
TATE’S WORK AND THE SERRE-TATE CORRESPONDENCE

PIERRE COLMEZ

Abstract. The Serre-Tate correspondence contains a lot of Tate’s work in a

casual form. We present some excerpts that show how some of Tate’s best

known contributions came into being.

Serre and Tate have been close friends for over 50 years and their correspondence,
recently published as volumes 13 and 14 of the series “Documents mathématiques”
of the Société mathématique de France, reads like a diary of arithmetic geometry.
It contains, in particular, a lot of Tate’s work in a casual form. As Tate wrote to
Serre on April 23, 1963, after a stream of cohomological letters:

Excuse all these letters. I find that writing you is an excellent
method of organizing my thoughts.

Some of this work was only published much later, some was never published. We
give below some excerpts that show how some of Tate’s best known contributions
came into being. There are many other topics on which Tate worked that appear
in the correspondence and that we won’t consider, such as Galois cohomology, class
field theory, p-adic Hodge theory, Honda-Tate theory, Serre-Tate theory, elliptic
curves with everywhere good reduction, modular forms, Stark’s conjectures. . .

1. The Tate curve

Elliptic curves over C are usually thought of as C modulo a lattice Λ. Now, two
homothetic lattices give isomorphic elliptic curves, and so one can take the lattice
Λ, corresponding to an elliptic curve E, of the form 2πi(Z + Zτ), with Im τ > 0.
Setting q = e2iπτ , and using the exponential map, one obtains an isomorphism
E(C) ∼= C∗/qZ of complex Lie groups. If the equation of the elliptic curve is y2 =
x3 − g2x− g3, classical formulas express g2, g3 as power series in q and x(w), y(w),
if w ∈ C∗, as series in q, w and w−1. These series have rational coefficients and
Tate had the amazing idea that they could be used to give a description of (special)
elliptic curves over a p-adic field analogous to the above description over C. This
first shows up, in the correspondence, in a letter of Serre of July 31, 1959.

Il parâıt que vous faites des choses rupinantes avec les courbes
elliptiques sur les p-adiques (j non entier), m’a raconté Lang; vous
savez faire marcher ce que nos pères appelaient les “fonctions loxo-
dromiques” sur les p-adiques. C’est bien sympathique, et j’aimerais
beaucoup avoir des détails, si ça ne vous ennuie pas d’écrire.

Si j’ai bien compris ce que me racontait Lang, votre théorie mon-
tre de façon amusante qu’une courbe elliptique à multiplication
complexe a un invariant j entier algébrique. En effet, sinon, cet
invariant aurait un pôle au moins pour un p. Par votre théorie,
il s’ensuivrait que le module `-adique associé (` 6= p) aurait un
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sous-module distingué de rang 1 (celui qui est formé des points ra-
tionnels sur la clôture non ramifiée du corps p-adique); l’anneau
des endomorphismes serait bien obligé d’appliquer ce module dans
lui-même, et ceci ayant lieu pour tout ` montre que cet anneau est
réduit à Z. D’accord?

Tate’s answer, August 4, 1959.

I am happy to hear that you found the “fonctions loxodromiques”
“bien sympathiques” because I like them, too – so much so that I
am writing it up, believe it or not. Of course that goes very slowly,
what with my writing neurosis, our new house, new child, etc. but
still it goes. I am tout à fait d’accord with your remark that one
gets a direct proof that End(A) = Z unless j is integral over the
prime domain, and I appreciate the remark very much since it has
forced me to start thinking about isogenies between these elliptic
curves. Since I hope to have a manuscript to show you when we
get to Princeton (first week of September for us) I will be very brief
now about the details:

k complete with respect to | |,
t ∈ k, fixed, 0 < |t| < 1,
w variable in k∗,

x(w) =

∞∑
m=−∞

tmw

(1− tmw)2
− 2

∞∑
m=1

tm

(1− tm)2

=
w

(1− w)2
+

∞∑
m=1

(
tmw

(1− tmw)2
+

tmw−1

(1− tmw−1)2
− 2

tm

(1− tm)2

)

=
1

w + w−1 − 2
+

∞∑
n=1

ntn

1− tn
(wn + w−n − 2), this last for |t| < |w| < |t|−1.

x(w) = x(tw) = x(w−1).

In the classical case (k = C) we check that

℘(u) = x(eu) +
1

12

by showing that the right hand side has the characterizing prop-
erties of ℘(u;ω1, ω2), where ω1 = 2iπ, ω2 = log t. Carrying the
expression of right hand-side at u = 0 out to the term in u4 you
find

g2 =
1

12
+ 20

∞∑
n=1

n3tn

1− tn
, g3 = − 1

216
+

7

3

∞∑
n=1

n5tn

1− tn

also you find by differentiation

℘′(u) = x(w) + 2y(w),
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where w = eu and where

y(w) =

∞∑
m=−∞

(tmw)2

(1− tmw)3
+

∞∑
m=1

tm

(1− tm)2

y(w) = y(tw) and y(w−1) + y(w) = −x(w).

Substituting ℘ = x+ 1
12 and ℘′ = x+ 2y in ℘′2 = ℘3− g2℘− g3 we

find

(?) y2 + xy = x3 − b2x− b3,
where

(??)


b2 =

1

4

(
g2 −

1

12

)
= 5

∞∑
n=1

n3tn

1− tn
= 5t+ 45t2 + 140t3 + ...,

b3 =
1

4

(
g3 +

g2
12
− 1

432

)
=
∞∑
n=1

(7n5 + 5n3

12

) tn

1− tn
= t+ 23t2 + 154t3 + ...

are power series in t with rational integral coefficients.
Let A be the cubic curve (?) defined over k, where k is now

arbitrary complete, no longer C, and of any characteristic, using
(??) as definition of coefficients. (Thus A is determined by one
transcendental “module”, t.) The discriminant of (?) is

∆ = g32 − 27g23 = b3 + b22 + 72b2b3 − 432b23 + 64b32

= t− 24t2 + 252t3 + ... = t
∏

(1− tn)24

and is not 0. Hence A is elliptic, with invariant

j =
(12g2)3

∆
=

1

t
(1 + 744t+ 196884t2 + ...)

just as in the classical case. But notice that in the non-archimedean
case, the inverse series

t =
1

j
− 744

1

j2
+ ...

converges, so that t is uniquely determined by j – there is no mod-
ular group in that case. On the other hand of course, |t| < 1 =⇒
|j| > 1, i.e. j is not integral.

Let Ak denote the group of points on A with coordinates in k,
and let 〈t〉 denote the subgroup of k∗ generated by t.

Theorem. — The map w 7→ ϕ(w) = (x(w), y(w)) is a homomor-
phism of k∗ onto Ak with kernel 〈t〉.

I leave the proof as an exercise, without hints, in the hope that
you will find a better one than mine, which when written out
in all detail, including some lemmas about power series in non-
archimedean complete fields, takes 8 handwritten pages.

[...]
Finally, and most important, this last theorem and probably

many other things that are hard to prove at present, would be-
come obvious if one really had a theory of analytic + meromorphic
functions in complete non-archimedean fields. Given such a field
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k, and given such a t with 0 < |t| < 1, then it is clear from the
above results that the “meromorphic” functions on the “manifold”
k∗/〈t〉 are just the rational functions of x(w) and y(w). But will
you please define “meromorphic” and “manifold”. How does one
get around the total disconnectedness to get some kind of global
theory? One really must try to make sense out of Krasner’s stuff.
I have not yet had the courage, however. But everything points to
the existence of p-adic analytic continuation. D’accord? When it is
understood we can write a big addition to your Variétés rédaction1.

The content of this letter has had a deep influence on the field despite the fact
that Tate did not publish it untill 1995. Note that Grothendieck was not very
receptive at first, as is shown by his letter to Serre of August 18, 1959.

Tate m’a écrit de son côté sur ses histoires de courbes ellip-
tiques, et pour me demander si j’avais des idées sur une définition
globale des variétés analytiques sur des corps valués complets. Je
dois avouer que je n’ai pas du tout compris pourquoi ses résultats
suggèreraient l’existence d’une telle définition, et suis encore scep-
tique. Je n’ai pas non plus l’impression d’avoir rien compris à son
théorème, qui ne fait qu’exhiber par des formules brutales un cer-
tain isomorphisme de groupes analytiques ; on conçoit que d’autres
formules tout aussi explicites en donneraient un autre pas plus mau-
vais (sauf preuve du contraire !).

2. Rigid analytic spaces

There is no trace in the correspondence of Tate thinking about the questions he
raised in the last paragraph of the above letter before September 6, 1961. It could
be that Grothendieck’s presence at Harvard made him come back to the problem.

A propos p-adic analysis, and θ-functions, I just began to think
that one had better do some naive theory of divisors for specific “va-
rieties” like affine n-space, the product of n multiplicative groups,
the unit polycylinder |xi| 6 1, etc. For example, one should prove
that in the corresponding rings (everywhere convergent Taylor se-
ries, “everywhere” convergent Laurent series, “Séries restreintes”,
etc) two elements have a g.c.d. In other words, these rings should
be factorial, except that in the first two cases, the factorization can
be infinite, with some restrictions to be made precise, because of
“non-compacity” of the varieties. Anyhow, I’m almost certain that
in the case of Laurent series, the classical theory goes through and
that the θ-functions (for a given “period lattice”) just correspond
to “periodic” divisors. Do you have any words of wisdom about
the above underlined specific Conjecture ? All I can get out of G is
that the rings must have nilpotent elements, and certain morphisms
must be explained to be covering morphisms, in order that one can
think more clearly.

After that, things went quite fast as Serre wrote, on October 2, 1961:

1Serre was writing the “fascicule de résultats sur les variétés” for Bourbaki.
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Que deviens-tu? Lang m’a dit que tu2 savais (presque?) définir
les “vraies” variétés analytiques p-adiques. Est-ce vrai? Si oui,
envoie des détails.

Tate, October 16, 1961:

I enclose five pages, in “canonical style” which constitute the first
installment of the “details” concerning rigid p-adic analytic spaces
(with nilpotent elements, of course) which you asked for. I have
had the very devil of a time organizing the sorites concerning the
category C ∗, and the full subcategory A of algebras of the type
K{t1, . . . , tr} which will be the “affine” algebras of the theory, to
my satisfaction. For example, it took me over a week to extend
results which I had in the case of a discrete valuation to the general
case. Each time I started to write you an account (twice) I tore it
up and started over. But now you have a beginning, and I’m pretty
sure that the next installments will be easier to write (and more
interesting !). Of course you and Borel will incorporate all this in
the fascicule on varieties (heh, heh !). It will be clear without saying
that I have been helped enormously by Grothendieck, and by § 7
of Ch 0 of the Elements. Actually, what I send is just the very
beginning, but Theorems 4.4 and 4.5 are certainly of interest. Do
you see any simpler way to show K{T1, . . . ,Tr} is noetherian ? This
is almost trivial if the valuation is discrete, for then V{T1, . . . ,Tr}
is noetherian because the corresponding graded ring is. Do you
see any way for example to prove that A{X} is noetherian if A
is ? I have no idea whether that statement is true. I still do not
yet see how to prove K{T1, . . . ,Tr} is factorial when V is non-
noetherian, whereas if V is noetherian, the result is about trivial as
Grothendieck told me : Because then V{T1, . . . ,Tr} is regular, and
when divided by x (prime element of V) it is a polynomial ring, and
a projective of rank 1 is free there, so also over V{T1, . . . ,Tr}, so
that is factorial, so also is K{T1, . . . ,Tr} = (V{T1, . . . ,Tr})x. Just
so you have some idea of what is to follow, I give a few remarks.
Of course the fact that for A ∈ A the maximal ideals are “points”
(thm 4.5) is the key to practically everything. What I think I can
do (though I have not written the details), is prove that for any
finite covering of the maximal ideal spectrum of A by open sets of
the special form U = {y | |fi(y)| 6 1, |gj(y)| > 1}, where fi and

gj are finite families of elements of A, gives rise to the trivial Čech

cohomology for any sheaf of the form M̃, where M is a finite type
A-module. With this result I hope to be able to patch together
rigid analytic spaces. It is certainly enough to get the ones I know
about (toruses, elliptic curves, etc).

This time Grothendieck was much more enthusiastic: here is what he writes to
Serre, on the first of October of 1961.

2Note that the casual “tu” replaced the formal “vous”: one reason is that Tate had participated
in his first “congrès” Bourbaki.
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L’atmosphère mathématique à Harvard est tout à fait rupinante,
un vrai souffle d’air frais en comparaison de Paris, chaque année
plus morne. Il y a ici bon nombre d’étudiants intelligents, qui com-
mencent à être familiers avec le langage des schémas et ne deman-
dent qu’à travailler sur des problèmes intéressants, qui évidemment
ne manquent pas. Je vends même des faisceaux de Weil et coho-
mologie de Weil (si peu que j’en sache) avec la plus grande facilité,
y compris à Tate qui vient de démarrer sérieusement les structures
analytiques “globales” qui le tracassaient depuis deux années, et qui
semblent s’exprimer le plus aisément en termes “d’espaces annelés
de Weil”. Il me semble de plus en plus évident à ce propos qu’il fau-
dra reprendre complètement le concept de schéma formel en même
temps que celui d’espace analytique (ou “rigide-analytique” comme
Tate et moi disons pour ses structures “globales”), pour les mettre
dans un chapeau commun, qu’il reste à trouver.

Tate’s notes were distributed by IHES under the title “Rigid analytic spaces,
Private notes of J. Tate, reproduced with(out) his permission by IHES”, and finally
published in Inventiones (thanks to Serre’s insistance) in 1971.

3. The Néron-Tate’s height pairing

The Néron-Tate’s height pairing is a fundamental tool for studying rational
points on abelian varieties, for example it appears in the precise form of the Birch
and Swinnerton-Dyer conjecture. It is a positive quadratic form on the group of
Q-points of an abelian variety defined over a number field, and Tate, in a letter
of October 24, 1962, gives an incredibly simple construction of this quadratic form
(thanks to Lemma 1 below, now known as Tate’s trick).

Has Néron mentioned to you the quadratic form business? I
wrote him a few days ago a proof of his Edinburgh conjectures
which is so trivial I can hardly believe it:

Lemma 1. — Let A be an abelian group and h : A → R a real
valued function on A such that the function

d(P,Q) = h(P + Q) + h(P−Q)− 2h(P)− 2h(Q)

is bounded on A × A. Then there exists a unique biadditive sym-
metric map b : A × A → R such that h(P) − b(P,P) is bounded
on A.

This is a nice exercise. (When the “bounded’s” are replaced by
“zero’s”, then the thing is essentially the well known criterion for
a Banach space to be a Hilbert space.)

Lemma 2. — Let A be an abelian variety, let p1 and p2 denote the
two projections of A × A onto A, and for each invertible sheaf L
on A, put

a(L) = (p1 + p2)∗L + (p1 − p2)∗L− 2p∗1L− 2p∗2L,

an invertible sheaf on A × A. Then if L = M ⊗M− (and probably
also if we just assume L = L−, where L− is the image of L under
P −P) we have a(L) trivial, i.e. a(L) ≈ OA×A.
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(Also an exercise.)

Putting the two lemmas together with the “functorial” proper-
ties of the logarithmic height h (cf. Néron-Lang) we get:

Theorem. — If A is an abelian variety defined over a product
formula field k, and L an invertible sheaf on A such that L = L−,
then there exists a unique bilinear map bL : Ak×Ak → R such that
hL(P)− bL(P,P) is bounded on Ak.

(Here hL is the logarithm of Northcott’s “uniform height” on all
algebraic extensions of k, which is determined by L up to a bounded
term). Of course Néron’s Edinburgh conjecture is a corollary. Also
Northcott’s theorem that hL(P) is bounded on the division points
is now obvious.

Néron-Tate’s pairing is a sum of local terms for all places of the number field of
definition, and Tate gave a very concrete description of these local contributions in
the case of elliptic curves, in a letter dated June 21, 1968, continued on October 1,
1979, with an algorithmic description (and the code of a program for HP25 that
computes these local terms).

4. The Sato-Tate conjecture

The Sato-Tate conjecture is now viewed as an equidistribution statement for
Frobenius elements inside some motivic Galois groups (a wild generalization of the
theorem of Tchebotarev). This point of view was put forward by Serre in a letter
to Borel, dated May 18, 1966. Tate’s original3 point of view was a bit different and
appears in a fantastic letter dated August 5, 1963.

I have been in a very optimistic mood recently, with the result
that I have some conjectures.

Let f : X −→ Y be a morphism of schemes of finite type over Z.
Suppose Y irreducible, and f projective, simple, with f∗OX = OY.
Let d = dim X− dim Y be the fiber dimension,

ζX(s) =
∏

y∈SkelY

ζXy (s); ζXy (s) =
Py,1(Ny−s) · · ·

Py,0(Ny−s) · · ·Py,2d(Ny−s)
.

Thus

ζX(s) =
Φ0(s)Φ2(s) · · ·Φ2d(s)

Φ1(s) · · ·Φ2d−1(s)
,

with

Φi(s) =
∏
y

1

Py,i(Ny−s)
, <(s) > dim Y +

i

2
(assuming Riemann Hypothesis).

By Poincaré duality we have Φ2d−i(s) = Φi(s− d+ i).

Conjectures. — Let X∗ be the general fiber of f , a variety
over K=R(Y).

3The interested reader will find in the Serre-Tate correspondence a very interesting series of
e-mails, at the beginning of March 2008, concerning the history of the Sato-Tate conjecture.
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(a) The order of the zero of Φ1(s) at s = dim Y is the rank of
the group of K-rational points on the Picard variety of X∗/K.

(bi) The order of the pole of Φ2i(s) at s = (dim Y+ i) is equal to0 6 i 6 d

the rank of the image of the group of algebraic (d− i)-cycles on X∗
which are rational over K in the homology group H2d−2i(X∗) of the
geometric general fiber X∗ (whatever this all means).

(ci) Φ2i+1(s) is regular and non-zero at s = dim Y + 2i+1
2 .

Notice that (bi) and (ci) can be expressed in weaker form without
assuming analytic continuation, because the location of the pole in
question is on the line of convergence of the product (assuming
Riemann Hypothesis).

Notice that all conjectures are unchanged if we replace Y by a
non empty open subscheme, so they really are conjectures about
the variety X∗/K.

Notice that (a) for all varieties over K is equivalent to (a) for
abelian varieties over K, K being a given field of finite type over
the prime field.

I have especial confidence in (a) and (b1). The (bi) for i > 1
and (ci) are a result of pure optimism, no thought whatsoever.

Exercise. — Let K be a number field, let E be an elliptic curve
over K, and apply (b1) to X∗ = E × E over K. Show that (b1) is
true (by Deuring) in case E has complex multiplication. Show that
if E has non complex multiplication, then Conjecture (b1) implies
something about the distribution of the angle θ(p) of the αp such

that ζEp
(s) =

(1−αpNp−s)(1−αpNp−s)
(1−Np−s)(1−Np1−s) , namely that if you assume a

distribution function f(θ) =
∑∞
ν=0 aν cos νθ for 0 6 θ 6 π, then

you should get
∫ π
0

(1 + 2 cos 2θ)f(θ)dθ = 0, i.e. a2 = −a0. Thus
the simplest possible function f(θ) which should occur is

f(θ) = a− a cos 2θ = 2a sin2 θ.

Mumford tells me that Sato has found f(θ) = c sin2 θ experimen-
tally by machine on one curve with thousands of p – many more p
than your computation. Did you ever have your distribution ana-
lyzed, and do they all look like sin2 θ ????

Question. — Does one know enough about algebraic cycles of
intermediate dimension on Er = E × E × · · · × E/K to be able to
test the conjectures (bi) and (ci) via Deuring for Er with E with
complex multiplication, and to see whether the (bi) and (ci) are
compatible with, or perhaps predict, the sin2 θ in the other case?
(Incidentally I just wrote Mumford asking him the same question.)
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The “exercise” is the famous Sato-Tate conjecture. It only recently 4 became a
theorem for elliptic curves over Q or, more generally, over a totally real field 5, but
the general case is still wide open.

Serre was busy with a paper for Izvestia, and did not reply immediately, which
prompted Tate to write on August 28, 1963:

I got your “petit mot” of 18 August yesterday, and conclude from
it that you did not get my letter of August 5 which I sent to Villa
Chantaco, Pyla. Tant pis. But you will not escape so easily – I will
now repeat what I previously wrote.

Which he did, with quite a lot of extra details. In particular, Conjecture (bi)
was extended from even i’s to all i’s.

Conjecture (bi) (for 0 6 i 6 2d). — The order of the pole of
Φi(s) at s = dim Y+ i

2 is equal to the rank of the group Hi
alg(X∗/K).

Here I must explain that I don’t know what I mean by Hi
alg(X∗/K)

for odd i, i.e. (bi) is at present meaningless for odd i, but for
even i = 2j, I mean the dimension over Q` of the subspace of
Hi

alg(X∗,Q`) which is spanned by the images of the algebraic cy-

cles on X∗ of codimension j which are “defined over K” (hopefully
this is independent of `; if K ⊂ C, then I can be more precise, and
use the classical cohomology Hi(X∗ ×K C,Q)).

And the “exercise” expanded, with hints for a solution.

But what excites me even more at present than the Fermat–Weil
case, is the case of a product of an abelian curve with itself. I will
give the results in form of exercices:

Let E be an abelian curve defined over a number field K. For
each p (with non degenerate reduction) let

ζ(s,Ep) =
(1− αpNp−s)(1− αpNp−s)

(1−Np−s)(1−Np1−s)
, αp = εp

√
Np , εp = eiθ(p)

Put

L0(s) =
∏
p

1

1−Np−s
, and Lν(s) =

∏
p

1

(1− ενpNp−s)(1− εpνNp−s)
, for ν > 0 .

1. Show that for X∗ = Em = E× E× · · · × E (m times), we have

Φj(s,E
m/K) =

∏
ν+µ=j

1

(1− ανpαp
µNp−s)(

m
ν )(mµ)

=
∏

06ν6 j
2

(
Lj−2ν(s− j

2
)
)(mν )( m

j−ν) .

2. Suppose there exist real numbers c0 = 1, c1, c2, . . . such that for
each ν > 0, lims→1{(s − 1)cνLν(s)} exists * . Suppose also that * and is 6= 0?

there is a distribution function F(t) on [0, π] such that, for 0 6 a 6
b 6 π, the set of primes p such that |θ(p)| ∈ [a, b] has Dirichlet

4T. Barnet-Lamb, D. Geraghty, M. Harris & R. Taylor, A family of Calabi-Yau varieties

and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), 29–98.
5T. Barnet-Lamb, T. Gee & D. Geraghty, The Sato-Tate conjecture for Hilbert modular

forms, J. A.M.S. 24 (2011), 411–469.



10 PIERRE COLMEZ

density
∫ b
a
dF(t). Show (at least formally – I haven’t studied the

analytic subtleties if any) that

dF(t) =
1

π

∞∑
ν=0

cν cos νt dt .

3. Let (as usual) τ denote the period ratio of the curve E; Im(τ) > 0.
Show that there exists x, y ∈ H1(EC,C) such that H1,0(EC) = Cx,
H0,1(EC) = Cy, and such that H1(EC,Q) = Qu + Qv, where
u = x + y and v = τx + τy (perhaps v = τx + τy, I forgot).
Show then that H

•
(EmC ,C) = C[x1, . . . , xm; y1, . . . , ym] (exterior

algebra on 2m letters of degree 1), with Hp,q(EmC) being spanned by
the

(
m
p

)(
m
q

)
monomials xi1 · · ·xipyj1 · · · yjq , and with H

•
(EmC ,Q) =

Q[u1, . . . , um; v1, . . . , vm], where ui = xi + yi and vi = τxi + τyi.
a) Show that if EC has complex multiplication (i.e. [Q[τ ] :

Q] = 2), then H1,1(EmC) = H2(EmC ,Q) ⊗Q C. Conclude from this
that the ring H2•

alg(EmC/C) = C[H2
alg(EmC)] (i.e. all algebraic cycles

are homologous to intersections of divisors if you allow rational

coefficients), and that dimQ H2ν
alg =

(
m
ν

)2
. Show, using Deuring,

that conjecture (b2ν) is true for Em/K.
b) (This is the point which really excites me.) Suppose no com-

plex multiplication. Show that H2•
alg(EmC) = Q[uivj + ujvi]16i,j6m

and hence that dimQ H2ν
alg =

(
m
ν

)2 − ( mν−1)( mν+1

)
in this case. [ This

took me several days to prove, and at present I need to use j(τ) al-
gebraic ⇒ τ transcendental if no complex multiplication (result of
Schneider); however that result is presumably not essential – oth-
erwise one could make a counterexample to Hodge’s conjecture. ]
Anyway, now conclude that for the Fourier coefficients cν we get

c0 = 1 , c2 = −1 , and c2ν = 0 for ν > 1 ,

if and only if conjecture (b2ν) holds.

Assuming conjecture (b2ν+1) holds with dim H2ν+1
alg

def
= 0 (this is

true for the Fermat–Weil hypersurfaces over number fields and also
for Em where E has complex multiplication), then we conclude that

dF(t) = 1
π (1− cos 2t) dt = 2

π sin2t dt.

0 π
2

π

• (t,F′(t))

End of exercise.

5. The Lubin-Tate formal groups

Class field theory gives a description of the Galois group of the maximal abelian
extension of number fields or local fields, but does not produce actual elements
of these abelian extensions. If the base field is Q, the famous Kronecker-Weber
theorem states that all abelian extensions are contained in the field obtained by
adjoining all roots of unity. If the base field K is a quadratic imaginary field, then
the theory of complex multiplication produces abelian extensions from the torsion
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points of elliptic curves with complex multiplication by K, but for an arbitrary
number field we still do not know how to do that: this was Hilbert’s 12-th problem
and it is still wide open. For local fields the situation is now completely satisfactory
thanks to Lubin-Tate’s theory which gives a beautifully constructive description of
abelian extensions of local fields. The first mention of it is a note in the margin at
the beginning of a letter dated Jan 10, 1964.

3 “Complex multiplication” should give all class fields locally.

referring to the last paragraph of the letter.

One more thing before I mail this: I think that Lubin’s business
in his thesis will give the “explicit reciprocity law” in local class field
theory; it was your remarks on commuting algebras which made me
see it:

Let h = [K : Qp] < ∞. Let O be the ring of integers in K, and
let Ou and Ku be the things in the maximal unramified extension.
Then, in the paper he submitted to the Annals, Lubin has shown
the existence of a formal group F over O such that EndO(F)

∼→ O

and such that its reduction F̃ is of height h = [K : Qp]. Moreover,
F is unique (up to non-unique isomorphism) over Ou, i.e., F×O Ou
is unique, a fact which you will see is perfectly in accord with
what I am about to say. Namely, in the usual way we can embed
K ' EndO(F)⊗Zp Qp into EndQp

(Tp(F)) = (h× h)-matrices over
Qp. Now the image of the Galois group GK in EndQp

(Tp(F)) com-
mutes with K and is therefore in K, since [K : Qp] = h. Thus we
get a homomorphism GK → UK = units in K. Restricting this to
the inertia group GKu we get a homomorphism GKu → UK, which
is probably canonical by the unicity remarks above, and which it
is impossible to doubt is in fact the reciprocity law isomorphism
(or its negative!). For example, if K = Qp, h = 1, then F is the
multiplicative group and you get the explicit law for cyclotomic ex-
tensions proved by Dwork locally. For h = 2 this should all fit with
the classical theory of complex multiplication. The miracle seems
to be that once one abandons algebraic groups, and goes to formal
groups, the theory of complex multiplication applies universally (lo-
cally) and indeed the “full” groups on one-parameter already just
suffice, one for each ground field! I have no idea for a proof at
present. I told Lubin to study Dwork’s proof for h = 1. The thing
is the other side of the coin from the question of g ≈ gl(h,Qp) when
End(F) = Zp.

This was followed, on March 3, 1964, by a letter beginning with:

Lubin and I recently proved the following results, which I would
write in French if I were Bott 6.

Let k be complete with respect to a discrete valuation with finite
residue class field with q elements. Let A be the ring of integers in
k and let π be a prime element in A. Let f(X) = Xq + · · · + πX
be a polynomial of degree q with coefficients in A, highest coeffi-
cient 1, such that f(X) ≡ Xq (mod π), f(0) = 0, and f ′(0) = π;

6A reference to the letter Bott wrote to Serre to announce his famous periodicity theorem.
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for example, we might take f(X) = Xq + πX simply, (although if
A = Zp, π = p, we might want to take f(X) = (1 + X)p − 1). For
each integer m > 1, let

f◦m(X) = Xqm + · · ·+ πmX = f(f(· · · (f(X)) · · · )) (m-th iterate of f).

Let Wf be the set of elements λ ∈ k̄ such that f◦m(λ) = 0 for
some m, and let Kπ = k(Wf ) be the field generated over k by these
elements (it does in fact depend only on the choice of π, not on the
choice of f).

Theorem. — Kπ is the maximal abelian extension of k such that
π is a norm from every finite subfield, and for each unit u in k, and
each λ ∈Wf we have (u,Kπ/k)(λ) = u−1f (λ), where uf (X) ∈ A[[X]]

is the unique formal series such that uf (X) ≡ uX (mod deg 2) and
uf (f(X)) = f(uf (X))

The existence and uniqueness of such a series (for any u ∈ A,
not only for units) is a trivial exercise; you construct it stepwise,
coefficient by coefficient and observe at each step that the n-th coef-
ficient is in A because, for any series G(X) ∈ A[[X]] the coefficients
of G(Xq)− (G(X))q are divisible by π + πr (for r > 2).

I am of course deliberately obscuring the issue. The point is
that in the same way, you show that there is a unique Ff (X,Y) ∈
A[[X,Y]] such that Ff (X,Y) ≡ X + Y (mod deg 2) and

f(Ff (X,Y)) = Ff (f(X), f(Y)),

and you verify (by the unicity statement in the general lemma you
are now mentally formulating) that

Ff (Ff (X,Y),Z) = Ff (X,Ff (Y,Z))

because both are ≡ X + Y + Z (mod deg 2) and both “commute”
with f . Moreover you check that Ff is not only a formal group,
but a formal A-module over A, via the series uf . Moreover any
two, say Ff and Fg (here I mean to imply that f ′(0) = π = g′(0))
are canonically isomorphic over A by means of a series 1fg(X) ≡
X (mod deg 2) and f(1fg(X)) = 1fg(g(X)), whose existence and
unicity follows from the same lemma – there was no need to have
the same f on both sides! (Also incidentally f can be a series,
not a polynomial: What is needed is only f(0) = 0, f ′(0) = π
and f(X) ≡ Xq (mod π).) Now one shows easily that the torsion
points over k̄ on the formal A-module Ff constitute an A-module
isomorphic to k/A. Hence there is an injection G(Kπ/K) ↪→ U =
units in A. It is a surjection, because the Eisenstein polynomials

f◦m(X)/f◦(m−1)(X) = Xqm−qm−1

+ · · · + π are irreducible in k.
These same polynomials show that π is a universal norm from Kπ.
Now you can believe that one can check that the isom λ 7→ u−1f is
the reciprocity law; one uses the fact that any two of our formal
groups Ff and Ff ′ (for different π and π′) are isomorphic over the

completion B̂ of the ring of integers in the maximal unramified
extension T of k. This follows from Lubin’s thesis in case k is of
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characteristic 0, but we now have a short proof for the existence of
a series ϕ(X) ∈ B̂[[X]] such that it begins with εX, ε a unit, and
such that :{

ϕσ(X) = ϕ(uf (X)) (where u = π′/π) (and σ = Frobenius)

Fϕf = Ff ′ and aϕf = af ′ for all a ∈ A

Using these identities, you show, first, that KπT is independent
of π and then that the map θπ : k∗ → G(KπT/k) which is defined
by

θπ(π) = (identity on Kπ, Frobenius on T)

θπ(u) = (λ 7→ u−1f (λ) for λ ∈Wf , identity on T) (u ∈ U)

is independent of π. Since by construction we have

θπ(π) = (π,KπT/k)

it now follows that the map θ = θπ for all π is the reciprocity law
map, because the π’s generate k∗. Notice that we have constructed
the canonical homomorphism θ : k∗ → G(KπT/k) without using
any class field theory at all; using class field theory we see that θ =
reciprocity law, and hence, since θ is injective, KπT is the maximal
abelian extension of k. Probably one could prove that directly, too,
using ramification theory.

There are still many problems: For example can one give an
“explicit” proof of the “translation theorem” relating two ground
fields k ⊂ k′. In particular, when k′/k is unramified, we should
then be able to pass over to your geometric pro-algebraic theory
and look at things up there.

Finally, note that in case of characteristic p > 0 one has some
pure algebra, which is new, at least to me, namely: Suppose Fq ⊂ k.
Let A = Fq[T] (polynomial ring – A has now no longer anything to
do with k). Then for each element c 6= 0 in k, the additive group
Ga becomes an A-module via a · x = ax for a ∈ Fq, and T · x =
xq + cx = f(x). The torsion submodule (over k̄), consisting of the
elements λ such that f◦m(λ) = 0 for some m, is again an injective
hull of the A-module Fq = A/TA, and these points are separable
over k because c 6= 0. Thus they generate an abelian extension
whose Galois group is included in the units of Â = Fq[[T]].

6. Tate’s report on elliptic curves

Tate published in Inventiones, in 1974, a very nice survey paper on elliptic curves.
The correspondence gives a detailed account of the genesis of the paper.

Tate, July 11, 1972.

Poor me – I am suffering because I agreed to give one of the
series of Colloquium Lectures at the Summer Meeting of the AMS,
four talks on “The Arithmetic of Elliptic Curves”. It’s only at the
end of August, but they want a manuscript to deliver in advance.
Anyway, it’s a beautiful subject.
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Tate, August 25, 1972.

Thanks for the letter which I found waiting on return from va-
cation. The week before leaving on that vacation I spent writing
notes to be distributed at my talks on elliptic curves next week.
Each day I wrote, and each evening I took the day’s production to
Laura who typed it immediately. The method produced over-rapid
convergence to a most uneven and disorganized 40+ pages.

Serre, some time in the fall of 1972.

J’ai reçu ce matin ton rapport elliptique. C’est très joli! A
l’impression comme dit Lang. A propos, où est-ce que ça va parâıtre?
Est-ce que l’AMS le publie? Sinon il faudrait trouver un journal
qui le prenne; ça rendrait service aux gens.

Serre, April 19, 1973.

Je reviens à la charge au sujet de tes Colloquium lectures “The
arithmetic of elliptic curves”. Elles seraient très utiles à des tas de
gens, il faut vraiment que tu les publies. Je te propose7 de le faire
dans Inventiones, ou Annales ENS; il y aurait de très petites choses
à changer par ci par là: je te propose de préparer moi-même ces
changements, et je t’en enverrais la liste pour que tu l’approuves;
tu n’aurais donc à t’occuper de rien! J’irais même jusqu’à corriger
les épreuves s’il le faut...

Tate, April 24, 1973.

Thank you for your offer to publish my Dartmouth lectures on
elliptic curves, and to do all the work involved. I gratefully accept,
partially, as follows. You send me your list of “little changes”. Then
let me ponder about the whole thing and possibly make a couple
of medium changes in it, but with a deadline, say July 1 (1973!).
If I’ve done nothing by then, you can go ahead – otherwise I’ll
send you a revised edition then, or a few days later if I am actively
working on it at the time. O.K.? I prefer Inventiones to Annales
ENS (because of the appearance, not because of the speed – I’m
not in a hurry).

Tate, July 2, 1973

Please give me a little more time (i.e. beyond 10 July) on
the elliptic curve report. I have started on it, but have been
distracted by various things, in particular, your conjectures8 on
ρ : Gal(Q/Q) → GL2(F`a). I think I can prove the conjecture

7Those were the blessed times when the role of journals was still to disseminate ideas, and not

to rank papers, and editors were actually encouraging you to submit results they found interesting

rather than trying to find a pretext to refuse your papers...
8This is an allusion to Serre’s conjecture on the modularity of mod p 2-dimensional representa-

tions of the absolute Galois group of Q, which he formulated in a letter to Tate, on May 1st, 1973,
but published only in 1987 (in an extended and precised form which made it possible to deduce

Fermat’s last theorem from the Taniyama-Weil conjecture). This conjecture is now a theorem

(C. Khare & J-P. Wintenberger, Jean-Pierre Serre’s modularity conjecture, Invent. math. 178
(2009), 485-504 et 505–586.), and Tate’s result is the starting point for a complicated induction

over the set of prime numbers.
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for ` = 2, by brilliantly observing that 2
5
2 < πe2/4 (see enclosed

sheets, which I offer as payment for the extended deadline).

Tate, July 27, 1973.

Your solution to the problem of a deadline for my Dartmouth
notes is perfect: I hereby authorize you, if you have not received
a revised version of them from me before Oct 1, 1973, to proceed
with their publication, editing them as you wish. The authorization
cannot be vetoed by me... (signed) J. Tate.

Finally, after several extended deadlines, Serre, November 2, 1973.

Your survey is gone to Inventiones. [...]

Serre, April 9, 1974.

Reçu hier le dernier no d’Inventiones. Ton papier elliptique est
dedans, très bien imprimé (y compris la jolie courbe avec N =
37) et je n’ai pas vu de “misprint”. Je suis vraiment très content
qu’Inventiones ait publié ça; on manque de “surveys” : il est très
difficile de trouver des gens qui veuillent bien en rédiger.

[...]
J’espère que tu as eu la bonne idée de commander 50 ou 100

tirages à part supplémentaires : tu risques d’en avoir besoin.

Tate, June 21, 1974.

The reprints of my survey article on elliptic curves just arrived.
I’m sending them out now, and am astonished at the number of
requests I’ve got already – you were right.

Indeed! Ten years later, when I started studying elliptic curves, one of the first
things I did was to photocopy that survey paper of Tate!
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