ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, I: THE BASIC
COMPARISON THEOREM.

PIERRE COLMEZ AND WIESLAWA NIZIOL

ABsTrRACT. The purpose of this paper is to prove a basic p-adic comparison theorem for smooth rigid
analytic and dagger varieties over the algebraic closure C of a p-adic field: p-adic pro-étale cohomology,
in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over BIR)‘
The key computation is the passage from absolute crystalline cohomology to Hyodo-Kato cohomology
and the construction of the related Hyodo-Kato isomorphism. We also “geometrize” our comparison
theorem by turning p-adic pro-étale and syntomic cohomologies into sheaves on the category Perfo of
perfectoid spaces over C and the period morphisms into maps between such sheaves (this geometrization
will be crucial in our study of the Cst-conjecture in the sequel to this paper and in the formulation of
duality for geometric p-adic pro-étale cohomology).
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1. INTRODUCTION

Let Ok be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let K be an algebraic closure of K, let C be its p-adic completion, and
let 0% denote the integral closure of Ok in K. Let W (k) be the ring of Witt vectors of k with fraction
field F (i.e, W (k) = OF) and let ¢ be the absolute Frobenius on W (k). Set ¥ = Gal(K/K).

In a joint work with Gabriel Dospinescu [15], [16] we have computed the p-adic (pro-)étale cohomology
of certain p-adic symmetric spaces. A key ingredient of these computations was a one-way (de Rham-
to-étale) comparison theorem for rigid analytic Stein varieties over K with a semistable formal model
over Og. This theorem had two parts: first, it related (pro-)étale cohomology to rigid analytic syntomic
cohomology and, then, it expressed rigid analytic syntomic cohomology as a filtered Frobenius eigenspace
associated to de Rham cohomology (tensored with B(’;R). From these two parts it is the second one that
had much harder proof.

The current paper is the second one in a series extending such comparison theorems to smooth rigid
analytic varieties over K or C' (without any assumption on the existence of a nice integral model). While
in the first paper [19] we have focused on the arithmetic case, here we focus on the geometric case.
Moreover, in comparison with [I5] and [19], we significantly simplify the passage from rigid analytic
syntomic cohomology to a filtered Frobenius eigenspace associated to BIR—cohomologyﬂ This requires
a foundational work on Hyodo-Kato cohomology and Hyodo-Kato morphism, which occupies a good
portion of this paper.

In [20], the third paper in the series, we will use the results of this paper to prove the Csi-conjecture
for classes of smooth (dagger) varieties over C including quasi-compact varieties and some classes of
holomorphically convex varieties (hopefully, this conjecture should hold for general smooth partially
proper varieties). This includes a description of the BjR—cohomology (with its extra-structures, namely
Frobenius and monodromy) in terms of the p-adic pro-étale cohomology and, conversely, a description
of the p-adic pro-étale cohomology in terms of differential forms (the B:{R—cohomology and the de Rham
complex). To this end, the comparison isomorphisms proved here are "geometrized", i.e., we view them as
C-points of isomorphisms between Vector Spaces. This geometrization is also essential in the formulation
of duality for geometric p-adic pro-étale cohomology [17].

1.1. Main results.

1.1.1. The basic comparison theorem for rigid analytic varieties. We start the survey of our main results
with the following comparison theorem:

Theorem 1.1. (Basic comparison theorem) Let X be a smooth rigid analytic variety over C. Let r > 0.
There is a natural strict quasi—isomorphisrrﬂ (period isomorphism):

(1.2) T<rRDprost (X, Qp(r)) = 7<, [[RTHxc (X)® pur BV =02=P" 5 R4 (X/B R )/ F7],
1f the variety is defined over K, its BgR—Cohomology is just de Rham cohomology tensored with B:R.

2Al cohomology complexes live in the bounded below derived co-category of locally convex topological vector spaces
over Qp. Quasi-isomorphisms in this category we call strict quasi-tsomorphisms. See Section 1.2.1 for details.
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where the brackets [...] denote the homotopy fiber.

Most of the paper is devoted to the definition of the objects appearing in as well as the period
morphism itself. This can be summed up in the following theorem-construction from which Theorem
follows immediately. As before in [16], [19], there are two steps: passage from pro-étale cohomology to
syntomic cohomology (easier) and a passage from syntomic cohomology to Frobenius eigenspaces of de
Rham cohomology over B (more difficult).

Theorem 1.3. To any smooth rigid analytic variety X over C there are naturally associated:

(1) A (rigid analytic) syntomic cohomology RTsyn (X, Qp(r)), r € N, with a natural period morphism

(1.4) oyt Rlgyn (X, Qp(r)) = R prost (X, Qp(r)),

which is a strict quasi-isomorphism after truncation T<,.
(2) A Hyodo-Kato cohomology RT'yk (X). This is a dg F™ -algebra equipped with a Frobenius ¢ and
a monodromy operator N. We have natural Hyodo-Kato strict quasi-isomorphisms

bk ROpK (X)® e O 5 ROar(X),  trik : ROpk (X)® po Bl = RTar(X/B).
(3) A distinguished triangle
(1.5) REgyn (X, Qp(r)) — [RTux (X))@ pur BL N =09=P" 5 R GR (X /Bl )/F”
that can be lifted to the derived category of Vector Spaces.
1.1.2. Dagger varieties. Set
HK!(X) = H'[RDuic(X)8 o BEN 097" DRL(X) := H'(RTur (X/Bp)/F").
The distinguished triangle yields a long exact sequence of cohomology groups

(1.6) - = DRIY(X) — HE (X, Qp(r)— HKL(X) S DRE(X) — - - -

syn

which, together with the period isomorphism

H;yn<X> Qy(r)) = Héroét(Xv Qp(r)), i<,

obtained from , is a starting point for our work on generalizations of the Cg-conjecture to rigid
analytic varieties (see the sequel to this paper [20]). This sequence is, however, difficult to use since,
locally, the rigid analytic de Rham cohomology and Hyodo-Kato cohomology are, in general, very ugly:
infinite dimensional and not Hausdorff. But we are mainly interested in partially proper rigid analytic
varieties and these varieties have a canonical overconvergent (or dagger) structurﬂ Moreover, a dagger
affinoid has de Rham cohomology that is a finite rank vector space with its natural Hausdorff topology.

Hence we are led to study dagger varieties. We prove an analog of Theorem for smooth dagger
varieties. The dagger version of is the long exact sequence:

- 5 DRIYX) = HY (X, Qp(r) — (Hig (X))@ pue BE)N=00=pP" M, DRI (X)) — ...

syn
But now, if X is a dagger affinoid, both cohomologies Hiy(X) and Hiy(X/BJg) are (free) of finite
rank. If X is a dagger variety the overconvergent constructions are compatible with the rigid analytic
constructions for X , the completion of X. If X is partially proper the two sets of constructions are
strictly quasi-isomorphic.

SRecall that a dagger variety is a rigid analytic variety equipped with an overconvergent structure sheaf. See [26] for
the basic definitions and properties.
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1.1.3. Geometrization. We show in [20] that the above long exact sequence , in a stable range, splits
into short exact sequences if X is proper or, more generally, dagger quasi-compact or "small", or if X
is Stein. In order to do so, we need to put some extra-structure on the terms of the exact sequence.
In [I8], we treated the proper case (with a semi-stable model) by using the fact that the terms in the
exact sequence outside of the Hi (X, Q,(r))’s were naturally C-points of Banach-Colmez spaces (called

syn

BC’s in what follows). That thbi,s is also the case of the H{ (X, Qy(r))’s, for i < r, follows from the
comparison with pro-étale cohomology and Scholze’s theorem [42] which states that these cohomology
groups are in fact finite dimensional over Q,, and independent of the field C: hence they are the C' points
of quite trivial BC’s. Then the basic theory of BC’s [I3] [I4] could be used to show that the long exact
sequence splits in a stable range. (Actually, putting a BC structure on syntomic cohomology can be done
directly [40], but to prove the splitting of , one still needs Scholze’s finiteness theorem, if one is to
stick to the methods of [18]).

In our present situation, the Héroét(X ,Qp(r))’s are very much not finite dimensional over Q, and
depend on the field C. Hence they are not obviously C-points of anything sensible. But one can turn
them into C' points of sheaves on Perfe, and this is a category of geometric objects (the category of
Vector Spaces, VS’s for short) that contains naturally the category of BC’s as was advocated in Le Bras’
thesis [34].

One turns the p-adic pro-étale cohomology into a sheaf on Perfs by taking the sheaf associated to the
presheaf S — RI'L06t(Xs, Qp(r)), for perfectoid algebras S over C. Likewise, one geometrizes syntomic
cohomology by geometrizing the period rings; for example, B, becomes the functor S — Beis(S). We
extend the proof of Theorem to this geometrized context to obtain:

Theorem 1.7. The quasi-isomorphisms from Theorem and (1) of Theorem are the evaluations
on Spa(C, O¢) of quasi-isomorphisms of Vector Spaces.

This promotes the exact sequence (/1.6 to a sequence of VS’s which can be analyzed using the geometric
point of view on BC’s developed in [34] (this analysis is quite involved and is postponed to [20]).

1.2. Proof of Theorems [[.1] and [I.3l We will now sketch how Theorem [[I] and Theorem [[.3] are
proved.

(i) Rigid-analytic varieties. Recall that [19, Sec. 2|, using the rigid analytic étale local alterations of
Hartl and Temkin [32], [44], one can equip the étale topology of X with a (Beilinson) baseﬂ consisting
of semistable formal schemes (always assumed to be of finite type) over &¢. This allows us to define
sheaves by specifying them on such integral models and then sheafifying for the n-étale topologyﬂ For
example, in (1) the syntomic cohomology RI'syn (X, Qp(r)) of a rigid analytic variety X is defined by
n-étale descent from the crystalline syntomic cohomology of Fontaine-Messing. Recall that the latter is
defined as the homotopy fiber (2" is a semistable formal scheme over €¢ equipped with its canonical
log-structure) )

RTgyn(27,Qp(r)) i= [F"RT:(2) ¥ Rl (),
where the (logarithmic) crystalline cohomology is absolute (i.e., over Z,). By definition, it fits into the
distinguished triangle

(1.8) Ry (X, Qp(r)) — [RL e (X)]?=P" — Rl (X)/F",

which looks different than the triangle ([1.5) that we want in (3). However, we easily ﬁncﬂ that R (X)/F"
RI4r(X/B1z)/F". Here RTqr(X/BJy) is the B;-cohomology as defined by Bhatt-Morrow-Scholze in

4This should be distinguished from a Verdier base; in a Beilinson base the condition on fullness of the base morphisms
is dropped. See [19} 2.1].

5Here n-étale means topology induced from the étale topology of the rigid analytic generic fiber.

6The casiest way to see it is by interpreting, locally, both sides as derived de Rham cohomology.

1
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[9], which we have redefined in the paper as n-étale descent of Hodge-completed rational absolute crys-
talline cohomology of semistable schemes. But the construction of an isomorphism between the middle
terms in and requires a refined version of the Hyodo-Kato morphism.

The period map in (1), is defined by 7-étale descent of Fontaine-Messing period map

@ : Rlgyn (2, Q,(r)) = Rle (2, Qp(r)),

for a semistable formal scheme 2" over &c. The fact that it is a strict quasi-isomorphism in a stable
range follows from the computations of p-adic nearby cycles via syntomic complexes done by Tsuji in [45].
However, to lift it to the derived category of Vector Spaces we use its reinterpretation via (¢, I')-modules
by Colmez-Niziol and Gilles in [18], [25]. This new interpretation of the period morphism is then lifted
from C' to perfectoid spaces over C' to prove Theorem [I.7]

The construction of the Hyodo-Kato morphism in (2) is quite involved; in fact, a detailed study of
Hyodo-Kato cohomology and its relation to BjR— and de Rham cohomologies occupies a large portion of
this paper. The original Hyodo-Kato morphism [33] works for semistable (formal) schemes. It can not be
transferred to rigid analytic varieties because, a priori, it is dependent on the choice of the uniformizer
of the base field (which varies for local semistable models). Moreover, a key map in the constructimﬂ is
defined as an element of the classsical derived category. A more careful data keeping allowed Beilinson
[3] to make the Hyodo-Kato morphism independent of choices in the case of proper schemes. We adapt
here his technique to formal schemes and along the way lift the morphism to derived oo-category. As a
byproduct we get the identification

[RL e (X)]9=P" ~ [Ruk (X)® pee BV =00=P"

and an identification of (|1.8)) with (1.5, as wanted.
(ii) Dagger varieties. The pro-étale cohomology in (1) is defined in the most naive way: if X is a
smooth dagger affinoid with a presentation {X}}ren by a pro-affinoid rigid analytic variety, we set

RT proct (X, Qp(1)) := hocolimy, RT prost (Xn, Qp(r));

then, we globalize. From this description it is clear that we have a natural map

RFprOét (X, Qp(r)) — Rrproét ()?7 Qp (T)),

where X is the completion of X (a rigid analytic variety). It is easy to see that in the case X is partially
proper, this morphism is a strict quasi-isomorphism (see [19, Prop. 3.17]).

The other overconvergent cohomologies (Hyodo-Kato, de Rham, BIR—, syntomic) and morphisms
between them can be defined in an analogous way without difficulties. In some cases though, they do
however already have independent definitions: Hyodo-Kato and de Rham cohomologies were defined by
Grosse-Klonne in [28] and we define syntomic cohomology as the homotopy fiber giving the following
distinguished triangle

(1.9) Rl gyn (X, Qp (1) — [RT gk (X) & pur BN =09 =P M Ry (X/B,) /F

In these cases, we prove that the two sets of definitions yield strictly quasi-isomorphic objects. As an
illustration of the power of the new definitions of overconvergent cohomologies, let us look at the simple
proof of the following fact, whose arithmetic analog was the main technical result of [19]:

Proposition 1.10. Let r > 0. Let X be a smooth dagger variety over K. There is a natural morphism

Rl ayn (X, Qp(r)) = RTuyn(X, Qu(r)).

It is a strict quasi-isomorphism if X is partially proper.

"For experts: the section of the projection T' — 0.
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This proposition is proved by representing, using distinguished triangles (|1.5) and , both sides of
the morphism by means of the rigid analytic and the overconvergent Hyodo-Kato cohomology, respec-
tively, then passing through the rigid analytic and the overconvergent Hyodo-Kato quasi-isomorphisms
(that are compatible by construction) to the de Rham cohomology, where the result is known.

Remark 1.11. The approach we have taken here to deal with dagger varieties is very different from the
one in [I6] or [19] (these two approaches also differing between themselves). That is, we do not use
Grosse-Klonne’s overconvergent Hyodo-Kato cohomology nor the related Hyodo-Kato morphism (which
is difficult to work with and is also very different from the rigid analytic version making checking the
overconvergent-rigid analytic compatibility a bit of a nightmare). Instead, we induce all the overcon-
vergent cohomologies from their rigid analytic analogs; hence, by definition, the two constructions are
compatible. This was only possible because we have constructed a functorial, co-category version of the
Hyodo-Kato morphism.

Structure of the paper. Sections 2 and 4 are devoted to a definition of a functorial, co-categorical Hyodo-
Kato quasi-isomorphism. In Section 3 we present our definition of BIR—cohomology. Section 5 puts the
above things together and introduces overconvergent geometric syntomic cohomology. In Section 6 we
define comparison morphisms and in Section 7 we put a geometric structure on them.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, and the Isaac Newton Institute, Cambridge,
for hospitality during Spring 2019 and Spring 2020 semesters, respectively, when parts of this paper were
written. We would like to thank Piotr Achinger, Guido Bosco, Gabriel Dospinescu, Ofer Gabber, Sally
Gilles, Veronika Ertl, Matthew Morrow, Michael Temkin, and Peter Scholze for helpful discussions related
to the content of this paper and Shane Kelly for patiently explaining to us oo-categorical constructions
described in Section B.1.21

Special thanks go to the referee for a very careful reading of the manuscript and many suggestions
that have improved the presentation of the material.

Notation and conventions. Let Ok be a complete discrete valuation ring with fraction field K of char-
acteristic 0 and with perfect residue field k of characteristic p. Let K be an algebraic closure of K and
let O denote the integral closure of Ok in K. Let C = K be the p-adic completion of K. Let W (k)
be the ring of Witt vectors of k with fraction field F (i.e., W (k) = OF); let e = ex be the ramification
index of K over F. Set ¥ = Gal(K/K) and let ¢ be the absolute Frobenius on W (k). We will denote
by A, Ber, Bst, Bar the crystalline, semistable, and de Rham period rings of Fontaine [23].

We will denote by O, 05, and 0%, depending on the context, the scheme Spec(&) or the formal
scheme Spf(Ok) with the trivial, the canonical (i.e., associated to the closed point), and the induced
by N — Ok,1 — 0, log-structure, respectively. Unless otherwise stated all formal schemes are p-adic,
locally of finite type, and equidimensional. For a (p-adic formal) scheme X over Ok, let Xy denote the
special fiber of X; let X,, denote its reduction modulo p™.

All rigid analytic spaces considered will be over K or C. We assume that they are separated, taut,
and countable at infinity. If L = K, C, we let Smy, (resp. SmTL) be the category of smooth rigid analytic
(resp. dagger) varieties over L, and we denote by Perfc the category of perfectoid spaces over C.

Unless otherwise stated, we work in the derived (stable) co-category Z(A) of left-bounded complexes
of a quasi-abelian category A (the latter will be clear from the context). Many of our constructions
will involve (pre)sheaves of objects from Z(A). We will use a shorthand for certain homotopy limits: if
f:C — C'is a map in the derived co-category of a quasi-abelian category, we set

[C—Lo '] = holim(C = €'« 0).

For an operator F' acting on C, we will use the brackets [C]!" to denote the derived eigenspaces and the
brackets (C)F or simply C* to denote the non-derived ones.
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Our cohomology groups will be equipped with a canonical topology. To talk about it in a systematic

way, we will work rationally in the category of locally convex K-vector spaces and integrally in the category
of pro-discrete Ox-modules. For details the reader may consult [I6, Sec. 2.1, 2.2]. To summarize quickly:

(1)

C is the category of convex K-vector spaces; it is a quasi-abelian category. We will denote the
left-bounded derived oco-category of Cx by Z(Ck). A morphism of complexes that is a quasi-
isomorphism in Z(Ck), i.e., its cone is strictly exact, will be called a strict quasi-isomorphism.
The associated cohomology objects are denoted b ﬁ”(E) € LH(Ck); they are called classical
if the natural map H"(E) — H™(E) is an isomorphis
We will often work in a slightly more general setting. Let Ax := LH(Ck). It is an abelian
category and we have 2(Ck) = 2(Ak). Let B € Ck be a topological algebra over K. We will
denote by Ap the full abelian subcategory of Ax of B-modules. We set 2(Cp) := Z(Ap).
For the default tensor product (over K) in Ck we have chosen the projective tensor product
(which commutes with projective limits). It is left exact.
Objects in the category PD of pro-discrete &k -modules are topological Ox-modules that are
countable inverse limits, as topological @x-modules, of discrete @x-modules M?, i € N. It is
a quasi-abelian category. Inside PDg we distinguish the category PCk of pseudocompact k-
modules, i.e., pro-discrete modules M ~ lim; M; such that each M; is of finite length (we note
that if K is a finite extension of Q, this is equivalent to M being profinite). It is an abelian
category.
There is a tensor product functor from the category of pro-discrete &x-modules to convex K-
vector spaces:

(—)®K:PDK—>CK, MHM(X)@K K.
Since Ck admits filtered inductive limits, the functor (—)®K extends to a functor (—)®K :
Ind(PDg) — Ck. The functor (—)®K is right exact but not, in general, left exact. We will
consider its (compatible) left derived functors

(-)®"K : 27 (PDg) — Pro(2~ (Ck)), (=)®“K:2 (Ind(PDg)) — Pro(2™ (Ck)).
If E is a complex of torsion free and p-complete (i.e., E ~ lim,, F/p") modules from PDf then

the natural map
E®"K — EQK

is a strict quasi-isomorphism [I6, Prop. 2.6].

Finally, we will use freely the notation and results from [19].

2. Hyopo-KATO RIGIDITY REVISITED

The original Hyodo-Kato morphism [33] works for semistable (formal) schemes. It can not be trans-

ferred to rigid analytic varieties because, a priori, it is dependent on the choice of the uniformizer of the
base field (which varies for local semistable models). A more careful data keeping allowed Beilinson [3] to

make it independent of choices in the case of proper schemes. We adapt here his technique to semistable

formal schemes and add some extra functoriality by lifting the morphism to the derived oco-category.

This gives us local Hyodo-Kato morphisms for rigid analytic varieties; the extra functoriality will be
crucial for the globalization of these maps for rigid analytic and dagger varieties discussed in Chapter []
(it makes it possible to glue local maps from an hypercover by semistable formal schemes).

2.1. Preliminaries. We gather in this section basic properties of period rings, isogenies, and p-modules
that we will need in the paper.

8L H stands for “left heart”.
9In our situations this is usually equivalent to H"(FE) being separated.
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2.1.1. Period rings. We will review first the definitions of the rings of periods that we will need. We
follow here Beilinson [3] 1.14, 1.19], where the reader can find more details. Beilinson’s definitions are a
slight modification of the classical ones; they stress the dependence on choices in a better way.

(i) Arithmetic setting. Let S = Sk := Spf 0}, S := Spf 0. We denote the corresponding log-
structures by £ = %k and £y, respectively. Note that the second log-structure can be conveniently
described by the pre-log structure &k \ {0} — OF,a — [a], where @ := ¢ mod mg and [—] denotes the
Teichmiiller lift.

Consider the algebra Op[T] with the log-structure associated to T'. We denote by rEP the associated p-
adic divided powers polynomial algebra. In a more natural in K way, we can write L, F as riD -0
completion of O < t, >, the d1v1ded powers polynomial algebra generated by t,,a € (mg /m%)\{0}, with

ty = [a'/a]t,. We denote by 7EP the p-adic completion of the subalgebra of the PD algebra 0 < t, >

generated by t, and ¢7¢/n!,n > 1. The log-structure is induced by the t,’s, Frobenius action by t, +— &,
and monodromy by the derivation sending t, + t,. Set E = Fx := Spf rPD E° = EY. := Spf TED’O. We
have canonical exact embeddings i : S° — E,ij(t,) = [a] € L2, i) : S° — E0 0" (te) = [a] € ZL2.

We have an exact closed embedding S¥ < S;. Retractions 7; are given by maps T LY — La g,

— the p-adic

with I, = [a’/a]l,. Every retraction m; : S; — S? yields a k®-structure on S;, hence an exact closed
embedding i; : S1 = E1, i (tq) = la.

(ii) Geometric setting. Let S := Spf 0. We denote its log-structure by Z. We normalize the valuation
on C by v(p) = 1. Let Z° be the log-structure on 50 = Spf W (k) generated by the pre-log structure
Oc \ {0} - W(k),a~ [a], a:=a mod mgp. Then 7" has a natural Frobenius action compatible with
the Frobenius: ¢([a]) = [aP]. There is an exact embedding 5(1) — S5

We will denote by AX the period ring A, equipped with the unique log-structure %, extending
the one on ﬁé,r Let J.; be the PD-ideal, A¢,/Jer > Oc1. Set & := Spf AX. The exact embedding
Spec ﬁé’l — o given by the Fontaine map 6 : A, — O¢ is a PD-thickening in the crystalline site of
ﬁF71.

Recall the definition of the period ring BY,. Let log : A* /k — BZ. be the logarithm: the unique
homomorphism which extends the logarithm on (1 + Jo;)*, where Jg, = (p, Ker ). Then B, is defined
as the universal B -algebra equipped with a homomorphism of monoids log : %, /E* — B;; extending
the above log on A?.. Since v : fcr/A* X Qso, it is clear that, for any A € Z../k with v(\) # 0,
the element log(\) freely generates BY, over B, i.e., B [log(\)] = BZ. The Frobenius action extends
to B via universality. The monodromy N is the Bjr derivation on BJ; such that N(log()\)) = —v(}\).
We have ng = ppN. Moreover, any \ as above yields a retraction s} : B — BZ, s} (log()\)) = 0. If
Ne L, ={\€ Ly : () = N} then s} is compatible with Frobenius action.
Let r € Q~¢. Denote by A(

Now, recall the definition of the period ring B the log affine space,

l,st* w(k)’

i.e., the formal scheme Spf W (k){t,},a € 7., with t,» = [a’/a]t,. Here 7. := {a € .,2”1 :v(a) =r}. The

log-structure is generated by the ¢,’s. The map 4, : S(l) — Ag/) i*(ta) = a, can be extended to a map

(k)T
0 S — AW(k) by choosing I, =i} (ta) € #; that lifts a.

We have the commutative diagram

(r) _
AW(E) W (k) ern

(i1,0) \L

Sl éacr,n

Let i s : S1 < &.st.n be the PD-envelope of (i, 6) over &, We write & ., = Spec A\l,st’n and set
Al,st = lim,, ;&l,st,na B = Al it[ } @ﬁl,st = Spf :&l,st-
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We note that B

;. is a Banach space over F' (which makes it easier to handle topologically than BJ).

Frobenius action is given by ¢, +— t? and the monodromy operator by N; := t,0;,. We have the exact
sequence

~ N ~
(21) 0— Acr,n — Al,st,n ‘g Al,st,n — 0.

Every lifting of [ to A € £, yields a map s3 : :&l,st,n — Acrn, S3(ta) := Aq, which is compatible with
Frobenius action, and an identification Ahst,n = Acn < ta)\;1 —1>.

Let Kﬁg;n”p be the A,-subalgebra of _/Aklﬁt formed by the elements killed by a power of ¢,0;,. It is the
divided powers polynomial algebra A., < log(t,A; 1) >. There is a B}, -linear isomorphism

. R+ ~ A Ni-nilp
Ry Bst — Al,st,Qp

which sends a generator log()\) of BJ;, where X lifts [, to —log(t,\; ') € Kﬁgt’nﬂp. It is compatible with
the action of ¥k, Frobenius, and it identifies N on Bjt with the action of 7,0, .

Finally we have maps to B(TR. We will normalize them for the rest of the paper at p. That is, we fix
a lift [p] € £, of p and define the maps:

— ., Bt + - = . Bt +
L=1tp: By = Bar, =1tp = php: By — By

The first map is obtained by sending ¢, to p; the second map, by sending log([p]) to —log(p/[p]). Otherwise
saying, we can set

B =B}, = A, <t —1>" [}, BI:=B}, = BZ[log(p),

?
k: BY — BY, log([p]) — —log(t,[p ™), ¢: B — By, log([p]) — — log(p[p] ™),
B = Bl [0 = plpl

2.1.2. Tensoring with period rings. (1) Let M be a bounded complex of Banach spaces, which are topo-
logical B},-modules. We define the topological tensor product M Qg C as the algebraic tensor product
equipped with the quotient topology induced from M via the map 6. This product tends to be compatible
with strict quasi-isomorphisms:

Lemma 2.2. Let M, M’ be bounded complexes of Banach spaces, which are flat BI -modules. Let o :
M — M’ be a strict quasi-isomorphism. Then the induced morphism

Oz®1d:M®BC+rC—>M/®BC+rC
18 a strict quasi-isomorphism as well.

Proof. Let C(«) denote the mapping fiber of a. It is a bounded complex of Banach spaces. We claim
that the complex
Cla®1d) = [M @g; C2ZS M @py €]~ C(a) @g: C

is strictly acyclic. Indeed, since M, M’ are bounded and built from flat B},-modules, this is so al-
gebraically. Now the terms of C(a ® Id) are Banach spaces as quotients of Banach spaces by closed
subspaces and the Open Mapping Theorem implies that a complex of Banach spaces is strictly acyclic if
and only if it is acyclic (apply the OMT to the isomorphism Im(d;) — Ker(d;+1) which are both Banach
spaces since d; and d;;1 are continuous). O

(2) Similarly, for a bounded complex M of Banach spaces, which are topological B ,-modules, we
define the topological tensor product M Qp+ (BL/F%), i > 0, as the algebraic tensor product equipped
with the quotient topology induced from M. We have analog of the Lemma [2.2]in this setting.

We will denote this tensor product by

M&g (BL/FY), i>0.
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(3) For a bounded complex M of Banach spaces, which are topological BZ,-modules, we define
Mg+ Bl = Rlimy(M&ns (B /FY)).
We have analog of the Lemma [2.2) in this setting as well.

2.1.3. Isogenies. We recall now some terminology from [0, Sec.1.1] (see also [II, Sec.2.3]).

Let € be an additive category (or oco-category). A map f : P — @ is an isogeny if there exists
g : Q — P and an integer N > 0 such that gf = NIdp and fg = NIdg (in the homotopy category.)
An object X € ¥ is bounded torsion if it is killed by some N, i.e., if NIdx = 0 (also in the homotopy
category). If € is an additive category, we denote by € ® Q the category with the same objects as €,
with a functor ¥ — ¢ ® Q,X — Xq, and with Hom(Xq,Yq) = Hom(X,Y) ® Q. Then ¥ ® Q is the
localization of € with respect to isogenies; for X € €, we have Xq =0, i.e., X is isogenous to 0, if and
only if X is a bounded torsion object. If € is abelian then ¥ ® Q is abelian as well and it equal to the
quotient ¥q of € modulo the Serre subcategory of bounded torsion objects.

Let € be a stable oco-category equipped with a ¢-structure. If a map is an isogeny then it induces
isogenies on all cohomology groups H", n € Z, in the heart €. For maps between bounded object the
opposite is true as well: the map f : P — @ of bounded objects is an isogeny, if, for each n, the map
H™P — H"(Q is an isogeny. In particular, X € % is isogeneous to 0 if each H™(X) is a bounded torsion

group.
Remark 2.3. Consider the tensor product functor in the top row of the diagram:

(-)®%
P(PDg) — 2(Ck)

2(PDk)q

It factors naturally through the isogeny category; we will denote so obtained functor from Z(PDg)q to
2(Ck) by (—)k-

2.1.4. p-modules. A Frobenius on an &p-module is a pp-linear endomorphism. Let R be an &p-algebra
equipped with a Frobenius ¢g. For an R-module M, a Frobenius on M compatible with the R-module
structure is an R-linear map ¢ar @ oM — M. Pairs (M, pn) form an abelian tensor Z,-category
R,-Mod. Let Z,(R) be its bounded derived co-category.

Consider the bounded derived oo-categories Z,,(R), Z,(R)q of bounded complexes of p-modules over
R. Then Z,(R)q is the quotient of Z,(R) modulo the full subcategory of complexes with bounded
torsion cohomology.

We need to discuss projective resolutions. For an R-module M, set M, := ©p>09t"M and equip it
with the induced Frobenius. The functor R-Mod — R,-Mod, M — M,, is left adjoint to the forgetful
functor R,-Mod — R-Mod, (M, ¢ar) — M. If follows that, for a projective R-module M, the p-module
M, is a projective object of R,-Mod.

For every M = (M, ¢a) € R,-Mod, there is a natural short exact sequence

0= (@5 M)y—2s My—5 M — 0
in R,-Mod. The maps € and ¢ are induced, respectively, by adjunction from Id;; and the map oM —
M, that sends 7 @ m to op(r@m) —r@m e M & M C M,. Set M := Cone(6), so we have a
resolution & : M — M. If M is a projective R-module, this is a projective resolution in R,-Mod.

We will need a version of the above constructions for derived p-complete and p-completely flat modules.

Recall [10] 4.1] that, for a ring R over Z,, M € 2(R) is called p-completely flat if M ®@% R/p € Z(R/p) is
concentrated in degree 0, where it is a flat R/p-module. If R has bounded p*>-torsion and an R-module
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M is derived p-complete and p-completely flat then M is a classically p-complete R-module concentrated
in degree 0, with bounded p™-torsion, such that M/p™M is flat over R/p"R, for all n > 1 (see [10,
Lemma 4.7]). And, conversely, if M is a classically p-complete R-module concentrated in degree 0, with
bounded p™-torsion, such that M/p™M is flat over R/p™R, for all n > 1, then M is p-completely flat.

Now we specialize to R = W (k). Then, a W (k)-module M is derived p-complete and p-completely flat
if and only if M is a classically p-complete W (k)-module concentrated in degree 0, such that M/p™M is
flat over W,,(k), for all n > 1 (equivalently M is p-torsion-free and classically p-complete over W (k)). We
note that any surjection M; — M> of such modules admits a section, hence all modules in the category of
derived p-complete and p-completely flat W (k)-modules are projective. It follows that the above algebraic
construction goes through once we p-adically complete the objects. That is, if we denote by 2°(W (k))
the oo-subcategory of 2¢(W (k)) spanned by complexes built from derived p-complete and p-completely
flat modules and we consider the related oo-category 7 (W (k)) of ¢-modules then, for a y-modules
M = M[0] € Z25(W (k)), the p-adic completion Mip € P5(W(k)) of M, is a projective p-module and we
have a projective resolution

—

0— (¢*RM)¢L> M,—— M — 0.

Let R :=rFP. Let P = (P, pp) € Z5(R), Q = (Q,¢q) € Z5(W(k)). Denote by P the homotopy
cofiber of P — P@;W(k’) viewed as an object of Zg(W (k)).

Lemma 2.4. If the Frobenius on Qq s invertiblﬂ then
RHom(Q, P)q = RHom(Qq, Pa) =0,
where the RHom is taken in Z5(W (k))q-

Proof. We claim that we have the short exact sequence of ¢-modules over W (k) (p-torsion-free and
p-complete)

(2.5) 0— IP — P — P&RW (k) — 0,
where I C R is the kernel of the projection R — W(k). Indeed, because P, is a complex of flat R,-
modules we have a compatible family of exact sequences
0—P,®rl, > PRrR,— P,or Wy(k) =0
Passing to the limit we get the short exact sequence
0 — lim, (P, ®g I,) = lim, (P ®g R,) — lim, (P, ®g W,(k)) = 0

Since P is derived p-complete and its terms are p-completely flat modules, the natural morphism P —
lim, (P ®g R,) is a quasi-isomorphism (in fact, an isomorphism) [43, tag 091Z] and the above exact
sequence yields the exact sequence .

From the exact sequence we get a distinguished triangle

RHom(Q, IP) — RHom(Q, P) — RHom(Q, P&, W (k)),

where RHom is computed in 25 (W (k)). To prove the lemma, it suffices to show that RHom(Q, I P)q = 0.

All modules are p-torsion-free and p-complete. Assume, for a moment, that @) is concentrated in degree
0. For any ¢-module M over W (k), we can compute RHom(Q, M) using the above projective resolution é
of Q. We get a two-term complex C(M) with C°(M) = Homyy (1) (Q, M), C* (M) = Homyy 1) (¢*(Q), M)
and the differential d = di — da, where di(a) = apg, d2(a) = eme*(a). Let C..(M) be the complex with
the same terms as C'(M) but the differential simply dy. Since we assumed that the Frobenius action on
Qq is invertible, the complex C,(M)q is acyclic.

10This means that Frobenius map Qg : SO*W(]C)QQ — Qq is a quasi-isomorphism in 2(W (k))q.



12 PIERRE COLMEZ AND WIESLAWA NIZIOL

We go back now to general Q. We will denote by C(M), for M as above, the total complex of
the double complex obtained by applying C' (M) to all the terms of Q. We will prove that C(IP)q
is acyclic by defining a finite filtration on IP such that C(gr’/ IP) ~ C,(gr’ IP). (Note that, since
Q is built from projective modules, the functor C(—) is exact.) Let IU), j > 1, be the ideal of R
formed by series " a;t' with ag = ... = aj_; = 0. We have I = IV, Since ¢(I)) c I®)) one
has C(IWP/TUHD P) = O, (1Y P/TU+HDP). Tt remains to show that C(I™) P) is quasi-isomorphic to
C,(I™ P) for n sufficiently large (then the soughed-after finite filtration is 1Y) P, j < n.)

By assumption, for m sufficiently large, there is ¢ : Q — ¢*@Q such that pgv = p™Idg,veq =
p™ Idg- (). For n sufficiently large, we have e(I™) c pmt 1P, Hence dy on C(I™P) is divisible
by p™tt. Set f := T (p~" 'dy) € End(CO(I™ P)); then dy = pdyf, ie., d = di(1 — pf). Since Q
is a complex of projective modules and IP is derived p-complete (as the kernel of the canonical map
P — P&rW (k) between two derived p-complete objects), C°(I(™ P) = Hom(Q, IP) ~ RHom(Q, IP) is
derived p-complete [43, tag 0A6E]. It follows that (1 —pf) is a quasi-isomorphism (use derived Nakayama
Lemma [43, tag 0G1U]), so it yields C(I(™ P) = O, (I P), as wanted. O

2.2. Hyodo-Kato rigidity. Now we pass to the main constructions.

2.2.1. The Hyodo-Kato section. In this section we will prove the existence of the Hyodo-Kato section
in the derived co-category. We follow faithfully the arguments of Beilinson from [3, Sec.1.14] with the
following modifications:

(1) Beilinson works in the setting of proper log-smooth log-schemes hence all of his cohomology
complexes are perfect; we replace them with a weaker condition of derived p-complete and p-
completely flat,

(2) to prove that the Hyodo-Kato section (when linearized) is a quasi-isomorphism Beilinson uses
finiteness of Hyodo-Kato cohomology; we replace his argument with the original one due to
Hyodo-Kato [33].

Since the argument of Beilinson can only be found in a preliminary version of a published paper, for the
benefit of the reader and the authors, we supply all the details.

Let f: X; — S; be a log-smooth map with Cartier type reduction, with X; fine. Let f° : X{ — S be
its pullback to SY. Let R := 7EP. Recall the definition and basic properties of the arithmetic Hyodo-Kato
cohomology and the associated 7P cohomology (in the terminologyrﬂ from [19] 4.2]):

(26) chr(X1/R)l,n = chr(Xl/(SbEn)), il : Sl — E17 n @w(Rn),

RTuk (X7)n == Rl (X7/(S7,50)), in Do (W (k));

R, (X1/R); = holim, RTe;(X1/R)1n,  in Z5(R);

RIpk (X7) := holimy, RTuk (X7)n, in Z5(W (K)).
The embedding i : X7 < X; over iy, : (S7,5)) < (S1,E,) yields compatible morphisms i}, :
Rl (X1/R)in = RTuk(X7)n, i : Rl (X1/R); — RTuk(XY) in 2, (W, (k)) and 2¢(W (k)), respec-
tively. These constructions are functorial in X;: this is standard (see [3, 1.6] and use the functorial

PD-envelopes from [3] 1.4]).
Moreover,

(1) Rlax(XY) is a complex of derived p-complete, p-completely flat modules over W (k) and
~L .
27) RTuic(X0) = Rluic(X0) Bl Wa (k). in 2, (W (A)):

M The notation we use here is a bit different than the one we used in [I9]. This is because we have adopted here
Beilinson’s approach to the Hyodo-Kato morphism and with it his notation. The advantage of Beilinson’s notation is that
it keeps better track of the underlying data.
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(2) RT':(X1/R); is a complex of derived p-complete, p-completely flat modules over R and
(2.8) RTer(X1/R)in = Rl (X1/R)® R,  in Dp(Ry);
(3) we have a quasi-isomorphism
.3k /\L ~ . c
(2.9) if : RO (X1 /R & W (k) 5 ROu(XY), in 25(W (k).
Now we present the key construction in the Hyodo-Kato theory.

Theorem 2.10. (1) The Frobenius action on RTuk(XY)q is invertible in 2¢(W (k))q.
(2) The map if : RUe;(X1/R)1,.q — Rluk(XV)q admits a unique natural W (k)-linear section v, in
P,(W(k))q- Its R-linear extension is a quasi-isomorphism in Zg(R)q:

L (R(/X\)I%V(k)RFHK(X?))Q :> chr(Xl/R>l,Q~

Proof. Claim (1) is proved in [33] 2.24]. In fact, Hyodo-Kato prove more: they show that there exists a
p-inverse of Frobenius, where d = dim X?.

For the existence part of claim (2), recall that Beilinson [3, 1.14] proved it in the case X; is proper.
We will adapt his argument to our (general) local situation.

Take P = RI'¢;(X1/R); in Lemma By claim (1) the Frobenius action on (P&zW (k))q is invertible.
Moreover, P is derived p-complete and a complex of completely p-adically flat R-modules. Lemma [2.4]
implies that the morphism Pq — (P@I}%W(k))Q in 75(W(k))q admits a unique right inverse ¢, as
wanted. Consider its R-linearization

~L ~L
We need to show that this is a quasi-isomorphism. But this was done by Hyodo-Kato [33, Lemma 4.16,
Prop. 4.8] using the explicit de Rham-Witt presentation of the Hyodo-Kato complex. We are done. O

2.2.2. The Hyodo-Kato morphism. Now, as usual, the Hyodo-Kato morphism can be obtained from the
section constructed in Theorem Let X be a fine logarithmic formal scheme log-smooth over S.
Assume that X; has Cartier type reduction over S;. Let @ be a uniformizing parameter of 0.

Corollary 2.11. There is a natural quasi-isomorphism in 2°(0k)q

. ~L ~
1w - (RFHK(Xlo)®W(k) ﬁK)Q — RPdR(X)Q.

Proof. Take E with | := w mod pmg. This yields an embedding i, : S — E,i%(t,) = w,a := w
mod m?%.. We start with the quasi-isomorphism from Theorem m

~L
L - (RFHK(X?)@)W(]C)R)Q — RFcr(Xl/R)l,Q«
Tensoring it with Ok (over R) we obtain the quasi-isomorphisms
~L ~ ~L
(RTuk (X?)®w (k) Or)Q + (RLer(X1/R)®RpOK)q ~ Rl (X1/ 0 )q ~ RTar(X)q-
This is the Hyodo-Kato quasi-isomorphism i, we wanted. O

2.2.3. Monodromy action revisited. A (p, N)-module over W (k) is a triple (M, p, N) with (M, ¢) — a
p-module over W (k) and N : M — M — a W (k)-linear endomorphism, called monodromy operator, such
that No = ppN. The category of (y, N)-modules over W (k) is abelian. We will denote by Z,, n(W (k))
the corresponding derived oo-category and by 77 ~(W(k)) its co-subcategory spanned by complexes of
p-torsion-free and p-complete modules. We have similar structures over W, (k).

The constructions in live in respective 7 n(—) oo-categories and are functorial in X;. The
subsequent base changes , , also lift to the co-categories @;7 n(—). One way to see this is
to use the description of the monodromy action in the paragraphs that follow.

The purpose of this section is to prove the following;:
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Proposition 2.12. The section
Ll* : RFHK(X?)Q — RFCT(Xl/R)l,Q
from Theorem commutes with monodromy, i.e., it can be lifted to a section in _@&N(W(k))Q.

Recall that the monodromy on Rl (X3 /R); is defined as the Gauss-Manin connection and the one on
Rk (XY) as its residue at t = 0. However, to prove Propositionwe will work with the "integration"
of the monodromy action. The argument follows that of Beilinson in [3], Sec. 1.16] with the modifications
mentioned earlier.

(i) Equivariant structures. Let A* be a cosimplicial algebra. An A*-complex is a complex M* of
cosimplicial A*-modules such that, for every cosimplicial structure map M® — M?, its Ab-linearization
AP @L, M* — M? is a quasi-isomorphism. Denote by Z(A*) the derived oo-category of bounded below
A*-complexes. We think of an element of Z(A*) as an A*-complex with values in Z(A?%) in degree a. For
an endomorphism 7' of A*, Zp(A*) will denote the derived co-category of bounded below A*-complexes
equipped with a T-action. We think of an element of Zr(A*) as an A*-complex with values in Pr.(A%)
in degree a (the derived oco-category of A*{T*}-modules).

Fix an affine scheme S as a base. Let G be an affine group scheme acting on X = Spec A. Let [X/G] :=
EG x¢ X = Spec Ag, be the simplicial quotient. We have [X/G],, = X x G™. Set Z¢(A) := Z(Af,).

Let g” = mc/m? be the Lie coalgebra of G. Let [X/g] := Spec A} be the closed subscheme of
[X/G] defined by the simplicial ideal generated by #2, where ¢ is the ideal of [X/G]o C [X/G]1, i.e.,
H =m.®@ACOGxX). Weset Z4(A) := P(A}), ete. There is a canonical conservative restriction
functor

Lie : D6(A) = Z4(A).
Moreover:

(1) Compatible endomorphisms T and Tx of G and X yield an endomorphism of [X/G]. We have
.@T70(A) = .@T(AZ;), .@TJ(A) = @T(A;)

(2) For a group scheme G, we denote by G% its PD-completion at the unit [3, Sec.1.2]; this is a
group PD-scheme, i.e., a scheme equipped with a PD-ideal. For example, we have Gi ((U,T)) =
I(T,(1+ #r)*). If G is a group PD-scheme with PD-ideal m,, then, in the above, we can also
consider the Lie coalgebra in PD-sense gV := m, / m[e2].

Objects of Zr,c(A), Dr,4(A) are called G-, resp. g-equivariant A-complezes. For an A-complex M, a
G-equivariant structure on it is an object M¢ € P (A) together with a quasi-isomorphism Mg 5 M.

(ii) Equivariant structures on crystalline cohomology. Let us go back to the setting of Proposition
2.12l We note that the objects (S1,E,) € (S1/Wi(k))er and (S?,89) € (SY/W,(k))er have natural
Gt -actions: (S, E,) is a coordinate thickening (with coordinate t,), G, acts on it by homotheties, and
we equip SO C (51, E,) with the induced action. To see the latter action explicitly, we note that, for
(U,T) € (S9/Wy)er, amap f: (U,T) — (SY,52) amounts to a lifting f([a]) of a € (mg/m%)\ {0} C £
to .Z2; these liftings form a Gf, ((U,T))-torsor yielding our action. This G, -action is compatible with
the Frobenius action (¢ acts on G, as p*(t) := t?).

We will now show that the crystalline cohomology complexes RI'c, (X1/R)i n, RTuk (X 0 are naturally
equipped with G! -equivariant structures. Take the simplicial objects (S1, E,.,) and (S, 59,). Here, for
(U,T) € (Z/9)er, we wrote (U,T,) := C((U,T)/Z) for the Cech nerve of the crystalline open (U, T) €
(Z/S)er; it is a simplicial object of (Z/9)e with terms (U, T,) := (U, T)%"! (we use the crystalline site
product). It is easy to see [3, Exercise 1.7] that (Si, En.) = [(S1, E,)/GE,] and (S9,59,) = [(S?,59)/GE ].
Consider the objects Rfe:(Ox, w, (r)) and Rf((:)r(ﬁX?/Wn(k))' They are equipped with a Frobenius action.
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Restricting them to our simplicial objects, we get:
(2.13) REer(X1/R)j = Rier (O, ywa () (51.B0) € D g5 (Bn),
RTuk (X7 = RIS . (Ox0 w, (1)) (59,50, € 7, i, Wa(k)).
Since (Rfer«(Ox,jw,k))(51.2,.))° = RUe(X1/R)in and (RfS . (Oxo w, (1)) (59,50.))° = RLuK(X])n,

these are the Gf, -equivariant structures we wanted. "

We are actually interested in n-action that comes from the above GZ -action, where n is the Lie
algebra of Gf_ in PD-sense (it is a line). The objects from form projective systems with respect
to n. Applying Rlim,,, we get natural n-structures on RI'gx(ZY) and Rl¢,(Z1/R);. Set N = e~ 'td;,
e = [K : FJ]; it is a generator of n ® Q. An ng-equivariant structure on W (k)q-complex amounts to
an endomorphism N. The equality No = ppN comes from the compatibility of the Gf -action with
Frobenius.

Proof. (of Propositz'on We proceed as in the proof of Theorem but work in the G -equivariant
setting. Namely, we start with the natural map i} : RT'¢, (X3 /R)Z*,Q — RFHK(X{))a, that lifts the map
it R[(X1/R)1.q — RI'mk(X?)q, and we look for its Gf -equivariant section (this will be a G, -
equivariant lift of the section in our proposition). This is supplied by Lemma below. The induced
map Lie(¢;) yields a section between the corresponding ng-equivariant structures. Since it lifts the original
section ¢; we get the wanted compatibility of the latter with monodromy. O

The following lemma was used in the above proof:

Lemma 2.14. (1) The Frobenius action on RTuk (X7)g is invertible in D W(k))q-
(2) The map i : Rle(X1/R)] q — RFHK(X?)*Q admits a unique natural W (k)-linear section v in
7° & (W(k))q

~L ~
u: (RO Rluk (X7))q = Rle(X1/R)i1q-
Proof. In claim (1) we need to proof the invertibility, up to a controlled denominator, of the Hyodo-Kato
Frobenius. Since, by (2.13)),
(2.15) RTux (X7); = Rfo . (Oxow i) (s0,50) = RTex(X7/S0),
where (59,89) is the crystalline product (SY9,5%)%"! we can use again [33, 2.24]. And, recall that,
Hyodo-Kato prove more: they show that there exists a p?-inverse of Frobenius, where d = dim X?.

To prove claim (2), take P = RI',(X1/R); and Q = RT'uk (XY)*. Denote by P the homotopy cofiber
of the map i} : P — () viewed as an object of 9; o (W(k)). We claim that

(2.16) RHom(Q, P)q ~ RHom(Qq, Pg) = 0,
where the RHom is taken in 9:) Gt (W(k))q. Assuming this claim, we see immediately that the morphism
P — Qq in @;705,,,(W(k))Q admits a unique right inverse:

u : RTuk(X7)g — Rl (X1/R); g,

as wanted.
It remains to prove the vanishing in (2.16)). In the non-equivariant setting this is the content of Lemma
[2:4] The equivariant result can be reduced to that lemma. Namely, we have

RHom,, ¢ (Q, P)q ~ RHomg; (1, RHom,(Q, P)g).

*

Hence it is enough to show that RHom,, (Q, ﬁ)a = 0. But, using the spectral sequence for RHom,, (—, —)Q7
we see that it suffices to show that

RHom,,(Qa, Py)q =0,  for a,b > 0.
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And, by and , we have
Qa = RTe(X7/S0),
Py = Rl (X1/R)[y := Rfer«(Ox, ywn))(51,50) = Rl er (X1 /Ep )1,
where (51, E}) is the crystalline product (S1, E)?T!. More explicitly,
SO =SpfW(k) <uy —1,...,us — 1>,
Ey=SpftW(k) <t,ur —1,...,up —1>; dpo: S,? — Ep, ts — [8], u; — u;,

and the log-structure is induced by t, (and its reduction). In particular, the Frobenius on the ideal of
the embedding 3¢ is highly topologically nilpotent. This implies, by an argument identical to the one
used in the proof of Lemma that RHom,(Qq, P5)q = 0, as wanted. O

2.3. Geometric absolute crystalline cohomology and Hyodo-Kato cohomology. We are now
ready to prove the existence of geometric Hyodo-Kato quasi-isomorphisms.

2.3.1. The comparison theorem. Let now f : X; — S be a map of log-schemes with X integral and
quasi-coherent. Assume that f is the base change of a log-scheme f : Z; — S, which is log-smooth and
with Cartier type reduction. Choose [, hence (51, E), as in Section Choose a Frobenius compatible
map 0y : (S1,8) — (S1, E) of PD-thickenings that extends the map 61, where 6 is the canonical map
6 : S — S. This amounts to a choice of \, := 0, (t,) € %, that lifts I, € .4 C 2.

The following well-known corollary of Theorem describes geometric absolute crystalline cohomol-
ogy R, (X1) := Rl¢,(X1/W(k)) via Hyodo-Kato cohomology (but losing the Galois action).

Corollary 2.17. (1) There is a functorial system of compatible quasi-isomorphisms in Dy(Acr )
eXn t RLe(Z1/R)in @, Acen = R (X1)n.

Here the tensor product is taken with respect to the map Hf\vn Ry = Ay
(2) There is a natural quasi-isomorphism in Dy, (Acr)

el RTe(Z1/R)i®5AG = RO (X)),
(3) There is a natural strict quasi-isomorphism in Z,(Cg )
~L ~
ex: (RTuk(27) @ (ryAc)q =+ Rla(X1)q-

Remark 2.18. The functor (—)q : 2°(Z,) = 2(Cq,) in (3) is induced from the functor (—)q from
Remark [2.3| via the map 2°(Z,) — Z(PDq,).

Proof. Since Z; is log-smooth, claim (1) follows from the log-smooth base changﬂ (recall that RT ¢, (X1),, =~
Rl (X1/Aq ). Claim (2) follows from claim (1) by taking limits. Claim (3) follows from claim (2)
and Theorem O

Let ?0 (XY — §(1) be the pullback of f to ?T. We have the completed geometric Hyodo-Kato cohomology
Rlaxc(X?) := ROo (X0 /5°).

It is a W(k)-module. It compares with the arithmetic Hyodo-Kato cohomology via the log-smooth base
change quasi-isomorphism in Z,(W (k))

(2.19) B: RUuk(Z)®py oW (F) S RO (XD).

12The proof of which is almost identical to the proof of smooth base change in the case without log-structures, see [}
2.3.5] or [7, V.3.5.1].
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Theorem 2.20. There is a natural strict quasi-isomorphism in -@%N(CBQ

eHf Rk (XY)q, 8, B 5 Rl (X1)q, @p: B

compatible with the tensor product and such that 5§IK = sj{sftK

Here, for M = RTpk (XY), Rl (X1), we have deﬁneﬂ
~ . ~R r = . ~R 7
(2.21) Mq,® BY, := Leolim, (Mq,®zB5"), Mq,®g+ BY, := Lcolim,(Mq,®p:BZ"),
respectively, where BS" := @7_Bhuj, uy = log()\), for fixed \.

Proof. The proof of the theorem runs over sections [2.3.2] (construction on the map) and (compati-
bility with all structures). O
2.3.2. Construction of the quasi-isomophism.
o The index sets. Recall that we have assumed that one can find a finite extension L/K such that f is the
base change of a fine log-scheme f1, : Z1 — Spec(0'1,1)*, log-smooth and of Cartier type, by the natural
map 60 : S; — Spec(Op.1)*. That is, we have a map 6y, : X; — Z; such that the square (f, fr.,0,0.) is
Cartesian. Such data ¥ := {(L, f1,0r)} clearly form a filtered Seﬂ
We have similar data 3° := {(0°, £°,69)}:
(1) 6°: S 5 80isa map of log-schemes over S% with S0 = Spf W (k’), where k' C k is finite over
k and the log-structure of S”? is generated by one element; the Frobenius on the log-scheme S”°
is induced, via the map #°, from the Frobenius on go;
(2) f0:29 — S{’O is log-smooth, fine and integral, of Cartier type;
(3) 0% : X? — 29 is such that the square (fo, 10,09,60%) is Cartesian.
Such data again form a filtered set. There is a map of filtered sets ¥ — 0, Z; /S, — Z9/S9; it is cofinal.

o Construction of ef¥. Let us first construct 1%, For £0 = 79/81° € 20, §" = Spf Ok, let W0 be the
set of tripleﬁ 7w = (7, 7s,ny), where n, € N and 7, g are maps such that the diagram

b

- '
VAl > 7Y > 51’O

commutes. Here we denoted by Fr he absolute Frobenius. The set Weo is ordered: m; < 7y means
m = ng, /Ny, € Z and my = Fr'"'m;. We claim that the set Ueo is filtered. For that it suffices to show
that, for n > ek, any two triples my = (m1,7s,1,n) and my = (72, 7g2,n) are in fact equal, that is,
m = mg and mg1 = mg 2. But, for n as above, we have the diagram (7 = 7y, 72)

13This is the only context in the paper where we use inductive tensor products.

141y [19] 4.3.1], in the case of a semistable formal scheme 2~ over ¢, we have used a different index set X, call it yold,
It is easy to see that we obtain the same theory with both choices of the index set: if 2" is affine then the canonical map
eold 5 3 makes £°9 cofinal in 2.

15We like to call them Frobenius-twisted descent data.
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in which the two small squares, the square with corner Xy, and the top triangle commute. This implies
that Fr""m = Fr"6% f. Since there are no nilpotents in Oxo, we get m = 0% f, hence m = 72, as wanted.
Similarly, we have the diagram

(2.23)

o
51,0 Si’o

where the square with vertex S and the top triangle commute. The small square commutes as well: map
the commutative diagram
X?C—> X1

I

Zy —— 7}

to it using the canonical maps and use the fact that 3(1) is a field. Diagram 1' now implies that

Fr"ng = Fr"0° f5. Since Si’o is a field we get g = 6° fg, hence 751 = 7g 2, as wanted.

Let now e be the ramification index of k. Denote by Ag/‘l,/(?,) the formal scheme Spf W (k'){t.},

where a € 7/, is such that [a] lies in the image of the embedding 6°* : £"0 — ?o, with t, = [a’/alt,.
The log-structure is generated by t,. We have an embedding i : S0 A(wl,/(?/), i*(ta) = [a]. Let
RO = D00 B0 := Spf R"0. We have the PD-thickenings 7§ : (S7°, E9), iy*(ta) = a € £/°. The map

mo=img : S1 — AS/(Z),) induces a map i; : S — Agf) , for r = p"~ /e, which corresponds (see Section

(%)
2.1.1) to a class I, € A such that v(l;) = r. The map mg extends canonically to a map of PD-thickenings
st : (S1, 1, stn) — (Si’o, E?), i.e., we have the following commutative diagram

_ i
S1(—> &mst,n

\L s \L e
S{’Ogig E°

n’

where the map mg sends t, > t pnr .
We have the maps

(2.24) RTpxc(2%)n & ROe(20/(57°, E2)) ") RE (X1 / (81, &1 sin)) & RUee(X1)n ©% As sen.

cr,n

By applying R lim,, to these complexes we can remove n. Now, ig has a section ¢ (use Theorem for
E = E°). Composing it with the rest of the maps from (2.24) we get a map in 7 (W (k))q

ecor i RTuk(2)q = (RTer(X1)Ba. At w)q-
Before proceeding let us make the following remark.
Remark 2.25. Let M be a complex equipped with an N-action. Let MNP .= [M — M[N~1]], where
M[N™Y = Leolim(M—s M~ ...
For M = Rl'uk (XY), we have strict quasi-isomorphisms in 2, n(C})

= ~ = -ni ~ ~RH -ni =L N -ni
(2.26) Mq,®p Bl & (Mq,®; BHN ™M 5 (Mg, ®B/ )V P ~ (M®W(E)Al,st)gp i
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The last quasi-isomorphism in (2.26]) holds because M is built from torsion-free and p-complete modules.
The previous two quasi-isomorphisms are clear algebraically because we can assume that N is globally
nilpotent on M (see [38] 0.1]); it is also clear topologically because Mgq, is built from Banach spaces and
+
Bl st
Similarly, for M = RI';(X1) (note that now the action of N on M is trivial), we have strict quasi-

isomorphisms in Z, n(C})

is a Banach space (so the derived tensor product is given by the tensor product itself).

o ~ o —nilp sL R N-nil
Mq, &gt Bl & (Mq,®g+ BHVMP 5 (M@, Ara)g ™"

Extending the map c¢o , by Klmst—linearity and using the quasi-isomorphism we get a map in
Do, N(C)
Eaenn: (RUu(XD)Bw AL a)q = (RTa(X)4, Al wo:
Now, we define the map in Z, n(C}j)

~ i ~L & N, -nil ~ o~ Ny, -nil
Est,£0,m = (&—s"t,ﬁ(’ﬂr)J\[l’r e (RFHK(X?)@)W(E)Almst)QZ i (chr(X1)®AcrAl7rsSt)Ql e

After passing to the category @(CB,t ), we can use the quasi-isomorphisms from Remark and get the
map
esteom  ROuk(X7)q,®p Bl = Rlw(X1)q,®p: ,BY

crsl
Finally, since the Frobenius is invertible on the Hyodo-Kato cohomology, we can take the map in
‘@%N(Cﬁ)
K = "0 " ROuk(XV)q, — Rle(X1)®p: B
Its BJ,-linearization in _@%N(C’B;)
(2.27) eliffo .+ Rluk(X7)q,®p B = Rl (X1)q,®p: ,BY
is the map we want.

o Independence of the choice of m and £°. Fix £9. To show that the map Est %o, is independent of Frobenius

™
twists, that is of the chomﬁ of m € Weo, we note that, for m € Zo, there are natural compatible
with Frobenius transition maps pm, : &, st — &m 7bt,,um(tam) = t7*. Moreover, p™ p™ = p™"™2 and
wh kim = K. Then the transition map from 5?320 x tO 5st 80 5,s fOT Ty > Ty, is given by (¢™)* acting
on RIe(29/(57°, E0)) and p*, for n = ng, — ng,. This suffices since the set Ueo is filtered. We set
5}20 = Egio’ﬂ, for any w € Veo.

To show that EHK does not depend on the choice of £° € X9 we use the above maps u to identify

ifgo ot 50, for 51 < €9. This suffices because the set X0 is filtered. We set X := £lf

&9 ¢ 30, This map is clearly functorial with respect to X;.

€ and !l for any

st 507

HK Tt remains to prove that the map e!I¥

2.3.3. Compatibility of the arithmetic and geometric maps €
a quasi-isomorphism and that the last claim of our corollary holds. For that, assume that £° comes from
§=271/K' € X. Choosel € L4 /k* C yl/ﬁ*. We get a map of PD-thickenings (S, & st.n) — (S1, En)

that identifies the ¢,’s. This yields the base change quasi-isomorphisms in Z, n (W, (k)))

RFcr(Zl/R)l®I]éKl,st,n :> RFCI‘(X]./(§17 éohst;n)) <: chr(Xl) Al st,n-

W (k)

By applying R lim,, we remove n. Composing with the Khst-linear extension of ¢; from Theorem we
get the strict quasi-isomorphism in Z, n(C)

. AL - ~ L~
&+ (RTuk (XT)Ow i Alst)q = (RTer (X1) Ry ) Arst)Q

16Up to a contractible set of choices, of course.
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Denote by
ety =k (Ea) VPR RTuk(XY)q,®p B = Rl (X1)q,®p+ B

the associated map in Z,, N(CB_t ). It is a strict quasi-isomorphism. Now, choose m large enough so that
the action of F'r™ on Z; factors as Zlh Zf — Zy. Take m:= (F,0x,Fsmb1,m) € Ueo. It is easy to
see, using the uniqueness statement from Theorem that the associated map 53@0 . equals Egﬁ In

particular, the map e!I¥ is a strict quasi-isomorphism, as wanted.

The final claim of the theorem follows since EgKA = sf\aglf

2.3.4. Comparison between Hyodo-Kato and de Rham cohomologies. Theorem [2.20] implies the following
Hyodo-Kato-to-de Rham quasi-isomorphisms:

Corollary 2.28. We have natural strict quasi-isomorphisms
(2.29) ean ¢ Rk (X))q,®7C 5 Rl (X1/S)q, in 2(Co),
~R ~ ~R .
el RFHK(X?)Q,DQ@FBIR — RFCr(Xl)Qp®Bj—rBZ’{R m @(CBIR)-

By
They are compatible via the maps 6 : Blz — C' and RTr(X1) — Rl (X1/5).
Proof. From Theorem we have a natural strict quasi-isomorphism in Z, 5 (C)

(2.30) e Rluk(X7)q,®p, B = Rl (X1)q,®p+ B

+
crsb

Take the map B}, — B, given by sending log(A\,) — 0. It is not Galois equivariant but this will not
be a problem for us. Applying it to the quasi-isomorphism (2.30)), which is BJ;-linear, we get a strict
quasi-isomorphism in Z(Cg-+ )

(2.31) MK Rk (X0)q, BBl = RTw(X1)q, .

We tensor it now over B, with C. By Lemma we obtain the strict quasi-isomorphism in 2(C¢)
(2.32) K. RTuk(X?)q,®5C 3 Rl (X1)q, Bnt C

and, composing with the strict quasi-isomorphism in Z(C¢)

RT.(X1)q,@n: C = RUw(X1/S)q,,

the quasi-isomorphism e from our corollary. We note that i is compatible with the Galois action

because o(log(\,)) — log(A,) € Ker6.
Proceeding as above we get the strict quasi-isomorphism in @(C’BC+r )

/\f}(

(2.33) ENN . RIuk(XD)q,®7(BL/F') 5 Rlu(Xi)q, 85y (BL/FY), i>0.

Taking Rlim; of both sides gives us now the second strict quasi-isomorphism of the theorem. |

3. Blz-cOHOMOLOGY

This section is devoted to the definitions of rigid analytic and overconvergent BXR—cohomologies
RFdR(X/BIR), for X € Smg or X € SmTC, and to the study of their basic properties. These co-
homologies are replacements for RI'qr (X )®2BXR which does not exist since there is no continuous
ring morphism C' — BJ; although K is naturally a subring of Bj;: if X is defined over K, then
RI4r(X/Blg) ~ RFdR(X)(@i’Bj'R. In general, we have the relation RFdR(X/BgR)(@gIRC ~ RI4r(X)
(see Proposition and Proposition for this comparison and analogous results concerning filtra-
tions).
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In the next chapter, using the Hyodo-Kato map, we will prove that, if X € Sm¢ is partially proper,
then the rigid analytic and overconvergent BZ;-cohomologies give the same result: if X' is the asso-
ciated dagger variety, the natural map RI4r(XT/B;) — RLqr(X/BJR) is a strict quasi-isomorphism
(Corollary [4.32)).

Our rigid analytic BXR—cohomology is defined by, locally, Hodge-completing absolute crystalline co-
homology, but it gives the same object (see Proposition as the constructions of Bhatt-Morrow-
Scholze [9] and Guo [29] via the infinitesimal site.

3.1. CliffsNotes. For a quick reference, we will recall now some results from [I9] and add few comple-
ments.

3.1.1. Review. We start with a review of [19].

Proposition 3.1. (Colmez-Niziot, [I9, Th. 1.1])
(1) Dagger varieties: To any smooth dagger variety X over L = K, C there are naturally associated:
(a) A pro-étale cohomology RT proet (X, Q,p(1)) € 2(Cq, ), v € Z.
b) For L = C, a K-valued rigid cohomology RT' . —(X) € 2(C+) and a natural strict quasi-
rig, K K
isomorphisrﬂ in 2(Cx)
~R
RI;, #(X)@xC ~ Rlar(X).

This defines a natural K -structure on the de Rham cohomolog.

(¢) A Hyodo-Kato cohomolog RIGE(X) € D, n(Cr,), where Fr, = F if L = K and Fy, =

Frrif L=C. For L = C, we have natural Hyodo-Kato strict quasi—isomorphism@ in, Tesp.,
2(Cx), 2(Cc)

~ - ~ ~R ~
vk : RUGR (X)@par K = RO, 2(X), ik : RUGR (X)®par C = REar(X).

(d) For L = K, a syntomic cohomology RTGX(X,Q,(r)) € 2(Cq,), r € N, that fits into a
distinguished triangle

RIS (X, Qp(r) —— [RIGE (XN =097 55 RUag (X) /F7,
and a natural period map in 2(Cq,)
ot RTER (X, Qp(r)) = R proce (X, Qp(r)).

syn
It is a strict quasi-isomorphism after truncation T<.
(e) (Local-global compatibility) In the case X has a semistable weak formal model the above
constructions are compatible with their analogs defined using the model.
(2) Rigid analytic varieties: To any smooth rigid analytic variety X over L = K,C there are
naturally associated:
(a) For L = C, a K-valued convergent cohomology RT
quasi-isomorphism in 2(C¢)

chonv,?(X)(@%C =~ RFdR(X)

(X) € 2(Cx) and a natural strict

conv, K

This defines a natural K -structure on the de Rham cohomology.

17See [19, Prop. 5.20] for the definition of the tensor product.

18By the same procedure one can define a F™-valued rigid cohomology RI'jg pnr(X) and a natural strict quasi-
isomorphism RI'yig, ur (X)@ignrc ~ Rl4r (X).

19To distinguish this overconvergent Hyodo-Kato cohomology — which was defined by Grosse-Klénne — from the Hyodo-
Kato cohomology defined later in this paper we will add the subscript GK to the former. Similarly, we will distinguished
the induced overconvergent syntomic cohomology.

20See [19} Sec. 5.3.3] for the definition of tensor products.
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(b) A Hyodo-Kato cohomology RT'uk(X) € P, n(Cr,). For L = C, we have natural Hyodo-
Kato strict quasi-isomorphisms in, resp., 2(Cx), 2(Cc)

(X), LHK - RFHK(X)@)I;IHC :> RFdR(X)
(c) For L = K,C, a natural period map in 2(Cq,)
ay : Rlgyn (X, Qp(r)) = RT progt (X, Qp(r)).

It is a strict quasi-isomorphism after truncation T<.

(d) (Local-global compatibility) In the case X has a semistable formal model the constructions
in (a), (b) are compatible with their analogs defined using the model. This is also the case
in (c), for L=K.

(3) Compatibility: For L = K,C, let X be a smooth dagger variety over L and let X denote its
completion. Then:

(a) There exists a natural map [19} Sec. 3.2.4] in 2(Cq,)

Lproét - RFproét (X7 Qp(r)) — 1{Fproét ()?a Qp(T)) reZ.

It is a strict quasi-isomorphism if X is partially proper.
(b) There exists natural maps in Dy n(Cr,)

LHK - RFHK(X)(@FmF :) RT

conv, K

RIHK(X) = Rl (X), RTqr(X) = RIar(X).
The first map is compatible with Frobenius and monodromy. If X is partially proper, the
second map is a strict quasi-isomorphism; the first map is a quasi-isomorphism if L = K or
if X comes from a dagger variety defined over a finite extension of K.
(c) For L = K, there is a natural map in 2(Cq,)

LGK : RFGK (X, Qp(”’)) — RFsyn(X7 QP(T))

syn

and the following diagram commutes

RFGK ()(7 QP(T)) i> RFprOét <X7 Qp(r))

syn
\L LGK i Lproét

RJrsym ()?7 Qp (T)) i> Rrproét ()?7 Qp(r))

Remark 3.2. (i) Below, in Section we will define the overconvergent period map in 1d over C
and, in Proposition [6.8] we will remove the condition L = K in 3c. To do this we could not use the
constructions from [I6] and [I9]: the first one was not functorial enough, the second one, using a “killing
nilpotents” trick, just did not transfer to the geometric setting. This depressing state of affairs made us
take a break of more than a year from the project before coming back to it with an approach that adapts
to the analytic setting an early construction by Beilinson of the Hyodo-Kato quasi-isomorphism.

(ii) The local-global compatibility for rigid analytic geometric syntomic cohomology also holds. This
will be proved in Proposition using local-global compatibility for Hyodo-Kato and BIR—cohomologies.

3.1.2. Complements. Now we pass to complementary results.
(1) n-étale descent. The following proposition should have been included in [19].

Proposition 3.3. Let (%, F) be a Beilinson bascF_T| of an essentially small site V. Then:
(1) The functor F : B — V¥ is continuous.

21gy4ch a base was introduced by Beilinson in [2] 2.1]; it is a slightly more general notion than that of a Verdier base
which is commonly used.
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(2) F induces an equivalence of topoi
Sh(%) = Sh(¥).
(3) Let 2 be a presentable oo-category. Then F induces an equivalence of co-categories
Sh™P (8, 2) S Sh™P (v, 2)
of hypersheaves.

Proof. Claims (1) and (2) were shown in the proof of [I9, Prop. 2.2|. For claim (3), recall that, for a site
%, the oo-category of hypersheaves is defined as

Sh™P (%, Z) := Sh™P (%, Ani) ® 2,

where Ani is the co-category of anima. Hence it suffices to prove claim (3) for the co-category of anima
and in that case it follows easily from (2) and the fact that the Brown-Joyal-Jardine model structure on
simplicial presheaves presents the co-topos of hypercomplete sheaves (see [35, Prop. 6.5.2.14]). O

Remark 3.4. The example most relevant for this paper is the following: ¥ = Smc ¢, the site of smooth
rigid analytic varieties over C' equipped with the étale topology. 7" has a Beilinson base (.#, F},), where
A is the category of basic semistable formal models ,///gs’b or semistable formal models .Z and F,, is
the forgetful functor 2" — 2;, from formal schemes to their rigid analytic generic fibers (see [I9, Prop.
2.8]). We have similar constructions for the site ¥ = SmTCy & of smooth dagger varieties over C' with the
corresponding categories (//lg’ss’b and ///é’ss of basic semistable and semistable weak formal models.

If # € 9, for a presentable co-category ¥, is a presheaf on a Beilinson base %, then the presheaf on
¥ defined by

Uw— (F%U) :=Lcolim % (V,)),

where the colimit is taken over hypercoverings from 4, defines a hypersheaf on 7. In the context of the
above example of a Beilinson base we call it n-étale descent of F.

(2) The following corollary removes the condition L = K in 3b of Proposition and could have been
included in [19].

Corollary 3.5. Let X be a smooth partially proper dagger variety over C' and let X denote its completion.
Let W be a Fréchet space over F'. Then the natural ma in P(Cy)

~R ~ ~R
RIHE (X)® o W — RO (X) @ e W
s a strict quasi-isomorphism.

Proof. Find an admissible covering of X by dagger affinoids and then look at the set of their naive
interiors (a naive interior of a smooth dagger affinoid is a Stein subvariety whose complement is open
and quasi—compac@. By the definition of partially proper dagger varieties this is an admissible covering
of X as well. The individual varieties in the covering are partially proper and, moreover, are defined over
a finite extension of K. The latter fact is true because the corresponding rigid affinoids are defined over
a finite extension of K by Elkik’s theorem [2I, Th. 7, Rem. 2] (the finite presentation condition there
is satisfied in our case by the finiteness theorems of Grauert-Remmert-Gruson and Gruson-Raynaud [36]
Th. 3.1.17, Th. 3.2.1]). Same can be said about the intersections of a finite number of them.

Now, taking the associated Cech cover and evaluating on it the morphism from the corollary we get a
strict quasi-isomorphism by point 3b of Proposition We conclude by rigid analytic descent. O

225ce the point (4) below for the reminder on the definition of the tensor products used.
23We have an analogous definition of a naive interior of a rigid analytic affinoid.
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(3) We will recall now a result from [19] together with a new proof (since the proof supplied in loc.
cit. is a bit sketchy). This proof will serve us as a template for proofs of analogous claims.

Proposition 3.6. (Local-global compatibility, [19, Prop. 4.23]) Let 2 € ///gs’b, The natural map in
2(Cx)

RT,,. 7(21) = RTo, (2¢)

conv, K
s a strict quasi-isomorphism.

ss,b

Proof. 1t suffices to show that, for any n-étale hypercovering %, of 2" from .,
2(Cx)

, the natural map in

RT (21) = RT

is a strict quasi-isomorphism (modulo taking a refinement of %,). We may assume that in every degree of

(%.1)

conv,K conv, K )

the hypercovering we have a finite number of formal models. Passing to cohomology (f[ (—)-cohomology)
and then to a truncated hypercovering we can assume that all the formal schemes mod p and maps
between them that are involved are defined over a common field L (we will denote them with subscript
01,), a finite extension of K. We may leave that way the category of semistable models but we will still
be in the category of log-smooth models (with Cartier type reduction). We are reduced to showing that
the map

(37) « chonv(gbVﬁL,l/SL) — chonv(%.,ﬁL,l/SL)

is a strict quasi-isomorphism.
Tensoring both sides of (3.7) with C' over L we obtain a commutative diagram

chonv(%’ﬁL,l/SL)(/g?C L‘ RFconv(%o,ﬁL,l/SL)(/g\)?C

b L

RIar(Z¢) = RTar (Z.,c).

Since the bottom map is a strict quasi-isomorphism (by étale descent) so is the top map ac. We claim
that this, in turn, implies that the map « itself is a strict-quasi-isomorphism. Indeed, passing to homotopy
fibers of the horizontal arrows in the commutative diagram

RFconv(%ﬁL,l/SL) - chonv(%o,ﬁL,l/SL)

} !

~R « ~R
RFconv(%ﬁL,l/SL)®LC 40) RFCOHV(%o,ﬁL,l/SL)®LC7

we see that it suffices to prove the following claim:
if Ae 2(CL) is a complex such that A@?C’ is strictly acyclic then A is strictly acyclic as well.
To show this, write C ~ L & W, for a Banach space W € C,, and conclude. O

(4) Let X be a smooth rigid analytic variety. In [I9], we have considered a number of nonstandard
tensor products. For example, we have defined (see [19} 4.21]) in, resp., 2(C%), 2(Cc):

RFHK (X)@Fnr? =L COlim((RFHK(X)Fan) (02/,’1)),

RFHK (X)@?nrc =L COlim((RFHK(/X\)ﬁm-C)(%.71)),
where the homotopy colimit is taken over affinoid n-étale hypercoverings %, from ///gs’b. These tensor
products satisfy local-global compatibility. A fact that can be proved as in the following example:
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Proposition 3.8. (Local-global compatibility for tensor products) Let 2" € ///és’b. The canonical maps
in, resp., 2(Cx), 2(Cc)

Rk (27)®pn K — ROpg (X)&@pnr K,
RFHK(%l)@?an — RI'pk (X)@)?mC
are strict quasi-isomorphisms.

Proof. For the second morphism, proceeding as in the proof of Proposition [3.6|and using its notation, we
reduce to showing that the canonical map in 2(C¢)

~R ~R
RFHK(%ﬁL,l)(gFLO — RFHK(%-,ﬁL,l)@)FLC

is a strict quasi-isomorphism. But this is clear since, via the Hyodo-Kato morphism, this map is strictly
quasi-isomorphic to the map in 2(C¢)

RFdR(%C) — RFdR(%o,C)v

which is a strict quasi-isomorphism.
For the first morphism, we proceed in the same way ending up with the strict quasi-isomorphism in
(L)
RI4r(21) — RLGr(Z., 1)

Passing to homotopy colimit over finite extensions of L in K, we finish the argument. O

Remark 3.9. (1) The local-global compatibility of nonstandard tensor products (see [19, 5.16]) also holds
for the dagger varieties and the Grosse-Klénne Hyodo-Kato cohomology. The proof of this fact is a simple
analog of the proof of Proposition [3.8

(2) In Proposition we can replace C' with any Fréchet space B over F. This requires just a slight

modification of the proof: pass from RFHK(—)QB;P;LB to (RF%E(—)@?LC)Q@E:LB, use the Hyodo-Kato

morphism to pass to de Rham cohomology RI‘dR((f)c)@;B , use étale descent for de Rham cohomology,
and go back to RFHK(—)@)?LB viaC~F, & W.

3.2. Geometric crystalline cohomology. Our rigid analytic B(‘fR—cohomology will be defined locally
as a completion of the absolute crystalline cohomology. We will start then by recalling the definition of
the latter.

3.2.1. Relative crystalline cohomology. Let f : X; — S; be a map of log-schemes, with integral quasi-
coherent source. Suppose that f is the base change of a fine log-smooth log-scheme f, : Z; — S 1, by
the natural map 6 : S; — Sp.1, for a finite extension L/K. That is, we have a map 01 : X1 — Z; such
that the square (f, fr,0,0z) is Cartesian. Such data ¥y := {(L, fr,07)} form a filtered set.

(a) C-version. Let @/% be the n-¢étale sheafification of the presheaf 2~ — RI'.,(2/S)q, on %gs’b.
Note that RI'.:(27/S)q, € 2.7 (Cc), where 2.7 (C¢) is the bounded filtered derived oo-category of
@(C’c)lﬂ For X € Smg, we setlﬂ in 2.7 (Cc)

RIEE(X) i= R (X, ).

It is a filtered dg C-algebra equipped with a continuous action of ¥k if X is defined over K. It is equipped
with the topology induced from the topology of the RI'.;(.2"/S)’s. Since the models 2" are log-smooth

24Recall that, for a stable co-category ¢ having sequential limits, the filtered oo-category 2.7 (%) was defined in [31]
Thm. 2.5]. It is a stable co-category.

ss,b

25Here we think of X as an n-étale sheaf on .Z."".
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over S, we have natural (strict) quasi-isomorphisms (the first one in the category of sheaves with values
in 2% (C¢), the second one — in 2% (C¢)).

(3.10) Ayt = A, RTE(X) = RTar(X).

(b) K-version. Let 4, 7 be the n-étale sheafification of the presheaf 2” — RI' | %(Z") on %gs’b,
where we set in 2(Cy)

RFCI‘,?(%) = LCOhIIlE1 chr(Zl/SL)Qp-

For X € Smc, we set RI', z(X) := Rl'«(X, 7, ) in 2(Cx). It is a dg K-algebra equipped with
a continuous action of ¥ if X is defined over K (this action is smooth if X is quasi-compact). It is
equipped with the topology induced from the topology of the RT'.,(Z;/S1)’s. There are natural continuous
morphisms (the first one in the category of sheaves with values in 2(C%), the second one — in Z(C%))

Ay g — e Rl 7z(X) = RI™(X).

C cr

Lemma 3.11. (1) (Local-global compatibility) Let 2" € ///gs’b, The natural map in 2(Cy)
Rl %(2) = RT, % (Zc)

s a strict quasi-isomorphism.
(2) (Product formula) For X € Smp, the natural map in Z2(Cy)

RT4r(X)®xk K — R, 2(X0)
s a strict quasi-isomorphism.
Proof. Since, for # € 4", the natural map in Z(Cx)

RI 7(@) - chr,F(@)

conv,K

is a strict quasi-isomorphism, it induces a strict quasi-isomorphism in 2(C%x)
RFCOHV,?(‘)() :> chr’?(X), X e Smc.

Hence our lemma follows from analogous claims for convergent K-cohomology which are known (see [19,
the proof of Prop. 4.23] or Proposition [3.6]). O

3.2.2. Absolute crystalline cohomology. Let & € #¢ . Recall that we have the absolute crystalline coho-
mology R'er(27)q, € 2%,(Cy+ ) equipped with the Hodge filtration " RI'e;(2")q, = Rl (%, JMa,,
for r > 0. Let o, and F".o/.,, r> 0, be the 7n-étale sheafifications of the presheaves 2~ — RFcr(%)Qp
and 2 — Rl (4, /[T])Qp, respectively, on .Zg. For X € Smc, we set in @ﬁw(C’Bé)

RI(X) := Rle (X, o), F'RI(X): =Rl (X, F oy), 7 >0.

It is a dg filtered BZ-algebra equipped with a continuous action of ¥k if X is defined over K. It is
equipped with the topology induced from the topology of the R, (2", /[T])QP’S.

The local-global comparison requires the Hyodo-Kato quasi-isomorphism and will be proven in Lemma
below (just the nonfiltered case).

3.3. Rigid analytic BjR-cohomology. We will define now rigid analytic BXR—cohomology, list its basic
properties, and compare it with already existing definitions.



ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, I: THE BASIC COMPARISON THEOREM. 27

3.3.1. Definition of rigid analytic BCTR-cohomology. Let & € 2. To define rigid analytic BXR-
cohomology, we start with the absolute crystalline cohomology RI'c;(Z")q, and complete it with respect
to the Hodge filtration F"RI'.;(2")q,, r > 0:

Rl (2)q, = Rlim, (RTer(2)q,/F"), RTa(Z, #M)q = Rlims, (RT(2, #M)q,/F7),
This is a dg filtered Bjﬁ—algebra, hence a complex in 2.% (CBIR)' The corresponding n-étale sheafi-

fications on .Z we will denote by F':, r > 0. We have canonical maps & : F oy, — Fldler,
r > 0. Moreover, the canonical map ¢ : F'RT:(2")q, — F"Rl'«(2/5)q,, compatible with the map

6 : BY, — C, extends to a map 9 : F'RT o (2)q, — F'RI.(2 /S)q,, which, in turn, globalizes to a
map 9 : Fraley — Fruefcrrel.
For X € Smc, define the B, -cohomology in @ﬁ(CB:R):
RFdR(X/B(J{R) = Rl¢ (X, Do ), FTRFdR(X/B;rR) =Rl (X, F ey ), 1 2>0.

This is a dg filtered BIR-algebra, equipped with a continuous action of ¥ if X is defined over K. It is

equipped with the topology induced from the topology of the RT'e;(2", # ["])ap’s.
The local-global comparison requires product formula and will be proven in Lemma [3.22] below.
We have canonical maps (the first one in 2.7 (Cg+ ), the second one — in Z(Cgx+ ))
dR dR

k: Rle(X) — RTar(X/BJR),
i F'RUar(X/Bfp) — F'RIar(X), 7> 0.
)

It is immediate from the definitions that the first map yields a strict quasi-isomorphism in 2.7 (CBIR
k: RIG(X)™ 5 RO4r(X/BR).
where we set RI'¢,(X) ™ := Rlim, (RT¢,(X)/F") in @ﬁ(C’BIR).

3.3.2. Comparison results. (1) We start with a comparison of Bl;- and de Rham cohomologies.
(i) Projection from BIR—cohomology to de Rham cohomology.

Proposition 3.12. Let X € Sme.
(1) We have a natural strict quasi-isomorphism in 2.% (C¢)
~R ~
0: RLar(X/Bgg)®ps C = RLar(X).
(2) More generally, for r > 0, we have a natural distinguished triangle in Q(CBIR)
(313) FrilRFdR(X/B:;R)—t> FTRFdR(X/BIR)L) FTRFdR(X)
(3) Forr >0, we have a natural distinguished triangle in Q(CBIR)
(3.14) FrHRI 4R (X/Bl,) = F'RIgr(X/Bl,) 3 PRI (X, Q) (r — i)[-i]
i<r
Proof. In the first claim, the tensor product is simply defined as the homotopy fiber of the map in
‘@(CBIR) .
RT4r (X/Bggr)— RLar(X/BJR).

Hence it suffices to show that we have the distinguished triangle in @(CBIR)

R (X/Bis)— RT e (X/Bis ) —2 RTag (X).
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Etale locally this translates into the triangle in 2 (CB(TR)

Rle:(2)q, —— Rler(2 ) g, —— Rlu( 2 /S)q, .
where 2" = 27, ¢, for a semistable affine model Zs, over a finite extension L of K.
This triangle fits into a commutative diagram:

t —

(3.15) Rle:(2)q, RTr(2)q, —— = Rle:(2'/S)q,

ZTZBK ZTEBK ZT

~R 10t R 100 ~R
RI4r(21)®. Bl — RTar(21)®,Bly — RI4r(21)®,C.

Here the vertical maps ipk := Rlim, tpk,r, With ¢k , defined as the composition

~

(816)  mir:  (RTar(21)81Bp)/F" = (RDa(20,/S1)q, &1 R0(S/SL)q,)/F"
= Rle(2/SL)q, /F" < Rle(2)q, /F",
where we set

(3.17) F(RLar(27)8; Blp) = Rlim(6(22)8, F'Bl, — Q' (21)8, F7 "Bl — ---).

The first quasi-isomorphism in follows from the fact that 2%, is log-smooth over &}, and that,
more generally, derived de Rham complex computes crystalline cohomology for log-syntomic schemes
(both Hodge completed) by [4, 1.9.2]. The second quasi-isomorphism is just log-smooth base change
for crystalline cohomology (more explicitly, one can proceed as in [45, Prop. 4.5.4]). And the third
quasi-isomorphism is a formal scheme version of [39, Cor. 2.4] (the proof in loc. cit. goes through in our
setting).

The bottom row in diagram is a distinguished triangle. It follows that the top row in our
diagram is a distinguished triangle as well, as wanted.

The second claim, étale locally, reduces to showing that the triangle

F'"'ROet(2)q,—— F'RU(2)q, —— F'RLe:(2/S)q,
where & = 27, ¢, for a semistable affine model #¢, over a finite extension L of K, is distinguished.
This triangle fits into a commutative diagram:

t 9

Fr'RTe(2)q, F'RTw(2)q, F'RT(2/S)q,

ZTZBK ZT[BK ZT

~R 1®t ~R 106 ~R
Fr=Y(RI4r(21)®Bir) — F"(RLar(21)@Bjr) — F'(RTar(21)®.C).

The bottom row is a distinguished triangle: use the expression (3.17) to reduce to showing that, for
r—12>14 >0, we have a strict quasi-isomorphism

QN 20)B, Fr B, S Q1(21)8 FT B,
and the triangle
r ~R - ~R . ~R
QN (20)BLBlp—— O (21)8, Bl — (21)8,C

is distinguished. But the first claim is clear and the second claim was just proved in (1).
The third claim, étale locally, reduces to identifying the graded term in the distinguished triangle

F'HRI (2 ), = F'RIa(2)q, — &t" Rla(27/9)aq,,
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where 2 = 27, ¢, for a semistable affine model Zs, over a finite extension L of K. That is, we want
to show that

gr" RTe (2 /9)q, ~ @ '(21)8.t"'Cl-i).

i<r

The above triangle fits into a commutative diagram:

FriREo(2)q, —— F'RIw(2)q, ——— &1" R (27/5)q,
oo o e
F+Y(RTar(27)8; Big) — F"(RTar(27)8; Big) —> gr" (RTar(21)%, Bn).
Using expression we get
gr" (RTar(21)8; B) L5 Rlm(0(2)@11"C 5 QU 2)8,t" 10 % - 5 Q7 (22)8,1°C)

~ (P (21)3, O],

i<r
as wanted. The global map Bx is defined by globalizing the local maps B4 := ga fg}l. O
Remark 3.18. (1) The above proof shows that we have a distinguished triangle
Ao s g —s A2,

(2) The maps ipk above can be defined in a more general set-up, where 2%, is assumed to be just
log-syntomic over Sp. It is again a strict quasi-isomorphism and the proof of this claim is not much
different than in the log-smooth case: The fact that the second map in the definition of ¢k, in
is a strict quasi-isomorphism can be seen by unwinding both sides of the cup product map: one finds a
Kiinneth morphism for certain de Rham complexes. It is an integral quasi-isomorphism because these
complexes are "flat enough" which follows from the fact that the maps ¢, = 01, and Lo, n = O p,
for n > 0, are log-syntomic (see the proof of [45, Prop. 4.5.4] for a similar argument). The third map in
is a strict quasi-isomorphism (integrally, a quasi-isomorphism up to a constant dependent on L)
by an argument analogous to the one given in the proof of [39, Cor. 2.4].

(i) Product formula. Let X € Smg. The morphisms ik from Remark induce a morphismY in
2F (Cg+ )
dR
~R
LBK : RFdR(X)(X)KBgR — RFdR(XC/BgR)-
Lemma 3.19. The morphism tpk is a strict quasi-isomorphism in 2. (Cg

).

n
dR
Remark 3.20. The filtration on RFdR(X)®IR(B(TR is defined by the formula
. ~Ro, ¢ - ~Ro ¢
F'(RIar(X)®@gBig) := Leolim(F" (RIar®@ kB ig ) (UL)),
where the homotopy colimit is taken over étale affinoid hypercoverings U, of X and, for an affinoid U,
Fr(RUgr(U)BwBly) = RlIm(0(U)Bn F Bl — Q' (U)E R FT 1B, = -+-).

Since RT'4r (X)) satisfies filtered étale descent, it is easy to see that so does RFdR(X)@)IR(BjR.

263ee the proof of Lemma for details.
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Proof. We may argue étale locally and assume that X = 27, for a semistable affine model 2%, , for a
finite extension L of K. Then X¢ = 27 Xk L. We need to show that the map

ik © RUar(22)8x By — (Rl 25, /SK)Q, 8xBin) ™ 25 Rle(2s, X0, 00)q,
is a filtered strict quasi-isomorphism. For that, since the base change map
RTe(Z6,/Sk)q, = Rle(Z6,/SL)q,
is a filtered strict quasi-isomorphism, it suffices to show that so is the canonical map
(3.21) RTw (2, /S1)q, @ xBiy—Rlim, (Rl e (25, /S1)q, &k Bin)/F"
But we can write (the differentials are over L):

FI(RT (2o, /S1)q, ®xBiy) = RIm(0(21) 8k F/Bl, — QY (21)8x I 'Bl = )
FI(RLex(2, /1), & Bin)/F" = RIm(0(21) S (F/ B [F7) = QN (20) @ (B Bl /F7) = --).
And now we can argue degreewise. But then, for s > 0,

Rlim, (2 (27)8 g (F Bl /F")) ~ Q(21)@ xR lim, (FBl /F") ~ Q' (21)®n F*Bly.

as wanted.

(2) Now we pass to comparisons between BQ'R—cohomology and crystalline cohomology.

Lemma 3.22. (Local-global compatibility) Let 2~ € ///gs’b and let > 0. The canonical map in
7 (CBIR)

K FTRFcr(%)ap %FTRFdR(%C/B:{R)
18 a strict quasi-isomorphism.
Proof. We may argue étale locally on 2. Assume thus that 2" ~ 24, 4., for a semistable affine model

2, over Sp, [L : K] < oo. From the product quasi-isomorphisms from Lemma and its proof (where
we took L = K) we get the commutative diagram

K

F'RTo(2)q, F'RIar(2c/Bg)

LBKTZ LBKTZ

~R ~ ~R
F'(Rler(Z0,)qQ, @ Br) — F"(RLar(21)8 . Bgg)

and the two vertical strict quasi-isomorphisms. The bottom horizontal strict quasi-isomorphism follows
from the local-global property of F"(RI'4r (2] L)@%BCTR) (see Remark . O

Lemma 3.23. The canonical map in '@<CBIR)
k@1: ROu(X)Bp:Blg = RTur(X/BlR), >0,
18 a strict quasi-isomorphism.

Here, we set

RT(X)®pz Bl i= Leolim((RTe,&p: Biy) (7)),

where the homotopy colimit is taken over n-étale quasi-compact hypercoverings %, from ///gs’b (that is,

hypercoverings %, such that every %,, n > 0, is quasi-compact).
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Proof. Tt suffices to show that, for an affine 2" € %és’b, the canonical map
Rlim, (RTe(2)q, O, (BE/F7)) =R lim, (Rl (2)q, /F7)
is a strict quasi-isomorphism. Take a log-smooth lifting %" of 2" over Spf(A.;). We have
(824)  (RTa(2)q,®p: (BL/F") = (0(#)q, 851 (BL/F) = Qb a., q, 084 (BE/FT) = --),
REwr( 2 )q,/F" = (0(%)a,@p: (BL/F7) = Qly s q, 84 (BE/F ™) = )
The claim in the lemma is now clear. ]

3.3.3. History. Let X € Smc.

(i) Recall that Bhatt-Morrow-Scholze in [9, Sec.13] introduced BZ;-cohomology of X, which they
calﬂ crystalline cohomology of X over B}. We will denote it by RI'EMS(X/B1;) and see as a complex
in @(OBIR)' As they mention [9, Rem. 13.2], morally speaking, it is the infinitesimal cohomology of X

over the embedding given by the map 6 : B(J{R — C. It is defined though in such a way that it is easy to
compare it with Aj,s-cohomology. Similarly here, we have defined RI'4g (X/ B(TR) in such a way that it
is easy to compare it with crystalline cohomology over A.;.

(ii) The infinitesimal site definition of RTFYS(X/B) was carried out by Guo in [29, Sec. 7.2] (see also
[30]). We will denote this version of BJ;;-chomology by RI'$u°(X/B1;) € .@ﬁ(CB:R) (RI§Ee(X/BiR) ==
RIine(X/BJR)). It comes equipped with a Hodge filtration (which was ignored in [d]). Moreover, Guo
constructed a natural quasi-isomorphism (see [29, Cor. 1.2.9., Th. 1.2.7])

(3.25) RIGR(X/Bg) ~ RIGR™ (X/B{y).
(iii) Our construction of BIR—cohomology is compatible with the above constructions:
Proposition 3.26. Let X € Sm¢.
(1) There is a natural quasi-isomorphism in "@(CBIR)
RIar(X/BJp) ~ RIGR °(X/Bg).
)
RTar(X/Bgg) ~ RIGR°(X/Bg).

(2) There is a natural quasi-isomorphism in @ﬁ(CBIR

Proof. Claim (1) follows from claim (2) and the quasi-isomorphism ({3.25)).
To prove claim (2), recall that RTqr (X/BZy) is defined by taking, étale locally, the Hodge completed
absolute crystalline cohomology and then globalizing. More specifically, let 2™ € .Zg. We have

RTr(2c/Blg) ~ RT(2)q, = Rlim, (RTe(2)q,/F"),
F'RTar(2c/Big) = Rle( 2, 717 = Rlim;s, (RT(27, #1)q, /FY).

On the other hand RT'$4°(X/B1y) is defined as the infinitesimal cohomology RTin¢(X/B1g) equipped
with its natural Hodge filtration. It satifies étale descent.

This means that, if 2" is affine and (exactly and) closely embedded in an affine formal log-scheme %/,
log-smooth over A, then in Qﬂ(CBIR)

RTan(20/Bj) [F7 ~ RUm((Z (9)[F7)q, + (Z2(2)/F" )Py ja)a, =),

2TWe take here the étale version studied in |12} Sec.6.2] and not the original analytic version. The two versions are
quasi-isomorphic by [12] Sec.6.2].
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where P4 (%) is the PD-envelope of 2" in ¢ and the tensor product is p-adic. On the other hand, we
have in .@f(C’B:R)

Rline(2c/BiR)/F" ~ Rlim(Z4, (%) /F" — (@%(%)/F’“*l)é%(%)a}%/BIR ),

where 2. (%) is the inf-envelope of Z¢ in %5 = gBIR' Since Acr,q,/F' ~ Bl /F*, we have a natural
map in @y<CBIR)
RPdR(%C/B )/FT — erf(%c/B )/F7
This can be globalized to a map in 2.% (CB;R)

RI4r(X/BjR)/F" — R (X/BlR)/F.

We claim that it is a strict quasi-isomorphism. Indeed, it suffices to show this locally so we may assume
that we have the data of integral models 2", % as above and, moreover, % is a lifting of 2 . Then

Rlar(Zc/Blg)/F" ~Rlim(0(%g)/F" — ((ﬁ(@)/F’"_l)@)ﬁ(@)Ql@/Acr)Qp — ),
RIS (20/Bip) [E” = RIm(0(%)/F7 > (0(%)/F™ B o)y e =),

But we have the topological isomorphisms
(0@ F)@0@) a)q, = (O P8)/F)Bo(2) Uy, /4
(0(%8)/F)®o(2)%Y), mr, =@ (#8)/F")® 6 (2]

cr,Qp,i
B, /BdR i
where (—); denotes moding out by F. Hence the strict quasi-isomorphism

RU4r(Zc/Blg)/F" 5 R (20/BiR)/F",

as wanted.
Having the strict quasi-isomorphism

RL4r(X/BjR)/F" 5 RO (X/BiR)/F",
we may take Rlim, of both sides to obtain the strict quasi-isomorphism
RLar(X/Bjg) = RTGE(X/By).
This is because we have

RI4r(X/Bly) = Rlim, (RTar(X/BJR)/F"), RI{E°(X/Blz) = Rlim, (RTGE(X/BlR)/F")

as can be easily seen by a computation similar to the one used in the proof of Lemma Finally, to
obtain the strict quasi-isomorphism

F'RT4r(X/BiR) = F' RIS (X/BlR), >0,
we use the distinguished triangles
FTRFdR — RI4r — RFdR/FT

for both cohomologies. O

3.4. Overconvergent B;{R-cohomology. We define overconvergent B:{R—cohomology via presentations
of dagger structures.
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3.4.1. Definition of overconvergent B(J{R-cohomology. Let X be a smooth dagger affinoid over C. Let
pres(X) = {X,} be a presentation of X (see [19, Sec. 3.2.1] for relevant definitions). Define in @f(CBIR)

F'RIY G (X/BJg) := Leolimy, F"RT4r(X,/Blg), 7> 0.

For r > 0, the étale sheaﬁﬁcatio of FT'RFLR(X/B(J{R) on SmTC gives us a sheaf F" .o/, . The filtered

B -cohomology in 2.7 (Cg+ ) of a smooth dagger variety X over C is defined as

ir
F'RI4r(X/BJR) = Rl&(X, F e ), 1> 0.
Remark 3.27. If X is a smooth dagger affinoid over C' the above two definitions of Bjﬁ—cohomology

RFZR(X /Bls) and RTqr(X/B1y) agree. This will be shown in Corollary below by reduction to
Hyodo-Kato cohomology via the Hyodo-Kato quasi-isomorphism.

3.4.2. Properties of overconvergent B(J{R-cohomology, We will now prove properties of overconvergent
B(J{R—cohomology that do not require Hyodo-Kato cohomology.

We have canonical maps in, resp., Z(Cg+ ) and 2.7 (Ck)

.
dR

0 F'RU4r(X/Bjg) — F'RL4r(X), X €Sm,r>0,
i ¢ RT4r(X) = RT4r(Xc/Bjr), X € Smi,

induced by their rigid analytic analogs.

Proposition 3.28. (1) (Projection) Let X € Sm},.
(a) The map ¥ defined above yields a natural strict quasi-isomorphism in 9% (C¢)

~R ~
0: RTar(X/Bgg)®pz, C — RLar(X).

(b) More generally, for r >0, we have a natural distinguished triangle in 2(Cg+ )
dR

(3.29) Fr'RTgr(X/B,)—— F'RTr (X/B,) —— F'RTar (X)
(¢) Forr >0, we have a natural distinguished triangle in @(CB:R)
(3.30) FrHRLar(X/BlR) = F'RTar(X/Bg) = @ RI(X, Q%) (r — i)[i]
i<r

(2) (Product formula) Let X € Sm}(, The map 1tk defined above yields a natural quasi-isomorphism
in 9.F (CB:R) .
LBK : RFdR(X)(X)KB(J{R — RFdR(Xc/BdJrR)
See Remark below for the definition of the tensor product.
(3) (t-completeness) The canonical map in '@y(CBjR)
. ~R -
RPar(X/BJg) — Rlim, (RTar (X/Br)®pt, (Bir/F"))
is a strict quasi-isomorphism.
Remark 3.31. In Proposition (2), the filtration on RLgr (X )@iB:{R is defined by the formula
~R . - ~R
F"(RTar(X)®xBJR) := Leolim(F" (RTar® Bz ) (UL)),

where the homotopy colimit is taken over étale dagger affinoid hypercoverings U, of X and, for a smooth
dagger affinoid U,

Fr(RLgr (V)@ RBl,) = Rliim(O(U)@r F Bl — QHU)S R F" "Bl — ).

28See 46}, Def. 2.1] for the definition of étale topology of dagger varieties.
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In particular, if r = 0, RFdR(U)<§>IR(BIR is just the usual projective tensor product.

Proof. To prove the first projection formula in (1) it suffices to argue locally for the dagger cohomologies.
So we may assume that X is a smooth dagger affinoid with the presentation {X,}. We need to show
that the projection

9: ROIR(X/Bip)@ps C 3 RITL (X)
is a strict quasi-isomorphism. We can write this projection more explicitly as the composition
~R . ~R ~ . ~R
RT} R (X/Bg)@p: C = (Lcolim, RT4r(Xa/BJg))®p: C & Leolimy, RTar (X5/Bjy) &g C
beolimn ¥, 7, colimy, RTar (X5,) ~ RT (X).

The second map is a strict quasi-isomorphism because the tensor product is defined as the cone of
multiplication by ¢; the third map is a strict quasi-isomorphism by Proposition [3.12]

To prove the second formula in (1), we argue locally as well. We need to show that, for » > 0, we have
a distinguished triangle

T — t ‘s 19 '
(3.32) FT IR (X/Blg)—— FTRIL (X/Blg) —— FTRII L (X),

where X is a smooth dagger affinoid with the presentation {X}}. But this triangle can be written as:

L colimy, t

L colim, F™~'RT4r (Xn/B) S22 L colimy, F"RTar (Xn/Blg) Y 1, colimy, F*RTag (X5)

and then it is clear that it is distinguished by Proposition [3.12
To prove the third formula in (1), we again argue locally. We need to show that, for » > 0, we have a
distinguished triangle

(3.33) FrIRIY g (X/By) <8 F'RIL (X/BY) 2 @RI, Qi)(r — i)[—i),

i<r

where X is a smooth dagger affinoid with the presentation {X}}. But we can define this triangle as:

L colimy, F" ' RT4g (X5/By)

[1] w}b can

L COlimh @igr RF(Xh, Qth)(’r - Z) [—Z] L colimh FTRFdR(X}L/BgR)

L colimy, ,@Xh

and then it is clear that it is distinguished by Proposition [3.12)
In the product formula (2), the map ¢k is defined by globalizing maps L}TBK for dagger affinoids. To
define the latter, assume that X is a smooth dagger affinoid with the presentation {X}} and set

~R . ~R ~ . ~R
(3.34) i : RUIL(X)@xBis = (Lcolimy, RUgr (X5))@ By < Lcolimy, RT4r(X5)® By
L colimp, ¢ .
—CR B T, colimy, RTar (Xn,c/Blg) =~ RUIR (X /Big)-

The third map is a filtered quasi-isomorphism by Lemma It remains to show that so is the second
map, i.e., that the map

. ~R ~R
(3.35) L colimy, RTqr (X3,)® Bl — RITL (X))@, By,

is a filtered strict quasi-isomorphism. Indeed, look at the cohomology of both sides. On the right hand
side, arguing as in [16], Sec. 3.2.2], we get

77 SR i -~
H'(RUR (X)&xBir) ~ Hig(X)®kBig.
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For the left hand side, we compute
H' (L colimy, RT4r (X5) B Blx) = H' (L colimy, RDgr (X5)® v Bily) = colimy, (Hig (X3)B R By
= Hgp(X)®x By
The second and the third isomorphisms above follow from:

(1) the fact that the cohomology H{y (X)) is a finite rank vector space over K with its canonical
topology (by [27, Th. 3.1]);
(2) point (1) implies the quasi-isomorphism

7 onoR 7 oS
H'(RTar(X3)®xBgg) =~ Hir (X3)®xBgg

proved as in [I6], Sec.3.2.2];
(3) the system {H}g(X})}n is essentially constant and isomorphic to Hig (X);
(4) point (3) implies that the system {Hig (X7)®@r B} is essentially constant and isomorphic to
Hip (X)® KBy
This proves that the map is a strict quasi-isomorphism.
We shall need to argue more that it is a filtered strict quasi-isomorphism as well. We argue by induction
on r > 0; the base case of » = 0 being proved above. For the inductive step (r — 1 = r) consider the
following commutative diagram

L colimy, F" = (RTqr (X3) 8w Bily) —— F' (R (X)&RB)
e e
. ~R ~R
L colimy, F"(RTag (X5)® x Bl FrRIT (X)@kBh)

: !

L colimy, F"(RTqr (X5)Bn () ——= Fr(RTL (X)Bh0)

The left and the right vertical triangles are distinguished by and , respectively. The bottom
map is clearly a strict quasi-isomorphism; the top map is a strict quasi-isomorphism by the inductive
assumption. It follows that so is the middle horizontal map, as wanted.

We finish the proof of the second claim of our proposition by noting that the map R limy tpk in
is a strict quasi-isomorphism by Lemma |[3.19

For the third claim of the proposition, it suffices to argue locally for the dagger cohomologies. Hence
we can assume that X ~ Y for a smooth dagger affinoid Y defined over K. And then the wanted ¢-
completeness follows from the second claim of the proposition and the fact that, since our tensor products
are projective and the Mittag-Leffler condition is satisfied, the canonical map

SR . ~R -
RIIR (V)@ By — Rlim, (RT) (V)@ (Bl /F7))

is a filtered strict quasi-isomorphism. O

4. GEOMETRIC HYOoDO-KATO MORPHISMS

This section is devoted to the definition of compatible rigid analytic (for X € Sm¢) and overconvergent
(for X € SmTC) Hyodo-Kato cohomologies RI'yyy #(X). For a general rigid analytic variety, the Hyodo-
Kato cohomology is in general quite ugly (not sep,arated and, locally, infinite dimensional), but for dagger
varieties the Hyodo-Kato cohomology has nice properties (separated and, locally, finite dimensional). On
the other hand (Lemma, if X € Sm¢ is partially proper, then the rigid analytic and overconvergent
Hyodo-Kato cohomologies give the same result: if XT is the associated dagger variety, the natural map
RFHK,F(XT) — Ry #(X) is a strict quasi-isomorphism (Corollary .
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We define RFHK’ 7(X) for dagger varieties by, locally, going to the limit over a presentation in the
Hyodo-Kato cohomology for rigid analytic varieties, and globalizing. This definition is much more flexible
than Grosse-Klonne’s [28], and we show (Lemma that the two definitions give rise to the same
cohomology.

The rigid analytic and overconvergent Hyodo-Kato cohomologies are related (Theorem and Theo-
rem to the rigid analytic and overconvergent de Rham and BIR-cohomologies by the Hyodo-Kato
quasi-isomorphisms in, resp., 2(C¢) and @(OBIR):

~R ~ ~R ~
LHK RFHK,F(X)®FC — RFdR(X), LHK RFHK,F‘(X)Q@FB;R — RFdR(X/BIR)

4.1. Rigid analytic setting. We start our definitions of Hyodo-Kato morphisms with rigid-analytic
varieties.

4.1.1. Completed Hyodo-Kato cohomology. The completed Hyodo-Kato cohomology RI'gx (X?) that ap-
peared in the proof of Theorem has better topological properties than the classical Hyodo-Kato
cohomology RI'yk (X1) (being over p-complete field F instead of F™"). Because of this we will often use
it.

Let X € Sme. Let o5k (¢ stands for "completion") be the n-étale sheafification of the presheaf
Z — Rluk(27)q, on MEP. We set in PN (Cp)

RFHK)};(X) = Rl (X, Zik)-
Itisadg F’—algebra equipped with a Frobenius, monodromy action, and a continuous action of ¥, if X
is defined over K. It is equipped with the topology induced from the topology of the RFHK(%O)QP’S.

Unwinding the definitions, using the base change quasi-isomorphism (2.19)), and globalizing we obtain
that the canonical morphism in Z, n(C})

(4.1) B RUux(X)®pmF — Ry p(X)

is a strict quasi-isomorphism. It implies:

Lemma 4.2. (Local-global compatibility) For 2~ € .4, the canonical morphism in P, n(C )
(4.3) Rluk(27)q, = Ry #(Z2¢)

s a strict quasi-isomorphism.

Proof. We can pass from K to K = KF (which amounts to passing from F to F for the absolutely
unramified subfields) without changing the cohomologies in (4.3)). And then we can simply use local-
global compatibility for (F‘)nr = F-cohomology (see [19, Prop. 4.23]). |

4.1.2. Geometric rigid analytic Hyodo-Kato quasi-isomorphisms. We will now use Theorem to de-
fine, both local and global, geometric Hyodo-Kato quasi-isomorphisms.

(i) Local setting. We will define two types of Hyodo-Kato morphisms: Hyodo-Kato-to-de Rham and
Hyodo—Kato—to—BjR.
Let 2 € //[gs’b. The Hyodo-Kato-to-de Rham morphism is defined by the composition in Z(C¢):

HK

(4.4) mk: RLuk(27)q,B5C ~ RTe(21/5)q, ~ RTar(2c).

It is a natural strict quasi-isomorphism.
For the Hyodo-Kato-to-Bj;; morphism we have:
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Corollary 4.5. Let Z € ///gs’b. There exists a natural strict quasi-isomorphism in 2(Cg+ )
dR
. 0. ofpt X +
LHK - RFHK(% )QP®FBdR, — RFdR(%C/BdR)-

Moreover, we have the commutative diagram in “@(CBIR)

~R L
RTuk(27)q, @Bl —> RTar(2¢/Br)

Jreo |

Rk (270)q, 85C — %~ RT4r(20).

~

Proof. To define (i, we use the natural strict quasi-isomorphism in _@(CB:R)

~R ~ ~R
ent ¢+ RTuk(27)q,®rBlr = Rl (21)q,®s: Bir

+
BdR

from Lemma and compose it with the strict quasi-isomorphism in 2 (CBj )
R

k: RTa(21)q,EmtBiz & RTw(2)g

P

from the proof of Lemma [3:23]
Commutativity of the diagram follows from Lemma [2.28] O

(ii) Global setting. We can now state the main theorem of this chapter:

Theorem 4.6. (Geometric Hyodo-Kato isomorphisms) Let X € Sme. We have the natural Hyodo-Kato
strict quasi-isomorphisms in, resp., 2(Cc) and 2(Cg+ )
dR

(4.7) ik © Ry p(X)@5C 5 RTar(X), ik : ROy 5(X)@pBlg = RTar(X/BR)
that are compatible via the maps 6 and 9.

Proof. Globalize the local strict quasi-isomorphisms from Corollary [2.28 and Corollary [£.5] O

(iii) Complements. In a similar fashion, the local strict quasi-isomorphism e!I¥ from Theorem m
induces the natural strict quasi-isomorphism in Z, y(Cg+)

(4.8) et s Rl p(X)®zBf = Rl (X)®gt B,

)

where we set in .@%N(C’B;)

(4.9) Ry #(X)®BY := Lcolim((RT

: Bl)(7.1)),
Rl gy X)@’BctB:t := L colim((RT"

B (.0)),

HK F®F,L
HK F®B;t

with the homotopy colimit is taken over n-étale quasi-compact hypercoverings %, from ///gs’b. Applying
the map B}, — B given by sending log(Ap) + 0 to the morphism || we obtain the strict quasi-
isomorphism in Z,(Cg+ )

(4.10) ea i ROy p(X)®pBE 5 Rl (X).
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4.2. The overconvergent setting. We are now ready to define the overconvergent geometric Hyodo-
Kato morphism. We do it locally by using, via presentations, the rigid-analytic geometric Hyodo-Kato
morphism constructed in the previous section and then we glue. The advantage of this approach is
that, by construction, the overconvergent and the rigid analytic geometric Hyodo-Kato morphisms are
compatible. This is in contrast to [16], [I9], where a lot of effort was devoted to proving compatibility
between the overconvergent construction due to Grosse-Klonne, and the rigid-analytic construction due
to Hyodo-Katd?]

4.2.1. Overconvergent Hyodo-Kato cohomology via presentations of dagger structures. In this section we
introduce a definition of overconvergent Hyodo-Kato cohomology using presentations of dagger structures
(see [46], Appendix], [19, Sec. 6.3]). We show that the so defined Hyodo-Kato cohomology, a priori different
from the one defined by Grosse-Klonne, is, in fact, strictly quasi-isomorphic to it.

(i) Local definition. Let X be a dagger affinoid over L = K,C. Let pres(X) := {Xp}ren be a
presentation of dagger structures. Define in 2, n(C}):

RIf (X) := L colimy, RTgk (X5)
and equip it with the induced Frobenius and monodromy. We have a natural map
(4.11) afi s RDf (X) — RIGE(X)
defined as the composition
(412) RFLK(X) =L colimh RFHK (Xh) :> L COlimh RFHK(X;;)
& Lcolimy, ROGE(X7T) — RIGK(X),
where the naive interiors X; were chosen so that X; D Xj,11. The third map is a strict quasi-isomorphism
by Corollary this is because the interior X is Stein. Note that the proof of the cited corollary relies
on a nontrivial comparison result between the rigid analytic and Grosse-Klonne’s overconvergent Hyodo-
Kato morphisms.
We note that, since the intersection of two naive interiors of X}, as above is again a naive interior the

definition of the map aLK in 2, n(C}p) is independent of the choice of the naive interiors Xp. It follows
that this map is functorial with respect to étale morphisms.

(ii) Globalization. For a general smooth dagger variety X over L, using the natural equivalence of
analytic topoi

(4.13) Sh(SmAf} ) = Sh(Sm} )

we define the sheaf JZ%&K on Xg; as the sheaf associated to the presheaf defined by U +— RFLK(U ), U €
SmAffTL, U — X an étale map. We define in 2, y(Cr, )

RIux (X) := ROg (X, i)

If L =K, itisadg F-algebra. If L = C, it is a dg F""-algebra equipped with a Frobenius, monodromy
action, and a continuous action of ¥y if X is defined over K. Its topology is induced from the topology
of the RI'f; (X)’s.
.. + . .
Globalizing the map ajy, from 1) we obtain a natural map in Z, n(Cr,)

ank : R[ax(X) — RIGE(X).

29Recent1y, Ertl-Yamada in [22] have introduced a particularly simple definition of overconvergent Hyodo-Kato cohomol-
ogy for weak-formal semistable schemes and equally simple definition of the relevant Hyodo-Kato map. Their construction
is compatible with the crystalline Hyodo-Kato analog when the scheme is proper. It is likely that their construction can be
extended to the set-up needed in this paper.
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Lemma 4.14. Let L = K, C.

(1) The above map anuk is a strict quasi-isomorphism.
(2) (Local-global compatibility) If X is a smooth dagger affinoid the natural map in D, n(Cr,)

RI (X) = Rlux (X)
18 a strict quasi-isomorphism.

Proof. For the first claim, by étale descent, we may assume that X comes from a smooth dagger affinoid.
Looking at the composition 1' defining the map aLK we see that it suffices to show that the natural
map

(4.15) L colim;, RTGK (XT) — RIGE(X)

is a strict quasi-isomorphism. But this was shown in the proof of Proposition 6.17 in [I9]. We note that
that proof uses the Hyodo-Kato quasi-isomorphism of Grosse-Klonne to pass to the de Rham cohomology
where the analog of is obvious.

For the second claim, consider the commutative local-global diagram in Z, n(Cr,)

RT iy (X) — RTuic (X)

v
HK QHK
RIH (X)

The slanted arrow is a strict quasi-isomorphism by the first claim of the lemma. It suffices to show that
the left vertical arrow is a strict quasi-isomorphism as well. For that, it suffices to show that the map

L colimy, RT'GE (XE’T) — RIGR(X)

appearing in the definition 1} of the map aLK is a strict quasi-isomorphism but this was just shown
above. ]

(iii) Completed overconvergent Hyodo-Kato cohomology. We can define the completed overconvergent
Hyodo-Kato cohomology by a similar procedure to the one used above. It will have better topological
properties than its classical version. Let X be a smooth dagger affinoid over C. Let pres(X) = {Xp, }rhen-
Define in 2, n(C}p)

RI!

HK,F(X) = LCOliInh RFHK,F'(Xh)'

For a general smooth dagger variety over C, we can globalize the above definition and obtain the sheaf
1,88

2§y for the n-étale topology on ./~ and cohomology
RFHK,F(X) = R4 (X, Hjk) € Do n(Cpp)-

Itisadg F‘—algebra equipped with a Frobenius, monodromy action, and a continuous action of ¥, if X
is defined over K. It is equipped with the topology induced from the topology of the RI’LK F(X )’s.

We have the local-global compatibility by Lemma (replace, without loss of information, F by F ).

(iv) Completed overconvergent Hyodo-Kato cohomology ala Grosse-Kloénne. But we can also de-
fine the completed overconvergent Hyodo-Kato cohomology as in the rigid analytic case, by modify-
ing the definition of the overconvergent Hyodo-Kato cohomology of Grosse-Klénne. That is, we can

set ROTE .(21) := RTuk(20), for 27 € M5, where 2y := 27, and globalize. We will denote by

RFgE,F(X), X € Sm},, the so obtained cohomology in Z, n(Cj).
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We easily check that we have strict quasi-isomorphisms in Z, n(Cp):

9

(4.16) RIGK ((21) & RUGK(20)8 e . 2 € .,

RIGE ((X) & ROGE(X)@pm P, X € Smf..

We also have local-global compatibility: pass from F' to F as in the proof of Lemma This reduces
the problem to the local-global compatibility for the usual Hyodo-Kato cohomology of Grosse-Klonne
and this we know is true.

The two definitions of completed overconvergent Hyodo-Kato cohomology give the same objects:

Lemma 4.17. Let X € SmTC. There exists a natural strict quasi-isomorphism in Py n(Cp)

agic i Rl p(X) = RIGE #(X).

Proof. Pass from F to F and use Lemma O

(v) Tensor products. The following lemma will allow us to pass between tensor products involving the
two definitions of overconvergent Hyodo-Kato cohomology.

Lemma 4.18. Let W be a Banach spac over F'.
(1) (Local-global compatibility) Let X be a smooth dagger affinoid over C. The canonical map in
2(Cp)
R (X)@ e W = RUK (X)) o W

is a strict quasi-isomorphism.
(2) Let X € SmTC. There ezists a following commutative diagram in 2(C})

—~ «@ w —~
R (X0) 8 e W 2 R GE (208 o W.

Remark 4.19. (1) The tensor product RFIIK (X)@I{EMW is defined in 2(Cz) as
~R . ~R
R (X)@ e W = L colimy, (RT pxc (X3 )& o W),

where {X},} is the presentation of X.

(2) Warning: One has to be careful with tensor products as in (1) (because we chose projective tensor
products hence we lost the commutation with general inductive limits). For example, when F™ = F, the
tensor product RFLK(X )@?W is already defined. Luckily, in this case, the two definitions give the same
tensor product. To see this, note that we have RFI{K (X)@?W = (L colimy, RT'uxk (X;J)@?W. Hence the
canonical map

L colimy, Ry (X7, )@ e W — Rl (X)& W

induces a map RI‘LK(X)@?,HW — RFEK (X)@?W In the proof of Lemma below we will show that
this is a strict quasi-isomorphism.

(3) For any smooth dagger variety X, the tensor product RI'gk (X )@f;mW is defined by globalizing
the tensor product from (1).

301 applications, W will be most often a period rings.
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Proof. For (1), we start with the case W = F'. Consider the commutative diagram

(4.20) R (X)8 e B ——= RUpc (X)) e I
\LZ l?
RT] o (X) —— ROy o(X).

The bottom map is a strict quasi-isomorphism by Lemma (replace F' by F ). The left vertical map
is a strict quasi-isomorphism by definition and ; the right vertical map is the globalization of the
left vertical map hence a strict quasi-isomorphism as well. It follows that the top map is also a strict
quasi-isomorphism, as wanted.

Now, for a general W, we take the top map in the diagram and tensor it with W over F to
obtain the strict quasi-isomorphism in the top of the commutative diagram

SRz SR ~ ~R . ~R
(R} (X)® oo )@ p W —"> (RTak (X) @ o ) B p W

T !

R (X)® o W RO i (X) 8 oo W

It remains to show that the left vertical map in the diagram is a strict quasi-isomorphism because then
so is the right vertical map (being the globalization of the left vertical map) and then the bottom map
as well, as wanted.

Remark 4.21. The tensor product in the top row is the usual projective tensor product. Hence the vertical
maps are not identities and the statement that they are strict quasi-isomorphisms is not trivial even for
F.

It is clear that the left vertical map is a strict quasi-isomorphism if we drop the dagger and replace X
with X}, for the presentation {X,} of X. It suffices thus to show that the map

(4.22) L colimy, (RTk (X3) @ por FEEW) — (L colimy, RT ik (X5) & o ) S R W
is a strict quasi-isomorphism. Applying the Hyodo-Kato morphism we pass to the canonical map
L colimy, RTar (X»)& W — (L colimy RTqr (X2)) &2 W,
which is a strict quasi-isomorphism by [I6 2.1.2]. Now we go back to the map (4.22) by a projection
C - F.
We pass now to the second claim of the lemma. Assume first that X is a smooth dagger affinoid. Then

we define the map

W): RIT(X)®y S (X))
as the composition
(4.23) RI 1 (X)@ e W = L colimy, RT g (X3)® por W S L colimy, REpg (X5)8 poue W

& Lcolim, RIGK (X2 1)@ pue W — RUGE (X) @ g W,

where X} is a naive interior of X} that contains Xj;41. The third map is a strict quasi-isomorphism by
Corollary this is because the interior X} is partially proper.

For a general X, we obtain the map apk (W) by globalizing the above definition. This can be done
because the local definition is independent of the naive interiors chosen and functorial with respect to étale
morphisms (see Section. Changing F into F in the definition of apk (W), we get the map O‘HK,F(W)
compatible with the map apk(W). This gives us the commutative diagram we wanted. Moreover, it is
clear from the definitions that the right vertical map in the diagram is a strict quasi-isomorphism. The
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top map is a strict quasi-isomorphism by Lemma[£.17} The left vertical map is a strict quasi-isomorphism
because we can check it locally where claim (1) reduces us to the dagger cohomology of an affinoid and
there this is clear from the definitions. It follows then that the bottom map is a strict quasi-isomorphism
as well, as wanted. O

(vi) Properties of overconvergent Hyodo-Kato cohomology. Let X be a smooth dagger variety over C.
Recall that (see [19, Prop. 4.38]) the Hyodo-Kato cohomology fIf_‘IK(X ) is classical. If X is quasi-compact
it is a finite dimensional F™ -vector space with its natural topology. For a general X, it is a limit in Cp
of finite dimensional F™ -vector spaces. The endomorphism ¢ on Hjjy (X) is a homeomorphism.

We will need the following computation later on:

Proposition 4.24. Let X be a smooth dagger variety over C'. Let W be a Banach space with an F-module
structure.
(1) If X is quasi-compact then the cohomology of the complex RFHK(X)@)?mW is classical and we
have an F-linear topological isomorphism

Hi Rk (X)W & Hip (X)@puW, 0> 0.

(2) Take an increasing admissible covering {Upy}nen of X by quasi-compact dagger varieties U,.
Then we have a natural strict quasi-isomorphism in 2(C)

RT 1 (X) @ e W 5 Rlitn, (RUHK (Un. )3 e W),

The cohomology of RFHK(X)é@?mW is classical and we have, for i > 0, an F-linear topological
isomorphism

~ . ~R ; =R : i
H'(RTuk (X)® pue W) =~ Higg (X)®@ pue W = limy, (Hiy (U )@ e W),
In particular, it is a Fréchet spac@.

Proof. By Lemma we may replace Rk (—) with Grosse-Klonne's version RT'GE(—). Let X be
quasi-compact. Consider an étale hypercovering %, of X built from quasi-compact models from ///é’ss’b.
By [16, Ex. 3.16], claim (1) is true for every % c. Hence we have the spectral sequence

EY = HEE (% 0)@ oW = B (RUGE (X) @7 W),

The terms of the spectral sequence are Banach spaces and the differentials in the spectral sequence are

W-linear. Since the Hyodo-Kato cohomology groups H}%}(( l(%jc) are of finite rank, claim (1) follows.
Having (1), claim (2) follows just as in the proof of [16} 3.26] (note that the system { Hiy (Up)@ puc W b pen

satisfies the Mittag-Leffler condition). ]

4.2.2. Qverconvergent geometric Hyodo-Kato morphism via presentations of dagger structures. In this
section we introduce a definition of overconvergent geometric Hyodo-Kato morphism using presentations
of dagger structures.

(i) Local definition. Let X be a dagger affinoid over C. Let pres(X) = {X4}.

Define natural Hyodo-Kato morphisms in 2(C)
(4.25) i RI‘LK A(X) =5 RTIL(X), ik RFLK (X)) = RTIL (X/BR)

as the compositions

. L colimy, (tuk) .
RFLK #(X) = Leolimy, RT i 1+(Xn) LT L colimy, RTar (X5) = REHL (X),
. L colimp, (tuk) .
RFLKJ%(X) = L colimy, RFHKJ%(Xh) — T, colimy, RFdR(Xh/Bj{R) = RFLR(X/BIR)'

31We note that H Ii{K(Un) is a finite rank vector space over F™" equipped with the canonical topology.
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They are compatible via the map 6 : BCTR — C.

Proposition 4.26. The linearizations of the Hyodo-Kato morphisms in yield compatible natural
strict Hyodo-Kato quasi-isomorphisms in, resp., 2(Cp) and 2(Cg+ )
dR

~R ~ ~R ~
i RFLK#(X)@@FC S RO (X), i RFLKVF(X)@)ijR S RO (X/BR).

Proof. For the first map, we need to show that the map

L colimy, (tuk)
E—

(L colimy, RT 4 (X3,))@5C L colimy, RTyr (X5)

is a strict quasi-isomorphism. But this map fits into a commutative diagram

L colimy, RT gy +(X3)®3C — (L colimy, RTyyy¢ (X))@ 4C

U | Lcolimp, (tnk)
colimy, (tuk)

L colimh RFdR (Xh)

The bottom term is just the overconvergent de Rham cohomology and its cohomology is classical and a
finite rank vector space over C' with its canonical topology. Via the vertical strict quasi-isomorphism the
same is true of the upper left term. The upper right term is strictly quasi-isomorphic to Ry (X )@)20 ,
which, by Lemma [£.18 and Proposition [£:24] also has classical cohomology that is finite rank over C.
Hence, looking at the above diagram one cohomology degree at a time, we obtain a commutative diagram
of finite rank vector spaces over C. These ranks are, in fact, equal: this is clear for the bottom and the
upper left term; for the upper right term consider the maps:

GK

RFHK,F(X)QA?IP?:C ~ RIHg (X)@hzanLH—K> RIgr(X).

The first map is a strict quasi-isomorphism by Lemma [£.I8] The second map is the Grosse-Klénne
Hyodo-Kato morphism and it is a strict quasi-isomorphism by [19, 5.15]. Hence the rank in question is
the same as that of the corresponding de Rham cohomology, as wanted.

For the second map in our proposition, we argue in a similar fashion. We need to show that the map

(L colimp, RT gy o (Xa)) BBl <) 1 colimy, RTgr (X5/Bg)

is a strict quasi-isomorphism. But this map fits into a commutative diagram

. =R . ~R
L colimy, RFHK,F(Xh)(@F“BcTR —— (Lcolimy, RFHK,F(X’Z))Q@FBXR

| Licolimy, (tnk)
colimy, (tuk)

L colimy, RFdR(Xh/le_R)

The vertical map is a strict quasi-isomorphism by (4.7]). The horizontal map can be shown to be a strict
quasi-isomorphism by an argument analogous to the one used in the proof of Proposition [3:28] It follows
that so is the slanted map, as wanted. O

(ii) Globalization. For a general smooth dagger variety X over C, globalizing the maps LLK from 1)
we obtain compatible natural maps in Z(C)

LHK - RFHK,F‘(X) — RFdR(X), LHK - RFHK,F‘(X) — RFdR(X/BIR).
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Theorem 4.27. (Overconvergent Hyodo-Kato isomorphisms) The linearizations of the above Hyodo-Kato
morphisms yields compatible natural strict quasi-isomorphisms in, resp., 2(C¢) and “@(CBIR)

~R ~
LHK RFHK,F'(X)®FC — RFdR(X)a
~R ~
LHK RFHK,F(X)®FB3_R — RFdR(X/BIR)

Proof. Looking at n-étale hypercoverings and using that our tensor products commute with products, we
may assume X to be a dagger affinoid and then the result is known by Proposition [£.26] O

(iii) Application. As an immediate application of the overconvergent Hyodo-Kato quasi-isomorphisms
we get the local-global compatibility for BIR—cohomology: .

Corollary 4.28. (Local-global compatibility) Let X be a smooth dagger affinoid over C. The canonical
morphism in QE(CBIR)

(4.29) RI\ (X/BJ) = RDar(X/By)
s a strict quasi-isomorphism.

Proof. Consider the following commutative diagram

~R N R
RFLK,F(X)(@F“BIR > RFHK,F‘(X)®F‘BIR
Z\LLLK I\LLHK
RIf (X/Br) RT4r(X/Bgg)

The vertical arrows are strict quasi-isomorphisms by Proposition and Theorem The top arrow
is a strict quasi-isomorphism by the local-global compatibility for completed overconvergent Hyodo-Kato
cohomology. It follows that so is the bottom horizontal arrow, proving that the map is a strict
quasi-isomorphism.

To show that this map is a filtered strict quasi-isomorphism, we will argue by induction on r > 0. The
inductive step uses the following commutative diagram

F'RTR (X/Biy) > FrRO|L (X/B,) > FrRIL (X)),
I L
FT'_IRFdR(X/BgR) L> FTRFdR(X/BgR) —_— FTRFdR(X)7

in which the rows are distinguished triangles by Proposition and its proof. The first and the third
vertical maps are strict quasi-isomorphism by the inductive hypothesis and by the local-global property
for filtered de Rham cohomology (see [19, Sec. 5.1]), respectively. It follows that the middle vertical map
is a strict quasi-isomorphism as well, as wanted. O

4.2.3. Comparison with the rigid analytic constructions. Let X be a smooth dagger variety over L = K, C'.
Let X be its completion.

Lemma 4.30. (1) There is a natural morphism in D, n(Cpor)
(4.31) Rluk (X) — RTuk (X).
(2) Let L =C. There are compatible natural morphisms in, resp., P, n(Cp) and @f(CBIR)
RIyy (X) = Rl (), RTar(X/Big) = RTan(X/By).

They are compatible with the map .
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(3) The morphism in (2) are compatible with the Hyodo-Kato morphisms, i.e., we have the commu-
tative diagrams in 2(C)

RFHK,ﬁ(X) - RFHK,F(X) RFHK,F‘(X)

\LLHK \LLHK \LLHK i/LHK

RT4r (X) RT4r(X),  RTar(X/BJy) —= RTar(X/By)

Proof. Let X be a smooth dagger affinoid over L with the presentation {Xp}. Using the compatible
maps X — X}, we define the map

Rl (X) = Lcolimy, RTuk (X5) — L colimy, RTux (X) = RTgk (X).

It globalizes to give the map in (4.31)).
We proceed in a similar way for the other two cohomologies. The stated compatibilities follow easily

from the definitions. O
The Hyodo-Kato quasi-isomorphisms imply the following;:

Corollary 4.32. Let X € SmTC. If X is partially proper, then the canonical morphisms in, resp.,
.@%N(Cﬁ) and .@ﬁ(OBIR)

(4.33) RTyyy #(X) = ROy #(X), RLar(X/By) — ROar(X/By)
are strict quasi-isomorphisms.

Proof. For the first map, consider the commutative diagram
~R S AR
RI g 5 (X)®pC —— Ry 5 (X)®pC

Z\LLHK Z\LLHK

RL4r(X) RI4r (X)

It implies that the top arrow is a strict quasi-isomorphism. Splitting off F from C we obtain the claim
of the corollary.
For the second map, in the unfiltered case, consider the commutative diagram

~R ~ > ~R
RFHK,#(X)@’I?B(J{R > RFHK,#(X)®ﬁB:1rR

?\LLHK Z\LLHK

Rl4r(X/BgR) RLar(X/BJy)

The top arrow is a strict quasi-isomorphism by what was just proved. It implies that the bottom arrow
is a strict quasi-isomorphism, as wanted.

To treat filtrations, we proceed by induction on the filtration level r (the base case of r = 0 just
proved). The inductive step (r — 1 = r) uses the commutative diagram

Fr=IRT4r(X/Bl,) —— F'RT4r(X/B,) —— F'RT4r(X),

g | g
Fr=1RTar(X/BJy) —— F'RT4r(X/Bl;) —— F'RT4r(X),
in which the rows are distinguished triangles by Proposition [3.28 and Proposition [3.12} The first vertical

map is a strict quasi-isomorphism by the inductive hypothesis. It follows that the middle vertical map is
a strict quasi-isomorphism as well, as wanted. O
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5. OVERCONVERGENT GEOMETRIC SYNTOMIC COHOMOLOGY

In this section we will define overconvergent geometric syntomic cohomology and prove a comparison
theorem for smooth dagger affinoids and Stein varieties over C'.

5.1. Local-global compatibility for rigid analytic geometric syntomic cohomology. Recall that
in [19, Sec. 4.1] the syntomic cohomology RTsyn(X,Q,(7)) € Z(Cq,) of a rigid analytic variety X is
defined by n-étale descent from the crystalline syntomic cohomology of Fontaine-Messing. The latter is
defined as the homotopy fiber (2 is a semistable formal scheme over 0¢ equipped with its canonical
log-structure)

Rlgyn (2, Qp(r)) i= [F" R (2) 2= Rl (2)],

where the (logarithmic) crystalline cohomology is absolute (i.e., over Z,). By definition, it fits into the
distinguished triangle in 2(Cq,)

(5.1) Ry (X, Q,(1)) = [RTer(X)]¥™P" — RO (X)/F"

We were not able to prove the local-global compatibility for this syntomic cohomology in [I9]: the
usual technique is to pass from the second term of to Hyodo-Kato cohomology and from the third
term — to filtered de Rham cohomology; then one passes, via the Hyodo-Kato quasi-isomorphism, from
Hyodo-Kato cohomology to de Rham cohomology and we do have local-global compatibility for filtered
de Rham cohomology. The problem was: we did not have then the Hyodo-Kato morphism. But we have
it now thanks to Theorem so in this section we will prove the local-global compatibility for rigid
analytic geometric syntomic cohomology that we will need.

We start with stating such a compatibility for absolute crystalline cohomology.

Lemma 5.2. (Crystalline local-global compatibility) Let 2~ € ///2571). The canonical map in Z,(Cy+ )

RFCT(%)Qp — chr(%c)

s a strict quasi-isomorphism.

Proof. We have the commutative diagram in Z,,(Cg+)

chr(%)QP RFCY(‘%C)

t T EEK ITE&K

~R BRId ~R
RFHK,F(%O)Q;; ®pBE — RFHK,F(%C)(@FB;;

The bottom map is a strict quasi-isomorphism by Lemma [4:2] Hence so is the top map, as wanted. [

ss,b

Proposition 5.3. (Syntomic local-global compatibility) Let 2" € .#;"". Let r > 0. The canonical map
m .@(CQP)

Rrsyn(%‘, ZP(T))QP — RFsyn('%/'CU Qp(r))

is a strict quasi-isomorphism. Here RTsyn (2", Zy(r)) is the syntomic cohomology of Fontaine-Messing
[24] (see also [4]).

Proof. Set X := Z¢. First, we define a natural strict quasi-isomorphism in 2(Cq, ):

12 : [[RUpk(X)®pu BN =09=P BEX RD o (X/Bg) /F']
— [[RT(X)]?7P 5 R (X) /F"] = RTayn(X, Qp (7).
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For that, it suffices to define the maps (4 and (3; in the following diagram and to show that this
diagram commutes in Z(Cq,):

(5.4) [RT s (X)@ e BN =0 255 RT L (X/BL )/ F”
2lEHK /
L (2 [RLc (X) &g+ BV K| )
zTﬁ
Rl (X) = Rl (X)/F".
Here the map €5¥ is the one from . We set: thy = B71elK and 13 := £71; hence the left and

the right triangles in the diagram commute. They are strict quasi-isomorphisms. The remaining pieces
of the diagram commute by definition.

The morphism ¢ has a compatible local version. Now, the wanted local-global compatibility, via
the strict quasi-isomorphisms ¢, follows from local-global compatibility for Hyodo-Kato cohomology and
filtered BIR—cohomology, proved in Proposition and Lemma respectively. O

The proof of Proposition [5.3] actually shows the following:
Corollary 5.5. Let X € Smg and r > 0. There erist a natural strict quasi-isomorphism in 2(Cq,,)
(5.6) RIgyn (X, Qp(r)) ~ [[RFHK(X)®FMB;]NZO’@ZPT% RL4r(X/BlR)/F"].

We like to call the expression on the right the Bloch-Kato syntomic cohomology because it resembles
the definition of Bloch-Kato Selmer groups in [I1].

5.2. Twisted Hyodo-Kato cohomology. Let X be a smooth dagger variety over C. In this section
we will study the twisted Hyodo-Kato cohomology in Z(Cq,)

(57) HK(X7 T) = [RFHK( )(X)FMB;:]N 0,pp=p" r >0,
where RI'gk(X) is the geometric Hyodo-Kato cohomology defined in [I9, Sec.4.3.1] and we set in
P.N(Cg+)

RI'yk (X )®F"‘"Bst = LCOllm((RFHK®Fm]§+)(U.)),

where the homotopy colimit is taken over étale affinoid hypercoverings U, from SmTC. We wrote [RIuk (X )& FanJr]N Osp=p"
for the homotopy limit of the commutative diagram in 2(Cq,)

~R =~
RI gk (X)@FH,B;; B RFHK (X)®pu B,

I I
RT b1 (X)@ oo B 2272 R pasc (X) B B
The following proposition generalizes the computations from [16], Sec.3.2.2] done in the case when X
has a semistable integral model over a finite extension of K.

Proposition 5.8. Let X be a smooth dagger variety over C'. Let r > 0.

(1) If X is quasi-compact then the cohomology of the complex RT'yk (X )®an BSt 1s classical and we
have an isomorphism of (p, N)-modules over F™*

H'(RDjg (X))@ rue BY) ~ Hiy (X)®pu B, > 0.
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(2) If X is quasi-compact there is a natural isomorphism
H'(HK(X, 7)) ~ (Hig (X))@ g BE)N=09=P" >0,

of Banach spaces. In particular, H (HK(X,r)) is classical.
(3) Take an increasing admissible covering {U,}nen of X by quasi-compact dagger varieties U,.
Then we have a natural strict quasi-isomorphism in 2(Cg+)

R (X)8 g BY, 55 Ry, (RTprc (U, )8 e B,

The cohomology of RFHK(X)@)?,"]/%; is classical and we have, for i > 0, an isomorphism of
(¢, N)-modules over BJ;

~. ~R =~ . ~R =~ . i ~
H'(RTuk (X)®pn BY) ~ Hijx (X)®pn B := lim, (Hij (U, )@ por BY).

In particular, it is a Fréchet spaceE].
(4) The cohomology Hi([RFHK(X)QB?MBSHN:O’“’ZPT), i > 0, is classical and we have natural iso-
morphisms in 2(Cq,)

; ~R S N=0.omp” ; AR B \N=0.0=p” -
H([RT e (X) 8 s BEY =097 2 (i (X)B BV 097, i >0,
In particular, the space Hi([RI‘HK(X)@?m]AB;]N:O"/’:pT) is Fréchet. Moreover,
H' (RTuk (X)® pu BEV™?) & (Hiz (X) @ pue BE) Y™ ~ Hipy (X)@ pur B,

where the last isomorphism is not, in general, Galois equivariant (in the case X comes from X
over K ).

Proof. Since BZ; is a Banach space over F, claims (1) and (3) are a special case of Proposition m
Claim (2) follows from (1) just as in the proof of [I6l Lemma 3.20]. Finally, claim (4) follows from (3) is
proved as in [I6, Lemma 3.28]. O

5.2.1. A wariant of the twisted Hyodo-Kato cohomology. There is a variant of the twisted Hyodo-Kato
cohomology in 7(Cq,)

HK(X,7) := [RCpx (X)® g BEN=09=P" 1 >0,

that we will often use. Here we set in @%N(CBt)
R 1 (X)® e Bl := L colim((RT g ® g, BL) (UL)),
where the homotopy colimit is taken over étale affinoid hypercoverings U, from SmTC. We have in
9smN (CB;)
~ ) ~R
RI'uk (X)@FHT,LB:; ~ L colimy, (R gk (Xh)@Fnr7LB;)7

where {X}} is the presentation of X. It is easy to check that this tensor product satisfies local-global
compatibility.
Lemma 5.9. Let X € Smg. The canonical morphism in Dy n(Crar)

HK(X,r) - HK(X,r), r >0.

18 a strict quasi-isomorphism.

32We note that H Ii{K(Un) is a finite rank vector space over F™" equipped with the canonical topology.
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Proof. Tt suffices to show that the canonical morphism
[RFHK( )®an B+}N 0 [RFHK( )®Fan+]N 0

is a strict quasi-isomorphism. For that, from the definitions of both sides, we can assume that X is a
dagger affinoid. Then this map can be rewritten as

[RPuk (X)@par BEN=0 = [RTux (X))@ BHN=0,
which, by Lemma can be written as
L colimy, ([RT g (X5) @ por,, BE] V=) — L colimy, ([RTuxk (X5)& por BE]V=0),
for the presentation {Xj} of X. But this map is a strict quasi-isomorphism because so is the canonical
map
[RFHK(Xh)@@Fm,LB;]N 0 5 [RTuk (Xp)@pnBEN=0,
by the same argument as the one used to show . O
5.3. Bj{R-cohomology. Let X be a smooth dagger variety over C'. In this section we will study the
filtered Bj-cohomology RI'4r (X/BJy) and its quotients
DR(X,r) := RFdR(X/B )/FT r>0.
We note that, immediately from the distinguished triangle (3 7 we obtain

Lemma 5.10. Let X be a smooth dagger variety over C'. Let r > 0. We have a distinguished triangle in
Qﬁ(CB:R)
DR(X,r — 1)—— DR(X, r)— RL4r (X)/F"

By Theorem we have the strict quasi-isomorphism in 2.% (CB:ir )
R

~R ~
(5.11) wik © Ry 5(X)@pBg = RLar(X/Big).
It yields the following computation:
Proposition 5.12. Let X be a smooth dagger variety over C'.
(1) If X is quasi-compact then the cohomology of the complex RFdR(X/B:R) is classical and we have

H(RPan(X/Bjy)) = Hig po(X)8Blg. 120,

(2) Take an increasing admissible covering {Uy}nen of X by quasi-compact dagger varieties U, .
Then we have a natural strict quasi-isomorphism in @f(CBIR)

RFdR(X/BXR) :> Rhmn RFdR(Un/BdJrR)
The cohomology of RFdR(X/B+ ) is classical and we have, for i >0,

rri i =R . i
HY(RDan(X/BJR)) = Hiye (X)@pB = lim, (Hiy 1(U)® :Blg)-

In particular, it is a Fréchet spaceP_g].

Proof. Using the Hyodo-Kato morphism (5.11)), we may pass to the computation of the cohomology of
the complex RI'j; F(X)@)%BXR. Since By ~ [iso0 Ct* in Cp, we have

~R
RFHK,F(X)®FB3_R =~ H(RFHK,ﬁ(X)@)FCtk)
k>0

and we can use Lemma [4.18[ to pass to RFEE F(X)@?BIR. Then the proof of Proposition |4.24{ goes
through. 7 O

33Recall that HIZI{K F(U”) is a finite rank vector space over F' equipped with the canonical topology.
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5.3.1. Varieties over K. Before studying filtrations on BjR—cohomology we will look more carefully at
the example of varieties defined over K.

Recall that (see [19, Sec.5.1]), for a smooth dagger variety X over L, L = K,C, the de Rham
cohomology H tr(X) is classical. If X is quasi-compact it is a finite dimensional L-vector space with its
natural topology. For a general X, it is a limit in Cq, of finite dimensional L-vector spaces (hence a
Fréchet space).

Let X € Sm}(. By Proposition we have the strict quasi-isomorphisms in 2.% (CBIR)

~R ~
LBK : RFdR(X)®KB§R — RFdR(Xc/B(J{R),
DR(Xc,7) = (RTar (X)ExBlp)/F"-
(i) Exzample: Stein varieties over K. Assume that X is Stein. We easily see that in 2(Ck)

~R ~
(5.13) F"(RI4r(X)®Blg) ~ F"(Q*(X)®&xBlR)
= (0(X)®xF' Bl = QX))@ F'Bly — )

DR(Xc,r) = (RTar(X) @ Bin)/F" = (2 (X)@xBlp)/F"
= (0(X)Bx(Bip/F") = Q" (X)Bx (Bl /F™Y) = - = O (X)Bx (Bl /F").

In low degrees we have

DR(X¢,0) =0, DR(X¢,1) ~ 0(X)&kC,
DR(X¢,2) ~ (0(X)®x(Blg/F?) — QYX)®x0).

Recall that, because X is Stein, the de Rham complex is built from Fréchet spaces and it has strict
differentials. Arguing just as in [I6, Ex. 3.30] it follows that:

(1) the complexes F"(RLgr (X )@iBj{R) and DR(X¢,r) are built from Fréchet spaces;

(2) their differentials are strict;

(3) and the cohomologies fIiF’"(RFdR(X)@iB:{R) and H'DR(X¢,r) are classical and Fréchet.
(ii) Example: Affinoids over K. Assume now that X is an affinoid. Then the computation is a bit more
complicated because the spaces Q¢(X) and B(TR (an LB-space and a Fréchet space, respectively) do not
work together well with tensor products. However, if we use the fact that Bl; ~ [[,~, Ct* in 2(Ck),
we get the strict quasi-isomorphisms B

i > ~ Oy sR
Q'(X)OxBig = Q(X)@ kB,

which implies the strict quasi-isomorphisms from (5.13)).

Then, arguing just as in [16, Ex. 3.30], one shows that the cohomology H‘DR(X¢,r) is classical and
that it is an LB-space. Also, we easily see that the differentials in the complex F"(RTgr (X )@?{BXR) are
strict; hence the cohomology ?IiFT(RFdR(X)@)IR(BIR) is classical.

(iii) General varieties over K. The following computation can be done in the same way as the com-
putation in Proposition |[5.12
Proposition 5.14. Let X be a smooth dagger variety over K.

(1) If X is quasi-compact then the cohomology of the complex RFdR(X)(%?(B(TR is classical and we

have

i =R i ~ .
(5.15) H'(RTqr(X)®@BiR) ~ Hig(X)®xBls, i>0.
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(2) Take an increasing admissible covering {Uy}nen of X by quasi-compact dagger varieties U, .
Then we have a natural strict quasi-isomorphism in @f(CBIR)

~R ~ s ~R
RI4r(X)® kBl = Rlim,(RL4r (U,)®BIR).
The cohomology of RFdR(X)(@iBjR 1s classical and we have, for i >0,
~. ~R i ~R . i
H'(RP4r(X)®xBig) ~ Hip(X)®xBig ~ lim, (Hig (Un) 0k BiR)-
In particular, it is a Fréchet spacer.
5.3.2. Stein varieties and affinoid over C'. If X is a smooth dagger affinoid over C then it is defined over
a finite field extension of K and its de Rham type cohomologies have properties listed in Section [5.3.1]
In the case of Stein varieties we need to argue a bit more.

Proposition 5.16. Let X € SmTC be Stein and r > 0. Then
(1) concerning the complex DR(X,r), we have:
(a) the cohomology H'DR(X,r) is classical and Fréchet.
(b) we have a strictly exact sequence
0— Q(X)/Imd — H'DR(X,r) = Hig(X/Blz) /"1 =0
(2) the cohomology fIiFTRFdR(X/BjR) is classical and Fréchet.

Proof. Concerning claim (1), cover X with a Stein covering by affinoids {U,}, n € N. Since every affinoid
U, is defined over a finite extension of K, we have the strict exact sequences from [I6, Ex. 3.30]

0— Q'(U,)/Imd — H'DR(U,,7) = Hig(Un/BiR)/t "1 =0
All the terms are classical and Hausdorff. We claim that, taking their lim,,, we obtain
(5.17) 0 = lim(Q(Uy)/ Imd) — lim H'DR(Up, ) — Wi (Hig (Un/Blg) /1"~ 71) = 0
R* lim H'DR(Uy,r) = R lim Hig (U /Bf) /17 = 0

Indeed, the sequence is strictly exact since R* lim,, Q¢(U,,) = 0. For the same reason we have the isomor-
phism between R'lim’s. Since we have Hyodo-Kato isomorphisms Hjp (U, /Bgg) ~ H} F,(Un)@)ﬁBji'R
and the Hyodo-Kato cohomology HIZ{K #(Uy) is of finite rank, these R!lim,, vanish. From 1' we

obtain the strictly exact sequence
0~ Q(X)/Tmd — ADR(X,7) — Hin(X/Bf) [t~ =50

Hence, H'DR(X,r) is classical (as an extension of two classical objects). It is also an extension of two
Fréchet spaces; which implies that it is, in particular, Hausdorff. It is also a quotient of two Fréchet
spaces by construction, which implies that it is a Fréchet space itself, as wanted.

For claim (2), since we have the Hyodo-Kato strict quasi-isomorphism (from Theorem [4.27))

~R ~
tik : Ry 5(X)& ;B = ROgr(X/BJp)
and the cohomology

~R

H'(RT gy #(X)®pBgg) ~ HIZK,F(X)@FBQFR

E
is classical, we get that the cohomology H. ir(X/BIy) is also classical and Fréchet. For i > 7, we have an
isomorphism H'(F"RTqr(X/Blz)) = Hig(X/Big) (take an exhaustive affinoid covering and use the

fact that affinoids are defined over a finite extension of K); hence this cohomology is also classical and
Fréchet.

34\We note that HéR(Un) is a finite rank vector space over K equipped with the canonical topology.
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For ¢ < r, we argue by induction on r, the base case of r = 0 being shown above. For the inductive
step (r — 1 = r), take the distinguished triangle (3.29)) and consider the induced long exact sequence

0 — H'(F"'RT4r(X/By))—— H (F'RTar(X/By)) —— H'(F'RTag (X)) —— H* (F"'RTar (X/Bly))

The injection on the left follows from the fact that H*~1(F'RI4r (X)) = 0; the terms involving F"~!
filtration are classical by the inductive hypothesis.
e If i < r, then this yields an isomorphism

H'(F'~'RT4r(X/Bgy)) — H'(F'RTar(X/BJy)),

~

showing that H*(F"RTgg(X/ B1y)) is classical and Fréchet.
e For i = r, we get a short exact sequence

0 — H'(F" 'RTqr(X/Biy))—— H (F"RLar (X/BJ;)) —— kerd — 0

Hence, H(F"RT g (X/ B.R)) is classical and a Fréchet space by the argument we have used in the case
of H'DR(X,r) in the proof of claim (1). O

5.4. Overconvergent geometric syntomic cohomology. We are now ready to define overconvergent
geometric syntomic cohomology and prove a comparison theorem for smooth dagger affinoids and Stein
varieties.

Let X be a smooth dagger variety over C'. Take r > 0. We define the geometric syntomic cohomology
of X as the following mapping fiber (taken in 2(Cq,))

~R = —0.0=p" L L r
(5.18) Rl (X, Qp(r)) := [RDux (X)& pue B V=02 MEL RE (X /B L)/ F']
= [HK(X, r) -2 DR(X, )]
This is a generalization of the geometric syntomic cohomology introduced in [16, Sec. 3.2.2] in the case X
comes from a semistable model over 0. We will define below in Section overconvergent geometric
syntomic cohomology via presentations of dagger structures from rigid-analytic geometric syntomic coho-

mology and show in Proposition [6.6] that the two definitions give strictly quasi-isomorphic cohomologies.
The following proposition generalizes [16, Prop. 3.36].

Remark 5.19. We will often use an equivalent definition of overconvergent geometric syntomic cohomol-
ogy:

~R — —T [0 r
Ry (X, Qp(r)) := [RTuK (X)® pu: BV =0¢=P" 25 R, (X/BlR)/FT].
See Lemma for why the two definitions give the same object (up to a canonical strict quasi-isomorphism).

Proposition 5.20. Let X be a smooth dagger affinoid or a smooth dagger Stein variety over C. Let
r > 0. There is a natural map of strictly exact sequences

0 — Q"L(X)/Kerd —2> HZ,. (X, Qp(r) —= (H (X)® e Bl N=00=7" >

syn

H \L,B \LLHK®0

0—= Q" 1(X)/Kerd —% > Qr(X)d=0 Hip(X)————0

Moreover, Ker(tpyk ® ) ~ (H{{K(X)@J?mﬁ;)]vzo’*”:ppl, H! (X,Qu(r)) is LB or Fréchet, respectively,

syn
and the maps B, tuk ® 0 are strict and have closed images.
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Proof. The diagram in the proposition arises from the commutative diagram:

~R - L (e
RT gy (X, Qp(1)) — [RTuk (X)® g BE]#=P V=0 255 RUap (X/BiR)/F"

\
8 F"(RT4r(X/Bly) RI4r(X/Bi,) RT4r(X/Bi,)/F"
iﬂ lﬁ iﬁ
Q=7 (X) Q*(X) Q<r-1(X)

The map £ is the map on mapping fibers induced by the commutative right square. We set § := 195.
The map Q" 1(X) — Q7 (X) induced from the bottom row of the above diagram is easily checked to be
equal to d.

Applying cohomology to the above diagram we obtain a commutative diagram

T o) — = r— o - ~R = _ _
(Hipd (X) @ BE)#=PN=0 = 07 =1(X)/ T d -2 HI, (X, Qp(1)) — (Hie(X)Bjpne B P71V =0

\LLHK®L H \LB \LLHK(X)L

0— HjH(X) —— Q7 (X)/Imd —2> Q" (X)==0 —~ H7.(X)

We have used here Proposition [5.8| and Proposition [5 We can now use the proof of Proposition 3.36
in [16] as soon as we know that, for a qua51—compact meOth dagger variety Y over C, the slopes of
Frobenius on Hjj(Y) are < 4. But this is true when Y = %k ¢ for a semistable model over Ok (by
the weight spectral sequence) and it follows for a general Y by taking étale hypercoverings built from
semistable basic models, quasi-compact in every degree. O

6. TWO COMPARISON MORPHISMS

In this section we define two comparison morphisms: from geometric syntomic cohomology of a smooth
dagger variety to geometric syntomic cohomology of its completion and between geometric syntomic
cohomology of a smooth dagger variety and its pro-étale cohomology. We also prove that the first
morphism is a quasi-isomorphism for partially proper varieties (Theorem and the second morphism
is a quasi-isomorphism in a stable range (Theorem .

6.1. From overconvergent to rigid analytic geometric syntomic cohomology. We start with
a morphism from geometric syntomic cohomology of a smooth dagger variety to geometric syntomic
cohomology of its completion.

6.1.1. Construction of the comparison morphism. Let X be a smooth dagger variety over C. We will
construct a natural map in 2(Cq,)

(6.1) i REgn(X,Q,(r)) = Rlgn(X, Qp(r))

from the syntomic cohomology of X to the syntomic cohomology of its completion X.
(i) The map t,. First, we note that we have a canonical natural morphism in Z(Cq,)

1+ REayu (X, Qp(r) = [[RT s (X) @ e B V=070 555 REup (X/ B ) /]
— [[RTuk (X)® g B N=09=P" KE0, R o (X /BLR)/F]
& [[RTuk (X)® por BE V=097 MEE RT g (X /B ) /F7].
Indeed, for that it suffices to show that the canonical map

[RT 5 (X)@ e BNV = [RTpagc (X) B o BN =
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is a strict quasi-isomorphism. We may assume that X has a semistable weak formal model 2 defined
over Ok. Then the above map is equal to the map
~ _ ~R = -
[Rlux (27))@x . BE]V ™" — [Rluk (24 )@ BEIY 0.

But this is a special case of the strict quasi-isomorphism in (2.26]).

(ii) The map ta. Next, we use the strict quasi-isomorphism in Z(Cq,)

b2 [[RTuk(X)p@pe BEN=0¢=r" S R 0 (X /B, F]
— [[RT(X)]?7P 5 RT o (X)/F"] = RToyn(X, Q,u(r))

from the proof of Proposition [5.3]

(iii) Finally, we define the map in 2(Cq,)

L RTgyn(X, Q,(r)) = RTyn (X, Q,(r))

as L = laly.
6.1.2. A comparison theorem. We are now ready to prove our comparison theorem:

Theorem 6.2. Let X be a partially proper smooth dagger variety over C. The map in 2(Cq,)

t: RIgu(X,Qy(r) = Rl (X, Qy(r))
s a strict quasi-isomorphism.

Proof. We have + = 1917 by definition and as we have seen the map to is a strict quasi-isomorphism.
Hence it remains to show that so is the map ¢;. For that, it suffices to show that the following canonical
maps

~R = ~ ~R =~
(6.3) Rk (X)® por By — RTHK (X)® o B

% RPar(X/BiR)/F" — RUar(X/Big)/F"
are strict quasi-isomorphisms. For the second map this follows from Corollary For the first map,

by Lemma [£.18] it suffices to show that the canonical map
~R S\ AR5
Rl #(X)@pBg; = Rl p(X) @By,
is a strict quasi-isomorphism. But this holds because, by Corollary the canonical map RI'jc #(X) —

Rlyx F()A( ) is a strict quasi-isomorphism. O

6.2. From overconvergent syntomic cohomology to pro-étale cohomology. We will construct
now a comparison morphism between geometric syntomic cohomology of a smooth dagger variety and its
pro-étale cohomology. We will prove that it is a strict quasi-isomorphism in a stable range.

6.2.1. QOverconvergent geometric syntomic cohomology via presentations of dagger structures. We start
with showing that the overconvergent geometric syntomic cohomology defined as in [I9, Sec.6.3] using
presentations of dagger structures, a priori different from the overconvergent geometric syntomic coho-
mology defined as in [I9] Sec. 5.4], is strictly quasi-isomorphic to it. This was shown in [19, Prop. 6.17] in
the arithmetic case, where the key ingredient of the proof is the comparison theorem between arithmetic
overconvergent and rigid analytic syntomic cohomology of partially proper dagger spaces. We had to
wait for the geometric version of the later comparison theorem (our Theorem to state the geometric
analog of [19, Prop. 6.17|.

(i) Local definition. Let X be a dagger affinoid over C. Let pres(X) = {X,}. Recall that we have
defined the syntomic cohomology

RI'T (X, Q,(r)) := Lcolimy, RTyn (X4, Qp(r)), 7€ N.

syn
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We have a natural map in 2(Cq,)

(64) Llyn: R‘Flyn(Xﬂ QP(T)) - RFSyn (X7 QP(T))
defined as the composition

(6.5) RI,, (X, Qy(r)) = Lcolimy, RTgyn (X5, Qp(r)) = Lcolimy, RTgyn (X5, Qu(7))
& Lcolimy, Rlgyn (X7, Q, (7)) = Rlgyn(X, Q, (7)),

where X} is a naive interior of X}, such that X; D Xj,41. The third quasi-isomorphism holds by Theorem
because X} is partially proper. This definition of the map L;[yn
naive interiors and functorial with respect to étale morphisms (see Section [4.2.1]).

(ii) Globalization. For a general smooth dagger variety X over C, using the natural equivalence of

analytic topoi

is independent of the choice of the

Sh(SmAfL ;) = Sh(Sm} ),
we define the sheaf <7 _(r), r € N, on X as the sheaf associated to the presheaf defined by: U

syn

RIL,, (U, Qp(r)), U € SmAff}, U — X an étale map. We deﬁn in 2(Cq,)
RIT (X, Qp(r) = Rl (X, 1, (1), reN.
Globalizing the map LZyn from we obtain a natural map
tdyn  REL (X, Qp(r)) = REsyu (X, Qp(r)).
(iii) A comparison quasi-isomorphism.
Proposition 6.6. The above map il is a strict quasi-isomorphism.

syn

Proof. By étale descent, we may assume that X is a smooth dagger affinoid. Looking at the composition
l) defining the map Llyn we see that it suffices to show that the natural map

L colimy, RCgyn (X1, Qu (1)) = RTgyn (X, Qp(r))
is a strict quasi-isomorphism. Or, from the definitions of both sides, that we have strict quasi-isomorphisms
in, resp., Q‘P’N(Cﬁ«t) and Qf(CB:R)
RIu (X)® g B, & L colimy, (RTuk (X))@ g BY),
RTar(X/By) < Leolim, RUqr (X5 T/B).-

We may assume that X is defined over a finite field extension L of K, i.e., there exists X such that
X ~ X, ¢ Then the above maps factor as

L colimy, (R gk (X 1)@ pur BE) 5 (L colimy, (RTux (X5))® por BY) 5 RO f (X)® oo BY, 5 R gy (X)® o BY,,
. o ~R ~ . ~R ~ ~
L colimy, (RTqr (X3'})®, Bg) = (Lcolimy, RTar(X14))&,Blg = RIIR (X/By) = RL4r(X/BJy).

In the Hyodo-Kato case, the first map is a strict quasi-isomorphism by definition of the dagger tensor
product. In the de Rham case, the first map is a strict filtered quasi-isomorphism by the computation
(13.34)).

|

35We will show below (see Proposition that this definition of Rl"lyn(X, Qp(r)), for a smooth dagger affinoid X,
gives an object naturally strictly quasi-isomorphic to the one defined above.
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6.2.2. The geometric overconvergent period map and a comparison result. We are now ready to define
and study the overconvergent period map. Let X € Smg7 r > 0. Define the period map in 2(Cq,)

(6.7) ay : Rlgyn (X, Qp(1)) = R proet (X, Qp(r))
as the composition

RE 4y (X, Q, (1) & RL, (X, Qp (1)~ RT proct (X, Q, (),

syn
where the first map is the map L;fyn from Proposition and the second map is defined by globalizing

the following map defined for a dagger affinoid X with the presentation { X }:
RIY (X, Q,(r)) = Lcolimp Rl gy (X4, Q, (7))~ L colimy, RT prost (X, Qp(r)) =2 R proct (X, Q, (7).

syn
Here «, is the rigid analytic period map (see Proposition .
We have the following compatibility with the rigid analytic period map:
Proposition 6.8. (Dagger-rigid analytic compatibility) Let X € SmiJ and r > 0.
(1) The following diagram

RTyn (X, Qp(r)) —> RTproee (X, Qu(1))

RT gy (X, Qp(r)) —> Rl prost (X, Qp(1))
commutes.

(2) If X is partially proper then the maps ¢ and tprost, 0 the above diagram are strict quasi-isomorphisms.

Here, the period map «, is the one defined above. We put hat above its rigid analytic analog to
distinguish it from the dagger period map.

Proof. For the first claim, it suffices to show that this diagram naturally commutes étale locally. So we
may assume that X is a smooth dagger affinoid. Then checking commutativity is straightforward from
the definitions.
For the second claim, note that the map ¢ is a strict quasi-isomorphism by Theorem [6.2] and the map
Lprogt 18 @ strict quasi-isomorphism by Proposition [3.1} point 3a. O
The following comparison result follows immediately from its rigid analytic analog (see Proposition
3.1} point 2c):
Theorem 6.9. For X € Sm:rj and r > 0, the period map in 7(Cq,)
(6.10) ay : Rlgyn (X, Qp(1)) = RI'prost (X, Qp(r))
is a strict quasi-isomorphism after truncation T<,.

And it implies the following result (which will be the starting point of our study of Cy-conjecture for
smooth analytic varieties in [20]):

Corollary 6.11. For X € Smg, r >0, and ¢ <r, we have the long exact sequence

co = HTYROar(X/BIR)/F7) = Hi oo (X, Qp(r) = (Hijk (X)@ pur B )N =077 & U RD g (X/BiR) /F7)

Here we set
for an increasing covering {U,, },, of X by quasi-compact open (note that the groups Hiy (U,,) are of finite
rank).

Proof. Use Theoremand the obvious fact that the canonical map [Hijy (U, )& prr BE V=0 — [Hip (Up)® pue B V=0

is an isomorphism. O
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7. GEOMETRIZATION OF PERIOD MORPHISMS

The purpose of this section is to geometrize syntomic cohomology (and the related Hyodo-Kato and
de Rham cohomologies), pro-étale cohomology, and the associated period morphisms both in the rigid
analytic and the overconvergent set-ups. By "geometrization" we mean putting a VS-structure. The
key computation is the one showing that the rigid analytic version of Fontaine-Messing period morphism
is a shadow of a VS-morphism. Both sides of the period morphism, crystalline syntomic cohomology
and pro-étale cohomology, have natural VS structures. However it it not immediately clear that the
period map navigates well between these two VS-structures. To show that, in fact, it does so we use the
presentation of the period map via (¢, I')-modules introduced in [I§], [25].

7.1. Geometrization. In this section we explain how to geometrize the cohomologies and the period
morphism (th.[7.3)). In the next sections we prove Theorem first in the lifted case, then in the general
case.

7.1.1. Vector Spaces. A VS, resp. a VST, is a functor from perfectoid affinoids (A, AT) over (C, O¢)
(denoted by A = (A,A") in what follows) to Q,-modules, resp. Z,-modules. If W is a VST, then
Qp ®z, Wis a VS. VS’s form an abelian category. Trivial examples of VS’s are:

o finite dimensional Q,-vector spaces V', with associated functor A — V for all A,

o V¢ for d € N, with VI(A) = A9, for all A.

More interesting examples are provided by Fontaine’s rings [23], [13]:

e B Bf, BIR7 Bcr, Bst, Bar are naturally VS’s (and even Rings).

e If m > 1, then B, := B} /t™B_; is a VS (and also a Ring).

e Let h>1and d € Z. Then Uy 4 = (B)?"=P" if d > 0, and Uy, 4 = By/Q,n if d < 0, are VS’s.
Exemples of VST’s include Ain¢, Acr, or Al%? if 0 < u < v; the last example being the functor sending A
to the p-adic completion of Ainf(A)[[%], [%]], where o, 3 € ﬁ’é with v(a) = % and v(8) = % By [25, Prop.
3.2], we have A, (A) € Al“vI(A), for u > p%l. If v > 1, we have Al*?I(A) ¢ BI;(A) and this inclusion
induces a filtration on Al**J(A).

e The semistable period rings can be also lifted to VS’s. We set

BY =B, = (A <t,[p] " —1>)"[1], B =B := B [log([p)],

kB — BY, log([B)) — —log(t,[5] 1), +: B — By, log([p]) = —log(p[p] ),
0Bl = B, [0 = plp]

If W is one of the above Rings, we denote by W the ring W(C): for example Al*?l = Alwvl(C) (for
the other Rings Aj.f, Acr, B B:{R, etc., one gets back the rings already defined).

cr?

Remark 7.1. The above definition gives presheaves on Perfs. Passing to the associated sheaves gives a
natural viewpoint on VS’s and VS™’s; this was put to use by Le Bras in his thesis [34].

7.1.2. Pro-étale cohomology. Let X be a smooth rigid analytic variety over C. If A is a perfectoid C-
Banach algebra, let X5 be the scalar extension X x¢ A. The functor A — Héroét (Xa,Qp) defines a VS.
That is, there exists a VS H! (X, Q,) such that H! . (X, Qp)(A) = H!, s (XA, Q,), for all perfectoid
(X, Qp) is the space of C-points of H} (X, Qp); we have put
in this way a geometric structure on Hlimét (X,Qp).

We can do the same with:

C-Banach algebras. In particular, H}

roét

(1) the cohomology complex: the functor
Rproét (XAa Q;D) : A Rrproét (XAa Qp)
defines a VS with values in 2(Cq,);
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(2) its cohomology groups Hprost(Xa, Qp) form a VS with values in LH(Cq, );
(3) its algebraic cohomology groups Hprost(Xa, Q) form the VS described above. We have a natural

map ﬁproét(-le\v Qp) — Hproét (XAa Qp)

7.1.3. Crystalline syntomic cohomology. To geometrize (filtered) absolute crystalline cohomology, we de-
fine the functor
(7.2) F'Rox(X): A F'ROo(X)®h+BE(A), r>0,

cr CI

that lifts the absolute crystalline cohomology RI'.;(X) from Section The tensor product used in
(7.2) needs to be defined. We do it in the following way. We set

FTRI(X) B BE(A) := RUs (X, F" e 1),

where F" o/, p is the n-étale sheaﬁﬁcatio on AE of the presheaf 2" — (F"Rl"cr(%/Acr)éé];crAcr(A))Q
We proceed similarly for rigid B:{R—cohomology (from Section |3.3.1): we define the functor

T I SR
F'Rir(X/Big): A~ F'RI4r(X/Bi)®p+ Bip(A), >0,
that lifts the filtered B -cohomology F"RI'4r(X/BJy). Here
T SR r g
F'RL4r(X/By) @y Bin(A) = RLa(X, F"d/,, ),

where F’ sz(; A is the n-étale sheafification on .#Z of the presheaf

. r ivoL i
2 = Rlimis, (R0 (2, £1)/F)8(ap (Aa(A)/F))a,

Finally, we lift crystalline syntomic cohomology by setting

Ron(X,Qp(r) A= [F'Ra(X)(A)q, £ Rar (X/B) (A)/F7].

7.1.4. Rigid analytic varieties, period morphism. We move now to the geometrization of rigid analytic
period morphisms. We will prove the following theorem.

Theorem 7.3. For X € Sm¢ and r > 0, the functorial period map in 2(Cq,)

(67 RFSyH(X, Qp(r)) — 1{Fproét (Xa QP(T))

lifts to a functorial map of VS’s (with values in 2(Cq,)):

rt Rsyn(X7 Qp(r)) — Rproét(X7 Qp(r))a
which is a strict quasi-isomorphism after truncation T<,.

The next two sections are devoted to the proof of this theorem.

7.2. Local period morphism, lifted case. We start by defining ,.(A) locally, in the simplest of cases.

36We do not discuss local-global compatibilities. As far as we can tell this does not cause problems.
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7.2.1. Coordinates. Consider a frame

(7.4) Rb = 0c{X x5 xo2x b Bo=R;),

where X = (Xo,...,X4) and @w € O¢ \ OF, and a formal scheme 2~ = Spf R*, for an algebra R,
which is the p-adic completion of an étale algebra over RY. We equip Spf(Rf) and Spf(R™) with the

logarithmic structurﬂ induced by the special fiber.
For m > 0, define

Ryt = O {XP"

1 wol/P™ m _ pm,+11
" (X0 Xa) VP (Xag1...-Xa) /P }v RD - RD [5]7

and set RY"" equal to the p-adic completion of colim,,, R&"". Let
Rm,+ — Rgl7+®R§R+a Roo,-‘r = R?’+®R$R+, R™ = Rm,-‘r[%}7 R:= RO7 R>™ — ROC’J'_[%L

so that R™ is a perfectoid Banach algebra. Define ' := Gal(R>°/R). We have I'p ~ Z{.
Choose @’ € 02, with 0([=]) = w. We define

b
+ A X 1 (=]
Rinf,D = Aine{X, Xo0... Xa" Xa+1...Xd}

Set

and lift the map RE — R™ to an étale map Rf{lf’m — R

inf"
R;";’ = Ri—f]f@AmfACra R[uﬂ)] = Ri—"l_]f(@Ainf‘A[u’v] :
Endow everything with the log-structure coming from A, and Spf(R™). This gives us the commutative
diagram (with cartesian squares)
Spf(R*)——— Spf(R{)
Spf(RE)—— Spf(R{ o)

| |

Spf(ﬁc)c—> Spf(Acr)
We equip Spf(Rf,) with the (unique) lift ¢ of the canonical Frobenius on Spf(Rf, ) (induced by ¢ on
A, and by X; — XP, 0<i<d).
We define the filtrations F* R} on R}, and F*RI"*! on RI“*! by inducing them from A., and AV,
We have the corresponding filtered de Rham complex

Qs = F'Rf, - F" ' R{® . Q) = F' 2 RE®p: O

RG/Ac R/ Acr r RG/Ae
The crystalline syntomic cohomology RIsyn (27, Q,(7)) is computed by the complex Syn(R*,r)q,, where
. P’ e
Syn(R*,r) := [F" AL QRIr/Acr]'

This follows from the fact that the (filtered) absolute crystalline cohomology F'RT¢;(2") =~ F'Rl¢,(2 /Aer).

7.2.2. Period rings. Let R be the maximal extension of RT that is étale in characteristic 0, i.e., R s

the integral closure of R in a maximal ind-étale extension R of R[%] inside a fixed algebraic closure of
FracR. We have R = Eﬂ%]. Set Gr := Gal(R/R). For 0 < i < d, choose X! = (XZ-,Xil/p, -++) in R
and define an embedding of R;;fﬂ in Ai,¢(R) by sending X; — [X?]. This extends, for 0 < u < v and
v>1, to embeddingﬂ

=53 u,v u,v
(7.5) Riy = Awnc(R), REL = A(R), e: R o Alud c Al
37Note that we do not allow horizontal divisors at oco.
38n what follows, all these objects will depend on a variable perfectoid algebra A; to distinguish what depends on A
from what does not, we often allow ourself to write W pdeco instead of W(R3e%°) to indicate that R1°°® does not depend

on A.
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RT

7.2.3. Local period morphism o), .

(o) Owver C. Consider the following commutative diagram:

(7.6) Spf(EEP)
/ \
Spf(R )¢ Spf(Ac(R)@a., RE)
! !
Spf(R+)C Spf(RS,)
! "
Spf(Oc)¢ Spf(Acr)

Here EZP is the PD-envelope of the closed embedding Spf (R") < Spf(Ae(R)®a. RE).

Remark 7.7. (a) We take partial divided powers of level s, i.e., z(F = W@kﬂ!’ where s = 0 for p # 2 and
s =1 for p=2.

(b) We induce the filtration on EEP from the filtration on Rf; and A..(R). See [18, Sec.2.6.1] for
details.

Set Q;:%D = E%DQB Rt Qi%ct A For r € N, we filter the de Rham complex Q;]%D by subcomplexes
T ()e . rgPD r—1pPD S 1 r—2PD S 2

For a continuous Gg-module M, let C(Gr, M) denote the complex of continuous cochains of G with
values in M. The Fontaine-Messing period mapf*)

(7.8) af:: . Syn(R*,7r),, = C(Gr,Z/p™(r)),
where Z/p"(r) = ﬁZ/p"(r), forr = (p—1)a(r)+b(r),0 < b(r) < p—1, is defined as the composition
(7.9) Syn(R*,r)n = [FrQy, A”’n—”"‘p Qs a ]

C(Gr, [Fr e —2= Q2 p )
R,n R,n
M
C(GRv [FTAcr(R)ni)Acr(R)n])
b

C(Gr,Z/p"(r)")

It is a pc’“—quasi—isomorphisnﬂ for a universal constant c, after truncation 7<,. The second quasi-
isomorphism above follows from the filtered Poincaré Lemma, i.e., from the p-quasi-isomorphism

(710) FTACIA(R)” :> FT ;EBD s T 2 0,
R,n
proved in [25, Prop. 7.3, [18, Lemma 2.37|. The third quasi-isomorphism follows from the fundamental
p"-exact sequence
0—Z/p"(r) = F'Aq(R)n == A(R),, — 0.

The first truncated quasi-isomorphism is a theorem of Tsuji [45].
39We note that Spa(R) is a K (m,1)-space hence C(Gg, Z/p™ (1)) ~ RIprost (Spa(R), Z/p™(r)’).

40We call a morphism f: A — B in a derived category a N-quasi-isomorphism if the induced morphism on cohomology
has kernel and cokernel annihilated by N.
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(o) Over a perfectoid C-algebra. Let A = (A, AT) be a perfectoid affinoid over (C, O¢). We refer the
reader for a study of the basic properties of Ains(A) to [23] or [9] Sec. 3]. The following lemma is proved
by the same argument as [25] Lemma 5.3]:

Lemma 7.11. Let 0 < u < v and % < 1 <wv. Multiplication by t" induces p3’"-isom0rphismﬂ
Alrl(A) 5 praleel gy Aev/PLA) 3 Alee /Pl ),

We set
(Ra, RY) == (R, RN)®(c.00)(A, A7)

(by [41l, Prop. 6.18] this is a perfectoid algebra). Let EX be the completion of the maximal extension of
R, étale in characteristic 0 and

Ry :=Ry[3], Gr, = Aut(Ra/Ry)

For 0 <u <wvandwv>1,set

RKMJ] — R;;f@A;an[u’v] (A)
equipped with the filtration induced from the one on Al**J(A).
The Fontaine-Messing morphism ozf; from (|7.8) lifts to A. To show this we will use the commutative

diagram:

(7.12) Spf(E%AD)
/ \
Spf(R, )€ Spf (Acr (Ra)Ba., RE)
| |
Spf(R*)C Spf(R&)
| &
Spf(0¢)C Spf(Acr)

Here Spf(E%lz) is the PD-envelope of the closed embedding Spf(ﬁj{) < Spf(Ac(RA)®a. RE). The

period morphisnﬁ
aB (A s Syn(RT,r)n(A) = C(Gry, Z/p" (1))

rn

is defined as the composition

Syn(R*,7)n(A) = [F7Q3,. /Acm®Acr,,LAcr(A)n&> Qs e © AcenAcr(A)n]
C(GRry,, [FTQ:E%D — Qo )
A A
M

C(GRA7 [FTAcr(EA)n&> Acr(ﬁA)n])

b

C(GRA’ Z/pn (T)I)

Here, the second p-quasi-isomorphism follows from the filtered Poincaré Lemma

n?

(7.13) F'Acc(RA)n = F™ Qe
Ry’

41p morphism of abelian groups f : S — T is called an N-isomorphism if its kernel and cokernel are annihilated by N.
42\We note that Spa(R,) is a K (,1)-space hence C(GRry,Z/p™(r)") ~ Rl proet (Spa(R), Z/p™ (r)’).
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which can be proved by arguments analogous to the ones used in the proof of [25] Prop. 7.3]. The third
quasi-isomorphism follows from the fundamental p"-exact sequence
0= Z/p"(r) = F"Ax(Ra)n 2= Acx(Bp)m — 0
7.2.4. Proof that afz (A) is a quasi-isomorphism.
Proposition 7.14. The period morphism
alt (M) Syn(RY,r).(A) = C(Gry, Z/p"(r)")

18 a p°"-quasi-isomorphism, for a universal constanﬂ ¢, after truncation T<,.

Proof. It suffices to show that the morphism

Fr Qs a Ohen AW == Wy O, Ac(B)ul
C(GRy, [FTQ;EED ,n&) Q].E]BD m])
RA RA

is a p"-quasi-isomorphism. We will do it by writing the Fontaine-Messing period morphism as a sequence
of morphisms inspired by the theory of (¢, ')-modules as in [I8, Th. 4.16], [25, Th. 7.5] and then showing
that all these morphisms are p“’-quasi-isomorphisms after truncation 7<,. This is done by diagram
below, where we denoted by w the map that we want to show to be a p“’-quasi-isomorphism (after
truncation 7<,, which we indicate on the diagram but will often skip in the discussion to lighten up the
notation). The key ingredient to turn the complex coming from the fundamental exact sequence (i.e.,
Ca(Ky(F"Ac(Ry))) in the upper right corner) into something which behaves like a complex of VS’s, as
a functor in A (A — R, is not functorial enough), is the almost étale descent (map jugr).

Wesetu=(p—1)/pv=p—1ifp>3, and u=3/4,v=3/2if p=2.

(o) Over C. We will first treat the case A = C. The following diagram is a simplified Versionlﬂ of the
diagram in [25], proof of Th. 7.5]. The top row represents the Fontaine-Messing period morphism. The
diagram shows that the truncation 7<, of the map w is a p°"-quasi-isomorphism.

(7.15) Ko o(FTRY) ——> Co(Kp o (FTEEP)) <2 O (K, (F A (R)))
T<r \Ll \Ll

Koo (FRI") Ca(K(FrAle))
t"TS,,«\LZ NH?Z

KLier o (FT R Cr(K,(FrAl)

cfazTZ /
€

KF,¢(FTR[M’U]> _~ . CF(K<p (F’I"R[u,'u]))

Here, all the quasi-morphisms are p°"-quasi-isomorphisms (after truncation 7<,). Moreover:

e G and I' are G and I'g;
e Cq,Cr denote the complexes of continuous cochains on the groups G, T, respectively;
e K denotes a complex of Koszul type:

— the indices indicate the operators involved in the complex:
¢ 0 is a shorthand for (Xlaixl’ . ,Xd%),

431 particular, independent of R, A,n, and .
4475 see that note that the zig-zag in the left-bottom corner of that diagram is homotopic (via an explicit Poincaré
Lemma homotopy) to the identity map.
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o I is a shorthand for (y1 — 1,...,74 — 1), where the 7;’s are our chosen topological
generators of ',

¢ Liel is a shorthand for (Vl, ..., V4), where V; = log~;, so that the V;’s are a basis
of LieI" over Z,,

¢  is a shorthand for ¢ — p".

— only the first term of the complex is indicated: the rest is implicit and obtained from the
first term so that the maps involved make sense: ¢ does not respect filtration or annulus of
convergence, and 0 decrease the degrees of filtration by 1.

For example, choosing a basis of 2 RE /A transforms complexes involving differentials into com-

plexes of Koszul type: Ky ,(F"S) if S = R} or S = RlwY.
Let us now turn our attention to the maps between rows:

e Going from the first row to the second row just uses the injections R, C Rl ete.

e Going from the third row to the second row: the map py is the inflation map from I'r to Gg,,
using the injection R C R (we use almost étale descent — i.e., Faltings’ almost purity theorem
or its extension by Scholze or Kedlaya-Liu — to prove that it is a quasi-isomorphism); the other
map is a "change of Lie algebra map" ¢* appearing in the proof of [25, Lemma 5.7] (multiplication
by suitable powers of t).

e Going from the fourth row to the third row: uses the injection of R**] < AE;L;Z:] from ; the
map Zaz is defined as in [25, Lemma 5.8].

Let us now describe the maps between columns:

e The bottom map from the first column to the second one is the map connecting continuous
cohomology of I'g to Koszul complex.

e The PL-map from the third column to the second is also induced by the canonical injection of
rings; it is a p"-quasi-isomorphisms by [25, Prop. 7.3 |.

() Over a perfectoid C-algebra. Let A be a perfectoid C-algebra. The relevant diagram now takes the
following form. Again, it shows that the truncation 7<, of the map w is a p*"-quasi-isomorphism.

(7.16)
Koo (F" REEAG(N) ——— Ca(Ko o (FTEED)) < C (K, (F"Ax(RA)))
Tgrﬁvz il
Koo (F"RIMIGAM (1)) Ca (K, (FTAM)(Ry)))
Zi/t.,‘rsr HH Tz
Kier o (F7 RE-VIGAl(A)) Cr (K (Fr A I(RY)))
ZTﬂaz 6A2

Kr o (FTRIMRAM (A)) — > Cp (K, (FT R BARY (A))) > Cp (K, (Fr Al @AM (A)))

Here, all the quasi-morphisms are p°"-quasi-isomorphisms (after truncation 7<,). The arrow is plain if
it is very similar to the one appearing in diagram (7.15|) and dotted if it requires additional arguments.
Moreover (we indicate only differences with diagram (7.15)):

e tensor products with A.;(A) (resp Al (A)) are over A, (resp. A[u’v])§
o (RY, RY™) = (R, R¥F)8(0,00) (A, AY); it s a perfectoid affinoid by [T} Prop. 6.18];
e G and I' are Gg, and I'g;

Let us now turn our attention to the maps between rows:
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e The plain arrows are induced by the analogous maps in diagram They are p° -quasi-
isomorphisms by the same argument as in loc. cit. since tensoring with A*I(A) can be done
outside the quasi-isomorphic complexes. We note that the tensor products & A[u,“]A[“’”] (A) are
completed but not, a priori, derived. This does not cause problems because the Aj,;-module
Aing(A) is flat: ﬁbc is a valuation ring hence the ﬁbc—module AT being torsion free, is flat.

e Going from the third row to the second row: the map pz is the inflation map from I'r to Gg,,
using the injection R C Rp. We use almost étale descent (i.e., Faltings’ almost purity theorem
or its extension by Scholze or Kedlaya-Liu) to prove that it is a quasi-isomorphism. The map ¢*
is the multiplication by suitable powers of ¢ (we use here Lemma .

Finally, the maps (3,9 in the diagram are treated by Lemma below. O
Lemma 7.17. (1) The canonical morphism
T<rB i T<r Ko o (FT RED A Acr (M) n—7<r Ko o (F7 R 1o Al (A) ),

is a p°"-quasi-isomorphism.
(2) The canonical morphisms

§: FPAIG L Al (A) — Fr A (RY)
are isomorphisms.

Proof. For the first claim, set R, \ := RE®a,Acr(A). This ring has the same form as R, (see Section
but with A, replaced by A.;(A). The above morphism can be written as

T<r Ko o (F" R, \)n—7<r Ko o (F'RE x®a, AL,

Now, the proof in [25, Sec.4.1] goes through verbatim by changing A, to A (A).
For the second claim of the lemma, by Lemma[7.11]} we can replace the filtration by the one given by
powers of t. Hence, it is enough to show that the canonical map

(7.18) Aint(R®)@ A Aint (A) = Aing (RY)

inf

is an isomorphism (the passage to [u,v]-version is obtained by taking the completed tensor product of
(7.18) with A[”’”]) . Or, since both sides are p-adically derived complete, that so is its reduction modulo p:

P +b b
But this can be checked modulo p°. That is, we want the canonical map
b b b/ b N
(R /D) @gs e (A7 /17) = R Jp

to be an isomorphism.
Now, this map identifies with the canonical map

(R /p) ®oc/p (AT /) = R /p.

It suffices thus to show that the canonical map
R @, AT — RO

is an isomorphism. But this is clear since both sides are isomorphic to the completion of the same étale

extension of the tower
ol/P™

+yyv1/p™® 1
AT{X /v V(X1 X)) PT 0 (Xgg1... Xg) /P> }-
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Rt

n

7.2.5. Modification of the period morphism «;l, (A). The Fontaine-Messing period morphism

aB (A : Syn(RT,r)n(A) = C(Gry, Z/p"(r)")

rn

constructed above is neither functorial in R nor in A™. By diagram (7.16]), we can replace it by the map
that traces that diagram down-bottom right-up and replaces Ce (K, (F" Acy (Rp)) with RT proct (Spa(Ra ), K, (F"Ac)):

T§7‘B

Aff; (A) : Syn(RT,7)u(A) =~ K o (F"RESAL(A)),, —— Ko o (FTRPIRAMY(A)),,

B2 Kuier (P RUIEA (), &5 Koy (P REIGAN(A)),

N CF(KLp (FT‘R[’U«,’U] @A[u,v] (A))n) N CF(K¢ (FTA%’,:,}] @A[u,v] (A))n)

2 Cr(Ko(F A" (R3))n) 2 RTproct (Spa(Ra), Ko (F Ac)n)

~

FES

T Rrproét(Spa(RA)a Z/pn (T)/)'
Here FES stands for "fundamental exact sequence". This map is functorial in A and is a p°"-quasi-
isomorphism, for a universal constant ¢, after truncation 7<, (by Proposition |7.14). In the next section
we will modify it to make it functorial in R* as well.

7.3. Local period morphism, general case.

7.3.1. Over C. Consider now the same local situation as above: a formal scheme 2~ = Spf R, for an
algebra R, which is the p-adic completion of an étale algebra over a ring R from . We equip
Spf(R{) and Spf(R™) with the logarithmic structure induced by the special fiber. But now we will
allow larger coordinate rings, i.e., we assume that we have the following commutative diagram, a relaxed
version of diagram (|7.6):

(7.19) Spf(EZD)

T

Spf(R )¢ i - Spf(Acr(R)®a., RE)

/%\

Spf(R*)C - Spf(R;)
| %
(

Spf(Oc)¢ Spf(Acr)

The map 7 is log-smooth and the map ¢ is a closed immersion (and the bottom square is not necessarily
cartesian as it was in diagram ) This extra degree of freedom will allow us to globalize the period
map (the added variables disappear thanks to pro-étale techniques, see Lemma . We assume that
Spf(R{) is equipped with a lift ¢ of the Frobenius on Spf(A;). 2 and Spf(E%]’DH) are the (log)-PD-
envelopes of ¢ and &, respectively. Let r € N. We define the filtered de Rham complex QE%D as in the

case of lifted coordinates. Let

T()e o r o+ r—1 o+ 1 r—2 oo+ 2
D A =F"9, = F .@a@)R;QRmA”ﬁF 9@®R$ QR;@/AH%

The crystalline syntomic cohomology RI'gy, (2", 7) is computed by the complex

Syn(R&, ) = [F'Qyp =05, ]
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The Fontaine-Messing period map

(7.20) ol Syn(RE.r)n — C(Gr, Z/p"(r))
is computed by the composition
r()e o—p" .
(7.21) Syn(RE, r)n [ Q0 Al

Din/Acrn
“|
C(Gr, [FrQpep ———Qep )

R,k,n R,k,n

f

C(Gy [FAc(R)n—2"2 Ar(R)])

2

C(Gr, Z/p"(r)).

Lemma 7.22. The period map (7.20) is a p°"-quasi-isomorphism, for a universal constant c, after
truncation T<;.

Proof. Tt suffices to show that the first and the second map in the composition (7.21) are p"-quasi-
isomorphisms, for universal constants ¢, after truncation 7<,. Consider the product Spf(R%®a,, RE)
(we put  to distinguish diagram (7.6) from diagram (7.19)) and the canonical closed immersion ¢; :
Spf(R*) < Spf(RE®a., RYE). Let 27 be the PD-envelope of ¢; and let E%D be as in diagram (7.19) for
t1 in place of t. Consider the compatible maps

(7.23) p1: SpE(ZF) — Spf(ZE),  po: Spf(21) — Spf(RY),
pr < SpE(ERP) — Spf(ERD ), po : Spf(ER) — Spf(EEP)

induced by the two projections from Spf (R.;@Acrﬁct) to Spf(R;,) and Spf (Ecﬁ), respectively. These maps
are also compatible with the other maps in diagrams (7.19) and (7.6)). They induce compatible maps

(7.24) Py FTQ% S FQ Pyt F Qe 5 F Q% en

R&n/Acin Dt [ Acx,n’ P EZD
* T()e ~ T()e * T()e ~ T()e
pl N F @:rr,n/Acr,n — F @i/Acr,n, pl . F E%D,i.n — F E%Dn

Moreover, the E-maps are also compatible with the canonical maps from F"Ac.(R),

The maps in are quasi-isomorphisms since both terms in the left maps compute absolute crys-
talline cohomology of Spf(R™) and both terms in the right map — crystalline cohomology of Spf(ﬁ—i_)
over A (R).

Now, since the maps in are compatible with Frobenius, the maps from allow us to repl~ace
the maps in the composition for 2%, first, with the ones for 2T and, then, with the ones for R},

which we know to be p“"-quasi-isomorphisms, for a universal constant c, after truncation 7<, O
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7.3.2. Owver a perfectoid C-algebra. Let A be a perfectoid affinoid over C'. To show that the Fontaine-
Messing period map, lifted to A, can be globalized we will use the following commutative diagram:

(7.25) Spf(ER )

Spf (R, )¢ l Spf(Acr(B)Da., RE)

Dex

Spf(RT)C - Spf(RE)

Spf ﬁc Spf(Acr)
The Fontaine-Messing period map

+

(7.26) ars (M) Syn(RE,7)a(A) = C(Gry, Z/p" (1))
can be defined by the composition
(7.27) Syn(RE,r)n(A) = [F7Q5, ) @ac,Aa(b)n —>Q°%+m Ian DA Acr(M)n]

w

C(GRA; [FTQ;EPD —> Q]._EPD D

Rp.k,n Rp .k,n

b
C(GRA7 [FTAcr(EA)n&> Acr(ﬁA)n])
1

C(Gra, Z/p (1))

Lemma 7.28. The period map (7.26) is a p°"-quasi-isomorphism, for a universal constant c, after
truncation T<,.

Proof. Tt suffices to show that the first and second maps in the composition are p“’-quasi-isomorphisms,
for a universal constant ¢, after truncation 7<,. But since the map 7 in diagram li is log-smooth
(we put " to distinguish diagram from diagram ) and Z% in diagram is I-adically
complete, for the defining PD-ideal I, we have maps from f : Spf(Z:) to Spf(RZ,) and from Spf (EPD B

to Spf (E%][?) that are also compatible with with other maps in diagrams 1) and . These maps
induces two compatible maps

~

F"" Rj’r n/A ®A(.r " Acr(A) — FT + W/Acr ”®Acr,nAcr(A)na
FTQ]'E%D — " EED
AT Askam

These maps are quasi-isomorphisms: the first one by the first quasi-isomorphism from (7.24]) and flatness
of Ac(A) over A.;; the second one, via the filtered Poincaré Lemma (note that both the domain and the

target compute crystalline cohomology of EX,W over Ac.(Rp)n), can be identified with the identity map
Id: F"Ac(RA)n — F"Ac(RA)n-

Assume now that the map f is compatible with Frobenius. Then in our lemma we may take RZ, = Ejr
in which case we can use Proposition In general, map f will not be compatible with Frobenius and
then we have to argue via a zig-zag of such maps as in the proof of Lemma O
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n
7.3.3. Modification of the period morphism afi{ (A). As in Section we can replace the Fontaine-
Messing period morphism

+

ari(A): Syn(RE,1)a(A) = C(Gry, Z/p"(r))

constructed above (which is neither functorial in R}, nor in A™) by a better behaved morphism. But
before doing this we need to make a special choice for our coordinate system (a simpler variant of the
one usedﬁ in [I2], Sec. 5.17]).

Assume that each pair of irreducible components of the special fiber of 2 has nontrivial intersection
(in particular, 2" is connected) and that we have a closed immersion

(7.29) ta s 2 =Spf(RY) < [ Spf RS,
[ J<PAN
such that
(1) Ry = Oc{X5y,..., X5

d,as°
set A, and b5 € Q>0;
(2) There exists a dp € A such that the morphism Spf(R*) — Spf(Ry ) is ¢tale.

We set

Xsasi1y- - Xds }/(Xo.as+1 -+ Xa; — p), where § € A, for a finite

Spf(RR) := ] SpfRs.
dEA

The formal schemes Spf Ry's and Spf(RR) are endowed with the log-structures coming from the special
fiber.
Let R?’Oo be the p-adic completion of the ring

1

colim,, Oc{X 5 X X6p26+1,.. X’m}/(

d,as

o bs
.5+1 ’ Xd 7p,,n).

We denote by Ri’oo the completed tensor product of the above rings and set RZ’OO = Ri’w® RY RT,
R := R™[1/p]. We consider the groups
Ts:= Gal(Ry ®[L]/RF[L]) ~ Z9%, Ta:= ][] Ts-
LISTAN

If (7s5,i)0<i<ds are the topological generators of I's, the action of I's on R§ is given by:

Ye,i(Xs,) = [€] X, and 75,,(Xs,j) = X5 for i # j34,j < as;

V5 (Xs4) = [€]Xs.: and 75.4(Xs.5) = Xs.5,75.1(Xs5.0,) = [€] ' X505 for i # j,a5 < j < ds.
We get the induced action of I'a on REP (the divided power envelope of the closed immersion (7.29))). We
note that Spa(Rj"> [%]) is an affinoid perfectoid pro-étale I‘(;—coverﬁof Spa(Rg [%]), similarly, Spa( Ry [%])
is an affinoid perfectoid pro-étale I'a-cover of Spa(Ri[%]). Its base change Spa(RX’) is an affinoid perfec-
toid pro-étale I'a-cover of Spa(Ra) (by almost purity since Spa(RY) contains Spa(Rg§°) as a subcover).

Set

(B5) = Al X35, X0 Xaagits s Xa} (Ksag1 - Xay = [(07)"),
CT(R?) = ®5€AAcr(R5 )

45There are notable differences: we did not separate the torus data and we allowed coordinates R? which do not satisfy
point (2) below.
A6yye skip the T-structure from the notation to lighten up the writing.
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The diagram (7.25) takes now the following shape (R, changed to A(RR)):

(7.30) Spf(ELD)

o T

Spf(Ry )¢ l u Spf(Acr(Ra) @A, Acr(RR))

/ N \

Spf(R+)C Spf(Aa(RR))
(

: -

Spf(O¢c)¢ Spf(Acr)

The Frobenius ¢ on Spf(A. (RR)) is induced by the Frobenius on Spf(A.;) and by raising to p’th power
the coordinates. And, we have in this setting the following analog of diagram (7.16)):

(7.31)
Koo (F" REPBAG(A)) Ca (Ko (FEEP ) Ca(K o(FA(Ry)))

el N | |

T<rW PL

~

Ko, (FTRYIGAI(A)) Co (K, (FAlY(Ry)))
t® T<r \L HH T 14
Kiiera.o(FTRYIEAM(A)) Or o (K (FrAY(RY L))

fazT? 5TZ

Ky (FTRYVEANI(A)) — Oy (Ko (FTRAMEA(A))) — Cry (K, (FT ARIBAl(A)))

Here, everything is taken modulo p™ and all the quasi-isomorphisms are p®"-quasi-isomorphisms (after
truncation 7<,). Indeed, for the map w this follows by comparison with the diagram (7.16)); for the map
B — by the same argument as the one used in the proof of Lemma [7.171 The map ¢ is induced by the
maps

g0 : RR = Ac(R™®), ¢e;:RRP — AL (R™),

where the first map is defined by choosing p-towers of coordinates as in (7.5 and the second map is the
unique extension of the first one (by the universal property of logarithmic divided power envelopes). We
treat it and the map § with the following lemma:

Lemma 7.32. The maps

e : Oy (K (FTRYMEAMI(A))) = O, (K (FTARIBA(A))),

oo
A

81 Cry (Ko (FTARSBAII(A)) = Cr, (K, (FTAR (RS )
are p° -quasi-isomorphisms after truncation T>,.

Proof. We will pass to the frame R?, where the statement of the lemma is known. For the first map,

arguing as in the proof of Lemma we find a map f : Spf(RYP) — Spf(écr) compatible with the
diagram ([7.30) and the analog of the diagram ([7.12) for the frame R?O. If this map is compatible with
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Frobenius then it induces the vertical arrows in the commutative diagram:

Crs (Ko (F" RA M SAII(A))) —— Cry (Ko (FT AR EA(A)))

Cry, (B (7 B Al (A))) - Oy, (K (FT AR BA (A))).
The map €5, is a p“"-quasi-isomorphism by diagram 7 the left vertical map is a p°"-quasi-isomorphism
(after truncation 7<,) because both the domain and the target compute Syn(R™,r),(A), and the right
vertical map is an almost quasi-isomorphism by almost étale descent. It follows that the map e from
our lemma is a p°’-quasi-isomorphism after truncation 7>, as wanted. In general, the map f is not
compatible with Frobenius and we have to proceed by a zig-zag as in the proof of Lemma [7.22]
For the map ¢, consider the commutative diagram

75:29

Cro (Ko (Fr A B (A))) 27 Co(K ,(Fr A (Ry)))

T 75229
! =
Cr (Ko (F7 AL EAI ) (A)

The diagonal map is a p"-quasi-isomorphism by the diagram ([7.16)). It follows that so is the horizontal
map and then the map §, as wanted. |

Remark 7.33. The reader will probably notice that for what follows we did not need to prove Lemma
it will suffice to know that the composition pgde is a, truncated at r, p°"-quasi-isomorphism
and this we know since the diagram commutes and the top horizontal maps are truncated at r
p°"-quasi-isomorphisms.

+ o
Diagram ([7.31)) allows us to replace af s (A) with the map f % (A) that traces that diagram down-

bottom right-up and replaces Cq (K, (F"Acc(Ra)) with RIroet (Spa(Ra ), Ko (FTA)):

Ba(A) : Syn(R2,m)n(A) = RTproce (Spa(Ra), Z/p" (r)').

TR £ Syn(RR,1)n(8) = Ko o (F RRPEAL(A))n = Ko o(FTRAVEA (4)),,

t®,7<r

— Kiiera o (FTRAEAN(A)), 25 Ky, o (FTRYVEA(A)),,
— Cra (Ko (FTRYEA(0)),) S5 Cry (K (F7 ARZIEAM(4)),,)

J A [u,v oo v T
= Cra (Ko (F"A" N (RZ 7))n) = RU prog (Spa(Ra), Ko (F Acr)n)

EES RE e (Spa(R1), 2/ (7))

Here FES stands for "fundamental exact sequence". This map is functorial in A and is a p“"-quasi-
isomorphism, for a universal constant ¢, after truncation 7<, (by the discussion below diagram |7.31).
Hence its rational version

A (A) : Syn(RR,7)q, (A) — RTproct (Spa(Ra), Qp(r))

is functorial in A and a strict quasi-isomorphism after truncation 7<,.
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The map a (A) is functorial in the triples (R, R}, ta) and taking the colimit over the filtered system
of such embeddings with fixed R* we get a map in 2(Cq,)

4
(7.34) (M) : RTgm(SpE(RY),7)q, (A) = RTproct(Spa(Ra), Qp(r)),
which is functorial with respect to RT and A and a strict quasi-isomorphism after truncation 7<,,.

7.3.4. Proof of Theorem . Let now X € Sme. The definition (7.34)) of the period map globalizes using
n-étale sheafification to a period map in 2(Cq, )

r(A): Reyn (X, Qp(r))(A) = Rproes (X, Qp(r))(A), 72> 0,

which for A = C recovers the period map of Fontaine-Messing. This is a strict quasi-isomorphism after
truncation 7<,. Now, varying A we get the map we wanted:

r i Rayn(X,Qp(r)) = Rproct (X, Qp(r)), 1 2>0.

7.4. Dagger varieties. We will now geometrize cohomologies and period morphisms associated to dag-
ger varieties.

7.4.1. Cohomologies. Let X be a dagger affinoid over C, and {X}} be a presentation. Define the VS:

R;oét(x Q,) := Lcolim,, Ryoet (X5, Q,).-

For a smooth dagger variety X over C, this globalizes, via étale sheafification, to the VS Rproet (X, Qp)-
We set

Hiroet (X, Qp), Hiroed (X, Qp) - A= H' (Rproe (X, Qp) (M), H' (Rpros (X, Qp) (A)).
We define similarly the Hyodo-Kato cohomology, the B(J{R—cohomology7 and the syntomic cohomology:
Ruk(X),  Hi(X); Rar(X/Big), Hir(X/Bip); RL.L(X,Qu(r), HEL(X,Qu(r));
Ry (X, Qp(r)),  Hiya (X, Q(r)).
We note that the Hyodo-Kato cohomology is the constant functor equal to RI'yk (X), an{ (X).

7.4.2. Period maps. Let X be a dagger affinoid over C, and {X}} be a presentation. Let r > 0. The
local period morphisms of VS’s (with values in 2(Cq,))

;r‘ : Rlyn (X7 QP(T)) - R;r)roét (X7 QP(T))

are defined as

Rlyn(X7 Q,(r)) = L colimy, Ryyn (Xn, Qp(r)) L colimy, Rproet (X1, Qp(r)) = R;r)roét (X, Qp(r)).

For a smooth dagger variety X, this globalizes to period morphisms
T REW(X,Qp(r) = Rproar (X, Qu(r)).

These are strict quasi-isomorphisms after truncation 7<, because so are the rigid analytic period mor-

Lcolimp .
—_—

phisms .5 by Theorem [7.3]
Recall now that, for X € SrnJrC7 the period morphisms in 2(Cq,)

[0 7°0 RFSyn (X, Qp(?“)) — Rrproét (Xa Qp(r))

are defined as the compositions

LT «
Ry (X, Q(r) €22 RITy, (X, Qp(r)) 5 R proct (X, Q(r)).

syn
These morphisms lift to VS. Indeed, it remains to show that we can lift the map ¢!, to a map

syn
lyn : Riyn(X’ QP(T)) — RSYH(X’ QP(T))’
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and that this map is a strict quasi-isomorphism. We define the map lyn by étale sheafifying the following
composition (X is a smooth dagger affinoid over C),

Rlym(X7 Q, (7)) = L colimp, Reyn (Xn, Qp(r)) = Lcolimy, Reyn (X5, Qp(r))
'}

Reyn(X, Qp(r)) ==~ L colimy, Ryyn (X", Q, ()

Here, the morphism needs to be defined and both it and the bottom morphism need to be shown to be
strict quasi-isomorphisms.

Proposition 7.35. (Definition of the map ) Let X € SmTC. We have a natural map of VS’s (with values
in 9(Cq,))

Reyn(X, Qp(r)) = Reyn(X, Qu(r))

It is a strict quasi-isomorphism for X partially proper.

Proof. We will set := 51, with the maps 1, 5 defined as follows.
(i) The map 1. The map ; is defined as the following composition:

Reyn(X, Qp(r)) = [[Ruk (X))@ pous By N=0pmp” e, Rar(X/BJR)/F"]
v
[[Ruk (X)® pur B N=00=p" HKEL, RdR()?/BgR)/FT)]
M
[[RHK()A()F@WM BV 0= KB, RdR()A(/B:fR)/FT)]

It is a strict quasi-isomorphism. Indeed, for that it suffices to show that the canonical map
S - S\aR SionN=
Rtk (X)®parBEY ™ = [Rux (X)@ pu BE

is a strict quasi-isomorphism. But this can be shown exactly as in Section [6.1.1}
(ii) The map o. Now, we define a natural strict quasi-isomorphism o by

[[Rikc (X) p@ e B N=09=p" B, R o (X /BAL)/F7]
¥
[[Rex(X)]#=P" — 4 R (X) /7] == Ryyu(X, Qu(r)).

For that, it suffices to define the maps 15y and (4 in the following diagram and to show that this
diagram commutes:

o0~ e (A = ~R -
(7.36) [Ria (X)® purBEV=0 === (Rar (X /B)@p 1 Bir)/F

KRt
lia?f@ld/

th (2 [Rer (X) @ BEIN=0 w@ean |2 ) b

|

Rer ()?> ®B$ Bj}

can

(Rcr()?)@BjrBjr)/Fr-

We define the maps (5 and (35 to make the left and the right triangles in the diagram commute. They
are strict quasi-isomorphisms. The remaining pieces of the diagram commute by definition. O
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Let X € SmTC. We define the global period morphism of VS’s (with values in 2(Cq,))

rt Royn(X, Qp(r)) — Rproat (X, Qp(r))
as the composition [ ( lyn)_l. From what we have shown above, it follows that:
Corollary 7.37. The natural map of VS’s (with values in 2(Cq,))
T<r r: TgrRsyn(Xa Qp(r)) - TSTRproét(X7 QP(T))

18 a strict quasi-isomorphism.
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