CONSTRUCTION DES REPRÉSENTATIONS p-ADIQUES SEMI-STABLES

par

Pierre Colmez & Jean-Marc Fontaine

 $\pmb{R\'esum\'e}$. — Nous prouvons que tout (φ,N) -module filtré faiblement admissible est admissible, ce qui fournit une description de la catégorie des représentations semi-stables d'un corps local.

Abstract. — We prove that every weakly admissible filtered (φ, N) -module is admissible, which gives a concrete description of the category of semi-stable representations of a local field.

Table des matières

Introduction	2
1. Rappels et compléments sur B_{dR} (cf. [18])	5
1.1. Notations générales	
1.2. Banach p -adiques et C -algèbres de Banach	6
1.3. Les anneaux $R(\mathscr{A}), B_{dR}^+(\mathscr{A}), A_{cris}(\mathscr{A})$ et $B_{cris}^+(\mathscr{A})$	6
1.4. Les groupes $U_1(\mathscr{A})$ et $U(\mathscr{A})$	8
1.5. Le corps B_{dR} et l'anneau B_{st}	10
1.6. L'anneau $B_{cris}^{\widetilde{\varphi}=1}$	11
2. Le lemme fondamental	12
3. Rappels et compléments sur les modules filtrés (cf. [19])	17
3.1. Espaces vectoriels filtrés	17
3.2. φ -modules	20
$3.3. (\varphi, N)$ -modules	21
3.4.~(arphi,N)-modules filtrés	21
4. Rappels et compléments sur les représentations p -adiques semi-stables (cf. [19])	
4.2. Le cas de la dimension 1	
4.3. Un critère d'admissibilité	
5. Le complexe fondamental d'un (φ, N) -module filtré fini	
5.1. Le foncteur V^0_{st}	
5.2. Le foncteur V_{st}^1	
5.3. Le complexe $V_{st}(D)$	
5.4. Un critère d'admissibilité faible	
5.5. Un second critère d'admissibilité	
6. Démonstration du théorème A	31

6.1. Première preuve	31
6.2. Variante	34
Références	3.5

Introduction

Dans tout cet article, K est un corps de caractéristique 0, complet pour une valuation discrète, à corps résiduel parfait k de caractéristique p>0, K_0 est le corps des fractions de l'anneau W(k) des vecteurs de Witt à coefficients dans k, ce qui fait que K est une extension finie totalement ramifiée de K_0 , \overline{K} est une clôture algébrique de K, G_K est le groupe de Galois de l'extension \overline{K}/K . On appelle représentation p-adique de G_K la donnée d'un \mathbf{Q}_p -espace vectoriel de dimension finie muni d'une action linéaire et continue de G_K .

Parmi ces représentations, il y a les représentations cristallines et, plus généralement, les représentations semi-stables. Les représentations « provenant de la géométrie algébrique » (par exemple les représentations fournies par la cohomologie étale des variétés algébriques, propres et lisses sur K) sont potentiellement semi-stables, i.e. deviennent semi-stables après avoir remplacé K par une extension finie convenable (voir l'exposé d'Illusie [25] pour l'état du problème au début de 1990 et, parmi les travaux plus récents, ceux de Breuil [3], de Faltings [14], de Niziol [28] et de Tsuji [32]).

A une représentation p-adique semi-stable de G_K , on sait associer un objet de nature purement algébrique qui est son (φ, N) -module filtré. L'intérêt de cette construction est que le (φ, N) -module filtré D associé à une représentation V est beaucoup plus « explicite » et donc beaucoup plus facile à décrire que la représentation V (parce qu'il n'y a pas de description « explicite » de G_K) et que, pourtant, V est déterminée par D. De façon précise, la correspondance $V \mapsto D$ définit en fait un \otimes -foncteur induisant une \otimes -équivalence entre la catégorie des représentations p-adiques semi-stables et une sous-catégorie pleine de la catégorie des (φ, N) -modules filtrés, celle des (φ, N) -modules filtrés admissibles (cf. [16] et [17] pour les représentations cristallines, [19] pour le cas général).

Jusqu'à présent cette théorie était incomplète car on ne savait pas décrire explicitement la catégorie des (φ, N) -modules filtrés admissibles; toutefois on savait le faire conjecturalement : on avait défini la catégorie des (φ, N) -modules filtrés faiblement admissibles, montré que admissible implique faiblement admissible et conjecturé que la réciproque était vraie. Pour achever la théorie, il restait à prouver cette conjecture. C'est l'objet de cet article dans lequel on prouve le théorème suivant (voir le théorème 4.3 pour un énoncé un peu plus fort) :

 ${\it Th\'eor\`eme~A.} \ - \ {\it Tout~}(\varphi,N)$ -module filtr\'e sur K qui est faiblement admissible est admissible.

Remarque. — Il y avait déjà beaucoup d'exemples de (φ, N) -modules filtrés faiblement admissibles dont on savait prouver qu'ils sont admissibles. Citons notamment (pour des généralités sur les (φ, N) -modules filtrés, voir le paragraphe 3 ci-dessous; si D est un (φ, N) -module filtré, on note $\ell(D)$ la longueur de la filtration):

i) le cas $K = K_0$, N = 0 et $\ell(D) \leq 1$. On se ramène facilement au cas où $Fil^0D_K = D_K$ et $Fil^2D_K = 0$. Un (φ, N) -module filtré ayant ces propriétés est le module de Dieudonné d'un groupe p-divisible Γ sur l'anneau des entiers de K (cf. les travaux de Honda [24]) et la

représentation p-adique qui lui est associée est alors le dual de $V_p(\Gamma) = \mathbf{Q}_p \otimes_{\mathbf{Z}_p} T_p(\Gamma)$, où $T_p(\Gamma)$ est le module de Tate de Γ (cf. [15] et [16]). La théorie des groupes p-divisibles (ou de Barsotti-Tate, cf. [1], [30]) et les questions de Grothendieck sur le foncteur mystérieux [23] sont d'ailleurs à l'origine de toute la théorie des représentations p-adiques semi-stables.

- ii) $K = K_0$, N = 0 et $l(D) \leq p 1$: c'est le résultat principal de [21], voir [33] pour une démonstration plus simple.
 - iii) $[K:K_0].\ell(D) < p-1, k \text{ et } N \text{ quelconques } [4].$
- iv) l(D) < p-1, N arbitraire, k fini mais $[K:K_0]$ arbitraire [5]. Breuil démontre en outre que, si N=0, $Fil^0D_K=D_K$ et $Fil^2D_K=0$, alors la représentation p-adique associée provient d'un groupe p-divisible comme dans (i).

Indiquons maintenant quelques applications de ce théorème.

Tout d'abord, comme le produit tensoriel de deux (φ, N) -modules filtrés admissibles est encore admissible, on retrouve ainsi, de façon indirecte, le résultat suivant, déjà prouvé par Laffaille [26] lorsque $K = K_0$ dans le cas « cristallin », puis par Faltings [13] (toujours dans le cas « cristallin » mais K quelconque) et enfin par Totaro [31] :

Corollaire 1. — Si D_1 et D_2 sont deux (φ, N) -modules filtrés faiblement admissibles, alors $D_1 \otimes D_2$ est faiblement admissible.

Ceci permet de considérer la catégorie abélienne des (φ, N) -modules filtrés faiblement admissibles comme une catégorie tannakienne sur \mathbf{Q}_p . Le foncteur qui à un objet D de cette catégorie associe la représentation p-adique semi-stable $V_{st}(D)$ qui lui correspond (cf. § 4 ci-dessous) est alors un foncteur fibre sur cette catégorie à valeurs dans les \mathbf{Q}_p -espaces vectoriels de dimension finie. On retrouve ainsi le résultat de Wintenberger ([34] dans le cas cristallin avec $K = K_0$, [36, cor. 1.6.3] dans le cas général) :

Corollaire 2. — La catégorie tannakienne sur \mathbf{Q}_p des (φ, N) -modules filtrés faiblement admissibles est neutre.

La \otimes -équivalence entre la catégorie des (φ, N) -modules filtrés faiblement admissibles et celle des représentations p-adiques semi-stables permet de traduire toute propriété de la première catégorie en propriété de la seconde. C'est ainsi que Wintenberger avait montré que les résultats suivants sont des conséquences du théorème A :

1 – Soit H un groupe algébrique sur \mathbf{Q}_p . Le groupe $H(\mathbf{Q}_p)$ a une structure naturelle de groupe de Lie p-adique. Soit $\rho: G_K \to H(\mathbf{Q}_p)$ un homomorphisme continu. On dit que ρ est de H-adique (resp. semi-stable) si toute représentation \mathbf{Q}_p -linéaire de dimension finie de H, munie de l'action de G_K induite par ρ l'est (il suffit qu'une représentation fidèle le soit).

On peut déduire de [35, th. 1.1.3] dans le cas cristallin avec $K = K_0$ et de [36, th. 2.2.2] dans le cas général, le résultat suivant :

Proposition. — [37]. Soit $f: H' \to H$ une isogénie de groupes algébriques définis sur \mathbf{Q}_p , soient $\rho': G_K \to H'(\mathbf{Q}_p)$ un homomorphisme continu et $\rho = f_{\mathbf{Q}_p} \circ \rho': G_K \to H(\mathbf{Q}_p)$. Si ρ est semi-stable et ρ' de Hodge-Tate, alors il existe un caractère η de G_K à valeurs dans le noyau de f tel que $\rho'\eta$ est semi-stable.

2 – Notons \mathbb{G} le groupe pro-algébrique qui est la limite projective de la clôture zariskienne de l'image de G_K dans toutes les représentations semi-stables (c'est aussi le groupe des \otimes -automorphismes du foncteur fibre sur la catégorie des représentations p-adiques semi-stables de G_K qui associe à une représentation le \mathbb{Q}_p -espace vectoriel sous-jacent).

Proposition. — ([36, th. 3.1.1]). Supposons k-algébriquement clos et soit \mathbb{SU} le noyau de la projection de \mathbb{G} sur son plus grand quotient abélien. Alors le quotient \mathbb{S} de \mathbb{SU} par son radical unipotent est simplement connexe.

3 – Supposons k-algébriquement clos et soit H un groupe algébrique réductif connexe sur \mathbf{Q}_p . Soient $b \in H(K_0)$ et $\mu : \mathbb{G}_m \to H$ un sous-groupe à un paramètre défini sur K. Avec Rapoport et Zink [29], pour toute représentation linéaire de dimension finie U de H sur \mathbf{Q}_p , on munit $K_0 \otimes_{\mathbf{Q}_p} U$ d'une structure de (φ, N) -module filtré en posant $\varphi(\lambda \otimes u) = \sigma(\lambda)b(u)$ (si $\lambda \in K_0, u \in U$), N = 0 sur $K_0 \otimes U$ et en munissant $K \otimes_{K_0} (K_0 \otimes_{\mathbf{Q}_p} U) = K \otimes_{\mathbf{Q}_p} U$ de la filtration définie par

$$Fil^i(K \otimes U) = \sum_{j \geqslant i} (K \otimes U)_j$$
, pour tout $i \in \mathbf{Z}$,

où $(K \otimes U)_j$ est la partie de poids j relativement à μ .

Rapoport et Zink disent que le couple (μ, b) est admissible si, pour toute représentation U de H, le (φ, N) -module filtré $K_0 \otimes U$ est admissible (il suffit que ce soit vérifié pour une représentation fidèle de H).

Lorsqu'il en est ainsi, on dispose de deux foncteurs fibres, à valeurs dans \mathbf{Q}_p , sur la catégorie des représentations linéaires de dimension finie de G: le premier est celui qui à U associe le \mathbf{Q}_p -espace vectoriel sous-jacent et le second est celui qui associe le \mathbf{Q}_p -espace vectoriel sous-jacent à la représentation p-adique de G_K associée au (φ, N) -module filtré $K_0 \otimes U$. Rapoport et Zink ont donné une description conjecturale du torseur qui fait passer de l'un à l'autre à l'aide de l'invariant de Kottwitz et ont prouvé cette conjecture lorsque le sous-groupe dérivé de H est simplement connexe. Alors

Proposition. — ([36, cor. à la prop. 4.5.3]). La conjecture de Rapoport-Zink est vraie en général.

En fait, Wintenberger généralise la construction de Rapoport et Zink (en rajoutant un opérateur N, ce qui lui permet de considérer aussi des représentations semi-stables pas nécessairement cristallines), énonce la généralisation correspondante de la conjecture et montre que c'est une conséquence de notre théorème A.

Les deux ingrédients principaux de la preuve du théorème A sont ce que nous appelons le « lemme fondamental » et le « complexe fondamental » d'un (φ, N) -module filtré.

Si D est un (φ, N) -module filtré, son complexe fondamental $V_{st}(D)$ est un complexe de \mathbb{Q}_p espaces vectoriels de longueur 2 dont le terme de degré 0 ne dépend que de la structure de (φ, N) module et le terme de degré 1 que de la filtration. Le H^0 de ce complexe est la représentation
de G_K associée à D. On montre, entre autres, que le foncteur $D \mapsto V_{st}(D)$ est exact et, point
important, que, si D est faiblement admissible, alors

(*)
$$H^1(V_{st}(D)) = 0$$
 si et seulement si D est admissible.

L'idée essentielle de la démonstration du théorème A est la suivante : soit (D, Fil) un (φ, N) -module filtré faiblement admissible (ici D est le (φ, N) -module et Fil la filtration). Il est facile de voir que sur D on peut toujours trouver une autre filtration Fil_0 telle que (D, Fil_0) est admissible. On introduit alors la notion de distance entre deux filtrations et on démontre que, si la distance entre deux filtrations faiblement admissibles sur D est égale à 1 et si l'une des deux est admissible, l'autre l'est aussi. Ceci se ramène, grâce à (*), à démontrer la surjectivité d'une application $\rho: Y \to C$, où Y est un \mathbf{Q}_p -espace vectoriel défini via B_{dR} et qui est une extension de C par un \mathbf{Q}_p -espace vectoriel Y_0 de dimension finie. La démonstration de cette surjectivité fait l'objet du lemme fondamental et la difficulté réside dans le fait que ρ est simplement \mathbf{Q}_p -linéaire et pas du tout C-linéaire. On s'en tire en rajoutant une variable à C et en refaisant les constructions de B_{dR} , B_{cris} , etc...dans ce cadre, ce qui permet d'exprimer ρ comme une limite uniforme de fonctions algébriques. Pour conclure la démonstration du théorème A, on essaie alors de passer de Fil à Fil_0 par une suite finie de filtrations, la distance entre deux filtrations consécutives étant égales à 1.

Remarque. — Signalons qu'une version plus forte du lemme fondamental affirme que le noyau de l'application ρ ci-dessus est de dimension finie sur \mathbf{Q}_p et même, que celle-ci est égale à la dimension de Y_0 . C'est un des ingrédients permettant de faire fonctionner, lorsque k est fini, la théorie des « presque-C-représentations de G_K » qui n'existait jusqu'ici que conjecturalement [20] et sur laquelle nous reviendrons ultérieurerement : une presque-C-représentations de G_K est un espace de Banach p-adique W muni d'une action linéaire et continue de G_K tel que l'on peut trouver un C-espace vectoriel de dimension finie W' muni d'une action semi-linéaire et continue de G_K , des sous- \mathbf{Q}_p -espaces vectoriels de dimension finie V de V' de V', stables par V'0, et un isomorphisme V'1 de V'2 de V'3. Contrairement à ce que l'on pourrait penser la catégorie de ces presque V'2 représentations a de bonnes propriétés. En particulier, elle est abélienne et la cohomologie galoisienne leur associe des \mathbf{Q}_p -espaces vectoriels de dimension finie.

Nous reviendrons aussi ailleurs sur l'utilisation de cette version renforcée de la proposition 2.1 pour obtenir des résultats significatifs dans la direction de la conjecture « de monodromie p-adique » qui dit que, lorsque le corps résiduel k de K est fini, toute représentation p-adique qui est de de Rham est potentiellement semi-stable (on prouve entre autres que ceci est vrai pour les représentations de dimension 2).

1. Rappels et compléments sur B_{dR} (cf. [18])

1.1. Notations générales

Pour toute k-algèbre A (i.e. tout anneau commutatif contenant k), on note W(A) l'anneau des vecteurs de Witt à coefficients dans A. C'est une W(k)-algèbre. Si $a \in A$, on note $[a] = (a, 0, \ldots, 0, \ldots) \in W(A)$ son représentant de Teichmüller.

On note $\mathscr{O}_{\overline{K}}$ l'anneau des entiers de \overline{K} , \mathscr{O}_C le séparé complété de $\mathscr{O}_{\overline{K}}$ pour la topologie p-adique et $C = \mathscr{O}_C[1/p]$ son corps des fractions. On note v_p la valuation de C normalisée par $v_p(p) = 1$ et $| \ |$ la valeur absolue normalisée par $|p| = p^{-1}$. Pour tout sous-corps fermé L de C, on note $\mathscr{O}_L = \{c \in L \mid |c| \le 1\}$ l'anneau de ses entiers et $\mathfrak{m}_L = \{c \in L \mid |c| < 1\}$ l'idéal maximal de \mathscr{O}_L .

1.2. Banach p-adiques et C-algèbres de Banach

Dans cet article un $Banach \ p$ -adique est un \mathbb{Q}_p -espace vectoriel topologique V dont la topologie est celle d'un espace de Banach p-adique, i.e. il existe une norme sur V qui en fait un espace vectoriel normé complet. Pour nous, la norme d'un Banach p-adique n'est donc définie qu'à équivalence près.

Un Banach p-adique est donc un \mathbf{Q}_p -espace vectoriel topologique tel qu'il existe un sous- \mathbf{Z}_p module $\mathscr V$ de V qui est séparé et complet pour la topologie p-adique, et tel que $V = \bigcup_{n \in \mathbb N} p^{-n} \mathscr V$,
chaque $p^{-n} \mathscr V$ étant ouvert dans V, la topologie induite par celle de V sur chaque $p^{-n} \mathscr V$ étant la
topologie p-adique.

On appelle un tel $\mathscr V$ un $r\acute{e}seau\ de\ V$. Tout réseau $\mathscr V$ de V définit une norme $||\ ||_{\mathscr V}$ sur V: pour tout $v\in V,\ ||v||_{\mathscr V}=p^r$ si $r\in \mathbf Z$ est le plus grand entier tel que $p^rv\in\mathscr V$.

Si \mathscr{V} est un réseau de V, un sous- \mathbb{Z}_p -module \mathscr{V}' de V est un réseau de V, si et seulement s'il existe $m, n \in \mathbb{Z}$ tels que $p^m \mathscr{V} \subset \mathscr{V}' \subset p^n \mathscr{V}$.

On appelle C-algèbre de Banach la donnée d'un anneau commutatif \mathscr{A} contenant C, muni d'une norme $||\ ||$ vérifiant ||ca|| = |c| ||a|| et $||aa'|| \leqslant ||a|| \cdot ||a'||$ si $c \in C$, $a, a' \in \mathscr{A}$, complète pour cette norme. On pose alors $\mathscr{O}_{\mathscr{A}} = \{a \in A \mid ||a|| \leqslant 1\}$. C'est un réseau du Banach p-adique \mathscr{A} . C'est aussi une \mathscr{O}_{C} -algèbre sans p-torsion et $\mathscr{A} = \mathscr{O}_{\mathscr{A}}[1/p]$.

Soit aussi $\mathscr{O}_{\mathscr{A}}^{**} = \{x \in \mathscr{O}_{\mathscr{A}} \mid ||x-1|| < 1\}$; c'est un sous-groupe du groupe des unités de $\mathscr{O}_{\mathscr{A}}$ et si $x \in \mathscr{O}_{\mathscr{A}}^{**}$ la suite de terme général x^{p^r} tend vers 1 quand r tend vers $+\infty$.

On dit qu'une C-algèbre de Banach est p-bonne si elle satisfait les trois propriétés suivantes :

- (B1) pour tout $a \in \mathcal{A}$, on a $||a^p|| = (||a||)^p$,
- (B2) l'application $x \mapsto x^p$ induit une surjection de $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$ sur $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$,
- (B3) tout élément de $\mathscr{O}_{\mathscr{A}}^{**}$ a exactement p^r racines p^r -ièmes dans $\mathscr{O}_{\mathscr{A}}^{**}$ ou, de manière équivalente, l'application $x\mapsto x^{p^r}$ induit un morphisme (de groupes) de $\mathscr{O}_{\mathscr{A}}^{**}$ dans $\mathscr{O}_{\mathscr{A}}^{**}$ qui est surjectif et dont le noyau n'a pas d'autre élément que les racines p^r -ièmes de l'unité de C.

C'est en particulier le cas de C.

1.3. Les anneaux $R(\mathscr{A}),\ B^+_{dR}(\mathscr{A}),\ A_{cris}(\mathscr{A})$ et $B^+_{cris}(\mathscr{A})$

Dans ce numéro et dans le suivant, \mathscr{A} est une C-algèbre de Banach p-bonne.

Remarquons que \overline{k} s'identifie à un sous-corps de l'anneau $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$: il suffit d'identifier $\lambda \in \overline{k}$ à l'image de $[\lambda] \in W(\overline{k}) \subset \mathscr{O}_C \subset \mathscr{O}_{\mathscr{A}}$ dans $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$.

On pose

$$R(\mathscr{A}) = \varprojlim_{p \in \mathbf{N}} \mathscr{O}_{\mathscr{A}} / p \mathscr{O}_{\mathscr{A}} ,$$

les applications de transition étant données par le Frobenius. Un élément $x \in R(\mathscr{A})$ peut donc être considéré comme une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$ vérifiant $x_{n+1}^p = x_n$ pour tout n.

L'anneau $R(\mathscr{A})$ est un anneau parfait de caractéristique p. Il a une structure de \overline{k} -algèbre : si $\lambda \in \overline{k}$ et $x = (x_n)_{n \in \mathbb{N}}$, on a $\lambda x = (\lambda^{p^{-n}} x_n)_{n \in \mathbb{N}}$.

Soit $x = (x_n)_{n \in \mathbb{N}} \in R(\mathscr{A})$. Pour tout $n \in \mathbb{N}$ choisissons un relèvement \hat{x}_n de x_n dans $\mathscr{O}_{\mathscr{A}}$. On voit que, pour tout $m \in \mathbb{N}$ fixé, la suite des $(\hat{x}_{m+n})^{p^n}$ converge dans $\mathscr{O}_{\mathscr{A}}$ vers un élément $x^{(m)}$ indépendant du choix des relèvements. L'application $x \mapsto (x^{(m)})_{m \in \mathbb{N}}$ est une bijection de

 $R(\mathscr{A})$ sur l'ensemble des suites d'éléments de $\mathscr{O}_{\mathscr{A}}$ vérifiant $(x^{(m+1)})^p = x^{(m)}$ pour tout m. Nous utilisons cette bijection pour identifier $R(\mathscr{A})$ à l'ensemble de ces suites.

Alors, si $\lambda \in \overline{k}$, $x = (x^{(m)})_{m \in \mathbb{N}}$, $y = (y^{(m)})_{m \in \mathbb{N}} \in R(\mathscr{A})$, on a $\lambda x = ([\lambda^{p^{-m}}]x^{(m)})_{m \in \mathbb{N}}$, x + y = z, avec $z^{(m)} = \lim_{n \to \infty} (x^{(m+n)} + y^{(m+n)})^{p^n}$, $xy = (x^{(m)}y^{(m)})_{m \in \mathbb{N}}$.

Comme $R(\mathscr{A})$ est parfait, $W(R(\mathscr{A}))$ est sans p-torsion et $pW(R(\mathscr{A}))$ est l'idéal de $W(R(\mathscr{A}))$ formé des vecteurs de Witt dont la composante d'indice 0 est nulle.

L'application

$$\theta: W(R(\mathscr{A})) \to \mathscr{O}_{\mathscr{A}}$$
,

qui à $(a_1, a_2, \ldots, a_n, \ldots)$ associe $\sum_{n=0}^{+\infty} p^n a_n^{(n)}$, est un homomorphisme de $W(\overline{k})$ -algèbres.

Proposition 1.1. — Soit $\pi \in R(\mathscr{O}_C) \subset R(\mathscr{A})$ tel que $\pi^{(0)} = p$ et soit $\xi = [\pi] - p \in W(R(C)) \subset W(R(\mathscr{A}))$. Alors

- i) L'application $x \mapsto x_0$ de $R(\mathscr{A})$ dans $\mathscr{O}_{\mathscr{A}}/p\mathscr{O}_{\mathscr{A}}$ est surjective et son noyau est l'idéal principal de $R(\mathscr{A})$ engendré par π .
- ii) L'application θ est surjective et son noyau est l'idéal principal de $W(R(\mathscr{A}))$ engendré par ξ .

Démonstration. — La première application est surjective grâce à (B2) et il est clair que son noyau contient π . Réciproquement, si $x=(x^{(m)})_{m\in\mathbb{N}}$ est dans ce noyau, $x^{(0)}\in p\mathscr{O}_{\mathscr{A}}$. Donc $||x^{(0)}||\leqslant |p|$. La propriété (B1) implique que, pour tout $m\in\mathbb{N}$, $||x^{(m)}||\leqslant |\pi^{(m)}|$, ou encore que $y^{(m)}=x^{(m)}/\pi^{(m)}\in\mathscr{O}_{\mathscr{A}}$. Comme $(y^{(m+1)})^p=(x^{(m+1)}/\pi^{(m+1)})^p=x^{(m)}/\pi^{(m)}=y^{(m)}$, on a $y=(y^{(m)})_{m\in\mathbb{N}}\in R(\mathscr{A})$ et $x=\pi y$, d'où i).

Comme $W(R(\mathscr{A}))$ et $\mathscr{O}_{\mathscr{A}}$ sont séparés et complets pour la topologie p-adique, pour vérifier la surjectivité de θ , il suffit de le faire modulo p et il suffit d'utiliser la surjectivité dans le le i) pour ce faire. Finalement, comme $\mathscr{O}_{\mathscr{A}}$ est sans p-torsion et $W(R(\mathscr{A}))$ est séparé et complet pour la topologie p-adique, il suffit, terminer la démonstration de ii), de montrer que, si $a = (a_0, a_1, \ldots, a_n, \ldots) \in \operatorname{Ker} \theta$, alors il existe $b \in W(R(\mathscr{A}))$ tel que $a - \xi b \in pW(R(\mathscr{A}))$. Mais, d'après le i), il existe $y \in R(\mathscr{A})$ tel que $a_0 = \pi y$ et il suffit de prendre b = [y] puisque $a - \xi b \equiv [a_0] - [\pi][y] \equiv 0 \pmod{pW(R(\mathscr{A}))}$. \square

L'application θ s'étend de manière évidente en une application K_0 -linéaire surjective, encore notée θ , de $W(R(\mathscr{A}))[1/p]$ sur \mathscr{A} dont le noyau est l'idéal principal de $W(R(\mathscr{A}))[1/p]$ engendré par ξ . Pour tout entier $m \geq 0$, on pose $B_m(\mathscr{A}) = W(R(\mathscr{A}))[1/p]/(\operatorname{Ker} \theta)^m$. On note $B_{dR}^+(\mathscr{A}) = \lim_{m \in \mathbb{N}} B_m(\mathscr{A})$ le séparé complété de $W(R(\mathscr{A}))[1/p]$ pour la topologie ($\operatorname{Ker} \theta$)-adique.

Pour tout $m \in \mathbb{N}$, $B_m(\mathscr{A})$ est un Banach p-adique dont un réseau est l'image de $W(R(\mathscr{A}))$ (qui s'identifie au quotient de $W(R(\mathscr{A}))$ par $\xi^m W(R(\mathscr{A}))$). On en déduit que tout $B_{dR}^+(\mathscr{A})$ -module de longueur finie est, avec sa topologie naturelle, un Banach p-adique. On pourra remarquer que, en revanche, $B_{dR}^+(\mathscr{A})$, muni de la topologie de la limite projective, avec la topologie de Banach p-adique sur chaque $B_m(\mathscr{A})$, n'est pas un Banach p-adique.

De même, on note $A_{cris}(\mathscr{A})$ le séparé complété pour la topologie p-adique de l'enveloppe à puissances divisées de $W(R(\mathscr{A}))$ relativement à l'idéal Ker θ . C'est aussi le séparé complété pour la topologie p-adique de la sous- $W(R(\mathscr{A}))$ -algèbre (ou du sous- $W(R(\mathscr{A}))$ -module, cela revient ici au même) de $W(R(\mathscr{A}))[1/p]$ engendrée par les $\xi^m/m!$ pour $m \in \mathbb{N}$. L'anneau $A_{cris}(\mathscr{A})$ peut aussi être considéré comme le séparé complété pour la topologie p-adique de l'enveloppe à

puissances divisées de l'anneau $W(R(\mathscr{A}))$ relativement à l'idéal $J(\mathscr{A}) = \operatorname{Ker} \theta + pW(R(\mathscr{A}))$, image inverse par θ de $p\mathscr{A}$, compatibles avec les puissances divisées canoniques qui existent sur l'idéal engendré par p. Comme $\varphi(J(\mathscr{A})) \subset J(\mathscr{A})$, le Frobenius s'étend en un endomorphisme, encore noté φ , de l'anneau $A_{cris}(\mathscr{A})$.

On pose aussi $B^+_{cris}(\mathscr{A}) = A_{cris}(\mathscr{A})[1/p]$. C'est une K_0 -algèbre munie d'un Frobenius φ (prolongeant φ sur $A_{cris}(\mathscr{A})$), semi-linéaire relativement au Frobenius absolu σ agissant sur K_0 . L'anneau $B^+_{cris}(\mathscr{A})$ est un Banach p-adique et $A_{cris}(\mathscr{A})$ en est un réseau.

Les $B_m(\mathscr{A})$ et $B_{dR}^+(\mathscr{A})$ sont, de manière naturelle, des $W(R(\mathscr{A}))[1/p]$ -algèbre. Tout élément de $B_{cris}^+(\mathscr{A})$ peut s'écrire, de manière non unique, sous la forme $\sum_{n=0}^{+\infty} \alpha_n \frac{\xi^n}{n!}$, avec les $\alpha_n \in W(R(\mathscr{A}))[1/p]$ tendant p-adiquement vers 0. On en déduit un homomorphisme naturel de $B_{cris}^+(\mathscr{A})$ dans les $B_m(\mathscr{A})$ et dans $B_{dR}^+(\mathscr{A})$.

1.4. Les groupes $U_1(\mathscr{A})$ et $U(\mathscr{A})$

On pose

$$U_1^{\times}(\mathscr{A}) = \{(x^{(m)})_{m \in \mathbb{N}} \in R(\mathscr{A}) \mid x^{(0)} \in 1 + 2p\mathscr{O}_{\mathscr{A}}\},$$

$$U^{\times}(\mathscr{A}) = \{(x^{(m)})_{m \in \mathbb{N}} \in R(\mathscr{A}) \mid x^{(0)} \in \mathscr{O}_{\mathscr{A}}^{**}\}.$$

La propriété (B1) et l'inégalité $||(x^p-1)-(x-1)^p|| < 1$ valable pour tout élément x de $\mathscr{O}_{\mathscr{A}}$ permettent de montrer que, si $x^p \in \mathscr{O}_{\mathscr{A}}^{**}$, alors $x \in \mathscr{O}_{\mathscr{A}}^{**}$. Ceci implique que l'on a $x^{(m)} \in \mathscr{O}_{\mathscr{A}}^{**}$ si $(x^{(m)})_{m \in \mathbb{N}} \in U^{\times}(\mathscr{A})$. Les ensembles $U_1^{\times}(\mathscr{A})$ et $U^{\times}(\mathscr{A})$ sont des sous-groupes du groupe multiplicatif de $R(\mathscr{A})$. Le premier est séparé et complet pour la topologie p-adique et est donc un \mathbb{Z}_p -module; comme il existe $r \in \mathbb{N}$ tel que $x^{p^r} \in 1 + 2p\mathscr{O}_{\mathscr{A}}$ si $x \in \mathscr{O}_{\mathscr{A}}^{**}$, le second s'identifie au \mathbb{Q}_p -espace vectoriel $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} U_1^{\times}(\mathscr{A})$. Comme $U_1^{\times}(\mathscr{A})$ est sans p-torsion, $U^{\times}(\mathscr{A})$ peut être considéré comme un Banach p-adique dont $U_1^{\times}(\mathscr{A})$ est un réseau.

Si $x \in U_1^{\times}(\mathscr{A})$, $[x] - 1 \in J(\mathscr{A})$ et la série

$$\log[x] = \sum_{n=1}^{+\infty} (-1)^{n+1} ([x] - 1)^n / n$$

converge dans $A_{cris}(\mathscr{A})$. On obtient ainsi une application \mathbb{Z}_p -linéaire de $U_1^{\times}(\mathscr{A})$ dans $A_{cris}(\mathscr{A})$ que l'on prolonge en une application \mathbb{Q}_p -linéaire de $U^{\times}(\mathscr{A})$ dans $B_{cris}^+(\mathscr{A})$ que l'on note encore $x \mapsto \log[x]$. On a $\varphi([x]) = [x^p]$ et donc $\varphi(\log[x]) = p \log[x]$ si $x \in U^{\times}(\mathscr{A})$.

Proposition 1.2. — Soit

$$\ell: U^{\times}(\mathscr{A}) \to B_2(\mathscr{A})$$
,

l'application qui à x associe l'image de $\log[x]$ via l'homomorphisme naturel $B_{cris}^+(\mathscr{A}) \to B_2(\mathscr{A})$.

- i) L'application $\theta \circ \ell : U^{\times}(\mathscr{A}) \to \mathscr{A}$ est surjective et son noyau est un \mathbf{Q}_p -espace vectoriel de dimension 1 formé des $x \in U^{\times}(\mathscr{A})$ tels que $x^{(0)}$ est une racine de l'unité d'ordre une puissance de p dans C;
- ii) l'application ℓ est injective et définit un homéomorphisme de $U^{\times}(\mathscr{A})$ sur son image qui est un sous- \mathbb{Q}_p -espace vectoriel fermé du Banach p-adique $B_2(\mathscr{A})$.

 $D\acute{e}monstration$. — Le logarithme définit un isomorphisme du groupe multiplicatif $1 + 2p\mathscr{O}_{\mathscr{A}}$ sur le groupe additif $2p\mathscr{O}_{\mathscr{A}}$. Pour tout $a \in 1 + 2p\mathscr{O}_{\mathscr{A}}$, il existe, grâce à (B3), une suite d'éléments

 $(x^{(m)})_{m\in\mathbf{N}}$ de $\mathscr{O}_{\mathscr{A}}^{**}$ vérifiant $x^{(0)}=a$ et $(x^{(m+1)})^p=x^{(m)}$, pour tout m et donc $(x^{(m)})_{m\in\mathbf{N}}\in U_1^{\times}(\mathscr{A})$ et la restriction de $\theta\circ\ell$ à $U_1^{\times}(\mathscr{A})$ a pour image $2p\mathscr{O}_{\mathscr{A}}$. Le noyau de cette restriction est formé des $(x^{(m)})_{m\in\mathbf{N}}$ tels que $x^{(0)}=1$ et, grâce à (B3), tous les $x^{(m)}$ sont alors dans C. Soit $\varepsilon=(\varepsilon^{(m)})_{m\in\mathbf{N}}\in R(\mathscr{A})$, avec $\varepsilon^{(0)}=1$ et $\varepsilon^{(1)}\neq 1$. On a $\varepsilon\in R(C)\subset R(\mathscr{A})$, la suite

$$0 \to \varepsilon^{\mathbf{Z}_p} \to U_1^{\times}(\mathscr{A}) \to 2p\mathscr{O}_{\mathscr{A}} \to 0$$

est exacte et l'assertion (i) s'en déduit en rendant p inversible.

Soit ξ l'image de ξ dans $B_2(\mathscr{A})$. On sait ([18, § 1.5.4]) que, lorsque $\mathscr{A} = C$, il existe $c_0 \in \mathscr{O}_C$ non nul tel que $\ell(\varepsilon) = c_0 \tilde{\xi}$; la même formule reste vraie lorsque l'on envoie \mathscr{O}_C dans $\mathscr{O}_{\mathscr{A}}$. On en déduit que $\ell(\varepsilon) \neq 0$ et ℓ est bien injective. On voit aussi que l'image par ℓ du noyau de $\theta \circ \ell$ s'identifie au \mathbf{Q}_p -espace vectoriel engendré par $t = \log[\varepsilon]$.

L'image $A_2(\mathscr{A})$ de $W(R(\mathscr{A}))$ dans $B_2(\mathscr{A})$ qui est aussi celle de $A_{cris}(\mathscr{A})$ est un réseau de ce Banach p-adique et on a une suite exacte

$$0 \to \mathscr{O}_{\mathscr{A}}\tilde{\xi} \to A_2(\mathscr{A}) \to \mathscr{O}_{\mathscr{A}} \to 0$$
.

Mais on a un diagramme commutatif

où les lignes sont exactes. On en déduit l'injectivité de l'application l.

On en déduit aussi que $\mathbf{Q}_p t \cap \ell(U_1^{\times}(\mathscr{A})) = \mathbf{Z}_p p^{-m} t$ si $m \in \mathbf{N}$ désigne le plus grand entier tel que $c_0/p^m \in \mathscr{O}_C$. Soit $u \in U^{\times}(\mathscr{A})$ tel que $\ell(u) \in A_2(\mathscr{A})$; on a $\theta(\ell(u)) \in \mathscr{A}$ et il existe $v \in U_1^{\times}(\mathscr{A})$ tel que $\theta(\ell(v)) = \theta(\ell(u^{2p}))$. Alors $\ell(u^{2p}/v) \in \mathbf{Q}_p t \cap A_2(\mathscr{A}) = \mathbf{Z}_p p^{-m} t$ et il existe $r \in \mathbf{Z}_p$ tel que $u^{2p}/v = \varepsilon^{r/p^m}$, donc $u^{2p^{m+1}} = \varepsilon^r v^{p^m} \in U_1^{\times}(\mathscr{A})$. On en déduit que

$$U_1^{\times}(\mathscr{A}) \subset \ell^{-1}(A_2(\mathscr{A})) \subset (U_1^{\times}(\mathscr{A}))^{\frac{1}{2p^{m+1}}}$$

donc que l'image inverse par ℓ du réseau $A_2(\mathscr{A})$ de $B_2(\mathscr{A})$ est un réseau de $U^{\times}(\mathscr{A})$ et la proposition en résulte. \square

Remarque. — On peut montrer (cela résulte de la description de $B_2(\mathscr{O}_C)$ faite dans [18] et de ce que, pour tout $n \in \mathbb{N}$ l'annulateur de $d\varepsilon^{(n)}/\varepsilon^{(n)} \in \Omega^1_{\mathscr{O}_{\overline{K}}/W(k)}$ est l'idéal des $c \in \mathscr{O}_{\overline{K}}$ vérifiant $|c| \leq p^{n-\frac{1}{p-1}}$, voir aussi [17, prop. 2.17]) que l'élément c_0 introduit dans la preuve de la proposition précédente vérifie $|c_0| = p^{\frac{1}{p-1}}$. L'entier m ci-dessus vaut donc 0 si $p \neq 2$ et 1 si p = 2. Nous n'en n'aurons pas besoin.

On note $U(\mathscr{A})$ (resp. $U_1(\mathscr{A})$) l'image de $U^{\times}(\mathscr{A})$ (resp. $U_1^{\times}(\mathscr{A})$) dans $B_{cris}^+(\mathscr{A})$ aussi bien que dans $B_2(\mathscr{A})$.

Dans toute la suite, on fixe $\varepsilon \in U_1^{\times}(\mathscr{O}_C) \subset U_1^{\times}(\mathscr{A})$ comme ci-dessus (on a donc $\varepsilon = (\varepsilon^{(m)})_{m \in \mathbb{N}}$, avec $\varepsilon^{(0)} = 1$ et $\varepsilon^{(1)} \neq 1$); on pose $t = \ell(\varepsilon) \in U_1(\mathscr{O}_C) \subset U_1(\mathscr{A})$. On peut donc considérer ε (resp. t) comme un générateur du module de Tate $\mathbf{Z}_p(1) = \varprojlim \mu_{p^m}(\overline{K})$ noté multiplicativement (resp. additivement).

Pour tout \mathbf{Z}_p -module M, on pose $M(1) = M \otimes_{\mathbf{Z}_p} \mathbf{Z}_p(1)$.

On voit que l'on a des diagrammes commutatifs

et

dont les lignes sont exactes. En particulier, $B_2(\mathscr{A})$ s'identifie à la somme amalgamée de $U(\mathscr{A})$ et de $\mathscr{A}(1)$ au-dessus de $\mathbb{Q}_p(1)$ (mais, dans cette identification, on ne voit plus la structure d'anneau).

Toutes ces constructions sont fonctorielles: Remarquons d'abord que, grâce à (B1),

$$\mathscr{O}_{\mathscr{A}} = \{ a \in \mathscr{A} \mid (ca)^{p^n} \mapsto 0 \text{ si } n \mapsto \infty \text{ , pour tout } c \in \mathfrak{m}_C \} .$$

Si \mathscr{A}_1 et \mathscr{A}_2 sont deux C-algèbres de Banach p-adiques p-bonnes et si $s: \mathscr{A}_1 \to \mathscr{A}_2$ est un homomorphisme continu de C-algèbres, il envoie donc $\mathscr{O}_{\mathscr{A}_1}$ dans $\mathscr{O}_{\mathscr{A}_2}$ et il induit des morphismes, que nous notons encore s de $R(\mathscr{A}_1)$ dans $R(\mathscr{A}_2)$, de $W(R(\mathscr{A}_1))$ dans $W(R(\mathscr{A}_2))$, de $B_m(\mathscr{A}_1)$ dans $B_m(\mathscr{A}_2)$ pour tout $m \in \mathbb{N}$, de $B_{dR}^+(\mathscr{A}_1)$ dans $B_{dR}^+(\mathscr{A}_2)$, de $A_{cris}(\mathscr{A}_1)$ dans $A_{cris}(\mathscr{A}_2)$, de $B_{cris}^+(\mathscr{A}_1)$ dans $B_{cris}^+(\mathscr{A}_2)$, de $B_{cris}^+(\mathscr{A}_2)$, et de $B_{cris}^+(\mathscr{A}_2)$. Tous les diagrammes auxquels on peut raisonnablement penser sont commutatifs.

1.5. Le corps B_{dR} et l'anneau B_{st}

Comme d'habitude, pour tout entier $i \geq 0$, on pose $\mathbf{Z}_p(i) = \operatorname{Sym}_{\mathbf{Z}_p}^i \mathbf{Z}_p(1)$ et on note $\mathbf{Z}_p(-i)$ son dual. Pour tout $i \in \mathbf{Z}$, $\mathbf{Z}_p(i)$ est le \mathbf{Z}_p -module libre de rang 1 de base t^i . Pour tout \mathbf{Z}_p -module M et tout $i \in \mathbf{Z}$, on pose $M(i) = M \otimes_{\mathbf{Z}_p} \mathbf{Z}_p(i)$; pour tout $x \in M$, on pose $x^i = x \otimes t^i \in M(i)$.

Dans le cas particulier où $\mathscr{A} = C$, on pose R = R(C), $B_m = B_m(C)$, $B_{dR}^+ = B_{dR}^+(C)$, $A_{cris} = A_{cris}(C)$, $B_{cris}^+ = B_{cris}^+(C)$, $U_1 = U_1(C)$ et U = U(C).

Alors B_{dR}^+ est un anneau de valuation discrète, de corps résiduel C et t est un générateur de l'idéal maximal de B_{dR}^+ .

On note $B_{dR} = B_{dR}^+[1/t]$ le corps des fractions de B_{dR}^+ et, pour tout $i \in \mathbf{Z}$, Fil^iB_{dR} l'idéal fractionnaire qui est la puissance i-ième de l'idéal maximal de B_{dR}^+ . Pour tout $i \in \mathbf{Z}$, on a donc $Fil^iB_{dR} = B_{dR}^+.t^i = B_{dR}^+(i)$ et, si $m \in \mathbf{N}$, $Fil^iB_{dR}/Fil^{i+m}B_{dR} = B_m(i)$.

Le groupe $G_K = Gal(\overline{K}/K)$ opère sur B_{dR}^+ et B_{dR} . On peut montrer (nous n'en aurons pas besoin) qu'il n'existe pas de section G_K -équivariante de la projection de B_{dR}^+ sur C, mais il existe un unique homomorphisme G_K -équivariant de \overline{K} dans B_{dR}^+ qui, composé avec la projection de B_{dR}^+ sur C, donne l'identité sur \overline{K} et ceci nous permet de considérer les anneaux B_{dR}^+ , B_{dR} et les B_m comme des \overline{K} -algèbres. On a $(B_{dR})^{G_K} = (B_{dR}^+)^{G_K} = K$. Si $m \geqslant 1$, on a aussi $(B_m)^{G_K} = K$. Finalement, si $s \leqslant 0$, on a $(B_{dR}/Fil^sB_{dR})^{G_K} = 0$ et, si $s \geqslant 1$, on a $(B_{dR}/Fil^sB_{dR})^{G_K} = K$.

On pose $B_{cris} = B_{cris}^+[1/t]$. Le Frobenius sur B_{cris}^+ s'étend de manière unique en un endomorphisme, encore noté φ , de l'anneau B_{cris} (on a $\varphi(1/t) = 1/pt$). L'application naturelle de B_{cris}^+ dans B_{dR}^+ s'étend de manière unique en un homomorphisme injectif de B_{cris} dans B_{dR} ce qui

nous permet de considérer B_{cris}^+ (resp. B_{cris}) comme une sous- K_0 -algèbre, stable par G_K de B_{dR}^+ (resp. B_{dR}).

Rappelons que l'on a choisi $\pi \in R$ tel que $\pi^{(0)} = p$, de sorte que $[\pi] \in W(R)$. Si l'on prolonge le logarithme p-adique usuel en posant $\log(p) = 0$, on peut voir $\log[\pi]$ comme un élément de Fil^1B_{dR} , en posant

$$\log[\pi] = \log([\pi]/p) = \sum_{n=1}^{+\infty} (-1)^{n+1} (\frac{[\pi]}{p} - 1)^n / n .$$

Alors $\log[\pi]$ est transcendant sur le corps des fractions de B_{cris} , ce qui fait que la sous- B_{cris} -algèbre B_{st} de B_{dR} engendré par $\log[\pi]$ s'identifie à l'anneau des polynômes en l'indéterminée $\log[\pi]$ à coefficients dans B_{cris} . Elle est stable par G_K (et ne dépend pas du choix de π tel que $\pi^{(0)} = p$). On étend le Frobenius en un endomorphisme de l'anneau B_{st} en posant $\varphi(\log[\pi]) = p \log[\pi]$. On note N l'unique B_{cris} -dérivation de B_{st} telle que $N(\log[\pi]) = -1$. Alors N qui ne dépend pas non plus du choix de π commute à l'action de G_K et vérifie $N\varphi = p\varphi N$. On a $B_{cris} = B_{st}^{N=0}$.

Remarque. — Avec les conventions de [18], on voit que l'on a choisi le plongement canonique de B_{st} dans B_{dR} et que l'on a choisit pour N le choix opposé au choix canonique. Comme on l'a remarqué dans [19], la validité du théorème A ne dépend pas de ces choix. Pour N nous avons adopté la convention opposée à celle de [18] pour tenir compte d'une remarque de Tsuji sur l'interprétation « géométrique » de cet opérateur ([32, remark 4.1.1]).

Rappelons enfin que, l'application naturelle $K \otimes_{K_0} B_{st} \to B_{dR}$ est injective et nous permet d'identifier $K \otimes_{K_0} B_{st}$ à un sous-anneau de B_{dR} .

1.6. L'anneau $B_{cris}^{\varphi=1}$

Notons $B_{cris}^{\varphi=1}$ la sous- \mathbf{Q}_p -algèbre de B_{cris} formée des b tels que $\varphi b = b$. C'est aussi la sous- \mathbf{Q}_p -algèbre de B_{st} formé des b qui vérifient Nb = 0 et $\varphi b = b$.

On muni $B_{cris}^{\varphi=1}$ de la filtration induite par celle de B_{dR} , i.e., pour tout $i \in \mathbf{Z}$, on pose $Fil^i B_{cris}^{\varphi=1} = B_{cris}^{\varphi=1} \cap Fil^i B_{dR}$.

On voit que $\mathbf{Q}_p \subset Fil^0 B_{cris}^{\varphi=1}$. On dispose d'une application canonique de $B_{cris}^{\varphi=1}$ dans B_{dR}/B_{dR}^+ .

On voit que $\mathbf{Q}_p \subset Fil^0 B_{cris}^{\varphi=1}$. On dispose d'une application canonique de $B_{cris}^{\varphi=1}$ dans B_{dR}/B_{dR}^+ : c'est le composé de l'inclusion $B_{cris}^{\varphi=1} \subset B_{cris} \subset B_{dR}$ avec la projection de B_{dR} sur B_{dR}/B_{dR}^+ . Pour tout $r \geq 0$, cette application envoie $Fil^{-r}B_{cris}^{\varphi=1}$ dans $Fil^{-r}B_{dR}/B_{dR}^+ = B_r(-r)$.

Rappelons que U s'identifie à un sous- \mathbf{Q}_p -espace vectoriel de $B_{cris}^+ \subset B_{dR}^+$ contenant $\mathbf{Q}_p(1) = \mathbf{Q}_p.t$. Pour tout $u \in U$, on a $\varphi u = pu$. Par conséquent, $u/t \in B_{cris}$ vérifie $\varphi(u/t) = u/t$ et $u/t \in Fil^{-1}B_{dR}$. Autrement dit $u/t \in Fil^{-1}B_{cris}^{\varphi=1}$, i.e. $U(-1) \subset Fil^{-1}B_{cris}^{\varphi=1}$.

Proposition 1.3. — i) On a $Fil^0B_{cris}^{\varphi=1} = \mathbf{Q}_p$ et, pour tout i > 0, $Fil^iB_{cris}^{\varphi=1} = 0$.

- ii) On a $U(-1) = Fil^{-1}B_{cris}^{\varphi=1}$.
- iii) Soit v un élément de U(-1) qui n'appartient pas à \mathbf{Q}_p . Pour tout entier $r \geqslant 1$ et pour tout $b \in Fil^{-r}B_{cris}^{\varphi=1}$, il existe $b_0, b_1, \ldots, b_{r-1} \in U(-1)$, (non uniquement déterminés) tels que $b = b_0 + b_1v + \ldots + b_{r-1}v^{r-1}$.
 - iv) Pour tout entier $r \ge 1$, la suite

$$0 \to \mathbf{Q}_p \to Fil^{-r}B_{cris}^{\varphi=1} \to B_r(-r) \to 0$$

est exacte.

v) La suite

$$0 \to \mathbf{Q}_p \to B_{cris}^{\varphi=1} \to B_{dR}/B_{dR}^+ \to 0$$

est exacte.

 $D\'{e}monstration$. — Le fait que $Fil^0B^{\varphi=1}_{cris}=\mathbf{Q}_p$ est un peu délicat à établir mais est bien connu (cf. [18], c'est d'ailleurs grâce à cela qu'une représentation p-adique semi-stable est déterminée par son (φ, N) -module filtré, cf. [19]). On en déduit que $Fil^iB^{\varphi=1}_{cris}=0$ si $i\geqslant 1$, d'où (i).

On en déduit aussi que, pour tout entier $r \ge 1$, la suite

$$0 \to \mathbf{Q}_p \to Fil^{-r}B_{cris}^{\varphi=1} \to B_r(-r)$$

est exacte.

Par ailleurs (prop. 1.2), la suite

$$0 \to \mathbf{Q}_p(1) \to U \to C \to 0$$

est exacte. On a donc un diagramme commutatif

dont les colonnes sont exactes. On en déduit (ii) et (iv) pour r = 1.

Supposons $r \geq 2$ et soit X_r l'ensemble des éléments de B_{cris} qui peuvent s'écrire sous la forme $\sum_{n=0}^{r-1} b_n v^n$, avec les b_n dans U(-1). C'est un sous- \mathbf{Q}_p -espace vectoriel de $Fil^{-r}B_{cris}^{\varphi=1}$. On a $v = v_0/t$, avece $v_0 \in U$ et $\theta(v_0) \neq 0$. Tout élément b_{r-1} de U(-1) s'écrit $b_{r-1} = b'_{r-1}/t$ avec $b'_{r-1} \in U$. On a alors $b_{r-1}v^{r-1} = b'_{r-1}v^{r-1}/t^r$ et $\theta(b'_{r-1}v^{r-1}) = \theta(b'_{r-1})(\theta(v_0))^{r-1}$ parcourt C lorsque b'_{r-1} parcourt U. On en déduit que la projection de X_r sur $Fil^{-r}B_{dR}/Fil^{-r+1}B_{dR} = C(-r)$ est surjective. Par induction sur r, il en résulte que la projection de X_r sur $B_r(-r)$ est surjective. Comme dans le cas r = 1, on a alors un diagramme commutatif

dont les colonnes sont exactes. On en déduit (iii) et (iv).

Enfin (v) résulte de (iv) par passage à la limite. □

Remarque. — La suite exacte ci-dessus a déjà été considérée dans [7, Ch. III § 3]). C'est une variante de la suite exacte fondamentale de Bloch et Kato ([2, prop. 1.17]).

2. Le lemme fondamental

Dans ce paragraphe, on se propose de prouver le résultat suivant :

Proposition 2.1. — (lemme fondamental, version faible). Soient h un entier $\geq 2, v_1, v_2, \ldots, v_h \in B_2, \alpha_1, \alpha_2, \ldots, \alpha_h \in C$ des éléments non tous nuls tels que $\sum_{n=1}^h \alpha_n \theta(v_n) = 0$ et soit

$$Y = \{(u_1, u_2, \dots, u_h) \in U^h \mid \exists c \in C \text{ tel que } \theta(u_n) = c\alpha_n \text{ pour tout } n\}$$
.

Soit $\rho: Y \to B_2$ la restriction à Y de l'application de U^h dans B_2 qui envoie (u_1, u_2, \ldots, u_h) sur $\sum_{n=1}^h u_n v_n$. Alors Im $\rho \subset C(1)$ et ou bien Im $\rho = \rho(\mathbf{Q}_p(1)^h)$ (et donc $\dim_{\mathbf{Q}_p} \operatorname{Im} \rho \leqslant h$) ou bien Im $\rho = C(1)$.

Remarque. — En travaillant nettement plus, on peut démontrer en outre ([8], lemme fondamental, version forte) que si l'image de ρ n'est pas de dimension finie sur \mathbf{Q}_p , alors le noyau de ρ est de dimension finie égale à h sur \mathbf{Q}_p . Nous n'en n'aurons pas besoin ici.

Début de la preuve de la proposition 2.1. — Pour $y = (u_1, u_2, \ldots, u_h) \in Y$, c comme ci-dessus est unique et on note $\nu: Y \to C$ l'application qui envoie y sur c. On a une suite exacte

$$0 \to \mathbf{Q}_p(1)^h \to Y \to C \to 0$$
.

Si $y = (u_1, u_2, \dots, u_h) \in Y$, alors $\rho(y) = \sum_{n=1}^h u_n v_n$, donc $\theta(\rho(y)) = \sum \theta(u_n) \theta(v_n) = \nu(y)$. $\sum \alpha_n \theta(v_n) = 0$ et on a bien Im $\rho \subset C(1)$.

Pour démontrer le reste de la proposition, l'idée est de rajouter une variable à C et d'exprimer ρ comme une limite uniforme de « fonctions algébriques », puis d'utiliser une version précise du fait qu'une telle fonction algébrique est ouverte (lemme 2.4), ce qui permet d'en déduire une version approchée du résultat ; finalement, la linéarité de ρ permet de conclure.

On note $\mathscr{O}_{\mathscr{K}} = \mathscr{O}_{C}\{T\}$ le séparé complété pour la topologie p-adique de l'anneau $\mathscr{O}_{C}[T]$ des polynômes en l'indéterminée T à coefficients dans \mathscr{O}_{C} et on pose $\mathscr{K} = \mathscr{O}_{\mathscr{K}}[1/p] = C\{T\}$. Tout élément $a \in \mathscr{O}_{\mathscr{K}}$ (resp. $\in \mathscr{K}$) s'écrit donc de manière unique sous la forme

$$a = \sum_{r=0}^{+\infty} a_r T^r \ ,$$

avec les $a_r \in \mathcal{O}_C$ (resp. $\in C$) tendant p-adiquement vers 0. Pour un tel a, on pose $||a|| = \sup_{r \in \mathbb{N}} |a_r|$.

On note $\mathscr E$ le corps des fractions de $\mathscr K$ et on choisit une clôture algébrique $\overline{\mathscr E}$ de $\mathscr E$. On note $\overline{\mathscr K}$ la fermeture intégrale de $\mathscr K$ dans $\overline{\mathscr E}$.

On prolonge l'application $|| || : \mathscr{K} \to \mathbf{R}$ en une application définie sur $\overline{\mathscr{K}}$ en posant, pour tout $\mu \in \overline{\mathscr{K}}$, si $P(X) = X^n + \sum_{i=0}^{n-1} a_i X^i \in \mathscr{K}[X]$ est le polynôme minimal de μ sur \mathscr{K} ,

$$||\mu|| = \sup_{0 \le i \le n-1} ||a_i||^{\frac{1}{n-i}}$$
.

Lemme 2.2. — L'application $|| || : \overline{\mathcal{K}} \to \mathbf{R}$ est une norme. La C-algèbre \mathscr{C} complétée de $\overline{\mathcal{K}}$ pour cette norme, munie du prolongement de la norme par continuité, est une C-algèbre de Banach p-bonne.

 $D\acute{e}monstration$. — D'abord, il est clair (et bien connu) que la restriction de $||\ ||$ à \mathscr{K} est une norme (norme de Gauss) et que $\mathscr{O}_{\mathscr{K}}$ est l'ensemble des éléments de \mathscr{K} de norme $\leqslant 1$.

Notons $\mathscr{O}_{\overline{\mathscr{K}}}$ la fermeture intégrale de $\mathscr{O}_{\mathscr{K}}$ dans $\overline{\mathscr{E}}$. On a $\overline{\mathscr{K}} = \mathscr{O}_{\overline{\mathscr{K}}}[1/p]$. On a aussi $\{||\mu|| \mid \mu \in \overline{\mathscr{K}}\} = \{|c| \mid c \in C\}$ et $||c\mu|| = |c|.||\mu||$ pour $c \in C$ et $\mu \in \overline{\mathscr{K}}$. Alors, si $\mu \in \overline{\mathscr{K}}$ et $c \in C$ avec $c \neq 0$, on a $||\mu|| \leq |c|$ si et seulement si $\mu/c \in \mathscr{O}_{\overline{\mathscr{K}}}$. On en déduit que $||\cdot||$ est une norme sur $\overline{\mathscr{K}}$ et que \mathscr{E} , munie de la norme définie par continuité, est une C-algèbre de Banach.

Remarque. — En fait $\overline{\mathscr{K}}$ est la réunion filtrante de ses sous- \mathscr{K} -algèbres finies. Si \mathscr{L} est l'une d'entre elles, c'est une algèbre affinoïde sur C, intègre et de dimension 1 (cf. [22, chap. II] par exemple); la restriction de la norme à \mathscr{L} est la norme spectrale et \mathscr{L} est complète pour cette norme.

Il reste à vérifier que \mathscr{C} est p-bonne :

- Montrons (B1) : si $a \in \overline{\mathcal{K}}$, on a $a \in \mathcal{O}_{\overline{\mathcal{K}}}$ si et seulement si $a^p \in \mathcal{O}_{\overline{\mathcal{K}}}$ et on en déduit que $||a^p|| = (||a||)^p$; la même formule pour $a \in \mathcal{C}$ s'en déduit par continuité.
- Montrons (B2) : L'application $x \to x^p$ est une surjection de \overline{K} sur \overline{K} et donc (grâce à (B1)) aussi de $\mathscr{O}_{\overline{\mathcal{K}}}$ sur $\mathscr{O}_{\overline{\mathcal{K}}}$ et de $\mathscr{O}_{\overline{\mathcal{K}}}/p\mathscr{O}_{\overline{\mathcal{K}}} = \mathscr{O}_{\mathscr{C}}/p\mathscr{O}_{\mathscr{C}}$ sur $\mathscr{O}_{\overline{\mathcal{K}}}/p\mathscr{O}_{\overline{\mathcal{K}}}$.
- Montrons (B3) : Remarquons d'abord que $\mathscr{O}_{\mathscr{K}}^{**} = \mathscr{O}_{\mathscr{K}} \cap \mathscr{O}_{\mathscr{C}}^{**}$ est un sous-groupe de $\mathscr{O}_{\mathscr{C}}^{**}$ car, si $a \in \mathscr{O}_{\mathscr{K}}^{**}$, son inverse a^{-1} dans \mathscr{C} est de la forme $\sum_{n=0}^{+\infty} (1-a)^n$, série à termes dans $\mathscr{K}[a]$ qui converge dans \mathscr{C} et donc aussi dans $\mathscr{K}[a] \subset \overline{\mathscr{K}}$ puisque $\mathscr{K}[a]$ est complète.

Soit $x \in \mathscr{O}_{\mathscr{C}}^{**}$. Choisissons $a \in \mathscr{O}_{\overline{\mathscr{K}}}$ vérifiant $a - x \in 2p^r\mathscr{O}_{\mathscr{C}}$. Alors $a \in \mathscr{O}_{\overline{\mathscr{K}}}^{**}$ et $a^{-1}x = 1 + a^{-1}(x - a) \in 1 + 2p^r\mathscr{O}_{\mathscr{C}}$ d'où l'on déduit que l'application naturelle de $\mathscr{O}_{\overline{\mathscr{K}}}^{**}/(1 + 2p^r\mathscr{O}_{\overline{\mathscr{K}}})$ dans $\mathscr{O}_{\mathscr{C}}^{**}/(1 + 2p^r\mathscr{O}_{\mathscr{C}})$ est un isomorphisme.

D'autre part, si $x \in 1 + 2p^{r+1}\mathscr{O}_{\mathscr{C}}$, la série $g(x) = \sum_{n=0}^{+\infty} {p^{-r} \choose n} (x-1)^n$ converge dans $1 + 2p\mathscr{O}_{\mathscr{C}}$ et le même argument que précédemment montre que, si $x \in \mathscr{K}$, alors g(x) aussi. On en déduit que l'élévation à la puissance p^r induit un isomorphisme de $1 + 2p\mathscr{O}_{\mathscr{C}}$ sur $1 + 2p^{r+1}\mathscr{O}_{\mathscr{C}}$ dont g est l'inverse et un isomorphisme de $1 + 2p\mathscr{O}_{\mathscr{K}}$ sur $1 + 2p^{r+1}\mathscr{O}_{\mathscr{K}}$ dont la restriction de g à $1 + 2p^{r+1}\mathscr{O}_{\mathscr{K}}$ est l'inverse.

La conjonction des isomorphismes précédents montre que noyau et conoyau de l'application de $\mathscr{O}_{\mathscr{C}}^{**}$ dans lui-même qui envoie x sur x^{p^r} s'identifient aux noyau et conoyau de l'élévation à la puissance p^r dans $\mathscr{O}_{\overline{\mathscr{K}}}^{**}$. Comme $\overline{\mathscr{K}}$ est intègre, le noyau se réduit bien au groupe des racines p^r -ièmes de 1 dans C. Finalement, si $x \in \mathscr{O}_{\overline{\mathscr{K}}}^{**}$, il existe $y \in \overline{\mathscr{K}}$ vérifiant $y^{p^r} = x$ et on a $y \in \mathscr{O}_{\overline{\mathscr{K}}}^{**}$ [cf. les lignes suivant la définition de $U_1^{\times}(\mathscr{A})$ et $U^{\times}(\mathscr{A})$]; l'élévation à la puissance p^r -ième est bien surjective sur $\mathscr{O}_{\overline{\mathscr{K}}}^{**}$. \square

Le résultat suivant est un avatar du lemme de Hensel :

Lemme 2.3. — Soit $P(X) = X^n + \sum_{i=0}^{n-1} a_i X^i \in \mathcal{K}[X]$ un polynôme unitaire à coefficients dans $\mathscr{O}_{\mathcal{K}}$. Pour $0 \leq i \leq n-1$, posons $a_i = \sum_{r=0}^{+\infty} a_{i,r} T^r$, avec les $a_{i,r} \in C$. Supposons que $|a_{0,0}| < 1$, $|a_{i,r}| < 1$ pour $1 \leq i \leq n-1$ si $r \neq 0$ et qu'il existe i tel que $|a_{i,0}| = 1$. Alors P n'est pas irréductible sur $\mathscr{O}_{\mathcal{K}}[X]$.

Démonstration. — Soit d le plus petit entier tel que $|a_{d,0}|=1$. Posons $Q_1(X)=X^d$ et $R_1(X)=a_{d,0}+a_{d+1,0}X+\ldots+a_{n-1,0}X^{n-1-d}$. On voit qu'il existe $V,W\in\mathscr{O}_C[X]$ tels que $VQ_1+WR_1=1$. Si $P=Q_1R_1$, le lemme est prouvé. Sinon, on voit qu'il existe $a\in\mathfrak{m}_C$ non nul tel que $P-Q_1R_1\in a\mathscr{O}_{\mathscr{K}}[X]$. Soit I l'idéal de $\mathscr{O}_{\mathscr{K}}[X]$ engendré par a. Comme pour la preuve du lemme de Hensel classique, on utilise les polynômes V et W pour construire, par induction sur m, des polynômes $Q_m,R_m\in\mathscr{O}_{\mathscr{K}}[X]$ vérifiant deg $Q_m=d$, deg $R_m=n-d$, $Q_m\equiv Q_{m-1}$ (mod I^{m-1}), $R_m\equiv R_{m-1}$ (mod I^{m-1}), $P\equiv Q_mR_m$ (mod I^m). La suite des Q_m (resp. des R_m) converge vers un polynôme Q de degré d (resp. R de degré n-d) dans $\mathscr{O}_{\mathscr{K}}[X]$ et P=QR. \square

On note S l'ensemble des homomorphismes (automatiquement continus), de \mathscr{O}_C -algèbres de $\mathscr{O}_{\mathscr{K}}$ dans \mathscr{O}_C . La restriction de $s \in S$ à $\mathscr{O}_{\mathscr{K}}$ est déterminée de manière unique par s(T) et l'application $s \mapsto s(T)$ de S dans \mathscr{O}_C est surjective.

Tout $s \in S$ se prolonge de manière unique en un élément de Spm $\overline{\mathcal{K}}$, ensemble des homomorphismes continus de C-algèbres de $\overline{\mathcal{K}}$ dans C et, inversement la restriction à $\mathscr{O}_{\overline{\mathcal{K}}}$ d'un élément de Spm $\overline{\mathcal{K}}$ appartient à S, ce qui permet d'identifier S à Spm $\overline{\mathcal{K}}$.

De même, tout $s \in S$ se prolonge de manière unique en un homomorphisme continu de \mathscr{O}_{C} -algèbres, encore noté s, de $\mathscr{O}_{\mathscr{C}}$ dans \mathscr{O}_{C} (resp. de \mathscr{C} dans C) et S s'identifie ainsi à l'ensemble de ces homomorphismes.

On choisit un élément $s_0 \in S$ tel que $s_0(T) = 0$.

Lemme 2.4. — Soit $\mu_0 \in \mathscr{O}_{\mathscr{K}}$ vérifiant $s_0(\mu_0) = 0$ et $||\mu_0|| = 1$. Soit n le degré de μ_0 sur \mathscr{K} . Il existe alors un entier m vérifiant $0 \leq m < n$ et des éléments $c_1, c_2, \ldots, c_m \in \mathscr{O}_C$ tels que, pour tout $c \in \mathscr{O}_C$ vérifiant $c - c_j \notin \mathfrak{m}_C$ pour $1 \leq j \leq m$, il existe $s \in S$ tel que $s(\mu_0) = c$.

Démonstration. — Si

$$P(T,X) = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n \in \mathscr{O}_{\mathscr{X}}[X]$$

est le polynôme minimal de μ_0 sur $\mathscr{O}_{\mathscr{K}}$, avec $a_i = \sum_{r=0}^{+\infty} a_{i,r} T^r$, le fait que $||\mu_0|| = 1$ signifie que tous les $a_{i,r}$ sont dans \mathscr{O}_{C} mais que l'un au moins d'entre eux est une unité.

On a $0 = s_0(a_0 + a_1\mu_0 + \ldots + a_{n-1}\mu_0^{n-1} + \mu_0^n) = s_0(a_0) = a_{0,0}$, donc $a_{0,0} = 0$. Il résulte alors du lemme précédent qu'il existe un entier $r \ge 1$ tel que l'un au moins des $a_{i,r}$, pour $0 \le i \le n-1$ est une unité. Choisisssons un tel r. Soient c_1, c_2, \ldots, c_m les racines distinctes dans \mathcal{O}_C de l'équation $\sum_{i=0}^{n-1} a_{i,r} X^i = 0$.

Si $c \in \mathcal{O}_C$ vérifie $|c-c_j|=1$ pour $j=1,2,\ldots,m$, on a $|\sum_{i=0}^{n-1}a_{i,r}c^i|=1$. Alors $P(T,c)\in \mathcal{O}_C\{T\}$ s'écrit $P(T,c)=\sum_{\ell=0}^{+\infty}\alpha_\ell T^\ell$, avec $\alpha_0=a_{0,0}+a_{0,1}c+\ldots+a_{0,n-1}c^{n-1}+c^n$ et, pour $\ell\geqslant 1,\ \alpha_\ell=\sum_{i=0}^{n-1}a_{i,\ell}c^i$. En particulier, le polygone de Newton de P(T,c) passe par le point de coordonnées (r,0) et a au moins une pente négative ou nulle. On en déduit qu'il existe $x\in \mathcal{O}_C$ tel que P(x,c)=0.

La sous- $\mathscr{O}_{\mathscr{K}}$ -algèbre $\mathscr{O}_{\mathscr{K}}[\mu_0]$ de $\mathscr{O}_{\overline{\mathscr{K}}}$ engendrée par μ_0 s'identifie au quotient de $\mathscr{O}_{\mathscr{K}}[X]$ par l'idéal engendré par P(T,X). Il existe donc un unique homomorphisme de \mathscr{O}_C -algèbres $s_{\mu_0}: \mathscr{O}_{\mathscr{K}}[\mu_0] \to \mathscr{O}_C$ tel que $s_{\mu_0}(T) = x$ et $s_{\mu_0}(\mu_0) = c$. Soit \mathfrak{p} le noyau de s_{μ_0} . Comme $\mathscr{O}_{\overline{\mathscr{K}}}$ est entier sur $\mathscr{O}_{\mathscr{K}}[\mu_0]$, on peut trouver un idéal premier \mathfrak{P} de $\mathscr{O}_{\overline{\mathscr{K}}}$ au-dessus de \mathfrak{p} . Mais alors $\mathscr{O}_{\overline{\mathscr{K}}}/\mathfrak{P}$ est entier sur $\mathscr{O}_{\mathscr{K}}[\mu_0]/\mathfrak{p} = \mathscr{O}_C$, donc $\mathscr{O}_{\overline{\mathscr{K}}}/\mathfrak{P} = \mathscr{O}_C$ et il suffit de prendre pour s la projection de $\mathscr{O}_{\overline{\mathscr{K}}}$ sur $\mathscr{O}_{\overline{\mathscr{K}}}/\mathfrak{P}$. \square

Lemme 2.5. — Soit $\mu \in \mathscr{O}_{\mathscr{C}}$ tel que $s_0(\mu) = 0$ et $||\mu|| = 1$. Pour tout $\varepsilon > 0$, il existe $m \in \mathbb{N}$, $c_1, c_2, \ldots, c_m \in \mathscr{O}_C$ tels que, pour tout $c \in \mathscr{O}_C$ vérifiant $c - c_j \notin \mathfrak{m}_C$ pour $1 \leqslant j \leqslant m$, il existe $s \in S$ tel que $|s(\mu) - c| \leqslant \varepsilon$.

Démonstration. — Soit $\nu \in \overline{\mathcal{K}}$ et soit $a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + X^n$ le polynôme minimal de ν sur \mathcal{K} . Pour tout $s \in S$, on a $|s(a_i)| \leq ||a_i||$ pour $0 \leq i \leq n-1$. Comme $s(a_0) + s(a_1)s(\nu) + \ldots + s(a_{n-1})s(\nu)^{n-1} + s(\nu)^n = 0$, on en déduit que $|s(\nu)| \leq ||\nu||$. Par continuité, la même formule reste vraie pour $\nu \in \mathcal{K}$.

Choisissons alors $\mu_0 \in \mathscr{O}_{\overline{\mathscr{K}}}$ tel que $||\mu - \mu_0|| \leq \varepsilon$. D'après ce qui précède, on a $|s_0(\mu_0)| = |s_0(\mu - \mu_0)| \leq ||\mu - \mu_0|| \leq \varepsilon$ et donc $||\mu - (\mu_0 - s_0(\mu_0))|| \leq \varepsilon$ ce qui fait que, quitte à remplacer μ_0 par $\mu_0 - s_0(\mu_0)$, on peut supposer $s_0(\mu_0) = 0$. Appliquons le lemme précédent à μ_0 : pour tout c vérifiant les conditions requises, il existe $s \in S$ tel que $s(\mu_0) = c$ et on a $|s(\mu) - c| = |s(\mu) - s(\mu_0)| = |s(\mu - \mu_0)| \leq ||\mu - \mu_0|| \leq \varepsilon$. \square

Fin de la preuve du lemme fondamental. — Posons $\mathscr{B}_2 = B_2(\mathscr{O}_{\mathscr{C}}), \ \mathscr{U} = U(\mathscr{O}_{\mathscr{C}}), \ \mathscr{U}_1 = U_1(\mathscr{O}_{\mathscr{C}})$ et $U_1 = U_1(\mathscr{O}_C)$. Posons aussi $Y_1 = Y \cap (U_1)^d$: c'est un réseau du Banach p-adique Y.

On a (cf. § 1.4) un diagramme commutatif

dont les lignes sont exactes. On voit aussi que, pour tout $s \in S$, $s(\mathcal{U}_1) \subset U_1$.

Quitte à multiplier les α_i , pour $1 \leq i \leq h$ par une puissance de p convenable, on peut supposer que $\alpha_i \in 2p\mathscr{O}_C$, pour tout i. Pour $1 \leq i \leq h$, on peut alors trouver $\lambda_i \in \mathscr{U}_1$ tel que $\theta(\lambda_i) = \alpha_i T$. Soit $\lambda'_i = \lambda_i - s_0(\lambda_i)$. Comme $s_0(\mathscr{U}_1) \subset U_1 \subset \mathscr{U}_1$, $\lambda'_i \in \mathscr{U}_1$ et $\theta(\lambda'_i) = \theta(\lambda_i) - \theta(s_0(\lambda_i)) = \theta(\lambda_i) - s_0(\alpha_i T) = \theta(\lambda_i)$. En outre, $s_0(\lambda'_i) = s_0(\lambda_i) - s_0(\lambda_i) = 0$. Donc, quitte à remplacer λ_i par λ'_i , on peut supposer que $s_0(\lambda_i) = 0$.

Pour tout $s \in S$, posons $\eta(s) = (s(\lambda_1), s(\lambda_2), \dots, s(\lambda_h)) \in (U_1)^h$. On a $\theta(s(\lambda_i)) = s(\theta(\lambda_i)) = s(T) \cdot \alpha_i$ et $\eta(s) \in Y_1$. On peut donc considérer η comme une application de S dans Y_1 .

On voit que, pour tout $s \in S$, $\rho(\eta(s)) = \sum_{i=1}^{h} s(\lambda_i)v_i = \sum_{s=1}^{h} s(\lambda_i v_i) = s(\sum_{s=1}^{h} \lambda_i v_i)$. Autrement dit, si $\lambda \in \mathscr{B}_2$ est défini par $\lambda = \sum_{i=1}^{h} \lambda_i v_i$, on a $\rho(\eta(s)) = s(\lambda)$ pour tout $s \in S$.

Remarquons que, pour tout $y \in Y$, il existe $m \in \mathbb{N}$, $s \in S$ et $y_0 \in \mathbb{Q}_p(1)^h$ tels que $y = p^{-m}\eta(s) + y_0$: si on choisit m tel que $p^m\nu(y) \in \mathscr{O}_C$ et s tel que $s(T) = p^m\nu(y)$, alors $y_0 = y - p^{-m}\eta(s) \in \operatorname{Ker} \nu = \mathbb{Q}_p(1)^h$.

Supposons d'abord $\lambda = 0$. Si on écrit $y \in Y$ sous la forme $y = p^{-m}\eta(s) + y_0$ comme ci-dessus, on voit que $\rho(y) = p^{-m}\rho(\eta(s)) + \rho(y_0) = p^{-m}s(0) + \rho(y_0) = \rho(y_0)$ et Im $\rho = \rho(\mathbf{Q}_p(1)^h)$ est de dimension finie $\leq h$ sur \mathbf{Q}_p .

Pour finir la démonstration, il suffit de vérifier que si $\lambda \neq 0$, alors $\rho: Y \to C(1)$ est surjective. On a $\theta(\lambda) = \sum \theta(\lambda_i)\theta(v_i) = \sum \alpha_i T\theta(v_i) = T \sum \alpha_i \theta(v_i) = 0$ et $\lambda \in \mathcal{C}(1)$. Il existe donc $\mu_1 \in \mathcal{C}$ non nul tel que $\lambda = \mu_1 t$. Choisissons $a \in C$ tel que $|a| = ||\mu_1||$, on peut écrire $\mu_1 = a\mu$, avec $\mu \in \mathcal{O}_{\mathcal{C}}$ vérifiant $||\mu|| = 1$.

Soit $Y_2 = \{y \in Y_1 \mid \rho(y) \in pa\mathscr{O}_C(1)\}$. Comme Y_1 est séparé et complet pour la topologie p-adique, il en est de même de Y_2 et il suffit pour montrer la surjectivité de vérifier que l'application induite par ρ par passage au quotient

$$Y_2 \to pa\mathscr{O}_C(1)/p^2a\mathscr{O}_C(1)$$

est surjective, ou encore que, pour tout $d \in \mathscr{O}_C$, on peut trouver $y \in Y_1$ tel que $\rho(y) - padt \in p^2 at \mathscr{O}_C$.

Mais on a $\lambda = a\mu t$ donc $0 = s_0(\lambda) = ats_0(\mu)$ et $s_0(\mu) = 0$. Le lemme 2.5 appliqué à μ et $\varepsilon = p^{-2}$ implique donc qu'il existe $m \in \mathbb{N}$ et $c_1, c_2, \ldots, c_m \in \mathscr{O}_C$ tels que, pour tout $c \in C$ vérifiant $c - c_j \notin \mathfrak{m}_C$ pour tout j, il existe $s \in S$ tel que $s(\mu) - c \in p^2\mathscr{O}_C$. Choisissons alors $c_0 \in \mathscr{O}_C$ tel que

 $c_0 - c_j \notin \mathfrak{m}_C$ pour $1 \leqslant j \leqslant m$ et, pour tout $d \in \mathscr{O}_C$, $\sigma_d \in S$ tel que $\sigma_d(\mu) - (c_0 + pd) \in p^2 \mathscr{O}_C$. Alors $\eta(\sigma_d)$ et $\eta(\sigma_0) \in Y_1$ et on a $\rho(\eta(\sigma_d)) = \sigma_d(\lambda) = \sigma_d(\mu)at$ de même que $\rho(\eta(\sigma_0)) = \sigma_0(\lambda) = \sigma_0(\mu)at$, ce qui fait que $\rho(\eta(\sigma_d) - \eta(\sigma_0)) = (\sigma_d(\mu) - \sigma_0(\mu))at \equiv pdat \pmod{p^2at\mathscr{O}_C}$. Il suffit de prendre $y = \eta(\sigma_d) - \eta(\sigma_0)$. \square

Soit M un B_2 -module de longeur finie. Alors tM et M/tM sont des C-espaces vectoriels de dimension finie et

$$\log_{B_2} M = \dim_C M + \dim_C M / tM .$$

Nous utiliserons la conséquence suivante du lemme fondamental :

Corollaire 2.6. — Soient h un entier ≥ 2 , V un \mathbf{Q}_p -espace vectoriel de dimension h, M un B_2 module de longeur h tel que le C-espace vectoriel tM est de dimension 1. Soient $\xi: V \to M$ une
application \mathbf{Q}_p -linéaire, $\bar{\xi}$ le composé de ξ avec la projection de M sur M/tM, $\xi_C: C \otimes_{\mathbf{Q}_p} V \to$ M/tM l'application C-linéaire déduite de $\bar{\xi}$ par extension des scalaires et $\xi_U: U \otimes_{\mathbf{Q}_p} V \to M$ l'application qui envoie $u \otimes v$ sur $u\xi(v)$. On suppose que ξ_C est surjective. Alors, si le noyau de ξ_U est de dimension finie sur \mathbf{Q}_p , ξ_U est surjective.

Démonstration. — Soit \mathscr{Y} le noyau du composé de l'application ξ_U avec la projection de M/tM. Alors la restriction $\xi_{\mathscr{Y}}$ de ξ_U à \mathscr{Y} est une application de \mathscr{Y} dans tM et il s'agit de prouver que, si le noyau de $\xi_{\mathscr{Y}}$ est de dimension finie sur \mathbf{Q}_v , alors $\xi_{\mathscr{Y}}$ est surjective.

Choisissons une base $\{v_1^0, v_2^0, \dots, v_h^0\}$ de V sur \mathbf{Q}_p et notons ι la bijection de U^h sur $U \otimes V$ qui envoie (u_1, u_2, \dots, u_h) sur $\sum u_n \otimes v_n^0$.

Le noyau de la projection de $V_C = C \otimes_{\mathbf{Q}_p} V$ sur M/tM est une C-droite L de V_C . Si $\alpha = \sum_{i=1}^h \alpha_i \otimes v_n^0$ est un générateur de L, et si $Y = \iota^{-1}(\mathscr{Y})$, on a

$$Y = \{(u_1, u_2, \dots, u_h) \in U^h \mid \exists c \in C \text{ tel que } \theta(u_n) = c\alpha_n \text{ pour tout } n\}$$
.

Choisissons un élément d de M tel que $td \neq 0$. Alors le sous- B_2 -module de M engendré par d est libre de rang 1, on a tM = Ctd et on peut trouver un sous-C-espace vectoriel M' de M de dimension h-2 tel que M soit la somme directe de B_2d et de M'. Si \bar{d} désigne l'image de d dans M/tM, le C-espace vectoriel M/tM s'identifie à la somme directe de la droite engendrée par \bar{d} et de M'.

Pour n = 1, 2, ..., h, posons $\xi(v_n^0) = v_n d + v_n'$, avec $v_n \in B_2$ et $v_n' \in M'$. Pour tout $(u_1, u_2, ..., u_h) \in U^h$, on a $\xi_U(\iota(u_1, u_2, ..., u_h)) = \xi_U(\sum u_n \otimes v_n^0) = \sum u_n \xi(v_n^0) = (\sum u_n v_n) d + \sum u_n v_n' = (\sum u_n v_n) d + \sum \theta(u_n) v_n'$. Son image dans M/tM est $(\sum \theta(u_n)\theta(v_n)) \bar{d} + \sum \theta(u_n)v_n'$. Si alors $y = (u_1, u_2, ..., u_h) \in Y$ et si $c \in C$ est tel que $\theta(u_n) = c\alpha_n$ pour tout n, cette dernière expression doit être nulle et vaut aussi $(\sum \alpha_n \theta(v_n)) c\bar{d} + \sum \theta(u_n)v_n'$. On en déduit que $\sum \alpha_n \theta(v_n) = 0$ et que $\xi_{\mathscr{Y}}(\iota(y)) = \rho(y)d$, avec $\rho(y) = \sum u_n v_n$ et le corollaire résulte de la proposition 2.1. \square

3. Rappels et compléments sur les modules filtrés (cf. [19])

3.1. Espaces vectoriels filtrés

Dans ce paragraphe, E est un corps de caractéristique 0.

Pour nous, une filtration Fil sur un E-espace vectoriel Δ est une filtration décroissante indexée par \mathbb{Z} , exhaustive et séparée. Autrement dit une filtration sur Δ consiste en la donnée, pour tout entier $i \in \mathbb{Z}$, d'un sous-E-espace vectoriel $Fil^i\Delta$ de Δ , ces sous-espaces vérifiant $Fil^{i+1}\Delta \subset Fil^i\Delta$ pour tout $i, \cup_{i \in \mathbb{Z}} Fil^i\Delta = \Delta$ et $\cap_{i \in \mathbb{Z}} Fil^i\Delta = 0$.

Un E-espace vectoriel filtré est un couple (Δ, Fil) formé d'un E-espace vectoriel et d'une filtration Fil sur Δ . S'il n'y a pas de risque de confusion sur la filtration, on parle du E-espace vectoriel Δ .

Avec comme flèches les applications E-linéaires qui respectent la filtration, les E-espaces vectoriels filtrés forment une catégorie additive E-linéaire.

Si $f: \Delta' \to \Delta$ et $g: \Delta \to \Delta''$ sont des morphismes de E-espaces vectoriels filtrés, on dit que

$$0 \to \Delta' \to \Delta \to \Delta'' \to 0$$

est une suite exacte de E-espaces vectoriels filtrés si, pour tout $i \in \mathbf{Z}$, la suite de E-espaces vectoriels

$$0 \to Fil^i \Delta' \to Fil^i \Delta \to Fil^i \Delta'' \to 0$$

est exacte.

Si Δ est un E-espace vectoriel filtré, un $sous\text{-}objet\ \Delta'$ (resp. un $quotient\ \Delta''$ de Δ est un sous-E-espace vectoriel (resp. un E-espace vectoriel quotient) de Δ muni de la filtration induite. Si Δ' est un sous-objet de Δ et si $\Delta'' = \Delta/\Delta'$,

$$0 \to \Delta' \to \Delta \to \Delta'' \to 0$$

est une suite exacte de E-espaces vectoriels filtrés.

Si Δ_1 et Δ_2 sont deux E-espaces vectoriels filtrés et si l'un d'eux est de dimension finie sur E, on munit le produit tensoriel $\Delta_1 \otimes_E \Delta_2$ d'une structure de E-espace vectoriel filtré en posant

$$Fil^{i}(\Delta_{1}\otimes\Delta_{2})=\sum_{i_{1}+i_{2}=i}Fil^{i_{1}}\Delta_{1}\otimes Fil^{i_{2}}\Delta_{2}$$
.

De même, si Δ est un E-espace vectoriel filtré de dimension finie, on munit le E-espace vectoriel dual Δ^* d'une structure de E-espace vectoriel filtré en notant $Fil^i\Delta^*$ l'orthogonal de $Fil^{-i+1}\Delta$.

Soit Δ un E-espace vectoriel filtré de dimension finie. On dit qu'une décomposition $\Delta = \Delta' \oplus \Delta''$ de Δ en somme directe de deux sous-espaces vectoriels est adaptée à la filtration si, pour tout $i \in \mathbf{Z}$, $Fil^i\Delta = Fil^i\Delta' \oplus Fil^i\Delta''$. De même, on dit qu'une base d_1, \ldots, d_h de Δ est adaptée à la filtration s'il existe des entiers i_1, \ldots, i_h tels que si $i \in \mathbf{Z}$, alors $Fil^i\Delta = \bigoplus_{i_j \geq i} Ed_j$.

Le résultat suivant est bien connu :

Proposition 3.1. — Soient Fil_1 et Fil_2 deux filtrations sur un E-espace vectoriel de dimension finie Δ . Il existe une base de Δ qui est adaptée simultanément à Fil_1 et à Fil_2 .

Démonstration. — Remarquons d'abord comment on fabrique une base de Δ adaptée à la filtration Fil_1 : il suffit de choisir, pour chaque $i \in \mathbf{Z}$, une base $\bar{\delta}_{i,1}, \bar{\delta}_{i,2}, \ldots, \bar{\delta}_{i,h_i}$ de $Fil_1^i \Delta / Fil_1^{i+1} \Delta$, puis de choisir, pour chaque couple (i,j) un relèvement $\delta_{i,j}$ de $\bar{\delta}_{i,j}$ dans $Fil_1^i \Delta$ et de mettre bout à bout les $\delta_{i,j}$.

On procède par récurrence sur la dimension h de Δ , le cas h=1 étant trivial. On suppose $h\geqslant 2$ et il suffit de prouver l'existence de deux sous-espaces non triviaux Δ' et Δ'' de Δ tels que $\Delta=\Delta'\oplus\Delta''$ et que cette décomposition est adaptée aux deux filtrations.

Observons que pour tout $\delta \in \Delta$, non nul, il existe un supplémentaire Δ'' de la droite Δ' engendrée par Δ tel que la décomposition $\Delta = \Delta' \oplus \Delta''$ est adpatée à la filtration Fil_1 : il suffit dans la construction qui précède de s'arranger pour que δ soit l'un des $\delta_{i,j}$ et de prendre pour Δ'' le sous-espace engendré par les autres vecteurs de la base.

Soit alors r le plus grand entier tel que $Fil_2^r\Delta = \Delta$ et choisissons $\delta \notin Fil_2^{r+1}\Delta$. Pour tout supplémentaire S de Δ' dans Δ , la décomposition $\Delta = \Delta' \oplus S$ est adaptée à Fil_2 . Par conséquent, la décomposition $\Delta = \Delta' \oplus \Delta''$ est adaptée aussi bien à Fil_1 qu'à Fil_2 . \square

Si Δ est un E-espace vectoriel filtré de dimension finie, on note $l(\Delta)$ la longueur de la filtration, c'est-à-dire le plus petit entier ℓ pour lequel on peut trouver $a \in \mathbf{Z}$ tel que $Fil^a\Delta = \Delta$ et $Fil^{a+\ell+1}\Delta = 0$.

Si Δ est un E-espace vectoriel filtré de dimension 1, on note $t_H(\Delta)$ le plus grand entier i tel que $Fil^i\Delta \neq 0$. Si Δ est un E-espace vectoriel filtré de dimension $h \geqslant 2$, $\wedge^h\Delta$ est un sous-objet de dimension 1 de Δ^{\otimes^h} et on pose $t_H(\Delta) = t_H(\wedge^h\Delta)$. On convient aussi que $t_H(\{0\}) = 0$. Si d est un élément non nul de Δ , on pose $t_H(d) = t_H(E.d)$. Si d_1, \ldots, d_h est une base adaptée à la filtration et si i_1, \ldots, i_h sont les entiers pour lesquels on a $Fil^i\Delta = \bigoplus_{i_j \geqslant i} Ed_j$ pour tout $i \in \mathbf{Z}$, alors $t_H(d_j) = i_j$ et $t_H(\Delta) = \sum_{j=1}^h i_j$.

On a aussi $t_H(\Delta) = \sum_{i \in \mathbb{Z}} i \cdot \dim Fil^i \Delta / Fil^{i+1} \Delta$ et, si a est un entier tel que $Fil^a \Delta = \Delta$,

(3.1)
$$t_H(\Delta) = a \cdot \dim \Delta + \sum_{i>a} \dim Fil^i \Delta.$$

Si

$$0 \to \Delta' \to \Delta \to \Delta'' \to 0$$

est une suite exacte de E-espaces vectoriels filtrés, on a $t_H(\Delta) = t_H(\Delta') + t_H(\Delta'')$.

Soit Δ un E-espace vectoriel de dimension finie $h \geq 2$ et soient Fil_1 , Fil_2 deux filtrations sur Δ . On dit que Fil_1 et Fil_2 sont voisines s'il existe une base d_1, \ldots, d_h de Δ adaptée à Fil_1 et Fil_2 telle que l'on ait $t_H(d_1, Fil_2) = t_H(d_1, Fil_1) + 1$, $t_H(d_2, Fil_2) = t_H(d_2, Fil_1) - 1$ et $t_H(d_1, Fil_2) = t_H(d_1, Fil_1)$ si $j \geq 3$.

On dit que deux filtrations Fil et Fil' sur Δ sont à distance finie s'il existe une suite finie Fil_0, \ldots, Fil_n de filtrations sur Δ telle que $Fil_0 = Fil$, $Fil_n = Fil'$ et Fil_{i+1} soit voisine de Fil_i pour $0 \le i \le n-1$. On note alors d(Fil, Fil') la distance entre Fil et Fil', c'est-à-dire le plus petit entier n tel qu'il existe une suite Fil_0, \ldots, Fil_n comme ci-dessus. En particulier, on a d(Fil, Fil') = 0 si et seulement si Fil = Fil'; on a d(Fil, Fil') = 1 si et seulement si Fil et Fil' sont voisines.

Proposition 3.2. — Soient Fil et Fil₀ deux filtrations sur un E-espace vectoriel de dimension finie. Pour que Fil et Fil₀ soient à distance finie, il faut et il suffit que $t_H(Fil_0)$.

Démonstration. — Si Fil et Fil_0 sont voisines, on a $t_H(Fil) = t_H(Fil_0)$. Par induction, cela reste vrai si Fil et Fil_0 sont à distance finie et la condition est nécessaire. Le fait qu'elle est suffisante se voit immédiatement en choisissant une base de Δ adpatée simultanément aux deux filtrations (prop. 3.1) et en prenant comme filtrations intermédiaires des filtrations auxquelles cette base est encore adaptée. \square

Remarque. — On voit facilement que, si Fil et Fil_0 sont deux filtrations sur Δ telles que $t_H(Fil) = t_H(Fil_0)$, alors

$$d(Fil, Fil_0) = \frac{1}{2} \left(\sum_{i \in \mathbf{Z}} \dim (Fil^i \Delta + Fil_0^i \Delta) / Fil^i \Delta \cap Fil_0^i \Delta \right).$$

3.2. φ -modules

On note σ le Frobenius absolu agissant sur k (via $x\mapsto x^p$), W(k) et K_0 . On appelle φ -module sur k (ou φ -module s'il n'y a pas d'ambiguïté sur k) la donnée d'un K_0 -espace vectoriel D muni d'une application σ -semi-linéaire $\varphi:D\to D$.

On appelle dimension d'un φ -module sa dimension sur K_0 . On dit qu'un φ -module est fini si sa dimension est finie et si en outre φ est bijectif (il revient au même de demander que φ est injectif). Remarquons qu'un φ -module fini n'est autre que ce que l'on appelle souvent un F-isocristal (à condition de poser $\varphi = F$).

Les φ -modules sur k forment, de manière évidente, une catégorie abélienne \mathbf{Q}_p -linéaire, de même que la sous-catégorie pleine des φ -modules finis.

La catégorie des φ -modules est munie d'un produit tensoriel : si D_1 et D_2 sont deux φ -modules, le K_0 -espace vectoriel sous-jacent à $D_1 \otimes D_2$ est $D_1 \otimes_{K_0} D_2$ et on a $\varphi(d_1 \otimes d_2) = \varphi d_1 \otimes \varphi d_2$.

Avec ce produit tensoriel, la catégorie des φ -modules finis est tannakienne [9] : l'objet-unité est K_0 avec $\varphi = \sigma$. Le K_0 -espace vectoriel sous-jacent au dual D^* de D est l'espace vectoriel des formes K_0 -linéaires sur D, avec $(\varphi \eta)(d) = \sigma(\eta(\varphi^{-1}d))$.

Soit D un φ -module fini de dimension 1. Si $d \in D$ est non nul et si $\varphi d = \lambda d$, avec $\lambda \in K_0$, l'entier $v_p(\lambda)$ ne dépend pas du choix de d et se note $t_N(D)$. Si D est un φ -module fini de dimension $h \ge 2$, on pose $t_N(D) = t_N(\wedge^h D)$. On convient de poser $t_N(\{0\}) = 0$.

Si

$$0 \to D' \to D \to D'' \to 0$$

est une suite exacte de (φ, N) -modules finis, on a $t_N(D) = t_N(D') + t_N(D'')$.

Rappelons que, lorsque k est algébriquement clos, les φ -modules finis ont été classifiés par Manin : Pour tout nombre rationnel α , posons $\alpha = r/h$ avec $r, h \in \mathbf{Z}, h \geqslant 1, r$ et h premiers entre eux. On note $D_{[\alpha]}$ l'unique φ -module fini sur k dont le K_0 -espace vectoriel sous-jacent est K_0^h , avec, si $\{d_1, d_2, \ldots, d_h\}$ désigne la base canonique,

$$\varphi(d_i) = d_{i+1} \text{ si } i \neq h \text{ et } \varphi(d_h) = p^r d_1.$$

Proposition 3.3. — ([11], cf. aussi [27] et [10]). Supposons k algébriquement clos. Alors la catégorie des φ -modules finis sur k est semi-simple.

En outre, chaque $D_{[\alpha]}$ est un objet simple et chaque objet simple de cette catégorie est isomorphe à un et un seul de ces $D_{[\alpha]}$.

Si k est algébriquement clos, pour tout $\alpha = r/h$ comme ci-dessus, on note D_{α} le sous- K_0 espace vectoriel de D engendré par les d tels que $\varphi^h(d) = p^r d$. Presque tous les D_{α} sont nuls et $D = \bigoplus_{\alpha \in \mathbf{Q}} D_{\alpha}$.

Supposons k quelconque, soient \overline{k} une clôture algébrique de k et P_0 le corps des fractions de l'anneau $W(\overline{k})$ des vecteurs de Witt à coefficients dans \overline{k} . Le groupe $G_k = \operatorname{Gal}(\overline{k}/k)$ opère sur P_0 . Pour tout K_0 -espace vectoriel D, G_k opère sur $D_{P_0} = P_0 \otimes_{K_0} D$ (par $(g(\lambda \otimes d) = g(\lambda) \otimes d$

si $g \in G_k$, $\lambda \in P_0$, $d \in D$). Un sous- P_0 -espace vectoriel Δ de D_{P_0} est défini sur K_0 (i.e. de la forme $P_0 \otimes_{K_0} D'$ avec D' un sous- K_0 -espace vectoriel de D) si et seulement s'il est stable par G_k (et alors $D' = \Delta^{G_k}$).

Si maintenant D est un φ -module fini sur k, D_{P_0} est de façon naturelle un φ -module fini sur \overline{k} . Chaque $(D_{P_0})_{\alpha}$ est défini sur K_0 et, si l'on pose $D_{\alpha} = ((D_{P_0})_{\alpha})^{G_k}$, on a

$$D = \bigoplus_{\alpha \in \mathbf{Q}} D_{\alpha} .$$

Pour tout $\alpha \in \mathbf{Q}$, D_{α} est stable par φ et s'appelle la partie de pente α de D; la décomposition ci-dessus s'appelle la décomposition isocline de D. Si $h_{\alpha} = dim_{K_0}D_{\alpha}$, alors $\alpha h_{\alpha} \in \mathbf{Z}$ et $t_N(D) = \sum_{\alpha \in \mathbf{Q}} \alpha h_{\alpha}$.

3.3. (φ, N) -modules

On appelle (φ, N) -module sur k (ou (φ, N) -module s'il n'y a pas d'ambiguïté sur k) la donnée d'un φ -module D muni d'une application K_0 -linéaire $N:D\to D$ vérifiant $N\varphi=p\varphi N$. Remarquons que tout φ -module peut être considéré comme un (φ, N) -module en posant N=0.

Un (φ, N) -module fini est un (φ, N) -module dont le φ -module sous-jacent est fini. Pour un tel module D, on note $t_N(D)$ le t_N du φ -module fini sous-jacent.

On définit encore le produit tensoriel de deux (φ, N) -modules D_1 et D_2 : le φ -module sousjacent est le produit tensoriel des φ -modules sous-jacents et $N(d_1 \otimes d_2) = Nd_1 \otimes d_2 + d_1 \otimes Nd_2$. De même, si D est fini, D^* est aussi un (φ, N) -module avec $N\eta(d) = -\eta(Nd)$.

Les (φ, N) -modules forment de façon évidente une catégorie abélienne \mathbf{Q}_p -linéaire de même que la sous-catégorie pleine des (φ, N) -modules finis qui est aussi une catégorie tannakienne. La catégorie des φ -modules finis s'identifie à la sous-catégorie pleine de cette dernière formée des D sur lesquels N=0.

Si D est un (φ, N) -module fini et si $D = \sum_{\alpha \in \mathbf{Q}} D_{\alpha}$ est la décomposition isocline du φ -module fini sous-jacent, on a $N(D_{\alpha}) \subset D_{\alpha-1}$. En particulier N est nilpotent sur D. Comme le noyau de N est stable par φ , il en résulte que les objets simples de la catégorie des (φ, N) -modules finis s'identifient à ceux de la catégorie des φ -modules finis.

3.4. (φ, N) -modules filtrés

On appelle (φ, N) -module filtré sur K (ou (φ, N) -module filtré s'il n'y a pas d'ambiguïté sur K) la donnée d'un couple (D, Fil) formé d'un (φ, N) -module D et d'une filtration Fil sur le K-espace vectoriel $D_K = K \otimes_{K_0} D$. S'il n'y a pas de risque de confusion sur la filtration, on écrit D au lieu de (D, Fil). Dans ce cas, on écrit aussi $t_H(D) = t_H(Fil)$.

La dimension d'un (φ, N) -module filtré est la dimension du K_0 -espace vectoriel sous-jacent. Un (φ, N) -module filtré fini est un (φ, N) -module filtré dont le (φ, N) -module sous-jacent est fini

Avec comme flèches les morphismes des (φ, N) -modules sous-jacents qui respectent la filtration lorsque l'on étend les scalaires à K, les (φ, N) -modules filtrés forment une catégorie additive \mathbf{Q}_p -linéaire que nous notons \underline{M} .

Si D est un (φ, N) -module filtré, un sous-objet (resp. un quotient) est un sous-objet (resp. quotient) du (φ, N) -module sous-jacent, avec la filtration induite sur le K-espace vectoriel correspondant. On a une notion évidente de suite exacte courte (une telle suite induit une suite

exacte courte aussi bien des (φ, N) -modules sous-jacents que des K-espaces vectoriels filtrés sous-jacents).

En utilisant les définitions de produit tensoriel et de dual déjà données pour les espaces vectoriels filtrés et les (φ, N) -modules, on voit comment définir le produit tensoriel de deux (φ, N) -modules filtrés lorsque l'un des deux est fini et le dual d'un (φ, N) -module filtré fini.

Un (φ, N) -module filtré faiblement admissible est un (φ, N) -module filtré fini D vérifiant $t_H(D) = t_N(D)$ et $t_H(D') \leq t_N(D')$ pour tout sous-objet D' de D. Il revient au même de demander que $t_H(D) = t_N(D)$ et $t_H(D'') \geq t_N(D'')$ pour tout quotient D'' de D.

On note \underline{M}^{fa} la sous-catégorie pleine de \underline{M} dont les objets sont les (φ, N) -modules filtrés faiblement admissibles. C'est une catégorie abélienne. Si D est faiblement admissible, les sous-objets de D dans \underline{M}^{fa} sont les sous-objets D' de D dans \underline{M} qui vérifient $t_H(D') = t_H(D)$; de même, les quotients D'' de D dans \underline{M}^{fa} sont les quotients D'' de D dans \underline{M} qui vérifient $t_H(D'') = t_H(D)$.

Proposition 3.4. — Si

$$0 \to D' \to D \to D'' \to 0$$

est une suite exacte courte de (φ, N) -modules filtrés, et si D' et D'' sont faiblement admissibles, D l'est aussi.

Démonstration. — Tout d'abord, on a $t_H(D) = t_H(D') + t_H(D'') = t_N(D') + t_N(D'') = t_N(D)$. Pour tout sous- K_0 -espace vectoriel Δ de D stable par φ et N, posons $\Delta' = D' \cap \Delta$ et notons Δ'' l'image de Δ dans D''. On a

$$t_H(\Delta) = t_H(\Delta') + t_H(\Delta'') \leqslant t_N(\Delta') + t_N(\Delta'') = t_N(\Delta)$$

et D est bien faiblement admissible. \square

Si D est un (φ, N) -module fini, on dit qu'une filtration Fil sur D_K est faiblement admissible si le (φ, N) -module filtré fini (D, Fil) est faiblement admissible.

Proposition 3.5. — Soit (D, Fil) un objet simple de \underline{M}^{fa} . Si Fil_1 est une autre filtration sur D_K voisine de Fil_1 alors Fil_1 est faiblement admissible.

Démonstration. — On voit facilement que les hypothèses impliquent l'existence d'un entier r tel que $Fil_1^iD_K \subset Fil^iD_K$ pour tout entier $i \neq r$ et que $\dim((Fil_1^rD_K + Fil^rD_K)/Fil^rD_K) = 1$.

Comme $t_H(D, Fil_1) = t_H(D, Fil) = t_N(D)$, il s'agit de prouver que si D' est un sous- (φ, N) module non nul de D et si Fil'_1 est la filtration de D'_K induite par Fil_1 , alors $t_H(D', Fil'_1) \leq t_N(D')$. Mais le fait que (D, Fil) est simple implique que, si Fil' désigne la filtration de D'_K induite par Fil, alors $t_H(D', Fil') < t_N(D')$ donc $\leq t_N(D') - 1$. Soit a un entier tel que $Fil_1^a D'_K = Fil_2^a D'_K = D'_K$. On a (3.1)

 $t_H(D',Fil')=a.\dim D'_K + \sum_{i>a}\dim D'_K\cap Fil^iD_K$ tandis que

 $t_H(D', Fil_1) = a. \dim D'_K + \sum_{i>a} \dim D'_K \cap Fil_1^i D_K.$

Mais, si $i \neq r$, on a dim $D_K' \cap Fil_1^i D_K \leq \dim D_K' \cap Fil^i D_K$ tandis que dim $D_K' \cap Fil_1^r D_K \leq \dim D_K' \cap Fil^r D_K + 1$ d'où $t_H(D', Fil_1') \leq t_H(D', Fil') + 1 \leq t_N(D')$. \square

4. Rappels et compléments sur les représentations p-adiques semi-stables (cf. [19])

4.1. Les foncteurs D_{st} et V_{st}

La K_0 -algèbre B_{st} est munie d'une action de φ et de N qui en fait un (φ, N) -module. L'inclusion de $(B_{st})_K = K \otimes_{K_0} B_{st}$ dans B_{dR} permet de munir $(B_{st})_K$ de la filtration induite par celle de B_{dR} , ce qui nous permet de considérer B_{st} comme un (φ, N) -module filtré.

Comme cette structure de (φ, N) -module filtré commute, en un sens évident, avec l'action de G_K , si, pour toute représentation p-adique V de G_K , on pose

$$D_{st}(V) = (B_{st} \otimes_{\mathbf{Q}_n} V)^{G_K} ,$$

on peut considérer D_{st} comme un foncteur additif de la catégorie des représentations p-adiques de G_K dans celle des (φ, N) -modules filtrés.

De même, si, pour tout (φ, N) -module filtré fini D, on pose

$$V_{st}(D) = \{ v \in B_{st} \otimes D \mid \varphi v = v, Nv = 0 \text{ et } 1 \otimes v \in Fil^0(B_{dR} \otimes_K D_K) \},$$

on peut considérer V_{st} comme un foncteur additif de la catégorie des (φ, N) -modules filtrés finis dans celle des \mathbf{Q}_p -espaces vectoriels topologiques munis d'une action linéaire et continue de G_K .

On a les résultats suivants ([19], n^{os} 5.1.7, 5.3.5 et 5.4.2):

Proposition 4.1. — Pour toute représentation p-adique V de G_K , $D_{st}(V)$ est un (φ, N) -module filtré fini de dimension inférieure ou égale à la dimension de V sur \mathbf{Q}_p .

On dit que V est semi-stable lorsque l'on a l'égalité. On note $\underline{\text{Rep}}(G_K)$ la catégorie des représentations p-adiques de G_K et $\underline{\text{Rep}}_{st}(G_K)$ la sous-catégorie pleine de $\underline{\text{Rep}}(G_K)$ formée des représentations semi-stables.

De même, on dit qu'un (φ, N) -module filtré D est admissible s'il existe une représentation p-adique semi-stable V telle que $D \simeq D_{st}(V)$ et on note \underline{M}^a la sous-catégorie pleine de \underline{M} formée des (φ, N) -modules filtrés admissibles.

Proposition 4.2. — Si V est une représentation p-adique semi-stable, $D_{st}(V)$ est faiblement admissible.

Comme sous-catégorie pleine de $\underline{\operatorname{Rep}}(G_K)$ (resp. \underline{M}^{fa}), $\underline{\operatorname{Rep}}_{st}(G_K)$ (resp. \underline{M}^a) est stable par sous-objet, quotient, somme directe, produit tensoriel et dual. La restriction de D_{st} à la catégorie $\underline{\operatorname{Rep}}_{st}(G_K)$ est un \otimes -foncteur exact et pleinement fidèle induisant une \otimes -équivalence entre $\underline{\operatorname{Rep}}_{st}(G_K)$ et \underline{M}^a , la restriction de V_{st} à \underline{M}^a en étant un quasi-inverse.

Dans la suite de cet article, on se propose d'établir le théorème suivant, un peu plus fort que le théorème A :

Théorème 4.3. — Soit D un (φ, N) -module filtré fini de dimension $h \geqslant 1$. Alors

- i) La dimension de $V_{st}(D)$ sur \mathbf{Q}_p est finie si et seulement si $t_H(D') \leqslant t_N(D')$ pour tout sous-objet D' de D. S'il en est ainsi, on a $\dim_{\mathbf{Q}_p} V_{st}(D) \leqslant h$.
 - ii) Si $V_{st}(D)$ est de dimension finie sur \mathbf{Q}_p , les propriétés suivantes sont équivalentes :
 - a) $t_H(D) = t_N(D)$ (compte tenu du i), cela équivaut à D faiblement admissible),
 - b) D est admissible,
 - c) $\dim_{\mathbf{Q}_n} V_{st}(D) = h$.

Compte tenu de ce théorème, on peut reformuler certains des résultats contenus dans la proposition 4.2 de la manière suivante

Corollaire. — i) Si V est une représentation semi-stable de G_K , alors $D_{st}(V)$ est un (φ, N) module filtré sur K faiblement admissible dont la dimension est égale à celle de V.

- ii) Si D est un (φ, N) -module filtré sur K faiblement admissible, alors $V_{st}(D)$ est une représentation semi-stable de G_K dont la dimension est égale à celle de D.
- iii) Si V est une représentation semi-stable de G_K , alors $V_{st}(D_{st}(V)) = V$ et si D est un (φ, N) -module filtré sur K faiblement admissible, alors $D_{st}(V_{st}(D)) = D$.

Expliquons comment, le corps K étant fixé, le théorème 4.3 va se déduire du théorème A (qui sera, lui, prouvé au paragraphe 6):

- i) Le fait que la condition est suffisante résulte de la proposition 4.5 ci-dessous qui montre aussi qu'alors $\dim_{\mathbf{Q}_p} V_{st}(D) \leq h$. Le fait que, si le théorème A est vrai, la condition est nécessaire est la proposition 5.4 ci-dessous.
- ii) On sait que b) implique a), le théorème A dit que a) implique b) et la proposition 4.5 ci-dessous entraı̂ne que b) équivaut à c). \Box

4.2. Le cas de la dimension 1

Le résultat suivant n'est autre que le théorème 4.3 dans le cas h = 1:

Proposition 4.4. — Soient D un (φ, N) -module filtré de dimension 1 et d un élément non nul de D (que l'on identifie à $1 \otimes d \in B_{st} \otimes D$). Alors

- i) $si\ t_H(D) < t_N(D), \ V_{st}(D) = 0,$
- ii) si $t_H(D) = t_N(D)$, D est admissible et $V_{st}(D)$ est de dimension 1 sur \mathbf{Q}_p ; si $V_{st}(D)$ est engendré par αd , alors α est un élément inversible de B_{st} ,
 - iii) si $t_H(D) > t_N(D)$, $V_{st}(D)$ est de dimension infinie sur \mathbf{Q}_p .

Démonstration. — Comme D est de dimension 1 et N est nilpotent, on a Nd=0. On a $\varphi(d)=ad=p^ma_0d$ avec $m=v_p(a)=t_N(D)$ et $a_0\in K_0$ vérifie $v_p(a_0)=0$. Il existe alors $\alpha_0\in W(\overline{k})$ non nul tel que l'on ait $\varphi(\alpha_0)=a_0\alpha_0$ et si l'on pose $\alpha=\alpha_0^{-1}t^{-m}$, alors α est un élément inversible de B_{cris} et on a

$$V_{\text{st}}(D) = \{ \beta d \mid \beta \in Fil^{-t_H(D)} B_{cris} \text{ et } \varphi(\beta) = a^{-1}\beta \}$$
$$= \{ x \alpha d \mid x \in Fil^{t_N(D) - t_H(D)} B_{cris}^{\varphi = 1} \}$$

ce qui permet de déduire le résultat de la proposition 1.3. \square

4.3. Un critère d'admissibilité

Proposition 4.5. — Soit D un (φ, N) -module filtré fini de dimension $h \ge 1$ faiblement admissible ou, plus généralement, tel que $t_H(D') \le t_N(D')$ pour tout sous- (φ, N) -module filtré D' de D. Alors $V = V_{st}(D)$ est de dimension finie sur \mathbf{Q}_p et est une représentation semi-stable de G_K . De plus, $D' = D_{st}(V)$ est un sous- (φ, N) -module filtré admissible de D et on a $V = V_{st}(D')$. En particulier, D est admissible si et seulement si $\dim_{\mathbf{Q}_p} V_{st}(D) \ge h$ et cette inégalité est alors une égalité.

Pour démontrer cette proposition, nous allons utiliser le lemme suivant :

Lemme 4.6. — Soient F un corps, J un sous-groupe du groupe des automorphismes de F et $E = F^J$. Soit Δ un E-espace vectoriel de dimension finie. On fait opérer J sur le F-espace vectoriel $F \otimes_E \Delta$ via $g(f \otimes \delta) = g(f) \otimes \delta$ si $g \in J$, $f \in F$, $\delta \in \Delta$. Soit L un sous-F-espace vectoriel de $F \otimes \Delta$. Pour qu'il existe un sous-E-espace vectoriel Δ' de Δ tel que $L = F \otimes \Delta$, il faut et il suffit que L soit stable par J.

Démonstration. — Soit r la dimension de L sur F et soit \mathscr{G} la grassmanienne des sous-espaces vectoriels de dimension r de Δ . C'est une variété rationnelle définie sur F. On a $\mathscr{G}(E) = \mathscr{G}(F)^J$ et c'est ce que signifie le lemme.

Si l'on préfère, de façon terre à terre, choisissons une base $\{e_1, e_2, \ldots, e_r\}$ de L sur F et une base $\{\delta_1, \delta_2, \ldots, \delta_h\}$ de Δ sur E. Quitte à changer l'ordre des δ_j , on peut supposer que $\{e_1, e_2, \ldots, e_r, \delta_{r+1}, \delta_{r+2, \ldots}, \delta_h\}$ est une base de $F \otimes L$ sur F. Soit Δ'' le sous-E-espace vectoriel de Δ engendré par les δ_j , pour $r+1 \leqslant j \leqslant h$. Pour $i=1,2,\ldots,r$, il existe un unique $x_i \in F \otimes \Delta''$ tel que $\delta_i + x_i \in L$. Les $\delta_i + x_i$ forment une base de L, tandis que, pour tout $g \in J$, les $\delta_i + g(x_i)$ forment une base de g(L). Pour tout $g \in J$, on a donc g(L) = L, si et seulement si $g(x_i) = x_i$ pour tout i. En écrivant i0 sur la base $\{\delta_{r+1}, \delta_{r+2}, \ldots, \delta_h\}$, on voit que i1 gour tout i2 get le lemme en résulte. i3

Prouvons la proposition 4.5. — L'énoncé est trivial si V=0, supposons donc $V\neq 0$. Soit $C_{st}\subset B_{dR}$ le corps des fractions de B_{st} . Alors C_{st} est stable par G_K et le fait que $K\otimes_{K_0}B_{st}\to B_{dR}$ est injectif implique que $K\otimes_{K_0}C_{st}\to B_{dR}$ l'est aussi. Comme $B_{dR}^{G_K}=K$, on a $C_{st}^{G_K}=B_{st}^{G_K}=K_0$. On peut étendre N de manière unique en une dérivation de C_{st} et φ en un endomorphisme de C_{st} .

Soit L le sous C_{st} -espace vectoriel de $C_{st} \otimes D$ engendré par V. Il est stable par G_K et le lemme précédent implique qu'il existe un sous- K_0 -espace vectoriel D' de D tel que $L = C_{st} \otimes D'$. Comme V est fixe par φ et tué par N, L est stable par φ et N. Il en est de même de D' qui est donc un sous- (φ, N) -module de D et on a $V \subset V_{st}(D') \subset V_{st}(D) = V$ et donc $V = V_{st}(D')$.

Choisissons une base $\{v_1, v_2, \ldots, v_r\}$ de L sur C_{st} constituée d'éléments de V et une base $\{d_1, d_2, \ldots, d_r\}$ de D' sur K_0 ; on peut aussi considérer $\{d_1, d_2, \ldots, d_r\}$ comme une base de L sur C_{st} .

Pour $1 \leq j \leq r$, on peut écrire $v_i = \sum_{j=1}^r b_{ij} d_j$, avec les $bij \in B_{st}$ et le déterminant b de la matrice des b_{ij} est non nul. On voit que $w = v_1 \wedge v_2 \wedge \ldots \wedge v_r = bd_1 \wedge d_2 \wedge \ldots \wedge d_r$ est un élément non nul de $W = V_{st}(\wedge^r D')$.

Par hypothèse, $t_H(\wedge^r D') = t_H(D') \leqslant t_N(D') = t_N(\wedge^r D')$ et la non nullité de W implique, d'après la proposition 4.3, que $t_H(D') = t_N(D')$, que $W = \mathbf{Q}_p w$ et que b est inversible dans B_{st} . Si $v \in V$, on peut écrire $v = \sum_{i=1}^r c_i v_i$, avec les $c_i \in C_{st}$. Pour tout i, l'image de $v_1 \wedge v_2 \wedge \ldots \wedge v_{i-1} \wedge v \wedge v_{i+1} \wedge \ldots \wedge v_r$ dans W est $c_i w$, donc $c_i \in \mathbf{Q}_p$. On en déduit que $\{v_1, v_2, \ldots, v_r\}$ est une base de V sur \mathbf{Q}_p , donc que V est bien de dimension finie sur \mathbf{Q}_p . Comme de plus, le déterminant de v_1, \ldots, v_r dans la base $\{d_1, d_2, \ldots, d_r\}$ est un élément inversible de B_{st} , on a $B_{st} \otimes_{\mathbf{Q}_p} V = B_{st} \otimes D'$ ce qui montre que V est semi-stable, que D' est admissible et que l'on a

Corollaire 4.7. — Soit D un objet simple de la catégorie des (φ, N) -modules filtrés faiblement admissibles. Pour que D soit admissible, il faut et il suffit que $V_{st}(D)$ soit non nul.

Démonstration. — C'est clair!

 $D_{st}(V) = D'$. \square

5. Le complexe fondamental d'un (φ, N) -module filtré fini

Remarque. — Une partie des résultats de ce paragraphe ont été obtenus indépendamment par Emerton et Kisin ([12]).

5.1. Le foncteur V_{st}^0

Soit D un (φ, N) -module fini. On note $V_{st}^0(D)$ le sous- \mathbb{Q}_p -espace vectoriel de $B_{st} \otimes_{K_0} D$ formé des x tels que $\varphi x = x$ et Nx = 0.

On peut considérer, de manière évidente, V_{st}^0 comme un foncteur additif \mathbf{Q}_p -linéaire de la catégorie des (φ, N) -modules finis dans celle des \mathbf{Q}_p -espaces vectoriels munis d'une action de G_K .

Proposition 5.1. — Le foncteur V_{st}^0 est exact.

 $D\acute{e}monstration$. — Pour tout φ -module fini Δ , notons $V^0_{cris}(\Delta)$ le sous- \mathbb{Q}_p -espace vectoriel de $B_{cris} \otimes_{K_0} \Delta$ formé des y tels que $\varphi y = y$.

Choisissons $\log[\pi]$ comme au § 1.5, de sorte que, pour tout (φ, N) -module fini D, tout élément x de $B_{st} \otimes D$ s'écrit, d'une manière et d'une seule, sous la forme $x = \sum_{m \in \mathbb{N}} x_m (\log[\pi])^m$, avec les $x_m \in B_{cris} \otimes \Delta$, presque tous nuls. Pour un tel x, on a $\varphi x = \sum \varphi x_m \cdot p^m (\log[\pi])^m$ de sorte que, si $\varphi x = x$, on a $\varphi x_0 = x_0$. En particulier, l'application $x \mapsto x_0$ est une application \mathbb{Q}_p -linéaire de $V_{st}^0(D)$ dans $V_{cris}^0(D)$. Cette application est en fait bijective : on obtient la bijection inverse en associant à $y \in V_{cris}^0(D)$, l'élément $\sum_{m \in \mathbb{N}} N^m(y) \frac{(\log[\pi])^m}{m!}$. On obtient ainsi un isomorphisme du foncteur V_{st}^0 sur le composé du foncteur V_{cris}^0 et il suffit de vérifier que le foncteur additif

$$V_{cris,k}^0 = V_{cris}^0$$
: $\{\varphi$ -modules finis sur $k\} \rightarrow \{\mathbf{Q}_p$ -espaces vectoriels $\}$

est exact.

Si k est algébriquement clos, cela résulte de ce que la catégorie des φ -modules finis sur k est semi-simple (prop. 3.3).

Dans le cas général, rappelons que le corps résiduel \overline{k} de \overline{K} est une clôture algébrique de k et que B_{cris} est une algèbre sur le corps des fractions P_0 de l'anneau des vecteurs de Witt à coefficients dans \overline{k} . Or, si D est un φ -module fini sur k, $D_{P_0} = P_0 \otimes_{K_0} D$ est un φ -module fini sur \overline{k} et le foncteur $D \mapsto D_{P_0}$ est exact. Comme $B_{cris} \otimes_{K_0} D = B_{cris} \otimes_{P_0} (P_0 \otimes_{K_0} D), V_{cris,k}^0(D)$ s'identifie à $V_{cris,\overline{k}}^0(D_{P_0})$ et on est ramené au cas où k est algébriquement clos. \square

5.2. Le foncteur V_{st}^1

Soit Fil une filtration sur un K-espace vectoriel Δ de dimension finie. On note $V_{st}^1(Fil)$ le K-espace vectoriel quotient $B_{dR} \otimes \Delta/Fil^0(B_{dR} \otimes \Delta)$.

On peut considérer, de manière évidente, V_{st}^1 comme un foncteur additif K-linéaire de la catégorie des K-espaces vectoriels de dimension finie dans celle des K-espaces vectoriels munis d'une action de G_K .

Proposition 5.2. — Pour toute suite exacte

$$0 \to \Delta' \to \Delta \to \Delta'' \to 0$$

de K-espaces vectoriels filtrés de dimension finie, la suite

$$0 \to V_{st}^1(\Delta') \to V_{st}^1(\Delta) \to V_{st}^1(\Delta'') \to 0$$

est exacte.

Démonstration. — On a un diagramme commutatif

dans lequel les deux premières lignes et les trois colonnes sont exactes et l'exactitude de la troisième ligne en résulte. □

5.3. Le complexe $V_{st}(D)$.

Si maintenant (D, Fil) est un (φ, N) -module filtré, on pose

$$V_{st}^{0}(D, Fil) = V_{st}^{0}(D), \ V_{st}^{1}(D, Fil) = V_{st}^{1}(Fil)$$

on note $\delta(D, Fil): V_{st}^0(D, Fil) \to V_{st}^1(D, Fil)$ la composée de l'inclusion naturelle de $V_{st}^0(D, Fil) \subset B_{st} \otimes_{K_0} D$ dans $B_{dR} \otimes_K D_K$ avec la projection de $B_{dR} \otimes_K D_K$ sur $V_{st}^1(D, Fil)$. On note enfin $V_{st}^i(D, Fil)$ le complexe

$$V^0_{st}(D,Fil) \to V^1_{st}(D,Fil)$$

Comme d'habitude, lorsqu'il n'y a pas de risque de confusion sur la filtration, on écrit $V^1_{st}(D)$, $\delta(D)$ et $V^{\bullet}_{st}(D)$ au lieu de $V^1_{st}(D,Fil)$, $\delta(D,Fil)$, et $V^{\bullet}_{st}(D,Fil)$.

On voit que $V_{st}(D)$ s'identifie à $H^0(V_{st}(D))$.

Soit D un (φ, N) -module filtré fini et soit $V = V_{st}(D)$. En tensorisant la suite exacte

$$0 \to \mathbf{Q}_p \to B_{cris}^{\varphi=1} \to B_{dR}/B_{dR}^+ \to 0$$

(prop. 1.3), on obtient une suite exacte

$$0 \to V \to B_{cris}^{\varphi=1} \otimes V \to (B_{dR}/B_{dR}^+) \otimes V \to 0$$
.

Par ailleurs l'application B_{st} -linéaire naturelle $B_{st} \otimes_{\mathbf{Q}_p} V \to B_{st} \otimes_{K_0} D$ commute à φ et N (si l'on pose $\varphi(b \otimes v) = \varphi b \otimes v$ et $N(b \otimes v) = Nb \otimes v$ pour $b \in B_{st}$ et $v \in V$) et induit donc une application de $B_{cris}^{\varphi=1} \otimes_{\mathbf{Q}_p} V$ dans $V_{st}^0(D)$. De même l'application B_{dR} -linéaire naturelle $B_{dR} \otimes_{\mathbf{Q}_p} V \to B_{dR} \otimes_K D_K$ envoie $B_{dR}^+ \otimes V$ dans $Fil^0(B_{dR} \otimes D_K)$ et induit par passage au quotient une application de $(B_{dR}/B_{dR}^+) \otimes V$ dans $V_{st}^1(D)$.

Proposition 5.3. — Sous les hypothèses et notations qui précèdent, le diagramme

est commutatif. Si de plus, D est admissible,

- i) les flèches verticales sont des isomorphismes et les lignes sont exactes,
- ii) pour tout entier $i \leq 0$, la suite

$$0 \to V \to Fil^i B_{cris}^{\varphi=1} \otimes_{\mathbf{Q}_p} V \to Fil^i (B_{dR} \otimes D_K) / Fil^0 (B_{dR} \otimes D_K) \to 0$$

est exacte.

Démonstration. — La commutativité du diagramme est claire. Si D est admissible, on sait ([19, prop. 5.3.6]) que l'application $B_{st} \otimes_{\mathbf{Q}_p} V \to B_{st} \otimes_{K_0} D$ est bijective et le fait que $B_{cris}^{\varphi=1} \otimes_{\mathbf{Q}_p} V \to V_{st}^0(D)$ est un isomorphisme s'en déduit. De même (loc.cit.), l'application $B_{dR} \otimes_{\mathbf{Q}_p} V \to B_{dR} \otimes_{K} D_K$ est un isomorphisme de K-espaces vectoriels filtrés (si l'on pose $Fil^i(B_{dR} \otimes_{\mathbf{Q}_p} V) = Fil^iB_{dR} \otimes V$ pour tout $i \in \mathbf{Z}$) et la bijectivité de l'application $(B_{dR}/B_{dR}^+) \otimes V \to V_{st}^1(D)$ s'en déduit. Comme la première ligne est exacte, la deuxième l'est aussi, d'où (i).

L'assertion (ii) résulte de ce que les deux isomorphismes considérés sont des isomorphismes de \mathbf{Q}_p -espaces vectoriels filtrés et de ce que, pour tout entier $i \leq 0$, la suite

$$0 \to \mathbf{Q}_p \to Fil^i B_{cris}^{\varphi=1} \to Fil^i B_{dR}/Fil^0 B_{dR} \to 0$$

est exacte (prop. 1.3). \square

5.4. Un critère d'admissibilité faible

Cette section contient la fin de la réduction du théorème 4.3 au théorème A. On peut aussi voir la proposition 5.4 ci-dessous comme un critère de faible admissibilité; on utilisera d'ailleurs ce critère dans le $\S 6.2$ pour se ramener au cas où k est algébriquement clos.

Proposition 5.4. — Supposons que le corps K soit tel que tout φ -module filtré faiblement admissible est admissible. Si D est un (φ, N) -module filtré fini sur K tel que $V_{st}(D)$ est de dimension finie sur \mathbb{Q}_p , on a $t_H(D') \leq t_N(D')$ pour tout sous-objet D' de D. En particulier, si $t_H(D) = t_N(D)$ et $V_{st}(D)$ est de dimension finie, alors D est faiblement admissible (et donc admissible).

 $D\'{e}monstration$. — Comme, pour tout sous-objet D' de D, $V_{st}(D') \subset V_{st}(D)$, il suffit d'établir le lemme suivant :

Lemme 5.5. — Supposons que le corps K soit tel que tout φ -module filtré faiblement admissible est admissible. Si D est un (φ, N) -module filtré fini sur K tel que $t_H(D) > t_N(D)$ et tel que, pour tout sous- (φ, N) -module filtré D' de D, distinct de D, $t_H(D') \leqslant t_N(D')$, alors $V_{st}(D)$ est de dimension infinie sur \mathbb{Q}_p .

Démonstration. — Choisisssons une décomposition de D_K en la somme directe d'un hyperplan H et d'une droite L qui est adaptée à la filtration. Il existe alors un entier a tel que, pour tout

 $i \in \mathbf{Z}$, si $Fil^i H = H \cap Fil^i D_K$, on a

$$Fil^{i}D_{K} = \begin{cases} Fil^{i}H \oplus L & \text{si } i \leq a, \\ Fil^{i}H & \text{si } i > a. \end{cases}$$

Soit $r = t_H(D) - t_N(Fil)$. Définissons une autre filtration Fil_1 sur D_K en posant

$$Fil_1^i D_K = \begin{cases} Fil^i H \oplus L & \text{si } i \leqslant a - r, \\ Fil^i H & \text{si } i > a - r. \end{cases}$$

On voit que $t_H(Fil_1) = t_H(Fil) - r = t_N(D)$. Comme $Fil_1^i D_K \subset Fil^i D_K$, pour tout sous- (φ, N) -module D' de D, on a, avec des notations évidentes

$$t_H(Fil_1|_{D_K'}) \leqslant t_H(Fil|_{D_K'}) \leqslant t_N(D')$$

et (D, Fil_1) est faiblement admissible, donc admissible par hypothèse.

Le choix d'un générateur de la K-droite L définit un isomorphisme de $V_{st}^1(Fil_1)$ sur $V_{st}^1(H) \oplus B_{dR}/Fil^{-a+r}B_{dR}$ et un isomorphisme de $V_{st}^1(Fil)$ sur $V_{st}^1(H) \oplus B_{dR}/Fil^{-a}B_{dR}$. Donc $V_{st}^1(Fil)$ s'identifie au quotient de $V_{st}^1(Fil_1)$ par $Fil^{-a}B_{dR}/Fil^{-a+r}B_{dR} = B_r(-a)$. Si l'on pose $V_1 = V_{st}(D, Fil_1)$ et $V = V_{st}(D, Fil)$, on a donc un diagramme commutatif

dont la colonne de droite est exacte, de même que la première ligne grâce à la proposition précédente. Ce diagramme induit une suite exacte courte

$$0 \to V_1 \to V \to B_r(-a) \to 0$$

et V n'est pas de dimension finie sur \mathbf{Q}_p , puisque, comme r > 0, $B_r(-a)$ admet C(-a) comme quotient. \square

5.5. Un second critère d'admissibilité

Cette section contient le résultat principal que l'on peut déduire de l'étude du complexe fondamental; le critère d'admissibilité obtenu (prop. 5.7) est à la base de la démonstration du théorème A donnée dans la partie suivante. Le critère obtenu au § 4.3 demandait de compter les solutions x de l'équation $\delta(D)(x) = 0$ alors que le critère obtenu dans ce paragraphe ne demande que de prouver l'existence d'une solution x de l'équation un peu plus générale $\delta(D)(x) = a$.

Proposition 5.6. — Soit D un (φ, N) -module filtré non nul. Alors l'application

$$\delta(D): V^0_{st}(D) \to V^1_{st}(D)$$

n'est pas un isomorphisme.

Démonstration. — Les deux membres se comportent de manière très différente sous l'action de Galois. De manière précise, choisissons une extension finie totalement ramifiée K' de K_0 contenant K et telle que $e = [K' : K_0] \neq 1$. Par exemple, si $K \neq K_0$, on peut prendre K' = K et si $K = K_0$, on peut prendre pour K' une extension quadratique totalement ramifiée de $K = K_0$. Soit $G_{K'} = \operatorname{Gal}(\overline{K}/K')$.

Soit h la dimension de D sur K_0 . Choisissons une base $\{d_1, d_2, \ldots, d_h\}$ de D_K adaptée à la filtration et soit $i_j = t_H(d_j)$. Choisissons un entier r vérifiant $r > i_j$ pour tout j. Si $\delta(D)$ était un isomorphisme, l'application composée

$$V_{st}^0(D)(r) \to (B_{st} \otimes_{K_0} D)(r) \to V_{st}^1(D)(r)$$

serait une application \mathbf{Q}_p -linéaire bijective G_K -équivariante donc aussi $G_{K'}$ -équivariante et l'application composée

$$H^0(G_{K'}, V_{st}^0(D)(r)) \to H^0(G_{K'}, (B_{st} \otimes_{K_0} D)(r)) \to H^0(G_{K'}, V_{st}^1(D)(r))$$

serait bijective. En particulier, l'application K_0 -linéaire

$$H^0(G_{K'}, (B_{st} \otimes_{K_0} D)(r)) \to H^0(G_{K'}, V_{st}^1(D)(r))$$

serait surjective.

Mais, comme t est inversible dans B_{st} , $(B_{st} \otimes_{K_0} D)(r)$ s'identifie à $B_{st} \otimes_{K_0} D \simeq B_{st}^h$ et, comme $H^0(G_{K'}, B_{st}) = K_0$, $H^0(G_{K'}, (B_{st} \otimes_{K_0} D)(r))$ est un K_0 -espace vectoriel de dimension h.

Par ailleurs, avec des notations évidentes, $V_{st}^1(D) = \bigoplus_{j=1}^h (B_{dR}/B_{dR}^+) t^{-i_j} \otimes d_j$, donc $V_{st}^1(D)(r) \simeq \bigoplus_{j=1}^h B_{dR}/Fil^{r-i_j}B_{dR}$ et, comme $H^0(G_{K'}, B_{dR}/Fil^sB_{dR}) = K'b$ pour tout entier s > 0, on en déduit que $V_{st}^1(D)(r)$ est un K'-espace vectoriel de dimension h, donc un K_0 -espace vectoriel de dimension $h \in A$, d'où une contradiction. \square

Proposition 5.7. — Soit D un (φ, N) -module filtré faiblement admissible. Pour que D soit admissible, il faut et il suffit que l'application

$$\delta(D): V_{st}^0(D) \to V_{st}^1(D)$$

soit surjective.

 $D\acute{e}monstration$. — La condition est nécessaire d'après la proposition 5.3. Montrons qu'elle est suffisante. Soit $V = V_{st}(D)$. D'après la proposition 4.5, V est une représentation semi-stable de G_K , $D' = D_{st}(V)$ s'identifie à un sous- (φ, N) -module filtré admissible de D et $V = V_{st}(D')$. Si D'' est le (φ, N) -module filtré quotient D/D', on a donc un diagramme commutatif

dont la première ligne est exacte grâce à la proposition 4.5, la deuxième par hypothèse et les deux colonnes sont aussi exactes grâce aux propositions 5.1 et 5.2. Par conséquent, l'application $V_{st}^0(D'') \to V_{st}^1(D'')$ est un isomorphisme. D'après la proposition 5.6, D'' = 0, donc D = D' est admissible. \square

Proposition 5.8. — Si

$$0 \to D' \to D \to D'' \to 0$$

est une suite exacte de (φ, N) -modules filtrés et si D' et D'' sont admissibles, D l'est aussi

Démonstration. — On a un diagramme commutatif

$$\begin{array}{cccc}
0 & 0 \\
\downarrow & \downarrow \\
V_{st}^{0}(D') & \rightarrow & V_{st}^{1}(D') \\
\downarrow & \downarrow & \downarrow \\
V_{st}^{0}(D) & \rightarrow & V_{st}^{1}(D) \\
\downarrow & \downarrow & \downarrow \\
V_{st}^{0}(D'') & \rightarrow & V_{st}^{1}(D'') \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}$$

dont les deux colonnes sont exactes (prop. 5.1 et 5.2). La première et la dernière flèche horizontales sont surjectives (prop. 5.3) et celle du milieu l'est donc aussi. Comme D est faiblement admissible (prop. 3.4), D est aussi admissible (prop. 5.7). \square

6. Démonstration du théorème A

Le but de ce paragraphe est de démontrer le théorème A de l'introduction, i.e. de vérifier que tout (φ, N) -module filtré faiblement admissible est admissible. Nous allons en donner deux preuves :

- la première est la plus courte, si l'on veut bien utiliser un résultat de [21].
- la deuxième est une variante un peu plus longue mais qui n'utilise pas ce résultat.

6.1. Première preuve

Proposition 6.1. — Soient D un (φ, N) -module fini et Fil_1 et Fil_2 deux filtrations sur D_K . On suppose Fil_1 admissible, Fil_2 faiblement admissible et $d(Fil_1, Fil_2) = 1$. Alors Fil_2 est admissible.

Démonstration. — Soit $h = \dim_{K_0} D$. Pour m = 1, 2, posons $V_m = V_{st}(D, Fil_m)$. On a $\dim_{\mathbf{Q}_p} V_1 = h$ et V_2 est de dimension finie sur \mathbf{Q}_p (prop. 4.5). On a des suites exactes (prop. 5.3)

(1)
$$0 \to V_1 \to V_{st}^0(D) \to V_{st}^1(Fil_1) \to 0 ,$$

$$(2) 0 \rightarrow V_2 \rightarrow V_{st}^0(D) \rightarrow V_{st}^1(Fil_2)$$

et il suffit de prouver (prop. 5.7) que $V_{st}^0(D) \to V_{st}^1(Fil_2)$ est surjective.

Posons $\mathscr{D}=B_{dR}\otimes_K D_K$ et, pour $m\in\{1,2\}$ et tout $i\in\mathbf{Z}$, $Fil_m^i\mathscr{D}=\sum_{i'+i''=i}Fil_i''B_{dR}\otimes Fil_m''D_K$. On a $V_{st}^1(Fil_m)=\mathscr{D}/Fil_m^0\mathscr{D}$.

D'après la proposition 5.3, la suite exacte (1) s'identifie à la suite

$$0 \to V_1 \to B_{cris}^{\varphi=1} \otimes_{\mathbf{Q}_p} V_1 \to (B_{dR}/B_{dR}^+) \otimes_{\mathbf{Q}_p} V_1 \to 0$$

obtenue en tensorisant la suite exacte fondamentale avec V_1 . Elle nous dit aussi, puisque $Fil^{-1}B_{cris}^{\varphi=1} = U(-1)$ (prop. 1.3), que l'on a une suite exacte

$$0 \to V_1 \to U(-1) \otimes_{\mathbf{Q}_p} V_1 \to Fil_1^{-1} \mathscr{D}/Fil_1^0 \mathscr{D} \to 0$$

que l'on peut réécrire, en posant $V = V_1(-1)$

$$(1') 0 \to V_1 \to U \otimes_{\mathbf{Q}_n} V \to Fil_1^{-1} \mathscr{D}/Fil_1^0 \mathscr{D} \to 0.$$

On a $Fil_1^{-1}\mathcal{D}\supset Fil_2^0\mathcal{D}$. Si l'on pose $M=Fil_1^{-1}\mathcal{D}/Fil_2^0\mathcal{D}$, il s'agit de prouver que, dans la suite exacte,

$$(2') 0 \to V_2 \to U \otimes_{\mathbf{Q}_n} V \to M$$

l'application $\xi_U: U \otimes_{\mathbf{Q}_p} V \to M$ est surjective.

Les filtrations Fil_1 et Fil_2 étant voisines (cf. 3.1), il existe une base $\{d_1, d_2, \ldots, d_h\}$ et des entiers $(i_j)_{1 \leq j \leq h}$ tels que, si $i'_1 = i_1 + 1$, $i'_2 = i_2 - 1$ et $i'_j = i_j$, pour $j \geq 2$,

$$Fil_1^{-1}\mathscr{D}=\oplus_{j=1}^h B_{dR}^+ t^{-i_j-1}\otimes d_j \text{ et } Fil_2^0\mathscr{D}=\oplus_{j=1}^h B_{dR}^+ t^{-i_j'}\otimes d_j \ .$$

Ceci implique que M est la somme directe d'un B_2 module libre de rang 1 engendré par l'image de $t^{-i_2-1}\otimes d_2$ et d'un C-espace vectoriel de dimension h-2 de base les images des $t^{-i_j-1}\otimes d_j$, pour $2< j\leqslant h$.

On peut alors appliquer le corollaire 2.6 : En effet :

- si ξ désigne la restriction de ξ_U à $\mathbf{Q}_p \otimes_{\mathbf{Q}_p} V = V$, on a bien $\xi_U(u \otimes v) = u\xi(v)$ si $u \in U$ et $v \in V$;
- comme $M/tM=Fil_1^{-1}\mathcal{D}/(Fil_2^0\mathcal{D}+Fil_1^0\mathcal{D})$, l'application composée $U\otimes V\to M\to M/tM$ est surjective.

Comme V_2 est de dimension finie sur $\mathbf{Q}_p,\,\xi_U$ est bien surjective . \square

Proposition 6.2. — Soit D un objet simple de la catégorie des (φ, N) -modules finis. Il existe une filtration admissible sur D_K .

 $D\'{e}monstration$. — Comme D est simple, N=0 et D n'a qu'une seule pente α (cf. 3.2,3.3). Soit h la dimension de D sur K_0 et $a,d\in \mathbf{Z}$ les entiers tels que $\alpha=a+d/h$ et $0< d\leqslant h$. Choisissons un sous- K_0 -espace vectoriel L de dimension d de D. Alors le (φ,N) -module filtré sur K_0 qui est D muni de la filtration

$$Fil^{i}D = \begin{cases} D & \text{si } i \leq a, \\ L & \text{si } i = a+1, \\ 0 & \text{si } i > a+1. \end{cases}$$

est faiblement admissible. Comme la longueur de la filtration est 0 ou 1 qui est $\leq p-1$, (D, Fil) est admissible ([21, th. 8.4]). Il est clair que le (φ, N) -module filtré sur K déduit de (D, Fil) par

extension des scalaires de K_0 à K est encore admissible, ce qui signifie que la filtration de D_K définie par

$$Fil^{i}D_{K} = \begin{cases} D_{K} & \text{si } i \leq a, \\ K \otimes_{K_{0}} L & \text{si } i = a+1, \\ 0 & \text{si } i > a+1. \end{cases}$$

est admissible. \square

Remarque. — On n'a besoin en fait que d'un résultat beaucoup moins fort que le théorème 8.4 de [21] : par une torsion à la Tate, on se ramène immédiatement au cas où la pente α vérifie $0 < \alpha \le 1$, ce qui signifie qu'il existe un groupe p-divisible connexe Γ_k sur k et un isomorphisme $K_0 \otimes_{W(k)} M \to D$, où M est le module de Dieudonné contravariant de Γ_k . Si Γ désigne un relèvement de Γ_k sur l'anneau des entiers de K (un tel relèvement existe toujours!) son module de Dieudonné filtré est admissible (cf. [16, n° 5.1]).

Corollaire 6.3. — Soit D un (φ, N) -module fini. Il existe une filtration admissible sur D_K .

Démonstration. — On procède par récurrence sur la longueur de D, la proposition précédente nous permettant de supposer que D n'est pas simple. On peut alors trouver une suite exacte courte non triviale de (φ, N) -modules finis

$$0 \to D' \to D \to D'' \to 0$$

et, par hypothèse de récurrence, on peut munir D'_K et D''_K de filtrations admissibles Fil' et Fil''. Choisissons une section K-linéaire s de la projection de D_K sur D''_K et définissons une filtration sur D_K par

$$Fil^i D_K = Fil'^i D_K' + s(Fil''^i D_K'')$$
 pour tout $i \in \mathbf{Z}$.

Alors la suite exacte ci-dessus devient une suite exacte de (φ, N) -modules filtrés et, comme (D', Fil') et (D'', Fil'') sont admissibles, (D, Fil) l'est aussi (proposition 5.6). \square

Fin de la preuve du théorème A.

Pour tout (φ, N) -module fini D, on choisit une filtration admissible Fil_0 sur D_K .

Si (D, Fil) est un (φ, N) -module filtré non nul, on note $\lg(D)$ la longueur de D en tant que (φ, N) -module et on pose $d(Fil) = d(Fil, Fil_0)$. On procède par récurrence sur le couple $(\lg(D), d(Fil))$ ordonné par ordre lexicographique, le cas où d(Fil) = 0 étant trivial.

Si (D, Fil) n'est pas un objet simple de la catégorie des (φ, N) -modules filtrés faiblement admissibles, il existe une suite exacte non triviale

$$0 \to (D', Fil) \to (D, Fil) \to (D'', Fil) \to 0$$

(D', Fil) et (D'', Fil) sont admissibles par hypothèse de récurrence et il en est donc de même de (D, Fil) d'après la proposition 5.8.

Supposons donc que (D, Fil) est un objet simple. On a $t_H(Fil) = t_H(Fil_0) = t_N(D)$. D'après la proposition 3.1, Fil et Fil_0 sont à distance finie et il existe une filtration Fil_1 sur D_K vérifiant $t_H(Fil_1) = t_H(Fil)$, $d(Fil_1, Fil) = 1$ et $d(Fil_1, Fil_0) = d(Fil) - 1$. D'après la proposition 3.5, (D, Fil_1) est faiblement admissible, donc admissible grâce à l'hypothèse de récurrence. Donc, grâce à la proposition 6.1, (D, Fil) est admissible. \square

6.2. Variante

La deuxième preuve consiste à prouver d'abord le théorème seulement lorsque k est algébriquement clos, ce que l'on fait comme dans le numéro précédent, à ceci près qu'il suffit de prouver la proposition 6.2 dans ce cas, ce qui peut se faire par un calcul explicite assez facile (cf. ci-dessous).

Soit alors D un (φ, N) -module filtré faiblement admissible sur K, soit h sa dimension et soit $\Delta = \rho(D)$. D'après la proposition 4.5, $V_{st}(D)$ est de dimension finie sur \mathbf{Q}_p , donc aussi $V_{st}(\Delta)$. D'après la proposition 5.4, ceci implique que $t_H(\Delta') \leq t_N(\Delta')$ pour tout sous- (φ, N) -module filtré Δ' de Δ . Comme on a $t_H(\Delta) = t_H(D) = t_N(D) = t_N(\Delta)$, Δ est faiblement admissible, donc admissible. Donc $\dim_{\mathbf{Q}_p} V_{st}(D) = \dim_{\mathbf{Q}_p} V_{st}(\Delta) = h$ et D est admissible (prop. 4.5) \square

Remarque. — On peut prouver « directement » (i.e. sans utiliser le foncteur V_{st}) que si D est un (φ, N) -module filtré faiblement admissible sur K, alors $\Delta = \rho(D)$ est un (φ, N) -module filtré faiblement admissible sur P: c'est une conséquence immédiate de la proposition 4.4.9 de [19].

L'autre preuve de la proposition 6.2 dans le cas où k est algébriquement clos repose sur le lemme suivant :

Lemme 6.4. — Soit $h \in \mathbb{N} - \{0\}$ et $Z_h = \{z \in B_{cris}^+ \mid \varphi^h(z) = pz\}$. Alors,

- i) θ induit une surjection de Z_h sur C,
- ii) il existe $t_h \in Z_h$ non nul appartenant à Fil^1B_{dR} .

 $D\'{e}monstration$. — Soit $Z_h^0 = \{z \in A_{cris} \mid \varphi^h(z) = pz \text{ et } \theta(z) \in p\mathscr{O}_C\}$. Pour prouver le (i), il suffit de prouver que θ induit une surjection de Z_h^0 sur $p\mathscr{O}_C$ et comme Z_h^0 est séparé et complet pour la topologie p-adique car fermé dans A_{cris} , il suffit de prouver que θ induit une surjection de Z_h^0 sur $p\mathscr{O}_C/p^2\mathscr{O}_C$.

Soit donc $a \in p\mathscr{O}_C$. Soit α_h une solution de l'équation $\alpha_h^{p^h} = p$. Si $p \neq 2$ ou $h \geqslant 2$ (resp. si p = 2 et h = 1), soit $y \in \mathscr{O}_C$ solution de l'équation $y^{p^h} + \alpha_h y = p^{-1}a$, (resp. $y^4 + y^2 + \alpha_h y = p^{-1}a$). Soient $x = \alpha_h y$ et $u \in R$ tel que $u^{(h)} = x$. Comme $u^{(0)} = x^{p^h} = py^{p^h} \in p\mathscr{O}_C$, on a $\frac{[u]^n}{n!} \in A_{cris}$ quel que soit $n \in \mathbb{N}$ et la série $\sum_{n=0}^{+\infty} p^{-n} [u^{p^{nh}}] = \sum_{n=0}^{+\infty} \frac{(p^{nh})!}{p^n} \frac{[u]^{p^{nh}}}{(p^{nh})!}$ converge dans A_{cris} . Comme d'autre part, la série $\sum_{-\infty}^{-1} p^{-n} [u^{p^{nh}}]$ converge dans $W(R) \subset A_{cris}$, la série $\sum_{n \in \mathbb{Z}} p^{-n} [u^{p^{nh}}]$ converge dans A_{cris} vers un élément z. On a $\varphi^h(z) = pz$. Finalement, un petit calcul de valuation montre que l'on a $\theta(z) \equiv u^{(0)} + pu^{(h)} = py^{p^h} + p\alpha_h y = a$ modulo p^2 si $p \neq 2$ ou $h \geqslant 2$ et $\theta(z) \equiv \frac{1}{2}(u^{(0)})^2 + u^{(0)} + 2u^{(h)} = 2y^4 + 2y^2 + 2\alpha_h y = a$ modulo p^2 si p = 2 et h = 1. Ceci permet de terminer la démonstration du (i).

Maintenant, on a $Z_h^{G_K} = \{x \in K_0 \mid \varphi^h(x) = px\} = 0$ et $C^{G_K} = K \neq 0$. Ceci implique, comme θ commute à l'action de G_K , que θ n'induit pas une bijection de Z_h sur C et comme elle induit une surjection d'après le (i), son noyau n'est pas réduit à 0 et on peut prendre pour t_h n'importe quel élément non nul de ce noyau. \square

Autre preuve de la proposition 6.2 lorsque k est algébriquement clos. — Comme D est simple, N=0 et, d'après la proposition 3.3, on peut supposer qu'il existe $\alpha \in \mathbf{Q}$ tel que $D=D_{[\alpha]}$. Quitte à remplacer D par son dual (prop. 4.2), on peut supposer $\alpha \leq 0$. Reprenons les notations du §3.3 et posons s=-r. On a $\alpha=-s/h$, avec $s,h\in\mathbf{N},\ h\geqslant 1$ et s et h premiers entre eux. La base $\{d_1,d_2,\ldots,d_h\}$ de $D=D_{[\alpha]}$ sur K_0 peut aussi être considérée comme une base de D_K sur K. La filtration

$$Fil^{i}D_{K} = \begin{cases} D_{K} & \text{si } i \leq -s, \\ \bigoplus_{n=2}^{h} Kd_{n} & \text{si } -s < i \leq 0, \\ 0 & \text{si } i > 0. \end{cases}$$

est faiblement admissible. Mais $V_{st}(D, Fil)$ qui contient $\sum_{n=1}^{h} \varphi^n(t_h^s) \otimes d_n$ est non nul donc (D, Fil) est admissible (cor. 4.7). \square

Remarque. — Le lemme 6.4 et l'admissibilité des $(D_{[-s/h]}, Fil)$ définis ci-dessus résultent aussi facilement de la théorie des groupes formels de Lubin-Tate. En effet, les $(D_{[-s/h]}, Fil)$ proviennent par changement de base de (φ, N) -modules filtrés définis sur \mathbf{Q}_p . Il n'est pas difficile de montrer que, pour tout $h \geq 1$, $V_{st}(D_{[-1/h]}, Fil)$ s'identifie à $\mathbf{Q}_p \otimes_{\mathbf{Z}_p} T_p(\Gamma_h)$, où Γ_h est un groupe formel connexe de dimension 1 et hauteur h défini sur \mathbf{Q}_p , qui, lorsque l'on étend les scalaires à l'anneau des entiers de \mathbf{Q}_{p^h} , unique extension non ramifiée de degré h de \mathbf{Q}_p contenue dans \overline{K} , s'identifie à un groupe formel de Lubin-Tate de ce corps et on peut prendre pour t_h la période d'une forme différentielle invariante sur Γ_h (cf. par exemple, $[\mathbf{6}, \text{th. I.2.1}]$). Alors $V_{st}(D_{[-1/h]}, Fil)$ est de façon naturelle un \mathbf{Q}_{p^h} -espace vectoriel de dimension 1 et $V_{st}(D_{[-s/h]}, Fil)$ s'identifie à sa puissance symétrique s-ième.

Références

- [1] I. Barsotti, Moduli canonici e gruppi analitici commutativi, Ann. Scuola. Norm. Sup. Pisa 13 (1959), 303–372.
- [2] S. Bloch and K. Kato, *L-functions and Tamagawa numbers of motives*, in The Grothendieck Fest-schrift II, Progress in Math., Birkhäuser, Boston (1990), 333–400.
- [3] C. Breuil, Cohomologie étale de p-torsion et cohomologie cristalline en réduction semi-stable, Duke Math. J. 95 (1998), 523-620.
- [4] C. Breuil, Représentations semi-stables et modules fortement divisibles, Invent. Math. 136 (1999), 89–122.
- [5] C. Breuil, Modules faiblement admissibles et groupes p-divisibles, prépublication Orsay 99-07.
- [6] P. Colmez, Périodes des variétés abéliennes à multiplication complexe, Annals of Math. 138 (1993), 625-683
- [7] P. Colmez, Théorie d'Iwasawa des représentations de de Rham d'un corps local, Annals of Math. 148 (1998), 485–571.

- [8] P. Colmez, travail en préparation.
- [9] P. Deligne and J.S. Milne, Tannakian categories, in Hodge Cycles, Motives and Shimura Varieties,
 L.N. in Math. 900, Springer, Berlin (1982), 101–228.
- [10] M. Demazure, Lectures on p-Divisible Groups, L. N. in Math. 302, Springer-Verlag, Berlin (1972).
- [11] J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p > 0 (VII), Math. Annalen 134 (1957), 114–133.
- [12] M. Emerton and M. Kisin, Extensions of Crystalline Representations, preprint, SFB 478, Münster (1999).
- [13] G. Faltings, Mumford Stabilität in der algebraischen Geometrie, Proceedings International Congress of Mathematicians, Zürich (1994).
- [14] G. Faltings, Almost Etale Extensions, preprint, MPI, Bonn (1998).
- [15] J.-M. Fontaine, Groupes p-divisibles sur les corps locaux, Astérisque 47-48 (1977).
- [16] J.-M. Fontaine, *Modules galoisiens*, *modules filtrés et anneaux de Barsotti-Tate*, in Journées de Géométrie algébrique de Rennes (III), Astérisque **65** (1979), 3–80.
- [17] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Annals of Math. 115 (1982), 529–577.
- [18] J.-M. Fontaine, Le corps des périodes p-adiques, avec un appendice par Pierre Colmez, in Périodes p-adiques, Astérisque 223 (1994), 59–111.
- [19] J.-M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques, Astérisque 223 (1994), 113–184.
- [20] J.-M. Fontaine, Arithmétique des représentations galoisiennes p-adiques, cours au centre Émile Borel, 1997
- [21] J.-M. Fontaine et G. Laffaille, Constructions de représentations p-adiques, Ann. Scient. E.N.S. 15 (1982), 547–608.
- [22] J. Fresnel, M. Van der Put, Géométrie analytique rigide et applications, Prog. in Math. 18, Birkhäuser (1981).
- [23] , A. Grothendieck, *Groupes de Barsotti-Tate et cristaux*, in Actes du Congrès Inter. des Math de 1970, Gauthiers-Villars, Paris (1971), 431–336.
- [24] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213–246.
- [25] L. Illusie, Cohomologie de de Rham et cohomologie étale p-adique, Séminaire Bourbaki, exposé **726**, Astérisque **189-190** (1990), 325–374.
- [26] G. Laffaille, Groupes p-divisibles et modules filtrés : le cas peu ramifié, Bull. Soc. Math. France 108 (1980), 187–206.
- [27] I. Manin, The Theory of Commutative Formal Groups over Fields of finite Characteristic, Russian Math. Surveys 18 (1963), 1–83.
- [28] W. Niziol, Crystalline Conjecture via K-theory, Annales Scient. E.N.S. 31 (1998), 659-681.
- [29] M. Rapoport and T. Zink, *Period spaces for p-divisible groups*, Annals of Math. Studies **141**, Princeton University Press (1996).
- [30] J.Tate, p-Divisible Groups, in Proceedings of a Conference on Local Fields, Springer, Berlin (1967), 158–183.
- [31] B. Totaro, Tensor products in p-adic Hodge Theory, Duke Math. J. 83 (1996), 79–104.
- [32] T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Inv. Math., à paraître.
- [33] Wach N.: Représentations cristallines de torsion, Comp. Math. 108 (1997), 185–240.
- [34] J.-P. Wintenberger, Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux, Annals of Math. 119 (1984), 511–548.

- [35] J.-P. Wintenberger, Relèvement selon une isogénie de systèmes ℓ -adiques de représentations galoisiennes associées aux motifs, Invent. Math. 120 (1995), 215-240.
- [36] J.-P. Wintenberger, Propriétés du groupe tannakien des structures de Hodge p-adiques et torseur entre cohomologies cristalline et étale, Ann. Inst. Fourier 47 (1997), 1289–1334.
- [37] J.-P. Wintenberger, $travail\ en\ pr\'eparation.$

PIERRE COLMEZ, Laboratoire de mathématiques, École normale supérieure, 45 rue d'Ulm, 75005 Paris, France Institut de mathématiques de Jussieu, 4 place Jussieu, 75005 Paris, France • E-mail: colmez@dmi.ens.fr

JEAN-MARC FONTAINE, Institut Universitaire de France et UMR 8628 du CNRS, Mathématique, Université de Paris-Sud, Bâtiment 425, F-91405 ORSAY Cedex • E-mail: fontaine@math.u-psud.fr