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Université P. et M. Curie (Paris VI)
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ZETA FUNCTIONS, TOPOLOGY AND QUANTUM PHYSICS, 197–219]

In dealing with multiple zeta values, the main diophantine challenge is to prove
that known dependence relations among them suffice to deduce all algebraic relations.
One tool which should be relevant is the structure of Hopf Algebras, which occurs in
several disguises in this context. How to use it is not yet clear, but we point out that
it already plays a role in transcendental number theory: Stéphane Fischler deduces
interpolation lemmas from zero estimates by using a duality involving bicommutative
(commutative and cocommutative) Hopf Algebras.

In the first section we state two transcendence results involving values of the ex-
ponential function; they are special cases of the linear subgroup Theorem which deals
with commutative linear algebraic groups.

In the second section, following S. Fischler, we explain the connection between the
data of the linear subgroup Theorem and bicommutative Hopf algebras of finite type.

In the third and last section we introduce non-bicommutative Hopf algebras related
to multiple zeta values.

∗Lecture given at University of Kinki (Osaka), for the international confer-
ence “Zeta-functions, Topology and Quantum Physics 2003” March 3-6, 2003
http://math.fsci.fuk.kindai.ac.jp/zeta/. The author wishes to thanks Professor Shigeru
Kanemitsu for his kind invitation, his generous support and for the excellent organisation of
this conference. Last but not least, I am grateful to Stéphane Fischler for valuable remarks
on a previous version of this paper.
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1 Transcendence, exponential polynomials and
commutative linear algebraic groups

We start with two examples of transcendence results; their proofs involve expo-
nential polynomials and they occur as corollaries of a general result on commu-
tative algebraic groups: the linear subgroup Theorem.

In this context, there is duality, which can be explained by means of the
Fourier-Borel transform of exponential polynomials. This duality is revisited by
S. Fischler from the view point of commutative linear algebraic groups, using
Hopf algebras.

1.1 Transcendence results

Here is our first transcendence result ([B] Theorem 2.1).

Theorem 1.1 (Baker). Let β0, . . . , βn be algebraic numbers and α1, . . . , αn

be non-zero algebraic numbers. For 1 ≤ i ≤ n, denote by log αi any complex
logarithm of αi. Assume

β0 + β1 log α1 + · · ·+ βn log αn = 0.

Then it holds that
1. β0 = 0.
2. If (β1, . . . , βn) 6= (0, . . . , 0), then the numbers log α1, . . . , log αn are Q-linearly
dependent.
3.If (log α1, . . . , log αn) 6= (0, . . . , 0), then the numbers β1, . . . , βn are Q-linearly
dependent.

As is well known this result includes Hermite’s result (1873) on the tran-
scendence of e, Lindemann’s result (1882) on the transcendence of π and more
generally

Corollary 1.2 (Hermite-Lindemann). If β is a non-zero algebraic number,
then eβ is a transcendental number.
Equivalently, if α is a non-zero algebraic number and if log α is any non-zero
logarithm of α, then log α is a transcendental number.

This includes the transcendence of numbers like e, π, e
√

2, log 2.
Denote by Q the field of all complex algebraic numbers, which is the algebraic

closure of Q in C and by L = exp−1(Q
×

) the Q-vector space of logarithms of
algebraic numbers:

L = {λ ∈ C ; eλ ∈ Q
×} = {log α ; α ∈ Q

×}.

Hermite-Lindemann’s Theorem asserts that L does not contain any non-zero
algebraic number:

L ∩Q = {0}.
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Another corollary of Baker’s Theorem 1.1 is the answer to Hilbert’s seventh
problem, given by A.O. Gel’fond and Th. Schneider in 1934:

Corollary 1.3 (Gel’fond-Schneider). If β is an irrational algebraic number,
α a non-zero algebraic number and log α a non-zero logarithm of α, then the
number

αβ = exp(β log α)

is transcendental.

Gel’fond-Schneider’s Theorem (Corollary 1.3) asserts that the quotient of
two non-zero elements in L is either rational or else transcendental; Baker’s
Theorem 1.1 implies more generally that Q-linearly independent elements of L
are Q-linearly independent.

Theorem 1.1 also yields the transcendence of numbers like e
√

22
√

3,∫ 1

0

dx

1 + x3
=

1
3

(
log 2 +

π√
3

)
and more generally (under suitable assumptions – see [B] Theorems 2.2, 2.3 and
2.4) of numbers of the form

eβ0αβ1
1 · · ·αβm

m and β0 + β1 log α1 + · · ·+ βm log αm

when the numbers αi and βj are algebraic.

It is to be remarked that Baker’s Theorem does not include all known tran-
scendence results related to the exponential function: here is an example ([W]
p. 386).

Theorem 1.4 (Sharp six exponentials Theorem). Let x1, x2 be two com-
plex numbers which are Q-linearly independent and y1, y2, y3 three complex num-
bers which are also Q-linearly independent. Further let βij (i = 1, 2, j = 1, 2, 3)
be six algebraic numbers. Assume

exiyj−βij ∈ Q for i = 1, 2, j = 1, 2, 3.

Then xiyj = βij for i = 1, 2, j = 1, 2, 3.

The special case βij = 0 for all i, j is known as the six exponentials Theorem
(due to Lang and Ramachandra in the 60’s – see references in [W], § 1.3): if
x1, x2 are Q-linearly independent and y1, y2, y3 are also Q-linearly independent,
then at least one of the six numbers

exiyj (i = 1, 2, j = 1, 2, 3)

is transcendental.
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The four exponentials Conjecture ([W] Conjecture 1.13) asserts that two
values for y should suffice: if x1, x2 are Q-linearly independent and y1, y2 are
also Q-linearly independent, then at least one of the four numbers

exiyj (i = 1, 2, j = 1, 2)

is transcendental.
A sharper result is expected, which we call here the sharp four exponentials

Conjecture: under the same assumptions as in the four exponentials Conjecture,
if βij (i = 1, 2, j = 1, 2) are four algebraic numbers such that

exiyj−βij ∈ Q for i = 1, 2, j = 1, 2,

then one should have xiyj = βij for i = 1, 2, j = 1, 2.

Conjecture 1.5 (Sharp five exponentials Conjecture). If x1, x2 are Q-
linearly independent, if y1, y2 are Q-linearly independent and if α, β11, β12, β21,
β22, γ are six algebraic numbers such that

ex1y1−β11 , ex1y2−β12 , ex2y1−β21 , ex2y2−β22 , e(γx2/x1)−α

are algebraic, then xiyj = βij for i = 1, 2, j = 1, 2 and furthermore γx2 = αx1.

The case βij = 0 of Conjecture 1.5 is an easy consequence of the sharp six
exponentials Theorem 1.4: this is the five exponentials Theorem ([W] p. 385):
If x1, x2 are Q-linearly independent, if y1, y2 are Q-linearly independent and if
γ is a non-zero algebraic, then at least one of the five numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2 , eγx2/x1

is transcendental.
Moreover, in the special case where the three numbers y1, y2 and γ/x1 are

Q-linearly independent, the sharp five exponentials Conjecture 1.5 follows from
the sharp six exponentials Theorem 1.4 by setting

y3 = γ/x1, β13 = γ, β23 = α,

so that
x1y3 − β13 = 0 and x2y3 − β23 = (γx2/x1)− α.

In the case where the three numbers y1, y2 and γ/x1 are linearly dependent
over Q, the conjecture is open. A consequence of the sharp five exponentials
Conjecture 1.5 is the transcendence of the number eπ2

: take

x1 = y1 = γ = 1, x2 = y2 = iπ, α = 0, β11 = 1, βij = 0 for (i, j) 6= (1, 1).

So far, we only know (W.D. Brownawell and the author) that at least one of
the two statements holds:
• eπ2

is transcendental.
• The two numbers e and π are algebraically independent.
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In the same way, setting

x1 = y1 = γ = 1, x2 = y2 = λ, α = 0, β11 = 1, βij = 0 for (i, j) 6= (1, 1),

we deduce from Conjecture 1.5 the transcendence of eλ2
when λ is a non-zero

logarithm of an algebraic number. Writing α = eλ or λ = log α, we have

eλ2
= αlog α.

Only the following weaker statement is known: at least one of the two numbers

eλ2
= αlog α, eλ3

= α(log α)2

is transcendental, which was proved initially by W.D. Brownawell and the author
as a consequence of a result of algebraic independence; however it is also a
consequence of the sharp six exponentials Theorem 1.4 with

x1 = y1 = 1, x2 = y2 = λ, y3 = λ2, β11 = 1, βij = 0 for (i, j) 6= (1, 1).

The sharpest known result on this subject is the strong six exponentials
Theorem due to D. Roy ([W] Corollary 11.16). Denote by L̃ the Q-vector space
spanned by 1 and L: hence L̃ is nothing else than the set of complex numbers
of the form

β0 +
n∑

i=1

βi log αi,

with n ≥ 0, βj algebraic numbers, αi non-zero algebraic numbers and all val-
ues of their logarithm are considered. The strong six exponentials Theorem
states that if x1, x2 are Q-linearly independent and if y1, y2, y3 are Q-linearly
independent, then at least one of the six numbers

xiyj (i = 1, 2, j = 1, 2, 3)

is not in L̃.
The strong four exponentials Conjecture ([W] Conjecture 11.17) claims that

the same should hold with only two values y1, y2 in place of three.

1.2 Exponential polynomials

The proofs of both Theorems 1.1 and 1.4 involve exponential polynomials. Here
are basic facts on them.

For the proof of Baker’s Theorem 1.1, assume

β0 + β1 log α1 + · · ·+ βn−1 log αn−1 = log αn.

In Gel’fond–Baker’s Method (B1), we consider the following n + 1 functions

z0, ez1 , . . . , ezn−1 , eβ0z0+β1z1+···+βn−1zn−1
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of n variables z0, . . . , zn−1. At the points Z(1, log α1, . . . , log αn−1) ∈ Cn, all
these functions take algebraic values. Moreover we also get algebraic numbers
by taking derivatives with respect to the operators ∂/∂zi, (0 ≤ i ≤ n− 1).

Notice that there are n variables, n + 1 functions, 1 point (together with its
multiples) and n derivations (together with their compositions).

In Generalized Schneider’s Method (B2), we consider the n + 1 functions:
z0, z1, . . . , zn−1 and

ez0αz1
1 · · ·α

zn−1
n−1 = exp{z0 + z1 log α1 + · · ·+ zn−1 log αn−1}

at the points: {0} ×Zn−1 + Z(β0, , . . . , βn−1) ∈ Cn. Only one derivation yields
algebraic numbers, namely ∂/∂z0.

In this alternative approach there are again n variables and n + 1 functions,
but a single derivation, while the points form a group of Z-rank n.

1.3 Data for the proof of Theorem 1.4

Here are the main data for the proof of Theorem 1.4.
Assume x1, . . . , xa are Q-linearly independent, y1, . . . , yb are Q-linearly in-

dependent, βij are algebraic numbers and λij are elements in L such that

λij = xiyj − βij for i = 1, . . . , a, j = 1, . . . , b

with ab > a + b.
For Theorem 1.4 it would be sufficient to restrict to a = 2, b = 3, but it

will be useful to introduce these two parameters a and b so that the situation
becomes symmetric. As we shall see, we should assume ab > a+b, which means
either a ≥ 2 and b ≥ 3 or else a ≥ 3 and b ≥ 2.

Consider the functions:

zi, e(xi/x1)(za+1+z1)−zi (1 ≤ i ≤ a)

at the points of the subgroup in C spanned by

(β1j , . . . , βaj , λ1j) ∈ Ca+1 (1 ≤ j ≤ b).

These values are algebraic and the same holds for the values at the same points
of the derivatives of these functions with respect to the differential operators
∂/∂zi (2 ≤ i ≤ a) and ∂/∂za+1 − ∂/∂z1.

Hence we are dealing with 2a functions in a + 1 variables, b points (linearly
independent) and a derivations.

1.4 Commutative linear algebraic groups

Theorems 1.1 and 1.4 are special cases of the linear subgroup Theorem. Consider
a commutative linear algebraic group, say G = Gd0

a ×Gd1
m (where Ga denotes the

additive group and Gm the multiplicative group), over the field Q of algebraic
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numbers. Its dimension is d = d0 + d1. Let W ⊂ Te(G) be a C-subspace which
is rational over Q. Denote by `0 its dimension. Let Y ⊂ Te(G) be a finitely
generated subgroup such that Γ = exp(Y ) is contained in G(Q) = Q

d0×(Q
×

)d1 .
Let `1 be the Z-rank of Γ. Finally let V ⊂ Te(G) be a C-subspace containing
both W and Y . Let n be the dimension of V.

The conclusion of the linear subgroup Theorem below ([W] Theorem 11.5)
is non-trivial only when

n(`1 + d1) < `1d1 + `0d1 + `1d0. (1.6)

For each connected algebraic subgroup G∗ of G, defined over Q, we define

Y ∗ = Y ∩ Te(G∗), V∗ = V ∩ Te(G∗), W∗ =W ∩ Te(G∗)

and

d∗ = dim(G∗), `∗1 = rankZ(Y ∗), n∗ = dimC(V∗), `∗0 = dimC(W∗).

We may write G∗ = G∗
0 ×G∗

1 where G∗
0 is an algebraic subgroup of G0 and G∗

1

is an algebraic subgroup of G1. Define

d∗0 = dim(G∗
0), d∗1 = dim(G∗

1),

so that d∗ = d∗0 + d∗1.
If we set

G′
0 =

G0

G∗
0

, G′
1 =

G1

G∗
1

, G′ =
G

G∗ = G′
0 ×G′

1,

Y ′ =
Y

Y ∗
, V ′ =

V
V∗

, W ′ =
W
W∗

,

and
d′0 = dim(G′

0), d′1 = dim(G′
1), d′ = dim(G′),

`′1 = rankZ(Y ′), n′ = dimC(V ′), `′0 = dimC(W ′),

then
d0 = d∗0 + d′0, d1 = d∗1 + d′1, d = d∗ + d′,

`1 = `∗1 + `′1, n = n∗ + n′, `0 = `∗0 + `′0.

Theorem 1.7 (Linear subgroup Theorem).
(1) Assume d > n. Then there exists a connected algebraic subgroup G∗ of G
such that

d′ > `′0 and
`′1 + d′1
d′ − `′0

≤ d1

d− n
·

(1’) Assume `1 > 0. Then there is a G∗ for which

(d∗1, `
∗
1) 6= (0, 0) and

d∗ − `∗0
d∗1 + `∗1

≤ n− `0
`1
·
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(2) Assume d > n and `1 > 0. Assume further that for any G∗ for which
Y ∗ 6= {0}, we have

n∗ − `∗0
`∗1

≥ n− `0
`1
·

Assume also that there is no G∗ for which the three conditions `′1 = 0, n′ = `′0
and d′ > 0 simultaneously hold. Then

d1 > 0 and `1(d− n) ≤ d1(n− `0).

(2’) Assume d > n and `1 > 0. Assume further that for any G∗ for which
d′ > n′, we have

d1

d− n
≤ d′1

d′ − n′
·

Assume also that there is no G∗ for which the three conditions d∗1 = 0, d∗ = n∗

and d∗ > 0 simultaneously hold. Then

n > `0 and `1(d− n) ≤ d1(n− `0).

(3) Assume `1 > 0. Then the family of G∗ for which `∗1 6= 0 and (n∗ − `∗0)/`∗1
is minimal is not empty. Let G∗ be such an element for which d∗ is minimal.
Then either d∗ = n∗ or else

d∗1 > 0 and
n− `0

`1
≥ n∗ − `∗0

`∗1
≥ d∗ − n∗

d∗1
·

(3’) Assume d > n. Then the family of G∗ for which d′ > n′ and d′1/(d′ − n′)
is minimal is not empty. Let G∗ be such an element for which d′ is minimal.
Then either `′1 = 0 or else

n′ > `′0 and
d1

d− n
≥ d′1

d′ − n′
≥ `′1

n′ − `′0
·

1.5 Fourier-Borel duality

Unifying the notation of §1.2 involving exponential polynomials, we let d0 + d1

be the number of functions, d0 of which are linear and d1 are exponential, `0 the
number of derivations, `1 the number of points and n the number of variables.

d0 d1 `0 `1 n
Baker B1 1 n n 1 n
Baker B2 n 1 1 n n
Sharp six exponentials a a a b a + 1

The inequality (1.6)

n(`1 + d1) < `1d1 + `0d1 + `1d0.
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is satisfied in the case of Baker’s Theorem 1.1 since

n(`1 + d1) = n2 + n, `1d1 + `0d1 + `1d0 = n2 + n + 1.

For Theorem 1.4 the condition a + b < ab is required:

n(`1 + d1) = a2 + ab + a + b, `1d1 + `0d1 + `1d0 = a2 + 2ab.

There is a duality in each two cases: it consists in permuting

(d0, d1, `0, `1)←→ (`0, `1, d0, d1)

For Baker’s Theorem 1.1 it permutes methods B1 and B2. As pointed out to me
by S. Fischler, for Theorem 1.4 it is not a mere permutation of a and b. Indeed
the proof in § 1.3 involved the parameters

d0 = d1 = `0 = a, `1 = b, n = a + 1,

henceforth the dual proof will involve the parameters

`0 = `1 = d0 = a, d1 = b, n = a + 1.

In the dual proof there are d0 +d1 = a+b functions, namely z1−za+1, z2, . . . , za

together with
eβ1jz1+···+βajza+λ1jza+1 (1 ≤ j ≤ b),

the derivative operators are ∂/∂zi (1 ≤ i ≤ a) and the points are (0, . . . , 0, 1)
together with

(xi/x1,−δi2, . . . ,−δia, xi/x1) (2 ≤ i ≤ a)

where δij is Kronecker’s symbol.
This duality rests on the analytic formula(

d

dz

)s (
ztexz

)
z=y

=
(

d

dz

)t (
zseyz

)
z=x

. (1.8)

This formula (1.8) is related to the Fourier-Borel transform as follows. For s
a non-negative integer and y a complex number, consider the analytic functional

Lsy : f 7−→
(

d

dz

)s

f(y).

Its Fourier-Borel transform is the analytic function Lsy(fζ) of ζ ∈ C which is
the transform of the function fζ : z 7→ ezζ :

fζ(z) = ezζ , Lsy(fζ) = ζseyζ .

This yields (1.8) for t = 0. The general case follows from

Lsy(ztfζ) =
(

d

dζ

)t

Lsy(fζ).
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Formula (1.8) extends to the higher dimensional case (that is when n > 1).
For v = (v1, . . . , vn) ∈ Cn, set

Dv = v1
∂

∂z1
+ · · ·+ vn

∂

∂zn
·

Let w1, . . . , w`0 , u1, . . . , ud0
, ξ and η in Cn, t ∈ Nd0 and s ∈ N`0 . For z ∈ Cn,

write
(uz)t = (u1z)t1 · · · (ud0

z)td0 and Ds
w = Ds1

w1
· · ·Ds`0

w`0
.

Then

Ds
w

(
(uz)teξz

)∣∣
z=η

= D t
u

(
(wz)seηz

)∣∣
z=ξ

. (1.9)

Example. In the proof of the sharp six exponentials Theorem 1.4 given in § 1.3
where d0 = d1 = `0 = a, `1 = b and n = a + 1,

ui = (δi1, . . . , δia, 0) (1 ≤ i ≤ a),

w1 = (1, 0, . . . , 0,−1) and

wi = (0, δi2, . . . , δia, 0) (2 ≤ i ≤ a),

ξ is a linear combination of ξ
1
, . . . , ξ

a
with ξ

1
= (0, . . . , 0, 1) and

ξ
i
= (xi/x1,−δi2, . . . ,−δia, xi/x1) (2 ≤ i ≤ a)

while η is a linear combination of η
1
, . . . , η

b
with

η
j

= (β1j , . . . , βaj , λ1j) (1 ≤ j ≤ b).

Remark. The Fourier-Borel duality is not the same as the duality introduced
by D. Roy in [Ro] which relates (1) and (1’), (2) and (2’), (3) and (3’).

2 Bicommutative Hopf algebras

We consider commutative and cocommutative Hopf algebras (also called bicom-
mutative Hopf algebras) over a field k of characteristic zero.

As the first example, the algebra of polynomials in one variable H = k[X]
is endowed with a Hopf algebra structure with the coproduct ∆, the co-unit ε
and the antipode S defined as the algebra morphisms for which

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0 and S(X) = −X.

If we identify k[X]⊗ k[X] with k[T1, T2] by mapping X ⊗ 1 to T1 and 1⊗X to
T2, then

∆P (X) = P (T1 + T2), εP (X) = P (0), SP (X) = P (−X).
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Since Ga(K) = Homk(k[X],K) and k[Ga] = k[X], it follows that k[Ga] is a
bicommutative Hopf algebra of finite type.

Our next example is the algebra of Laurent polynomials H = k[Y, Y −1]
which becomes a Hopf algebra with the coproduct ∆ satisfying ∆(Y ) = Y ⊗ Y ,
the co-unit ε for which ε(Y ) = 1 and the antipode S with S(Y ) = Y −1. The
algebra isomorphism between H ⊗H and k[T1, T

−1
1 , T2, T

−1
2 ] defined by

Y ⊗ 1 7→ T1, 1⊗ Y 7→ T2

gives
∆P (Y ) = P (T1T2), εP (Y ) = P (1), SP (Y ) = P (Y −1).

Since Gm(K) = Homk(k[Y, Y −1],K), we have k[Gm] = k[Y, Y −1] and again
k[Gm] is a bicommutative Hopf algebra of finite type.

Combining these two examples, one gets a whole family of Hopf algebras.
Indeed let d0 ≥ 0 and d1 ≥ 0 be two integers with d = d0 + d1 > 0. The Hopf
algebra

k[X]⊗d0 ⊗ k[Y, Y −1]⊗d1

is isomorphic to

H = k[X1, . . . , Xd0 , Y1, Y
−1
1 , . . . , Yd1 , Y

−1
d1

],

hence is isomorphic to k[G] with G = Gd0
a ×Gd1

m .
According to [A] Chap. 4 (p. 163), the category of k-linear algebraic groups

is anti-equivalent to the category of commutative k-Hopf algebras of finite
type. Hence the category of commutative linear algebraic groups over k is anti-
equivalent to the category of bicommutative Hopf algebras of finite type over
k.

The commutative and connected linear algebraic groups over an algebraically
closed fields are the groups Gd0

a ×Gd1
m and the Hopf algebras k[Gd0

a ×Gd1
m ] are

the bicommutative Hopf algebras of finite type over k without zero divisors. In
k[Gd0

a ×Gd1
m ] the k-vector space of primitive elements has dimension d0, while

the rank of group-like elements is d1.

We exhausted the list of examples of bicommutative Hopf algebras without
zero divisors and of finite type. However this is not the end of the story: let W
be a k-vector space of dimension `0. Then the symmetric algebra Sym(W ) on
W has a natural structure of bicommutative Hopf algebra of finite type [H3]. If
∂1, . . . , ∂`0 is a basis of W over k, then Sym(W ) is isomorphic to k[∂1, . . . , ∂`0 ],
hence to k[G`0

a ].
If Γ is a free Z-module of finite type and rank `1, then the group algebra kΓ

is a bicommutative Hopf algebra of finite type isomorphic to k[G`1
m].

Therefore the category of bicommutative Hopf algebras without zero divisors
and of finite type over k is equivalent to the category of pairs (W,Γ) where W
is a k-vector space of finite dimension and Γ a free Z-module of finite type. In

H ' Sym(W )⊗ kΓ,
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the space of primitive elements has dimension `0 = dim W , while the group-like
elements have rank `1 = rankΓ.

We now take k = Q. S. Fischler [F1] further introduces two more categories.
Let C1 be the category whose objects are the triples (G, W, Γ) with G =

Gd0
a × Gd1

m a commutative linear algebraic group over Q, W ⊂ Te(G) a sub-
space which is rational over Q and Γ ⊂ G(Q) a torsion free finitely generated
subgroup; moreover G is minimal for these properties: no algebraic subgroup
G∗ other than G itself satisfies W ⊂ Te(G∗) and Γ ⊂ G∗(Q).

We denote by `0 the dimension of W and by `1 the rank of Γ.
The morphisms f : (G1,W1,Γ1) → (G2,W2,Γ2) are given by a morphism

f : G1 → G2 of algebraic groups such that f(Γ1) ⊂ Γ2 such that the linear
tangent map to f

df : Te(G1) −→ Te(G2)

satisfies df(W1) ⊂W2.

The definition of the category C2 requires the following additional data. Let
H be an bicommutative Hopf algebra of finite type over Q and without zero
divisors. Denote by d0 the dimension of the Q-vector space spanned by the
primitive elements and by d1 the rank of the group-like elements. Let H ′ be
also a Hopf algebra, which is again bicommutative, without zero divisors and
of finite type over Q. The dimension of the Q-vector space spanned by the
primitive elements in H ′ is denoted by `0 while `1 is the rank of the group-like
elements in H ′. Let 〈·〉 : H ×H ′ −→ Q be a bilinear map such that

〈x, yy′〉 = 〈∆x, y ⊗ y′〉 and 〈xx′, y〉 = 〈x⊗ x′,∆y〉. (2.1)

We used the notation

〈α⊗ β, γ ⊗ δ〉 = 〈α, γ〉〈β, δ〉.

The objects of the category C2 are the triples (H,H ′, 〈·〉) given by two
bicommutative Hopf algebras, without zero divisors and of finite type over Q,
and a bilinear product satisfying (2.1). The morphisms are the pairs (f, g) :
(H1,H

′
1, 〈·〉1) → (H2,H

′
2, 〈·〉2) where f : H1 → H2 and g : H ′

2 → H ′
1 are Hopf

algebra morphisms such that

〈x1, g(x′2)〉1 = 〈f(x1), x′2〉2.

One composes two morphisms (f1, g1) : (H1,H
′
1, 〈·〉1) → (H2,H

′
2, 〈·〉2) and

(f2, g2) : (H2,H
′
2, 〈·〉2)→ (H3,H

′
3, 〈·〉3) as

(f2 ◦ f1, g1 ◦ g2) : (H1,H
′
1, 〈·〉1)→ (H3,H

′
3, 〈·〉3).

Stéphane Fischler [F1] proves:

Theorem 2.2 (S. Fischler). Both categories C1 and C2 are equivalent. This
equivalence preserves the parameters d0, d1, `0, `1.
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The category C2 has a natural contravariant involution which consists in
permuting H and H ′. The corresponding involution in the category C1 is the
Fourier-Borel duality (1.9) we discussed above, which exchanges (d0, d1) and
(`0, `1) in Theorem 1.7.

The main goal in [F1] is to establish new interpolation lemmas. Theorem 2.2
enables Fischler to obtain them by duality, starting from known zero estimates.

Roughly speaking, a zero estimate (see for instance [W] § 2.1) is a lower
bound for the degree of a polynomial vanishing at a given finite set of points
(multiplicities may be considered). An interpolation lemma provides a lower
bound for an integer D with the following property: given a finite set of points
(maybe with multiplicities), there is a polynomial of degree at most D taking
given values at these points. In terms of matrices, the zero estimates states
that a matrix, whose entries are the values of monomials at the given points,
has maximal rank, if only there are enough monomials (hence the matrix is
sufficiently rectangular), while the interpolation lemma states that such a matrix
has maximal rank once there are enough points (again this means that the
matrix is sufficiently rectangular, but in the other direction).

This method using a duality to deduce interpolation lemmas from zero esti-
mates works only for linear commutative algebraic groups. Zero estimates are
known more generally for commutative algebraic groups (hence for abelian and
semi-abelian varieties), but duality does not extend to the non-linear case. Fis-
chler [F2] uses other arguments to obtain interpolation lemmas for non-linear
commutative algebraic groups.

3 Hopf algebras and multiple zeta values

Let S denote the set of sequences s = (s1, . . . , sk) ∈ Nk with k ≥ 0, s1 ≥ 2,
si ≥ 1 (2 ≤ i ≤ k).

The weight |s| of s is s1 + · · ·+ sk, while k is the depth of s.
For s ∈ S set

ζ(s) =
∑

n1>···>nk≥1

n−s1
1 · · ·n−sk

k .

When s is the empty sequence (of weight and depth 0), we require ζ(s) = 1.

3.1 Goncharov’s Conjecture

Denote by Z the Q-vector subspace of C spanned by the numbers

(2iπ)−|s|ζ(s) (s ∈ S).

As is well known (and as we shall see), for s and s′ in S, the product ζ(s)ζ(s′)
is in two ways a linear combination with positive coefficients of numbers ζ(s′′).

Hence Z is a Q-sub-algebra of C with a double filtration by weight and
depth.
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For a graded Lie algebra C• denote by UC• its universal envelopping algebra
and by

UC∨
• =

⊕
n≥0

(UC)∨n

its graded dual, which is a commutative Hopf algebra.

Conjecture 3.1 (Goncharov [G]). There exists a graded Lie algebra C• and
an isomorphism

Z ' UC∨
•

of bifiltered algebras, by the weight on the left and by the depth on the right.

Hopf algebras also occur in this theory in a non-conjectural way. They are
used to describe the above mentioned quadratic relations expressing the product
of two multiple zeta values as a linear combination of multiple zeta values.

3.2 The concatenation Hopf algebra

Let X = {x0, x1} be an alphabet with two letters. The free monoid (of words)
on X is

X∗ = {xε1 · · ·xεk
; εi ∈ {0, 1}, (1 ≤ i ≤ k), k ≥ 0}

whose product is concatenation, and its unity is the empty word e.
Let H denote the free algebra Q〈X〉 on X. An element P ∈ H is written

P =
∑

w∈X∗

〈P |w〉w

with coefficients 〈P |w〉 ∈ Q.
The concatenation Hopf algebra is (H, ·, e, ∆, ε, S) where the coproduct is

∆P = P (x0 ⊗ 1 + 1⊗ x0, x1 ⊗ 1 + 1⊗ x1),

the co-unit ε(P ) = 〈P | e〉 and the antipode

S(x1 · · ·xn) = (−1)nxn · · ·x1

for n ≥ 1 and x1, . . . , xn in X.
It is a cocommutative, not commutative Hopf algebra.

3.3 The shuffle Hopf algebra

The shuffle product x : H× H→ H is defined inductively by the conditions

uxe = exu = u and xuxyv = x(uxyv) + y(xuxv)

for x and y in X, u and v in X∗. It endows H with a structure of commutative
algebra Hx.
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According to [Re] Theorem 3.1, for P ∈ H,

∆P =
∑

u,v∈X∗

(P |uxv)u⊗ v. (3.2)

The shuffle Hopf algebra is the commutative (not cocommutative) Hopf al-
gebra (H,x, e,Φ, ε, S), with Φ : H→ H⊗ H defined by

〈Φ(w) | u⊗ v〉 = 〈uv | w〉.

Hence
Φ(w) =

∑
u,v∈X∗

uv=w

u⊗ v.

From (3.2) it follows that the shuffle Hopf algebra is the graded dual of the
concatenation Hopf algebra (see [Re] Chap. 1).

We need to consider subalgebras of H.
For s ≥ 1 define ys = xs−1

0 x1. The subalgebra H1 of H spanned by {y1, y2, . . .}
is free, and so is the subalgebra H0 of H1 spanned by {y2, y3, . . .}. Also H1 is
the Q-vector space Qe + Hx1 spanned by {e} ∪X∗x1, while H0 is the Q-vector
space Qe + x0Hx1 spanned by {e} ∪ x0X

∗x1.
The shuffle x makes H0 and H1 subalgebras of Hx:

H0
x ⊂ H1

x ⊂ Hx.

Define a mapping ζ̂ : x0X
∗x1 → C as follows. Each element w in x0X

∗x1 can
be written in a unique way ys1 · · · ysk

with s = (s1, . . . , sk) ∈ S. The number
of letters x1 in w is the depth k of, while the total number of letters of w is the
weight s1 + · · ·+ sk of s. Define

ζ̂(ys1 · · · ysk
) = ζ(s1, . . . , sk).

By Q-linearity one extends ζ̂ to a map from H0 to C with ζ̂(e) = 1. Using
the representation of ζ̂ as Chen iterated integrals, namely ([K], § XIX.11), for
w ∈ x0X

∗x1,

ζ̂(xε1 · · ·xεp) =
∫

1>t1>···>tp>0

ωε1(t1) · · ·ωεp(tp)

with εi ∈ {0, 1} (1 ≤ i ≤ p), ε0 = 0, εp = 1,

ω0(t) =
dt

t
and ω1(t) =

dt

1− t
,

one checks that ζ̂ is a commutative algebra morphism of H0
x into C.

The structure of the commutative algebra Hx is given by Radford Theorem
[Re] Chap. 6. Consider the lexicographic order on X∗ with x0 < x1. A Lyndon
word is a word w ∈ X∗ such that, for each decomposition w = uv with u 6= e
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and v 6= e, the inequality w < v holds. Examples of Lyndon words are x0, x1,
x0x

k
1 (k ≥ 0), x`

0x1 (` ≥ 0), x2
0x

2
1. Denote by L the set of Lyndon words. Then

the three shuffle algebras are (commutative) polynomial algebras

Hx = K[L]x, H1
x = K

[
L \ {x0}

]
x and H0

x = K
[
L \ {x0, x1}

]
x.

Therefore

Hx = H1
x[x0]x = H0

x[x0, x1]x and H1
x = H0

x[x1]x. (3.3)

3.4 Harmonic algebra

There is another product being shuffle-like law on H, called harmonic product
by M. Hoffman ([H1], [H2]) and stuffle by other authors [BBBL], denoted with
a star, which also gives rise to subalgebras

H0
? ⊂ H1

? ⊂ H?.

It is defined as follows. First on X∗, the map ? : X∗ ×X∗ → H is defined by
induction, starting with

xn
0 ? w = w ? xn

0 = wxn
0

for any w ∈ X∗ and any n ≥ 0 (for n = 0 it means e ? w = w ? e = w for all
w ∈ X∗) and then

ysu ? ytv = ys(u ? ytv) + yt(ysu ? v) + ys+t(u ? v)

for u and v in X∗, s and t positive integers.
The harmonic product is an efficient way of writing the quadratic relations

among multiple zeta values arising from the expression of ζ(s) as series: ζ̂ is a
commutative algebra morphism of H0

? into C.
Hoffman [H1] gives the structure of the quasi-harmonic algebra H? as well

as of its subalgebras H1
? and H0

?: they are again polynomial algebras on Lyndon
words:

H? = K[L]?, H0
? = K

[
L \ {x0}

]
?

and H1
? = K

[
L \ {x0, x1}

]
?
.

Hence
H? = H1

?[x0]? = H0
?[x0, x1]? and H1

? = H0
?[x1]?. (3.4)

The quasi-shuffle Hopf algebra is the commutative algebra H1
? with the co-

product ∆ defined by the conditions

∆(yi) = yi ⊗ e + e⊗ yi

for i ≥ 1, the co-unit
ε(P ) = 〈P | e〉

and the antipode
S(ys1 · · · ysk

) = (−1)kysk
· · · ys1 .

This quasi-shuffle Hopf algebra is isomorphic to the Hopf algebra of non-commutative
symmetric series, whose graded dual is the Hopf algebra of quasi-symmetric se-
ries (see [H2] and [H3]) .
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3.5 Regularized double shuffle relations

As we have seen the map ζ̂ is a commutative algebra morphism of H0
x into C

and also of H0
? into C. Hence the kernel of ζ̂ in H0 is an ideal for the two algebra

structures x and ?. A fundamental question (cf. Goncharov’s Conjecture 3.1)
is to describe this kernel.

The relations

ζ̂(uxv) = ζ̂(u)ζ̂(v) and ζ̂(u ? v) = ζ̂(u)ζ̂(v) for u and v in H0

show that, for any u and v in H0, uxv − u ? v belong to the kernel of ζ̂. The
equations

ζ̂(uxv − u ? v) = 0 for u and v in H0 (3.5)

are called the standard linear relations among multiple zeta values.
Other elements belong to the kernel of ζ̂: Hoffman’s relations (see for in-

stance [Z]) are
ζ̂(x1xv − x1 ? v) = 0 for v in H0. (3.6)

Notice that x1xv − x1 ? v ∈ H0 for v ∈ H0. The simplest example

x1xy2 − x1 ? y2 ∈ ker ζ̂

yields the relation ζ(2, 1) = ζ(3) known by Euler.
It was conjectured in [MJOP] that the elements

uxv − u ? v and x1xv − x1 ? v,

when u and v range over the set H0, span the Q vector space ker ζ̂. This
conjecture is not yet disproved, but there is a little doubt about it for the
following reason.

From (3.3) and (3.4) it follows that there are two uniquely determined alge-
bra morphisms

Ẑx : H1
x −→ R[T ] and Ẑ? : H1

? −→ R[T ]

which extend ζ̂ and map x1 to T . According to [C], the next result is due to
Boutet de Monvel and Zagier (see also [I-K]).

Proposition 3.7 There is a R-linear isomorphism % : R[T ] → R[T ] which
makes the following diagram commutative:

H1 Ẑ?−−−−→ R[T ]∥∥∥ y%

H1 Ẑx−−−−→ R[T ]

An explicit formula for % is given by means of the generating series∑
`≥0

%(T `)
t`

`!
= exp

(
Tt +

∞∑
n=2

(−1)n ζ(n)
n

tn

)
. (3.8)
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It is instructive to compare the right hand side of (3.8) with the formula
giving the expansion of the logarithm of Euler Gamma function:

Γ(1 + t) = exp

(
−γt +

∞∑
n=2

(−1)n ζ(n)
n

tn

)
.

Accordingly, % may be viewed as the differential operator of infinite order

exp

( ∞∑
n=2

(−1)n ζ(n)
n

(
∂

∂T

)n
)

(just consider the image of etT ).
In [I-K] Ihara and Kaneko propose a regularization of the divergent multiple

zeta values as follows.
Recall that Hx = H0[x0, x1]x. Denote by regx the Q-linear map H → H0

which maps w ∈ H to its constant term in its expansion as a polynomial in
x0, x1 in the shuffle algebra H0[x0, x1]x. Then regx is an algebra morphism
Hx → H0

x. Clearly for w ∈ H0 we have

regx(w) = w.

Theorem 3.9 (Ihara, Kaneko). Let w be any word in X∗. Write w =
xm

1 w0x
n
0 with w0 ∈ H0, m ≥ 0 and n ≥ 0. Then

regx(w) =
m∑

i=0

n∑
j=0

(−1)i+jxi
1x(xm−i

1 w0x
n−j
0 )xxj

0.

Special cases are:

regx(xm
1 ) = regx(xn

0 ) = 0 for m ≥ 1 and n ≥ 1.

regx(xm
1 xn

0 ) = (−1)m+n−1xn
0xm

1 for m ≥ 1 and n ≥ 1.

regx(xm
1 x0u) = (−1)mx0(xm

1 xu) for m ≥ 0 and u ∈ X∗x1.

regx(ux1x
n
0 ) = (−1)n(uxxn

0 )x1 for n ≥ 0 and u ∈ x0X
∗.

Moreover there is an explicit expression for w as a polynomial in x0 and x1 in
the algebra H0[x0, x1]x:

w =
m∑

i=0

n∑
j=0

regx(xm−i
1 w0x

n−j
0 )xxi

1xxj
0.

The regularized double shuffle relations of Ihara and Kaneko in [I-K] produce
a number of linear relations among multiple zeta values:
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Theorem 3.10 (Ihara, Kaneko). For w ∈ H1 and w0 ∈ H0,

regx(wxw0 − w ? w0) ∈ ker ζ̂. (3.11)

Special cases of (3.11) – for which no regularization is required – are the standard
relations (3.5) which correspond to w ∈ H0 and Hoffman’s relations (3.6) which
correspond to w = x1.

An example of u and v in H1 for which uxv−u?v ∈ H0 but ζ̂(uxv−u?v) 6= 0
is u = v = x1.

3.6 The main diophantine Conjecture

The main diophantine Conjecture arose after the works of several mathemati-
cians, including D. Zagier, A.B. Goncharov, M. Kontsevich, M. Hoffman, M. Pe-
titot and Hoang Ngoc Minh, K. Ihara and M. Kaneko, J. Écalle, P. Cartier (see
[C]).

Conjecture 3.12 The kernel of ζ̂ is spanned by the elements

regx(wxw0 − w ? w0)

where w ranges over H1 and w0 over H0.

Conjecture 3.12 means that the ideal of algebraic relations among multiple
zeta values is generated by the double shuffle relations of Ihara and Kaneko in
Theorem 3.10.

More precisely, we introduce independent variables Zu, where u ranges over
the set X∗x1. For v =

∑
u cuu in H1, we set

Zv =
∑

u

cuZu

where Ze = 1. In particular, for u1 and u2 in x0X
∗x1, Zu1xu2 and Zu1?u2 are

linear forms in Zu, u ∈ x0X
∗x1. Also, for v ∈ x0Hx1, Zx1xv−x1?v is a linear

form in Zu, u ∈ x0X
∗x1.

Denote by R the ring of polynomials with coefficients in Q in the variables
Zu, where u ranges over the set of words in x0X

∗x1 which start with x0 and end
with x1. Further, denote by I the ideal of R consisting of all polynomials which
vanish under the specialization map R → R which is the Q-algebra morphism
defined by

Zu 7→ ζ̂(u) (u ∈ x0X
∗x1).

The Q-sub-algebra in C of multiple zeta values (up to the normalization with
powers of 2πi, this is the algebra Z of Goncharov’s Conjecture 3.1) is isomorphic
to the quotient R/I.
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Let J be the ideal of R generated by the polynomials

ZuZv − Zuxv and Zr with r = regx(wxw0 − w ? w0),

where u, v, w0 range over H0 and w over H1.
Theorem 3.10 can be written J ⊂ I and Conjecture 3.12 means J = I.
The ideal of R associated to the above mentioned conjecture of [MJOP] (see

§ 3.5) is the ideal, contained in J, generated by the polynomials

ZuZv − Zuxv, ZuZv − Zu?v and Zx1xu−x1?u,

where u and v range over the set of elements in x0X
∗x1.

The structure of the quotient of R/J is being studied by Jean Écalle [E].
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