemma 10.3 in [32]). This implies

S`1 Card(E)−1 ≤ (d + 1)!6d2Td

and so, by (6.5), we get Card(E) ≥ T0. SinceT0 ≥ 4S% > (2S− 1)%, this means thatE
contains at least%+ 1 elements which are linearly independent overQ. We will show that
this is impossible.

Since the subgroupG∗ is distinct fromG and incompletely defined inG by polynomials
of multidegrees≤(T0, %T, . . . , %T), there exists a pointt = (t1, . . . , td) in Ad with

|t| ≤ c0T%/ν ≤ c0T2

such thatG∗% is contained in the connected algebraic subgroup ofG% of codimension 1
whose Lie algebra is the kernel of the linear map:

g : Cd → C
(z1, . . . , zd) 7→ t1z1+ · · · + tdzd

(see [32], Chap. 8 for multiplicative groups, [15], Theorem III, p. 425 for elliptic curves).
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For any point(s1, . . . , s̀ 1) ∈ Z`1 satisfying (6.6), we have

g

(
`1∑

j=1

sj yj

)
∈ Ä.

Define a mappingf :Z`1 → C by

f
(
s1, . . . , s̀ 1

) = g

(
`1∑

j=1

sj yj

)
,

and fixρ + 1 linearly independent points ofE . Since the images underf of these points
are elements ofÄ of norm≤c2

0ST2, the pigeonhole principle shows that the kernel off
contains a linear combination of these points with integral coefficients which are bounded
above in absolute value by

c0
(
c2

0ST2
)% ≤ c5

0S2T4,

and not all zero. Lets= (s1, . . . , s̀ 1) ∈ Z`1 be such a point. The relationf (s) = 0 gives

d∑
j=1

d∑
i=1

aj ti u j+i−2 = 0 where aj =
{

sj if ν = 1
sj + sd+ j τ if ν = 2.

Since the numbers|β i u− ui | are bounded from above bye−2V for i = 0, . . . ,2d − 2, we
deduce ∣∣∣∣∣

(
d∑

j=1

ajβ
j−1

)(
d∑

i=1

tiβ
i−1

)∣∣∣∣∣ =
∣∣∣∣∣ d∑

j=1

d∑
i=1

aj tiβ
j+i−2

∣∣∣∣∣ ≤ e−V .

This is impossible because, sinceβ is of degreed ≥ 2 overk, the above product does not
vanish, and Liouville’s inequality shows that it is bounded below by(c7

0S3T6)1−dν . 2

Remark. A variant of this proof can be given with the groupG=G%, usingd0= 0,`0 = 1,
`1 = dν,

w1 = (1, β, . . . , βd−1)

and by deleting the first coordinate of the pointsη′1, . . . , η
′
`1

andη1, . . . , η`1.

7. Proof of Theorems 2.3 and 2.4

Proof of Theorem 2.4: Fix a constantc0 ≥ 1, and define

V = c10κ+1
0 (Dh)κ(log E)1−κFκ/m.
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We will assume

max
1≤i≤d
1≤ j≤`

|λi j λ11− λi 1λ1 j | < e−3V ,

and show that, ifc0 is sufficiently large in terms ofd and`, this hypothesis leads to a
contradiction. This will prove the theorem withC = 3c10κ+1

0 . Each computation below
assumes thatc0 is sufficiently large as a function ofd and`.

By replacing the matrix(λi j ) by its transpose if necessary, we may assume that` ≥ d.
Sinced` > d + `, this impliesd ≥ 2 and` ≥ 3, and we havem = ` − 1. By permuting
between themselves the columns of this matrix, we may also assume thatγ11 6= 1. Then,
Liouville’s inequality applied to|γ11− 1| gives

|λ11| ≥ 1

2
min{|γ11− 1|, 1} ≥ exp{−D(log 2)− Dh} ≥ exp{−2Dh}.

SinceDh/E ≥ |λ11|, this implies logE ≤ 3Dh. So, we getV ≥ c10κ
0 Dh, and thus

max
1≤i≤d
1≤ j≤`

∣∣(λ−1
11 λ1 j

)
λi 1− λi j

∣∣ ≤ |λ11|−1e−3V ≤ e−2V .

Denote byK the field generated overQ by thed` numbersγi j . PutU = c−1
0 V , and define

T andS to be the largest integers satisfying respectively

Td ≤ c2
0

U

log E
and S` ≤ c8

0
U

log E
F`/(`−1).

We apply Theorem 5.1 to the algebraic groupG = Gd
m with the parametersd0 = `0 = 0,

d1 = d, `1 = `,

log A1 = · · · = log Ad = c0Sh, B1 = B2 = eU/D,

T0 = S0 = 1, T1 = · · · = Td = T, S1 = · · · = S̀ = S,

and the points

η′j = λ−1
11 λ1 j (λ11, . . . , λd1) and η j = (λ1 j , . . . , λd j ), (1≤ j ≤ `).

We haveG(K ) = (K×)d, and0 is the subgroup ofG(K ) generated by the points

γ j = expG(η j ) = (γ1 j , . . . , γd j ), (1≤ j ≤ `).

Sinceη′1, . . . , η
′
` span a one-dimensional subspace ofCd, one verifies that all the conditions

of Theorem 5.1 are satisfied withr = 1. Thus, there exists a connected algebraic subgroup
G∗ of G, different fromG, which is defined by equations of partial degrees≤T , such that

Card

(
0(S)+ G∗(K )

G∗(K )

)
H(G∗ ; T, . . . , T) ≤ d!Td.
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Let d∗ > 0 be the codimension ofG∗ in G, and let8 be the subgroup ofZd consisting of
all points(t1, . . . , td) ∈ Zd for which the monomialYt1

1 · · ·Ytd
d ∈ Z[Y±1

1 , . . . ,Y±1
d ] induces

the trivial character onG∗. Then,8 has rankd∗, and we obtain

H(G∗; T, . . . , T) ≥ c−1
0 det(8)Td−d∗

where det (8) denotes the determinant of8 (see Section 3(b) of [3]). Put

E =
{
(s1, . . . , s̀ ) ∈ Z`;

∑̀
j=1

sj γ j ∈ G∗(K ) and|sj | < S for j = 1, . . . , `

}
.

Then, we also have

Card

(
0(S)+ G∗(K )

G∗(K )

)
Card(E) ≥ S`

(see for example the remark after Lemma 10.3 in [32]). Combining the last three inequalities,
we obtain

S` det(8) ≤ d!c0Td∗ Card(E).

First, assumed∗ < d, and letϕ be a nonzero element of8 of smallest supremum norm.
By Minkowski’s first convex body theorem, and Vaaler’s cube slicing inequality [27], we
get

|ϕ| ≤ det(8)1/d
∗ ≤ det(8),

since8 has rankd∗. Writeϕ = (t1, . . . , td) and consider the functionf :Z`→ C given by

f (s1, . . . , s̀ ) =
∑

1≤i≤d
1≤ j≤`

ti sjλi j .

By construction, it maps elements ofE to elements of 2π
√−1Zof absolute value≤c0SF|ϕ|.

On the other hand, sincè≥ d and` ≥ 3, we haveS`−1 ≥ c3
0Td−1F , and so,

Card(E) ≥ S` det(8)

d!c0Td−1
> c0SF|ϕ|.

Thus, f is not injective onE and so, there exists a nonzero element(s1, . . . , s̀ ) of Z` with
|sj | < 2S, (0≤ j ≤ `), such thatf (s1, . . . , s̀ ) = 0. We deduce∣∣∣∣∣ d∑

i=1

tiλi 1

∑̀
j=1

sjλ1 j

∣∣∣∣∣ =
∣∣∣∣∣ d∑

i=1

∑̀
j=1

ti sj (λi 1λ1 j − λ11λi j )

∣∣∣∣∣ ≤ e−V . (7.1)

Sinceλ11, . . . , λd1 are linearly independent overQ and sinceλ11, . . . , λ1` are also linearly
independent overQ, none of the numbers

∑d
i=1 tiλi 1 and

∑`
j=1 sjλ1 j vanishes. Moreover,
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we have

|ϕ| = max
1≤i≤d

|ti | ≤ T,

becauseG∗ is defined by polynomials of partial degrees≤T . Thus, Liouville’s inequality
yields lower bounds:∣∣∣∣∣ d∑

i=1

tiλi 1

∣∣∣∣∣ ≥ 1

2
min

{
1,

∣∣∣∣∣1− d∏
i=1

γ
ti
i 1

∣∣∣∣∣
}
≥ exp{−c0T Dh}

and similarly ∣∣∣∣∣ ∑̀
j=1

sjλ1 j

∣∣∣∣∣ ≥ exp{−c0SDh}.

SinceV > c0T SDh, this is a contradiction.
Finally, assumed∗ = d. In this case, the subgroupG∗ is reduced to the neutral element

of G, and we have8 = Zd. SinceS` ≥ c2
0Td, we get Card(E) > 1. Lets= (s1, . . . , s̀ ) be

a nonzero element ofE . For each(t1, . . . , td) ∈ Zd with 0≤ ti < T , (1≤ i ≤ d), the sum

d∑
i=1

∑̀
j=1

ti sjλi j (7.2)

is an element of 2π
√−1Z of absolute value≤c0T SDh/E. Sincec0T SDh/E < Td,

Dirichlet’s box principle yields a pointt = (t1, . . . , td) ∈ Zd with |ti | < T , (1 ≤ i ≤ d),
for which the sum (7.2) vanishes. For these choices ofsandt, inequality (7.1) again holds,
and we get a contradiction as above. 2

A direct proof of Theorem 2.3 can be given along the same lines. It shows that the
technical hypothesis can be replaced by the following weaker one:the numbers x1, . . . , xd

satisfy a measure of linear independence with exponent d, and the numbers y1, . . . , y`
satisfy a measure of linear independence of exponent`.

Here, we prefer to derive Theorem 2.3 from Theorem 2.4, in order to show the link
between the two results. To this end, we will need the following lemma:

Lemma 7.1. Let z1, . . . , zn be complex numbers satisfying a measure of linear indepen-
dence with exponentν > 0, and letθ > 3nν be a real number. There exists a positive
constant c satisfying the following property. Letλ1, . . . , λn be logarithms of algebraic
numbers, let D be a positive integer, and let h≥ c be a real number. Defineγ j = eλ j ,

(1≤ j ≤ n), and assume

[Q(γ1, . . . , γn) : Q] ≤ D, max{h(γ j ), |λ j |} ≤ h, (1≤ j ≤ n),

and

max
1≤ j≤n

|zj − λ j | ≤ exp{−(Dh)θ }.

Then the numbersλ1, . . . , λn areQ-linearly independent.
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Proof: By assumption there exists a real numberT0 such that, forT ≥ T0 and for
(t1, . . . , tn) ∈ Zn satisfying

0< max{|t1|, . . . , |tn|} ≤ T,

the inequality

|t1z1+ · · · + tnzn| ≥ exp{−Tν}
holds. Sinceν < θ/(3n), we may assume

Tν + log(nT) < T θ/(3n)

for T ≥ T0. Supposeh ≥ c where

c1(n) = (103n)n−1 and c = max
{
c1(n)

1/(2n), T1/(3n)
0

}
.

If the numbersλ1, . . . , λn were linearly dependent overQ, we could use Lemma 7.2 of [32]
and write

t1λ1+ · · · + tnλn = 0,

with an-tuple(t1, . . . , tn) ∈ Zn such that

0< max{|t1|, . . . , |tn|} ≤ c1(n)(D
3h)n−1.

PutT = (Dh)3n. Then, we getT ≥ T0, max{|t1|, . . . , |tn|} ≤ T , and

|t1z1+ · · · + tnzn| ≤ nT max
1≤ j≤n

|xj − λ j | ≤ nT exp
{− T θ/(3n)

}
< exp{−Tν},

which contradicts the hypothesis on the measure of linear independence ofz1, . . . , zn. 2

Proof of Theorem 2.3: Let D be a positive integer, letc2 andh be real numbers with
h ≥ c2

2 ≥ 3, and letγ11, . . . , γd` be algebraic numbers which generate overQ a field K of
degree≤D, and satisfyh(γi j )≤ h for i = 1, . . . ,d and j = 1, . . . , `. Suppose

|γi j − exi yj | ≤ e−3V where V = cκ+1
2 (Dh)κ(log D + logh)1−κ .

We will derive a contradiction, assuming thatc2 is sufficiently large as a function of
x1, . . . , xd andy1, . . . , y`.

For this purpose, we may assume, without loss of generality, thatK has degree exactly
D overQ. For eachi = 1, . . . ,d and j = 1, . . . , `, choose a determinationλi j of the
logarithm ofγi j so that

|λi j − xi yj | ≤ e−2V .

We get

max
1≤i≤d
1≤ j≤`

|λi j λ11− λi 1λ1 j | ≤ e−V .

Moreover, sincex1y1, . . . , xd y1 satisfy a measure of linear independence with exponent
<κ/(3d), Lemma 7.1 shows thatλ11, . . . , λd1 are linearly independent overQ. Similarly,
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sincex1y1, . . . , x1y` satisfy a measure of linear independence with exponent<κ/(3`),
Lemma 7.1 shows thatλ11, . . . , λ1` are linearly independent overQ. The contradiction
follows by applying Theorem 2.4 withE = Dh/c2. Note thatE ≥ (Dh)1/2 since
h ≥ c2

2. 2

8. Proof of Theorems 2.5 and 2.6

In this section we give a lower bound for
∑ |β j − logα j | and we deduce Theorems 2.5

and 2.6.

Theorem 8.1. Let n be a positive integer. There exist two positive constants c1 and c2
with the following property. Letα1, . . . , αn andβ1, . . . , βn be algebraic numbers, let D be
the degree of the number field they generate, and let A, B, B′, E be real numbers which
are≥e and satisfy

max
1≤ j≤n

h(α j ) ≤ log A and max
1≤ j≤n

h(β j ) ≤ log B.

For 1 ≤ j ≤ n, assume that the numberα j does not vanish, and choose a determination
λ j of its logarithm. Assume

max
1≤ j≤n

|λ j | ≤ D

E
log A,

log E ≤ D log A, log E ≤ D log B, log E ≤ D log B′, (8.1)

D(log A)(log B) ≥ (log B′)(log E), (8.2)

B ≥ D(log B′)(log E)−1 and B′ ≥ D(log A)(log B). (8.3)

Furthermore, assume

s1β1+ · · · + snβn 6= 0

for any(s1, . . . , sn) ∈ Zn with

0< max
1≤ j≤n

|sj | ≤ c1

(
D log B′

log E

)1/n

.

Then, we have

n∑
j=1

|β j − λ j | ≥ exp{−c2D2+1/n(log A)(log B)(log B′)1/n(log E)−1−1/n}.

Proof: Let c0 ≥ 1 be a real number. Set

V = c5+4/n
0 D2+1/n(log A)(log B)(log B′)1/n(log E)−1−1/n.
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Assumec1 ≥ c5/n
0 and

n∑
j=1

|β j − λ j | < e−2V .

We will show that, ifc0 is sufficiently large as a function ofn, then the last inequality leads
to a contradiction. This will prove the theorem withc2 = 2c5+4/n

0 .
To this end, we apply Theorem 5.1 with the groupG = Ga× Gm, so thatd0 = d1 = 1

andd = 2. For the number fieldK , we takeQ(α1, . . . , αn, β1, . . . , βn). Its degree overQ
is D. We choose the points

w′1 = w1 = (1, 1), η′j = (β j , β j ), η j = (β j , λ j ), (1≤ j ≤ n),

so that̀ 0 = 1 and`1 = n andr = 1. Note thatn has a different meaning here than in the
statement of Theorem 5.1. Let0 be the subgroup ofG(K ) = K × K× generated by

γ j = expG(η j ) = (β j , α j ), (1≤ j ≤ n).

We use the parameters

B1 = Bc0, B2 = (B′)c0, U = c−1
0 V, T0 =

[
U

D log B1

]
, S0 =

[
U

D log B2

]
,

T1 =
[
c2

0
D log B1

log E

]
, S1 = · · · = Sn = S=

[(
c3

0
D log B2

log E

)1/n]
and A1 = Ac0S.

By (8.1), the integersT0, T1 andS are positive. The inequality (8.2) combined with (8.1)
gives as well

S0 ≥
[
c3+4/n

0

(
D log B′

log E

)1/n]
≥ 1.

Assumingc0 sufficiently large, the left inequality in (8.3) givesS≤ (c4
0B)1/n ≤ B1/2

1 , thus

log(nS)+
n∑

j=1

h(β j ) ≤ 1

2
log B1+ logn+ n log B ≤ log B1.

Using the right inequality in (8.3), we also findU ≤ B2. So, we get

2S0+ T0+ T1 ≤ U ≤ B2.

The remaining conditions of Theorem 5.1 are plainly satisfied.
Therefore, there is a connected algebraic subgroupG∗ of G, distinct fromG, such that

S0 Card

(
0(S)+ G∗(K )

G∗(K )

)
H(G∗ ; T0, T1) ≤ 2T0T1.
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Here, the exponent̀∗0 of S0 is 1 because the only possibilities forG∗ are{0}×{1}, {0}×Gm,
orGa× {1}, and, in all cases,w1 does not belong to the tangent space ofG∗ at the identity.
Since

2T0T1 ≤ 2c2
0

U

log E
< S0Sn,

this inequality implies

Card

(
0(S)+ G∗(K )

G∗(K )

)
H(G∗ ; T0, T1) < Sn. (8.4)

Explicitly, we have

0(S) = {(s1β1+ · · · + snβn, α
s1
1 · · ·αsn

n

); 0≤ sj < S, (1≤ j ≤ n)
}
.

Sincec1 ≥ c5/n
0 , the hypothesis tells us that, for any nonzero elements= (s1, . . . , sn) of

Zn with |s| < 2S, we have

s1β1+ · · · + snβn 6= 0.

Thus, the set

{s1β1+ · · · + snβn; 0≤ sj < S, 1≤ j ≤ n}

has cardinalitySn. Since this set is the projection of0(S) on the factorGa of G, the
condition (8.4) is not satisfied ifG∗ is equal to{0} × {1} or {0} ×Gm. It remains the case
whereG∗ = Ga× {1}. In this case, the condition (8.4) becomes

Card
{
α

s1
1 · · ·αsn

n ; 0≤ sj < S, 1≤ j ≤ n
}
<

Sn

T0
.

Let E be the set of all points(s1, . . . , sn) ∈ Zn with supremum norm<S such that
α

s1
1 · · ·αsn

n = 1. Since

Card
{
α

s1
1 · · ·αsn

n ; 0≤ sj < S, 1≤ j ≤ n
} ≥ Sn

Card(E) ,

we get Card(E) > T0. On the other hand, for each(s1, . . . , sn) ∈ E , we have

s1λ1+ · · · + snλn = 2π
√−1s0,

for an integers0 with

|s0| ≤ nS

2π
max

1≤ j≤n
|λ j | ≤ nSDlog A

2πE
≤ c0SDlog A

log E
≤ c−1

0 T0.

By Dirichlet box principle, this means that there are at least two different elements ofE with
the same value ofs0. Taking their difference, we get a nonzero elements= (s1, . . . , sn) of
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Zn with |s| < 2Ssuch that

s1λ1+ · · · + snλn = 0.

This implies

|s1β1+ · · · + snβn| ≤ 2nSe−2V ≤ e−V .

Sinces1β1 + · · · + snβn is a nonzero algebraic number with absolute logarithmic height
≤ log(2nS)+ n log B ≤ log(2B1), Liouville’s inequality gives

|s1β1+ · · · + snβn| ≥ (2B1)
−D.

This is impossible sinceV ≥ c0D log B1. This contradiction ends the proof. 2

Remark. Here, we applied Theorem 2.1 of [21] with the algebraic groupGa×Gm,
the direction(1, 1) and then points (β1, λ1), . . . , (βn, λn). A similar argument can be
given with the algebraic groupGa×Gn

m, the direction(1, β1, . . . , βn) and a single point
(1, λ1, . . . , λn). The choice of parameters is similar but the conditions which arise concern-
ing B andB′ are not exactly the same. The transition from one proof to the other is merely
the transposition of the interpolation matrix. Compare with the remark (a) in Section 7
of [33].

Proof of Theorem 2.5: Let D ≥ 1 be an integer, and leth ≥ e be a real number. Put

ϕ(D, h) = 16c2D2+1/nh(h+ log D)(logh+ log D)−1,

wherec2 is as in Theorem 8.1. Assume thatα1, . . . , αn, β1, . . . , βn are algebraic numbers
in a number field of degree≤D, which satisfy

max
1≤ j≤n

h(α j )≤ h and max
1≤ j≤n

h(β j )≤ h.

We will show that, ifh is sufficiently large, with a lower bound depending only onx1, . . . , xn,
then we have

max
1≤ j≤n

max{|xj − β j |, |exj − α j |} ≥ exp{−ϕ(D, h)}. (8.5)

We argue by contradiction, assuming that (8.5) does not hold. Sinceϕ(D, h) is an
increasing function ofD, we may assume thatD is the degree of the extension ofQ
generated byα1, . . . , αn andβ1, . . . , βn. For j = 1, . . . ,n, denote byλ j the determination
of the logarithm ofα j which is closest toxj . If h is sufficiently large, we obtain

n∑
j=1

|β j − λ j | < exp{−(1/2)ϕ(D, h)}.

Define

A = eh, B = Deh, B′ = (Dh)2 and E = (Dh)1/2.
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Then, if h is sufficiently large, all the hypotheses of Theorem 8.1 are satisfied, except
maybe the condition about linear combinations ofβ1, . . . , βn. Moreover, the conclusion of
the theorem fails. Therefore, there are integerss1, . . . , sn with

n∑
j=1

sjβ j = 0 and 0< max
1≤ j≤n

|sj | ≤ c1(4D)1/n.

This implies ∣∣∣∣∣ n∑
j=1

sj x j

∣∣∣∣∣ ≤ 4nc1D1/n exp{−ϕ(D, h)} (8.6)

which contradicts the hypothesis thatx1, . . . , xn satisfy a measure of linear independence
with exponent 2n+ 1. 2

Remark. Note that, for fixedD, we get only finitely many possibilities for(s1, . . . , sn). For
each of them, (8.6) cannot hold ifh is sufficiently large. This does not require thatx1, . . . , xn

satisfy a measure of linear independence but simply that they be linearly independent over
Q. Thus, (8.5) holds with this weaker condition forh ≥ h0(D, x1, . . . , xn).

Proof of Theorem 2.6: Let D ∈ N andh ∈ R satisfy D ≥ 1 andh ≥ e. Assume that
there exist algebraic numbersα1, . . . , αn such that

[Q(α1, . . . , αn, β1, . . . , βn) : Q] ≤ D, max
1≤ j≤n

h(α j )≤ h

and

max
1≤ j≤n

|eβ j − α j | < exp
{−8c2D1+(1/n)h(logh+ D log D)(logh+ log D)−1

}
with c2 as in Theorem 8.1. It remains to show that this is impossible ifh is larger than
some constanth0 depending only onβ1, . . . , βn. The argument is similar to the proof of
Theorem 2.5. We may again assume thatD is the degree of the number field generated by
α1, . . . , αn andβ1, . . . , βn. Set

A = eh, B = Dh1/D, B′ = (Dh)2, E = (Dh)1/2.

Sinceβ1, . . . , βn are linearly independent overQ, Theorem 8.1 yields the desired contra-
diction. 2

Remark. It is possible to refine Theorem 8.1 in such a way as to include Fel’dman’s simulta-
neous approximation measure for logarithms of algebraic numbers. A slight modification of
the proof in [33] is needed (cf. [33], Section 7, subsection e), where the basis 1, z, . . . , zn

of the space of polynomials of degree≤ n is replaced byz(z − 1) · · · (z − j + 1)/j !,
(0≤ j ≤ n). See [9], Lemma 19.7, p. 127.
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9. Proof of Theorem 2.7

Let c0 be a real number≥1, and letγ1 andγ2 be algebraic numbers. Putα = eλ, and define

K = Q(α, β, γ1, γ2), D = [K : Q] and h = max{3, h(γ1), h(γ2)}.
Suppose

|λ− γ1| + |eβλ − γ2| ≤ e−3V

where

V = c6
0D2h(h+ log D)1/2(logh+ log D)−1/2.

We will derive a contradiction assuming, at each step, thatc0 is sufficiently large as a
function ofβ andλ alone.

Let mX2 − bX− a be the irreducible polynomial ofβ overZ, and denote by logγ2 the
determination of the logarithm ofγ2 which satisfies

|βλ− logγ2| ≤ c0e−3V .

We apply Theorem 5.1 to the groupG = Ga×G2
m with the points

w′1 = (1, 1, β), w1 = (1, 1, β),
η′1 = (λ, λ, βλ), η1 = (γ1, λ, logγ2),

η′2 = (mβλ, mβλ, mβ2λ), η2 = (mβγ1, m logγ2, aλ+ b logγ2).

So, we haved0 = `0 = 1, d1 = `1 = 2, d = 3 andr = 1. The groupG(K ) is K × (K×)2,
and its subgroup0 is generated by

expG(η1) = (γ1, α, γ2) and expG(η2) =
(
mβγ1, γ

m
2 , α

aγ b
2

)
.

Put

S= [c2
0

√
D
]
, U = c−1

0 V,

and define the remaining parameters by

A1 = A2 = ec0Sh, B1 = (Deh)c0, B2 = (Dh)c0, E = Dh,

T0 =
[

U

c0D(h+ log D)

]
, T1 = T2 = T =

[
U

c7/2
0 D3/2h

]
,

S0 =
[

U

c0D(logh+ log D)

]
and S1 = S2 = S.

Then, all conditions of Theorem 5.1 are satisfied. In particular, the main condition (5.4)
holds and we have

S0S2 > 6T0T2 and S0S> 6T2.
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Moreover,0(S) is the set of points(
(s1+ms2β)γ1, α

s1γ
ms2
2 , αas2γ

s1+bs2
2

)
, (0≤ s1, s2 < S).

By Theorem 5.1, there is a connected algebraic subgroupG∗ of G, of dimension≤2, such
that

S0 Card

(
0(S)+ G∗(K )

G∗(K )

)
H(G∗; T0, T1, T2) ≤ 6T0T2.

The exponent ofS0 in the left hand side is 1 because, sinceβ is irrational, there is no
algebraic subgroup ofG, apart fromG itself, whose tangent space at the origin contains
w1 = (1, 1, β). Write G∗ = G∗0 × G∗1 whereG∗0 is an algebraic subgroup ofGa andG∗1 is
an algebraic subgroup ofG2

m. The factorG∗0 is either{0} orGa. If we hadG∗0 = {0}, then,
sinceβ 6∈ Q andγ1 6= 0, we would get

Card

(
0(S)+ G∗(K )

G∗(K )

)
≥ S2 > 6T0T2/S0,

which is not possible. Hence, we haveG∗ = Ga× G∗1 andG∗1 is an algebraic subgroup of
G2

m of dimension≤1. Denote by01(S) the projection of0(S) on the factorG2
m of G. This

set consists of the points(
αs1γ

ms2
2 , γ

s1
2

(
αaγ b

2

)s2
)
, (0≤ s1, s2 < S).

Then, we find

Card

(
01(S)+ G∗1(K )

G∗1(K )

)
≤ 6T2/S0 < S.

This last inequality shows that the images of(α, γ2) and (γm
2 , α

aγ b
2 ) in the quotient

(K×)2/G∗1(K ) are torsion points (of order<S). Thus, there exist integersk1, k2, not
both zero, such that

αk1γ
k2
2 = 1 and γ

mk1
2

(
αaγ b

2

)k2 = 1.

We deduce

(γ2)
mk2

1+bk1k2−ak2
2 = 1.

The polynomialmX2 − bXY− aY2 being irreducible overQ, this exponent is nonzero,
and so,γ2 is a root of unity. It follows thatα is also a root of unity. Sinceγ2 belongs toK
and sinceK has degreeD overQ, the order ofγ2 must be≤2D2. Write (logγ2)/λ = p/q
with relatively prime integersp andq with q > 0. Sinceλ is fixed, we getq < c0D2, and,
becauseβ is quadratic irrational, Liouville’s inequality yields

|βλ− logγ2| ≥ 1

c0q2
≥ 1

c3
0D4

,

in contradiction with the choice of logγ2. 2
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10. Proof of Theorem 2.8

Denote byL theQ-vector space of logarithms of algebraic numbers:

L = exp−1(Q̄×).

The main result of this section is the following:

Theorem 10.1. Let d1 and`1 be positive integers and let M= (λi j ) be a d1 × `1 matrix
with coefficients inL. Setκ = (1/d1) + (1/`1). Denote by X theQ-vector subspace of
Cd1 which is spanned by the columns of M. Let r be the rank of M. Assume that, for any
surjective linear map g: Cd1 → Cd∗1 which is defined overQ, the dimensioǹ ∗1 of the
Q-vector space g(X) satisfies

`∗1/`1 ≥ d∗1/d1.

Then, there exists a positive constant C such that the function

C Dr κ+1(h+ log D)r κ+1(log D)−r κ−1

is a measure of simultaneous approximation for the d1`1 numbersλi j , (1 ≤ i ≤ d1,
1≤ j ≤ `1).

Note that under the hypotheses of this theorem, we haver κ ≥ 1 by virtue of Corollary 7.2
of [30].

Proof: Let D be a positive integer, letc0 andh be positive real numbers withh ≥ c0 ≥ 3,
and letγi j , (1≤ i ≤ d1, 1≤ j ≤ `1), be algebraic numbers. Assume that the number field
K generated overQ by the 2d1`1 numbers

αi j := eλi j , γi j , (1≤ i ≤ d1, 1≤ j ≤ `1)

has degree≤D. Suppose also

max
1≤i≤d1
1≤ j≤`1

h(γi j )≤ h and max
1≤i≤d1
1≤ j≤`1

|λi j − γi j | ≤ exp(−2V)

where

V = c3+4r κ
0

(
D(h+ log D)

log(eD)

)r κ+1

.

Note that, sincer κ ≥ 1, we haveV ≥ c3+4r κ
0 D(h+ log D). We will derive a contradiction

assuming, at each step, thatc0 is a sufficiently large constant, independent ofh, D and the
algebraic numbersγi j . This will prove the theorem.
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Without loss of generality, we may assumeD = [K : Q]. By permuting the rows and
columns ofM , we may also assume that the principal minor of orderr of M is nonzero:

det(λi j )1≤i, j≤r 6= 0.

We claim that the matrixM ′ = (γi j ) also has rankr , and that its principal minor of orderr is
nonzero. To justify this, letI be a subset of{1, . . . ,d1} and letJ be a subset of{1, . . . , `1},
both with the same cardinality. We find

|det(λi j )i∈I , j∈J − det(γi j )i∈I , j∈J | ≤ c0 exp(−2V) < exp(−V).

Since there are only finitely many possibilities forI andJ, we deduce det(γi j )i∈I , j∈J 6= 0
if det(λi j )i∈I , j∈J 6= 0. Conversely, if det(γi j )i∈I , j∈J 6= 0, then Liouville’s inequality gives

|det(γi j )i∈I , j∈J | ≥ exp(−c0Dh).

SinceV > c0Dh, this implies det(λi j )i∈I , j∈J 6= 0. So, a minor ofM vanishes if and only
if the corresponding minor ofM ′ vanishes.

We apply Theorem 5.1 to the groupG = Gr
a×Gd1

m . So, we haved0 = r andd = r +d1.
We also choosè0 = `1 and define four families of̀1 points by

w′j = η′j =
(
λ1 j , . . . , λr j ; λ1 j , . . . , λd1 j

) ∈ TG(C) = Cd,

w j =
(
γ1 j , . . . , γr j ; γ1 j , . . . , γd1 j

) ∈ TG(K ) = K d, (1≤ j ≤ `1).

η j =
(
γ1 j , . . . , γr j ; λ1 j , . . . , λd1 j

) ∈ TG(C) = Cd,

By construction, the subspace ofCd generated byw′1, . . . , w
′
`1

andη′1, . . . , η
′
`1

has dimen-
sion r . So, there is no conflict of notations concerning this parameterr . Consider the
matrices

L′ =
(

M M
M M

)
and L =

(
M ′ M ′

M ′ M

)
.

The reader may also think ofw′1, . . . , w
′
`1

(resp.w1, . . . , w`1) as the first̀ 1 column vectors
of L′ (resp.L), and ofη′1, . . . , η

′
`1

(resp.η1, . . . , η`1) as their last̀ 1 column vectors. We
haveG(K ) = K r × (K×)d1, and the subgroup0 of G(K ) is generated by thè1 points

γ j = expG(η j ) =
(
γ1 j , . . . , γr j ; α1 j , . . . , αd1 j

)
, (1≤ j ≤ `1).

Finally, W is the subspace ofCd spanned byw1, . . . , w`1. Define

B1 = B2 = B = (Deh)c0, E = eD, U = c−1
0 V, T0 = S0 =

[
U

D log B

]
.

The last two parameters satisfyT0 = S0 ≥ c4r κ
0 . Let T andSbe the integers given by

T =
[(

c2
0

D log B1

log E

)r/d1
]
, S=

[(
c3

0
D log B2

log E

)r/`1
]
.
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Since logE ≤ D, these integers as well are positive. For the remaining parameters, we
choose

log A1 = · · · = log Ad1 = c0S, T1 = · · · = Td1 = T, S1 = · · · = S̀ 1 = S.

Then, all the hypotheses of Theorem 5.1 are satisfied. Therefore, there exists a connected
algebraic subgroupG∗ of G, defined overK , incompletely defined inG by polynomials of
degree≤T in each of the last̀1 variables, and distinct fromG, such that

S
`∗0
0 Card

(
0(S)+ G∗(K )

G∗(K )

)
H(G∗ ; T0, T, . . . , T) ≤ d!

r !
Tr

0 Td1, (10.1)

where

`∗0 = dim
K
((W + TG∗(K ))/TG∗(K )).

Write G∗ = G∗0×G∗1 whereG∗0 andG∗1 are algebraic subgroups ofGr
a andGd1

m respectively.
Put

d∗0 = r − dimG∗0 and d∗1 = d1− dimG∗1,

and denote byλ∗ the largest integer for which there existλ∗ elementsγ ∗1 , . . . , γ
∗
λ∗ among

γ1, . . . , γ`1 such that

λ∗∑
j=1

sj γ
∗
j /∈ G∗(K )

for any(s1, . . . , sλ∗) ∈ Zλ∗ with 0< max1≤ j≤λ∗ |sj | < S. Then,(0(S)+ G∗(K ))/G∗(K )
has cardinality≥Sλ

∗
, and (10.1) implies

S
`∗0
0 Sλ

∗ ≤ d! T
d∗0
0 Td∗1 .

SinceS0 = T0 ≥ S, this gives

S`
∗
0+λ∗−d∗0 ≤ d! Td∗1 .

Finally, sinceS`1 ≥ (1/2)cr
0Td1, we deduce that either we have

`∗0 + λ∗ − d∗0
`1

<
d∗1
d1
, (10.2)

or `∗0 + λ∗ − d∗0 = d∗1 = 0.

Let 8 be the set of pointsϕ = (t1, . . . , td1) ∈ Zd1 such that the monomialYt1
1 · · ·Y

td1
d1

induces the trivial character onG∗1. SinceG∗1 is incompletely defined inGd1
m by polynomials

of degree≤T in each variable, Lemma 4.8 of [21] shows that8 admits a basisϕ1, . . . , ϕd∗1



422 ROY AND WALDSCHMIDT

with |ϕk| ≤ c0T for k = 1, . . . ,d∗1 . Write ϕk = (tk1, . . . , tkd1) for k = 1, . . . ,d∗1 , and
denote byg1 :Cd1 → Cd∗1 the linear map given by

g1
(
u1, . . . ,ud1

) = ( d1∑
i=1

t1i ui , . . . ,

d1∑
i=1

td∗1 i ui

)

for any point(u1, . . . ,ud1) ∈ Cd1. By construction, this map is surjective, defined overQ,
and its kernel isTG∗1(C). Moreover, a pointξ = (u1, . . . ,ud1) ∈ Cd1 satisfies

expGd1
m
(ξ) = (eu1, . . . ,eud1 ) ∈ G∗1(K )

if and only if g1(ξ) ∈ (2π
√−1Z)d∗1 .

Denote byξ1, . . . , ξ`1 the columns of the matrixM , and letX be theQ-vector subspace
of Cd1 that they generate. Denote by`∗1 the dimension ofg1(X) overQ. Then, if (10.2)
holds, the hypothesis of the theorem gives

`∗1 > `∗0 − d∗0 + λ∗. (10.3)

We will show that, nor can this inequality hold, nor can we have`∗0 + λ∗ − d∗0 = d∗1 = 0.
The proof will then be complete.

To show this, choose a linear mapg0 :Cr → Cd∗0 defined overK whose kernel isTG∗0(C),
and defineg :Cr ×Cd1 → Cd∗0 ×Cd∗1 to be the product mapg = (g0, g1). SinceTG∗(C) is
the kernel ofg, we have

`∗0 = dimg(W).

DefineÄ∗ = {0}d∗0 × (2π√−1Z)d∗1 ⊂ Cd∗0 × Cd∗1 . By construction, we also have, for any
(s1, . . . , s̀ 1) ∈ Z`1,

`1∑
j=1

sj γ j ∈ G∗(K )⇔
`1∑

j=1

sj g(η j ) ∈ Ä∗.

Thus,λ∗ is also the largest integer for which there existλ∗ elementsη∗1, . . . , η
∗
λ among

η1, . . . , η`1 such that

λ∗∑
j=1

sj g(η
∗
j ) /∈ Ä∗

for any(s1, . . . , sλ∗) ∈ Zλ∗ with 0< max1≤ j≤λ∗ |sj | < S.
Denote by

π0 :Cd → Cr (resp.π1 :Cd → Cd1)

the projection on the firstr coordinates, (resp. on the lastd1 coordinates). Similarly, denote
by

π∗0 :Cd∗0 × Cd∗1 → Cd∗0
(
resp.π∗1 :Cd∗0 × Cd∗1 → Cd∗1

)



SIMULTANEOUS APPROXIMATION AND ALGEBRAIC INDEPENDENCE 423

the projection on the firstd∗0 coordinates, (resp. on the lastd∗1 coordinates). By construction,
we haveπ0(W) = Cr . Sinceg0 ◦ π0 = π∗0 ◦ g, this impliesπ∗0 (g(W)) = Cd∗0 , and thus

`∗0 = d∗0 + dim(g(W) ∩ ker(π∗0 )). (10.4)

If we had`∗0 + λ∗ − d∗0 = d∗1 = 0, this would implyλ∗ = 0 andÄ∗ = {0}, and so, the
kernelTG∗(C) of g would containη1, . . . , η`1. Sinced∗1 = 0, this kernel would also contain
{0}×Cd1. So, it would be all ofCd, in contradiction with the hypothesisG∗ 6=G. It remains
to show that (10.3) cannot hold.

For simplicity, assume thatg1(ξ1), . . . , g1(ξ`∗1) are linearly independent overQ. Since
ξ j = π1(η j ) for j = 1, . . . , `1, this implies thatg(η1), . . . , g(η`∗1) also are linearly inde-
pendent overQ. By virtue of (10.4), we havè∗0 − d∗0 + λ∗ ≥ λ∗. So, (10.3) does not
hold if λ∗ ≥ `∗1. Assumeλ∗ < `∗1, and definem = `∗1 − λ∗. Then, there existm linearly
independent elements(s11, . . . , s1`∗1), . . . , (sm1, . . . , sm`∗1) of Z`∗1 with supremum norm<S
such that

`∗1∑
j=1

skj g(η j ) ∈ Ä∗, (1≤ k ≤ m). (10.5)

Let A be the(d∗0 + d∗1)×m matrix whose column vectors are given by (10.5). Since these
vectors are linearly independent overQ and belong toÄ∗, the firstr rows ofA are zero, and
the rank ofA is equal tom. Moreover, letA′ be a non-singular square matrix consisting of
rows ofAof indices, say,j1, . . . , jm. Then, since the coefficients ofA′ belong to 2π

√−1Z,
its determinant is an integral multiple of(2π

√−1)m. Now, consider the matrixB of the
same size asA, whose column vectors are

`∗1∑
j=1

skj g(w j ), (1≤ k ≤ m). (10.6)

Then,B also has rankm. To prove this, denote byB′ the square matrix formed by the rows
of B of indices j1, . . . , jm. The coefficients ofA′ being bounded above, in absolute value,
by c2

0T S, and the distance betweenA andB being≤c2
0T Sexp(−2V), we get

|detA′ − detB′| ≤ c2m+1
0 (T S)m exp(−2V) < 1.

Since|detA′| ≥ (2π)m, this implies detB′ 6= 0. Thus,B has rankm. Moreover, sinceη j

andw j have the same firstr coordinates for anyj , the firstd∗0 rows ofA andB are the same,
that is, equal to zero. Therefore, the vectors in (10.6) aremelements ofW which are linearly
independent overC and belong to kerπ∗0 . By virtue of (10.4), this gives̀∗0 ≥ d∗0 +m and
thus`∗0 − d∗0 + λ∗ ≥ λ∗ +m= `∗1. This shows that (10.3) does not hold. 2

Remark. The proof simplifies notably when all the logarithmsλi j are real. In this case,
the condition expG(η) ∈ G∗ is equivalent tog(η) = 0, and thus, we haveλ∗ ≥ `∗1. This
inequality combined with̀∗0 ≥ d∗0 show that (10.3) is impossible. Moreover, this does not
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requireS0 ≥ S. This allows one to use a smaller value forV . The reader may check that,
in this case, one can use

V = c3+4r κ
0 D

(
D(h+ log D)

log(eD)

)r κ

.

Thus, there exists a constantC > 0 such that

C Dr κ+1(h+ log D)r κ(log D)−r κ

is a measure of approximation of thed1`1 numbersλi j .

Corollary 10.2. Let W⊂ C2n be the set of zeroes of the polynomial X1Y1+ · · · + XnYn.
Letw = (x1, . . . , xn, y1, . . . , yn) be a point inL2n∩W which does not belong to any vector
subspace ofC2n defined overQ and contained in W. Then there exists a positive constant C
such that

C D2(h+ log D)2(log D)−2

is a measure of simultaneous approximation for the2n numbers x1, . . . , xn, y1, . . . , yn.

Put N = 2n. The proof of Corollary 10.2 rests on the next lemma which involves the
map

θn : C2n→MatN×N(C)

defined in [21] (see the remark at the end of Section 7). This map has the form

θn(v) =
(

0 ψn(v)

ϕn(v) 0

)
,

whereϕn andψn areC-linear maps fromC2n to Mat2n−1×2n−1(C). The latter maps are
defined by induction onn. Forn = 1, they are given by

ϕ1(x1, y1) = (x1), ψ1(x1, y1) = (y1).

Forn ≥ 1 andv′ = (x1, . . . , xn+1, y1, . . . , yn+1) ∈ C2n+2, we put

ϕn+1(v
′) =

(
xn+1I2n−1 ψn(v)

−ϕn(v) yn+1I2n−1

)
,

ψn+1(v
′) =

(
yn+1I2n−1 −ψn(v)

ϕn(v) xn+1I2n−1

)
,

wherev = (x1, . . . , xn, y1, . . . , yn), and where, for a positive integerm, Im denotes the
m×m identity matrix. The main properties of the mapθn are that, for anyv ∈ C2n written
as above, we have

θn(v)
2 = (x1y1+ · · · + xnyn)

2I2n

and that the matrixθn(v) has rank≤N/2 whenv ∈ W.
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We will need the following lemma:

Lemma 10.3. Let W be as in Corollary10.2, and letw = (x1, . . . , xn, y1, . . . , yn) be a
point of this hypersurface. Set N= 2n and denote by X theQ-vector subspace ofCN which
is spanned overQ by the column vectors of the matrixθn(w). Assume that there exists a
vector subspace U ofCN, defined overQ, such that

dimQ(X/(X ∩U )) < dimC(CN/U ).

Thenw belongs to a vector subspace ofC2n, defined overQ and contained in W.

Proof: Define

λ = dimQ(X/(X ∩U )) and δ = dimC(CN/U ).

There exist two matricesP andQ in GLN(Q) such thatPθn(w)Q can be written in block
form (

A 0
B C

)
,

where the matrixA has sizeδ × λ. Let E be the vector subspace ofC2n overC which
consists of the pointsv ∈ C2n such thatPθn(v)Q can be written in block form(

A(v) 0
B(v) C(v)

)
,

where the matrixA(v) has sizeδ × λ. Then,E is defined overQ and containsw. Since
A(v) has rank≤λ, the matrixθn(v), for v ∈ E, has rank≤λ+ d − δ < d. Hence, we get
detθn(v) = 0, sov ∈ W. This shows thatE is contained inW. 2

Proof of Corollary 10.2: We apply Theorem 10.1 withd1 = `1 = N = 2n and M =
θn(w). Since the coefficients ofθn(w) are

0,±x1, . . . ,±xn−1, xn,±y1, . . . ,±yn−1, yn, (10.7)

they all belong toL. As in Lemma 10.3, defineX to be theQ-vector space generated by
the columns ofθn(w). According to this lemma, ifg : Cd1 → Cd∗1 is a surjective linear
map defined overQ, and if we setU = kerg, then we have

`∗1 := dimQg(X) = dimQ(X/(X ∩U )) ≥ dimC(Cd1/U ) = d∗1 .

This uses the hypothesis thatw does not belong to any vector subspace ofCn defined over
Q and contained inW. Sinced1 = `1, the above inequality shows that the last hypothesis
of Theorem 10.1 is satisfied. Moreover, sincew ∈ W, the matrixθn(w) has rankr ≤ N/2.
We deduce that the family (10.7) admits a measure of simultaneous approximation of the
form

C Dr κ+1(h+ log D)r κ+1(log D)−r κ−1
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with

κ = 2/d1 = 2−n+1 and r ≤ d1/2= 2n−1 = 1/κ.

This yields the desired result. 2

Proof of Theorem 2.8: Write the polynomialQ in the form

Q(X1, . . . , Xn) =
∑

1≤i, j≤n

ai j Xi X j

with rational numbersa11, . . . ,ann. Define aC-linear mapϕ : Cn→ C2n by

ϕ(z1, . . . , zn) =
(

z1, . . . , zn,

n∑
j=1

a1 j zj , . . . ,

n∑
j=1

anj zj

)
,

and consider the pointw = ϕ(λ1, . . . , λn). Since(λ1, . . . , λn) is a zero ofQ in Ln, the
pointw belongs toW ∩ L2n, whereW is the hypersurface defined in Corollary 10.2. Let
E denote the smallest vector subspace ofCn, which is defined overQ, and containsw.
Sinceλ1, . . . , λn areQ-linearly independent, and sinceE is defined overQ, E contains
ϕ(Cn). Moreover,ϕ(Cn) is not contained inW because the polynomialQ does not vanish
identically onCn. Hence,E is not contained inW, and the conclusion follows from
Corollary 10.2 and Proposition 1.3. 2

Remark. One deduces Corollary 10.2 from Theorem 2.8 by considering a basisλ1, . . . , λm

of theQ-vector space spanned by the 2n numbersx1, . . . , xn, y1, . . . , yn: from the hypoth-
esisw ∈ W of Corollary 10.2 we deduce thatλ1, . . . , λm satisfy a nontrivial homogeneous
quadratic dependence relation. So, the two results are, in fact, equivalent.

11. Proof of Theorem 4.1

Under the assumptions of Theorem 4.1, setα = ℘(ω1/2) andβ = ℘ ′(ω1/2). Let K0

denote the number fieldQ(g2, g3, α, β), and letc0, D0 andh0 be positive integers. Choose
algebraic numbersγ1, γ2, γ

′
1, γ

′
2, and set

K = K0(γ1, γ2, γ
′
1, γ

′
2),

h = max{h0, h(γ1), h(γ2), h(γ
′
1), h(γ

′
2)} and D = max{D0, [K : Q]}.

We will show that the hypothesis

|ω1− γ1| + |ω2− γ2| + |η1− γ ′1| + |η2− γ ′2| ≤ exp
{−2c14

0 D3/2(h+ log D)3/2
}

leads to a contradiction ifc0, D0 andh0 are sufficiently large, independently of the choice
γ1, γ2, γ

′
1, γ

′
2, and from this the conclusion will follow.

LetE be the elliptic curve overK0 which is associated with℘, and letσ be the Weierstraß
sigma function associated with℘. It is known that an extensionG1 ofEby the additive group
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Ga admits an embedding inP5. Explicit formulas for the exponential map ofG1(C) are
given by Hindry in [12]. These formulas identify the tangent spaceTG1(C) with C2. Here,
we consider the nonisotrivial extensionG1 whose exponential map expG1

:C2 → G1(C)
is given by the entire functionsϕ0, . . . , ϕ5, with

ϕ0(z1, z2) = σ(z2)
3, ϕ1/ϕ0(z1, z2) = ℘(z2), ϕ2/ϕ0(z1, z2) = ℘ ′(z2),

ϕ3/ϕ0(z1, z2) = z1+ ζ(z2), ϕ4/ϕ0(z1, z2) = ℘(z2)(z1+ ζ(z2))+ 1

2
℘ ′(z2),

ϕ5/ϕ0(z1, z2) = ℘ ′(z2)(z1+ ζ(z2))+ 2℘2(z2).

We shall achieve the required contradiction by applying Theorem 2.1 of [33] to the product
G = Ga× G1. In the notations of this theorem, we thus haved0 = 1, d1 = 0, d2 = 2,
d = 3, n = 1 andδ1 = 2. The groupG is defined overK0 and therefore is defined overK .
Moreover, if we identifyTG(C) with C × TG1(C) = C3, thenTG(K ) becomes identified
with K 3. We choose

`0 = 1 and w′1 = w1 = (1, 0, 1).
Then,W = Kw1 is a subspace ofTG(K ) and we haveW ′ = Cw′1. We will also take
V ′ =W ′, thusr = r3 = 1 andr1 = r2 = 0. Define parametersA, B, . . . ,V by

log A = c9
0(h+ log D),

log B = c0(h+ log D),

T0 = S0 =
[
c11

0 D1/2(h+ log D)1/2
]

T1 =
[
c3

0D1/2(h+ log D)1/2
]

S1 =
[
c4

0D1/2(h+ log D)1/2
]

U = c13
0 D3/2(h+ log D)3/2,

A1 = A, B1 = B2 = B, E = e and V = c0U.

It is easy to check that they satisfy all the hypotheses in Section 2f) of [33]. Essentially,
one verifies

DT0 log B = DS0 log B ≤ U, DT1 log A ≤ U, and B ≥ T0+ T1+ 3S0.

The main condition in Section 2g) of [33] which imposes bounds on the valueH(G; T0, T1)

of the Hilbert function ofG follows from the inequalities

1

2
c4

0U < T0T2
1 ≤ c4

0U.

We putM = S2
1 and we choose forη′1, . . . , η

′
M ∈ V ′ the following multiples ofw′1

((s1+ 1/2)ω1+ s2ω2, 0, (s1+ 1/2)ω1+ s2ω2 ), (0≤ s1, s2 < S1).
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Accordingly, we take

6 = {expG(η1), . . . ,expG(ηM)} ⊂ G(K )

whereη1, . . . , ηM denote the points

((s1+ 1/2)γ1+ s2γ2, (s1+ 1/2)(γ ′1− η1)+ s2(γ
′
2− η2), (s1+ 1/2)ω1+ s2ω2),

with 0 ≤ s1, s2 < S1. If we compute the image of such a point under the exponential map
of G, we find that its projection on the factorGa is

(s1+ 1/2)γ1+ s2γ2,

and that its projection onG1 is

(1 :α :β : (s1+ 1/2)γ ′1+ s2γ
′
2 :α((s1+ 1/2)γ ′1+ s2γ

′
2)

+β/2 : β((s1+ 1/2)γ ′1+ s2γ
′
2)+ 2α2).

The height of this last point inP5(K ) is bounded above by

c0(log S1+ h) ≤ log A.

Moreover, the height of the point(1 : w1) in P3(K ) as well as the height of the point in
PM(K ) with projective coordinates 1 and(s1 + 1/2)γ1 + s2γ2, (0≤ s1, s2 < S1), are both
bounded above by logB. Finally, for any realR≥ 0 and anyz ∈ C3 with |z| ≤ R, we have

−H−(R) ≤ log max{|ϕ0(z)|, . . . , |ϕ5(z)|}≤H+(R)

with H−(R) = c0 andH+(R) = c1/3
0 R2. Since all the pointsη j have norm|η j | ≤ c1/4

0 S1

and since

H+
(
c1/3

0 S1
) = c0S2

1 ≤ D log A,

we find that all the conditions in Section 2e) of [33] are fulfilled.
Finally, our hypothesis gives|η′j − η j | ≤ e−V for j = 1, . . . ,M , and we clearly have
|w′1 − w1| ≤ e−V . Therefore we can use Theorem 2.1 of [33]. It provides a connected
algebraic subgroupG∗ of G, distinct fromG, such that, if we define

W∗ = (W + TG∗(K ))/TG∗(K ), 6∗ = (6 + G∗(K ))/G∗(K ),

`∗0 = dimK W∗ and M∗ = Card6∗,

then, since degG1 = 6 (see [12]), we have

S
`∗0
0 M∗H(G∗; T0, T1) ≤ 72T0T2

1 . (11.1)

SinceG∗ is a proper subgroup ofG, it must be contained either in{0} × G1 or in the
subgroupL of G whose tangent space insideTG(C) = C3 is C2 × {0}. This groupL is
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isomorphic toG2
a and yields a quotientG/L isomorphic toE. Sincew1 does not belong to

{0}×C2 nor toC2×{0}, we must havè∗0 = 1 in all cases. IfG∗ is contained inL and has
dimension 2, we find

M∗ = 1 and H(G∗; T0, T1) ≥ 2T0T1.

If G∗ is contained inL and has dimension 1, its tangent space cannot contain both(γ1, γ
′
1, 0)

and(γ2, γ
′
2, 0) because the determinantγ1γ

′
2 − γ2γ

′
1 is close toω1η2 − ω2η1 which itself

is equal to±2iπ by virtue of Legendre’s relation. Since everyη j is congruent modulo the
group of periods ofG to a point of the form

η + s1(γ1, γ
′
1, 0)+ s2(γ2, γ

′
2, 0)

for some fixedη ∈ C3, we deduce that, in that case, we have

M∗ ≥ S1 and H(G∗; T0, T1) ≥ min{T0, T1} = T1.

Finally, if G∗ is contained in{0} × G1, then all elements of6 are incongruent modulo
G∗(K ) and so we have

M∗ = S2
1 and H(G∗; T0, T1) ≥ 1.

SinceT0 ≥ S1 ≥ T1, we thus have, in all three cases,M∗H(G∗; T0, T1) ≥ S1T1 and (11.1)
yields

S0S1T1 ≤ 72T0T2
1 .

SinceS0 = T0 andS1 > (c0/2)T1, this is the desired contradiction. 2
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Acad. Sci., Śer. A71 (1995), 151–153.
21. D. Roy and M. Waldschmidt, “Approximation diophantienne et ind´ependance alg´ebrique de logarithmes,”
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