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0. Introduction

Let K be a quadratic imaginary field. Let K be its algebraic closure and fix an
embedding of K into C and C, for all primes p. Let F be an extension of degree n
of K. A Hecke character y of F will be called K-admissible if there exist k(y) e N
and j() e N—{0} such that (o)) = N x(@)*¥ N x(e) /¥ for all a € F* congru-
ent to 1 modulo the conductor m,, of . If § is a K-admissible Hecke character of
F, we set A(Y)=T(j(y))"(2ni) "~ ®L(y,0), where L(,s) is the Hecke L-function
attached to . A conjecture of Deligne [D] proved by Harder [H-S] predicts the
value of A(y) up to an algebraic number. The aim of this paper is the study of the
p-adic behavior of A(}) as Y varies.

Let p # 2,3 be a prime splitting in K. Let p be the prime of K induced by the
embedding of K into C, and p the other prime of K above p. As observed by
Weil [W1], any Hecke character i of F of type A, (thus any K-admissible Hecke
character of F) gives rise to a unique continuous character y'P of Gal(F*®/F)
with values in C3. If m is an ideal of the ring of integers of F, let [m| be the set of
places of F dividing m, and if S is a finite set of places of F not dividing (p), let
Yrs,p (tesp. Ypsp) be the Galois group over F of the union of all abelian
extensions of level m such that |m| = S U|(p)| (resp. Im| = Su |p]). If Y is a K-
admissible Hecke character of F of conductor m,, then ¥ factors through
%, for all S such that |my| = S U |(p)| and even through %y, if k()=0 and
Im,| = S U |pl. Finally, let F* be the complex conjugate of F and if y is a Hecke
character of F, let ¥ be the Hecke character of FV defined by
¥V (a)=N(a)~ 'y (@) for all fractional ideals a of F".

Our main result can be stated as follows:

THEOREM. (i) There exists a unique measure s on 9y s , such that for all K-
admissible Hecke characters Y of F such that y/® factors through 4 F,s,p (and with
the additional assumption that k(f)=0 or j(y)=1 if n = 3), we have:

L W dus=Eip (0 )iy (W) Es(HA).
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(i) There exists a unique pseudo-measure Ag (which is a measure if S # &) such
that for all K-admissible Hecke characters s of F such that y'® factors through
Y sp> We have:

f WP dis = Ejp (0 )W(WEs(WAW),
YFSp

where if T is a finite set of places, E;() is the Euler factor above T (at s=0) of the
L-function attached to Y and W,() is a local root number.

REMARK. Stated like this the theorem does not really make sense because in
each equality, the left-hand side belongs to C, and the right-hand side to C. So,
to make sense of these equalities, we choose an elliptic curve E defined over K
with complex multiplication by K; then H}g(E) splits canonically as
HE, QL) @ H\(E, ) where both terms are stable under the action of End E.
Now, as we have fixed embeddings of K into C and C,, if we choose a generator
n of HYE,Op) and a generator y of the 1-dimensional K vector space
H,(E(C),Q), we can define a p-adic period #,=,n and a complex period
No=[,n (cf. III §2). The fields K(1,,) and K(n,) as well as the isomorphism
between them sending 7, to 7, are independent of the choices of E, y and y and
all equalities take place in K(n,,) ~ K (1)

Such measures have been previously constructed in the case n=1 by Manin—
Vishik [M-V] and Katz [K]. Using ideas of Coates—Wiles [C-W1], Yager [Yal],
[Ya2] and Tilouine [T] (see also de Shalit [d Sh]) obtained a much more
elementary construction of this measure (still in the case n=1).

We obtain our theorem in the following way. Using a method developed in
[Col1], similar to Shintani’s method [Sh] in the totally real case, we can define a
value A’(Y) explicitly given as a polynomial in Kronecker—Eisenstein series
attached to lattices in K and a priori depending on various auxiliary choices
(mainly the choice of ‘Shintani decomposition’) which is formally (i.e. without
worrying about convergence problems) equal to A(y). To prove that
A’(Y) = A(¥) in general turned out to be beyond our capacities, but by a suitable
modification of the methods of [Co1], we were able to prove the desired equality
whenever n=1,2 or n>3 and k({)=0 or j(¥)=1. As is well-known, the
existence of a measure is equivalent to the integrality of a certain power series
and our explicit formulae for A’(Y) in terms of Eisenstein—Kronecker series
allowed us to deduce the necessary integrality results from the corresponding
results for the case n=1, i.e. for the Eisenstein—Kronecker series themselves,
which are more or less well-known (more or less because the results in the
literature are not stated in a way that we can use, which means that we have to
reprove them in a form more suitable for our purposes). A by-product of the
existence of this measure is that A’(Y) is independent of all choices.
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If y is a continuous Cj-valued character of %y, (resp. 9rsy), we set
L, s(0)={srs X dug (resp. Ly s(x)= P FspX dZg). We can then make the preceding
theorem more precise as follows:

MAIN THEOREM. (i) L, ((x) is a holomorphic (and even Iwasawa) function of y.
() If ¢ is an admissible Hecke character of F such that Y factors through
gF,S,p’ then

L,s(W®) = E 5/ (\)E 50V )Wo(WEs(W)A'(Y).

(iii) If the conductor of y is divisible by all the elements of S, then there exists a
p-adic unit W (y) such that W)L, s(x)=L,s(x") where x" is the character of
9V 5, obtained from y in the same way as ¥ was obtained from  for y a H ecke
character of F.

(iv) L, s(x) is a meromorphic function of x, holomorphic except for a simple pole
at y=1if S = &, of residue hRyE,, where as usual h is the class number of F, R, is
the p-adic regulator of the group of units of the ring of integers of F and E is a
certain Euler factor.

(v) If ¥ is an admissible Hecke character of F such that Yy'® factors through

Grsp then Lys(p?) = Ejg (V)W )Es(WAW).

COROLLARY. L, 5 has a pole at x=1, or equivalently, Ay is not a measure, if
and only if Leopoldt’s conjecture is true for (F, p). If this is the case then Leopoldt’s
conjecture is true for (F,p).

This paper is organized as follows. In Section I we introduce the basic
notations and recall some basic facts about Fourier transforms of functions on
adeles. In Section II we present a slight modification of the Shintani-like method
developed in [Col]. In Section III, we prove the existence of p-adic measures
attached to n-dimensional generalizations of Eisenstein—Kronecker series at-
tached to lattices in K. As a consequence of the existence of these measures, we
derive the fact that all choices that we had to make in Section II lead to the same
result. In Section IV we prove a number of functional equations satisfied by A(y)
and apply the results of the two preceding sections to give a formula for A(Y) in
terms of polynomials in Fisenstein—Kronecker series. Finally, Section V is
devoted to the construction of ug and Ag using the measures constructed in
Section III and to the study of the p-adic L-functions L,s and L.

I. Notations and Definitions

Let K be a quadratic imaginary field. Let o« —»a denote the non-trivial
automorphism of K. Let F ~ K[X]/P(X), for P an irreducible polynomial of
degree n, be an extension of degree n of K. Let F¥ =K [X]/P(X). We still write
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o — & for the antilinear isomorphism from F to F¥ sending X to X. We shall use
H to denote either F or F¥ so H" will be FV (resp. F) if H=F (resp. H=F").
We write

Oy for the ring of integers of H,

Uy for the group of units of Oy,

I(H) for the group of fractional ideals of H,

I'*(H) = I(H) for the set of ideals of Oy,

Cl(Oy) for the group of ideal classes,

C(H) = I'*(H)for the set of ideals a of Oy such that Oy/a is cyclic as an abelian
group,

CO(H) for the set of principal ideals of C(H),

P(H) for the set of prime ideals of Oy,

2(H) for the set of finite subsets of P(H),

Ay for the ring of adeles of H,

Af; for the ring of finite adeles of H, and

dy for the absolute different of 0.

If V is a subgroup of Uy let V'V ={v|ve V} be the corresponding subgroup of
UHV .

Ifacl(H), leta={x|aca}el(H") and if SeZ(H), let S={p|peS}ecP(H").

If mel(H), let |m|={qeP(H)|vy(m)#0}ecP(H) and if SeP(H), let
Is(H)y={ael(H)|la|nS = J}.

Let Oy 5 (resp. Oy s) be the subring of H defined by x € Oy 5 (resp. O s) if and
only if vy(x) > 0 if qe S (resp. g ¢S).

Fix an embedding of the algebraic closure K of K into C. Let
Yio=H®qC~Y,xY, where Y, =H®Cand ,=H" @C.Lett,,...,1,
be the n embeddings of H into K; we obtain an isomorphism of Y, (resp. Y,) with
C" sending a ® 1 to (t,(x),...,7,{x)) (resp. to (;;@—C_), cees %»- With these
identifications, H and H" become dense K-vector subspaces of C" and a € I(H)
becomes a lattice in C". If y=(y,,...,y,) and z=(z,, ..., z,) belong to C", let

Tr(y) = -—21 v N@O)= Ij1 Vis
yZ=(y1Z1,...,ynZn), <Y|Z>=Tr(y2+j’z),
and

(V12) = exp(—2miy| z)).

If Bis a basis of H over K, we let BY be the basis of HY over K dual to B with
respect to {|)> and if # is a finite set of bases of H over K, we let
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B ={B"|Be%}.Ifacl(H),let a" be the dual lattice of a with respect to | .
Then, a¥ eI(HY) and we have a¥ = 5"1;,5 =(ady) L.

If g€ P(H), let H, be its completion at q and Oy be the ring of integers of Hy. If
Se?(H), let Hy=TIsHy and Os=TI 50, We can describe A} as the set of
x=(...,%g,...) such that x,e H, for all qe P(H) and x4e€ 0, for almost all
qe P(H). We can define a pairing (])y on Af x A} with values in the group of
roots of unity of K* — C* in the following way. The above defined pairing {| >
on C" x C" induces a pairing on H x H" with values in Q which we can extend to
a pairing on A x A{,v with values in A(f), and using the canonical isomorphism
between A{)/ I1,Z, and Q/Z, we set (x| y),,=exp(—2ni<§cT§>) where (?Tf) is
the image of {x|y) in Q/Z. This pairing induces local pairings (|)s on Hgx Hg
and we have (x| y)g = Mgepy(Xq | Yg)q-

Using these pairings, we can define the (local and global) Fourier transform.
Let S5y be the space of K-valued locally constant compactly supported
functions on Hg. If a = b are two fractional ideals of Hg and ¢ € ¥  is constant
modulo a and zero outside b, we define its Fourier transform #(¢)e %5y by:

Fs(¢)y) = { V Ns(@) xezb/a P)x|y)s if yea

0 if y¢aY,

where aV is the ideal of Hg dual to a with respect to (| )s and N(a) is the norm of
a as a fractional ideal of Hy. It is an exercise to verify that this definition does not
depend on the choices of a and b and that # g(F5(9)(y)=d(— ).

Let &(H) be the space of K-valued locally constant compactly supported
functions on Af;. The fractional ideals of A} are in 1-to-1 correspondence with
elements of I(H). So if a = b are elements of I(H) and ¢ e S (H) is constant
modulo a and zero outside of b, we define its Fourier transform % (¢) by the
same formula as before (with the subscript S replaced by H) and we have
F v (Fu(d)y)=d(—y).

If SeP(H), let S5(H) be the subspace of F(H) of functions of the form
Ps(xs) Tges loq(xq), where ¢se Fspy and loq is the characteristic function of Oy.
There is an obvious isomorphism between gy and F5(H) and
FH)=seounLs(H). If SnS'=F and ¢ =¢s(xs)Igs 10,(xg) € s(H) and
¢’ €L p, we define ¢’ x e Ls g (H) by ¢ * d(x) = ¢'(x5)Ps(xs) Iggsus Log(Xg)-
Finally, if be I(H), define dy, € ¥y, by dp= 10“,[ — 1, where 1y, is the characteristic
function of b considered as an H, fractional ideal, andifbe I(H"), let 6y’ € 5.
be defined by oy’ = 15— N(b) "' 15-:. Let y be a generator of the fractional ideal
of Hy, generated by dy. Then we have

F 5 (G5)0) = e &Y (7).
w(dg
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II. Shintani’s method

Let ke N, je N—{0}, and let V be a subgroup of finite index in Uy. Let & ; y(H)
be the subspace of #(H) of functions satisfying:

P(WX)N g x(0)*Ny () /=¢(x) VxeAf and veV. 1)

If €Sy j v, wWe set

By B 1
By -+ B 1By -+ Bul®™

1y

[Ug: V] Qiny” @)

Y #(B)

peH*/V

Ak, j, ¢, 5)=

This expression is independent of the choice of V' and converges for Re(s) > 0.
By a theorem of Hecke, A(k, j, ¢, s) admits an analytic continuation to the whole
complex plane and a functional equation relating it to A(j— 1, k+ 1, #4(¢), — ).
We set

Alk, j, ¢) = Ak, j, ¢, 0), )
and the functional equation gives
Ak, j, ¢)=(=1PU"Di"A( — 1, k+ 1, Fu(9)). Q)

The aim of this section is to obtain a finite expression for A(k,j, ¢) in terms of
elliptic functions attached to lattices in K. To this end, we shall (briefly) recall the
methods developed in [Col] and improve on them a little bit.

From now on, V will be a torsion free subgroup of finite index of the subgroup
of Uy of elements of norm 1 over K. Let #(V) be the set of finite sets of bases of
H over K satisfying:

1

zl "'Z"

=3 2 fzv2) )

veV Be%#

for all ze(C*)" such that the right-hand side converges, where if
B=(f,p ..., fnp) is a basis of H over K, we set

@)= det(B) [T (Tr(f52) ©)

REMARK. This condition is an ‘algebraic’ version of Shintani’s condition [Sh]
(in the totally real case), that the union over Be 4 of the cones generated by
fi.B- - fop be a fundamental domain of (R*)" modulo the action of V.
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LEMMA 1. (i) (V) is not empty. (ii) If B B(V), then B € B(V").

Proof. We shall use Theorem 1 of [Col] to construct explicit elements of
(V). By a theorem of Dirichlet, V is of rank n—1. Let us choose a basis
Nis---sMu—1 Of V, and for each o€S,_,, let f; ,=1 and f;,,=II;.;n,; for
2 < i < n. Write &(o) for the signature of ¢ and suppose that (f; ,, ..., f,,) 15 a
basis of H over K for all 6€ S, _; (we can always find #,, ..., #,_ such that this
is true). Then there exists a sign w=ow(,...,n,—,) such that, if
Baz(fl,a-’ st f;l.o') When (1)8(0’)= 1 and Bcr:(fn,w f2,a" et fn—l,a’ fl,o‘) when
we(o)= —1, then B={B,|c€S,_ }€B(V). Part (ii) of the lemma follows by
taking the Fourier transform of both sides of (5) and using the fact that the
Fourier transform of fg(z) with respect to (|),, is i"fgV(2).

Let z;=(z....,2;,) for i=12 be variables in Y,~C" Let

0
V,=IIj_, <— ?> We deduce from (5) and the fact that V,cv =V, if veV,
i

that whenever the right-hand side converges and # € #(V), we have

rGr i b
Qin)™ (By -+ By
(2—1)},T+,7 Vi 1vE (Z Y WB+zy |22)oofB(vﬁ+Zl)>z —220 0

veV BeR

If 4 is a finite set of bases of H over K and ¢ € #(H), we set

K(zy, 25, ¢, B, 5) = Z Z SB) f(B+ 2| f(B+21)*(B+21 | 23) - ()

peH Be#

This series is absolutely convergent for Re(s) > 1/2 and can be expressed as a
polynomial in Kronecker—Eisenstein series attached to lattices in K (cf. [Col1]
or IIT §3 of this paper). This implies that K(z,, z,, ¢, %, s) can be analytically
continued to the whole complex plane and we set:

K(Zl’ Z3, (»b’ g) = K(zb 22, ¢, ,@, 0)

If g, ;v and BeB(V), we set

1 1 zy
F(zy, 25, ¢, '%)=[—IZI:—V]'WK(27U i =, ) )

Now, plugging (7) into (2) with s=0 yields the following formal identity:

A(k, Js d’) VJ V5 (F(le Z2 d) '-@))zl—zz—O (10)
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The main problem with (10) is that F(z,, z,, ¢, #) is in general not regular at
z,=2,=0. In fact, we have the following lemma:

LEMMA 2. The singularities of K(z,, z,, ¢, B) are simple poles situated on the
hyperplanes Tr(f; g(f+2,))=0 (resp. Tr(f; zv(B+2,))=0 where B runs through
elements of H (resp. H") such that ¢(f) # 0 (resp. F (¢} B) # 0), B runs through
elements of #and 1 <i<n

Proof. The proof results from the expression of K(zy, z,, ¢, #) in terms of
elliptic functions.

REMARK. The poles on the hyperplanes of equation Tr(f; 4 + z,)) are already
apparent in formula (8), the others appear if we use the following functional
equation which is a direct consequence of the Poisson summation formula:

K(ZI’ 22, ¢9 ﬁ) = in(Zl |22)00K(229 —2Z3 yH((b)s g?v) (11)
We shall say that (¢, #) satisfies the condition (*) if K(zy, z,, ¢, #) has no

singularity at z, =z, =0. This is equivalent to
(1) ¢(x)#0=Tr(f, px) #0forall xeH, Be#and 1 <i<n
(2) Fu(P)x)#0=>Tr(figvx)#0for all xe HY, Be# and 1 <i<n
We shall say that (¢, #) satisfies (**) if it satisfies (*) and if we have moreover

(3) ¢(x)#0=>Tr(fx)+#0 for all xe H and f € §(%),
@) Fu(P)x)#0=>Tr(fx)#0 for all xe H" and fe&AR),

where &(#) (resp. £(# ")) is a finite subset of H (resp. H") which will appear in
the proof of Theorem 3.
If (¢, B)e S jv(H) x B(V) satisfies condition (*), we set

Aﬁ(k’ j’ ¢) = V{_lvlé(F(zl, Z2 ¢, c%))21=22=0 (12)
and
Fj(z2, ¢, B) = V" ((Fzy, 2, ¢, B)):,-0- (13)

Let g be a C® compactly supported function on C equal to 1 in a neighborhood

Tk+1—s) =

f0. L S Jal A N
0 et ¢ > 0 and p(s) = i* T T and set

k
Aglk, J, §, 5) = f Fi(z2, ¢, B) H <g(822 () m) (14)

THEOREM 3. (i) Ag Ak, j, ¢, 5) is a meromorphic function of se C and the locus of
its poles is independent of .
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(ii) When ¢ goes to 0, Agk, j, ¢, s) converges uniformly (outside the poles) to
Ak, j, ¢, s) on each compact subset of Re(s) > %+ 1.

(iii) For all €0, we have Ag(k, j, §, 0)=Aglk, j, ¢).

(iv) There exists a constant ¢, > 0 such that, if (¢, B) satisfies condition (**),
then Agk,j, ¢, s) converges uniformly (outside the poles) on each compact subset
of Re(s) > %—e¢, (resp.C), if n = 3 (resp. n=1,2).

(V) Aglk, j, §)=(—=1yU"Vi"Agv(j—1, k+1, F ().

COROLLARY. If (¢, P) satisfies condition (**), we have Ag(k, j, )= A(k, j, ) if
n=12o0rifn>=3and k=0orj=1.

Proof of Theorem 3. (v) is an immediate consequence of formula (11). Using the
same method as in [Col, p. 198], we see that A(k, j, @, s) is a finite combination of
the functions studied in [Col,II]. Granting this, (i) follows from [Col, II
Lemma 8], (ii) from [Col, II Lemma 9] and (iii) from [Col, II, §6]. The only
thing which is new is (iv), which will allow us to remove from [Col, Th. 5 and 6]
the meaningless condition about embeddings of F into K. This improvement is
made possible by replacing Lemma 1 of [Col, III] by the following stronger
theorem of Schmidt:

LEMMA 4 (Schmidt’s subspace theorem). Let 6 > O and {(L; y,...,L;,)|i€l} be
a finite set of families of n linearly independent linear forms with algebraic
coefficients. Then there exists a finite set & of elements of H" such that for all
pe S (H"), the set of elements of HY satisfying

(1) ¢(x) # 0,

(i) there exists i€l such that I1_ | |L; ;(x)| < x| ¢

is contained in the union of the hyperplanes of equation Tr(fx)=0 forfe&uptoa
finite set.

This lemma is a direct consequence of [Sch, Ch. VIII, Th. 7A]. Let us go back
to the proof of (iv). A slight modification of the proof of [Col, II, Lemma 10]
shows that there exists a finite set £(#Y)={(L; y,-..,L;,)|ie I} of families of n
linearly independent linear forms with algebraic coefficients (they are the N ; of
[Col, Th. 2]) and 4,, €, > 0 such that if, for all ie I, the set of xe H" such that
Fu(d)x) # 0 and I1}_ |L; {(x)| < ||x|| =% is finite, then Ag,(k,j, #, s) converges
uniformly (outside the poles) on each compact subset of Re(s) > £ —e¢, (resp. C) if
n = 3 (resp. n=1,2). To finish with the proof, we just have to take &(%) (resp.
E(#")) of condition (**) to be the set & associated to L(#B") (resp. £(#)) and
0=0, in Lemma 4.

When (¢, #) does not satisfy condition (*), we cannot define Agl(k, j, ¢) by
formula (12). As the singularities of F(z,, z,, ¢, %) are simple enough, we could
give a meaning to (12) by taking a suitable finite part as in [Col, I, §6], but here
we shall use the standard technique of replacing ¢ by a suitable linear
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combination to eliminate the poles (cf. [Ca]). If Se2(H), let
Sk = {qn Oklqe S} e ZA(K)

and if Se 2(K), let S¥ = {qe #(H)|3pe S such that q|p} e 2(H).

LEMMA 5. Let & be a finite subset of H*; then there exists S(&) e 2(H) such that
for all Se Z(H), all be C(H) satisfying |b| N (S(€) U (S?) = & and all f € &, we
have: if xeb™'0ys— 0y, then Tr(fx)¢Os, and in particular Tr(fx) is
non-zero.

Proof. Let S'=|dg| Ufeg I(f)| and S(&)=(Sk). Let be C(H) be such that
bl A (S(€) U (Sx)¥) = & and xeb !0y s—Of 5. There exists qe|b| such that
vq(x) < 0. As Oy/b is cyclic, q is of degree 1 and if p=q O and q'€|p|—{q},
then q' ¢|b|, hence vy(x) > 0; and this implies, as q¢S’, that vp(Tr(fx))=1v4(x)
which implies Tr(fx)¢ Ok sy

If Se?(H) and S'e Z(H"), let

C(S, 8') = {(by, b)e C(H) x C(H )| Ib, (S = . b, | (S =
and |b1|Kﬁ|52|K= Q},

and if T e 2(H), let
Cr(S,8)=C(SuUT,S uT).

Also let C°(S, S') (resp. C3(S, §")) be the intersection of C(S, §’) (resp. C¢(S, S"))
with CO(H)x C°(HV). If ¢eF(H), and b,el(H), byel(H"), set ¢y p =
Op-1 % Oy, 1 * ¢, whenever this is defined.

LEMMA 6. Let # be a finite set of bases of H over K. Then there exist
S=8,(#)e P(H)and S'=S(B)e P(H" ) such that, for all T € P(H), all p € ¥ 1(H)
and all (by, b,)€ C1(S, "), the conditions (*) and (**) are satisfied by (¢ p,, B).

Proof. ¢m p,(x) #0 implies xeb; 'Oy r— Oy r and Fy(y p (x) #0 implies
xeb; 1quvj* — Oyv,T. Hence, the result is an immediate consequence of
Lemma 5.

Let O% act on Sy 7 by ¢ — ¢ oy where ¢ o y(x)=¢(yx). Any ¢Sy r has a
unique decomposition ¢=X, ¢, where ¢, =0 for almost all y, y running
through the locally constant characters of O%, and ¢, °y=x(y)¢, for all ye Of.
Now, using the identification between & r and & (H), we can decompose any
¢peSr(H) as X, ¢, and if ¢ belongs to &, ;,(H) then so does ¢,. Let
(by,b,)e CHS(RB), S|(#)) and B, cH be a generator of b, and f,eH" be a
generator of b,. If ye H* and ¢eF(H), let ¢poyeF(H) be defined by
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(¢ ° y)(x)=¢(yx). Then we have

(¢x)bl,bz = ¢1 —x(B1)~ ld’x ° By —N(bz)X(ﬂ_z)d’x ° Bz_ !

+Nb)x(B2 B by (BB ), (15)
but as
At . o) = 22D £q j, ), (16
ak\Y
we obtain
A(k’ ja ¢) = Z vﬁl,ﬂz(k’ j’ X)A(k’ ja (¢x)bl,l)2)a (17)
where

M) : (1 _ tBINgv k(B >—1
. )

NH/K(Bl)k NHV/K(/gz)j_1

To be coherent with formula (17), we set, if € S (H) NS, j y(H), BeBV)
and (by, b;)=((B,), (B2) € C1(S:(%), S1(%)),

vﬂl.ﬁz(k’ j’ X) = <1

A‘@’ﬁxvﬂz(k’ j’ ¢) = Z vﬂl,ﬂz(k’ j’ X)Aﬂ(ka j’ (¢1)b1,b2)5 (19)

and the right-hand side is well-defined by Lemma 6.

REMARK. We expect that Agpg (K, j, )=A(k,j, ¢) and by the corollary to
Theorem 3, this equality is true if n=1,2 orif n > 3 and k=0 or j=1. Moreover,
we shall prove using p-adic methods (cf. IIT §4 of this paper) that, to a large
extent, Agy (K, j, ¢) does not depend on the auxiliary choices of 4, §; and §,.

III. Construction of the basic measure

1. p-Adic measures

Let p # 2, 3 be a prime which splits in K. Fix an embedding of K into C, (and
keep the previous embedding of K into C). Let p be the prime ideal of O
determined by this embedding, O, be the completion of Ok at p and p the other
prime ideal of Oy above p. Let

Yip=0u®0,0,~00v ®, 0; and Yy,=0,@Z,=Y,xY,
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where
Yl = YH,p and Yz = YH \,/p.

We can also describe Y; (resp. Y,) as the topological closure of Oy (resp. Oy v)
into C, via the map a—(t4(a),..., 7,(a)) (resp. (ﬁ, ey m). With this
description, we can write y;€ Y; as (y;1,..., ;0. If ze C}, we set Tr(z) =X}, z;
and N(z)=II}_, z;. If lis a prime ideal of O, let d, ; be the part of d;; above I. Fix
a basis B=(f},..., f,) of dz 30y, over O ,. Let B*=(g,,...,g,) be the basis of
H over K dual to B with respect to the bilinear form Try(xy) and
BY =(fY,..., f,Y)and (B*)V =(g/,...,g, ) be the bases of H" over K dual to B
and B* w1th respect to | ). Then B* is a basis of d l,OH pover Og ., BY is a
basis of dj vl.,Ova over Og , and (B*)" is a basis of dHVPOva over O ,.

If y,e Y, we set x;=(x;y,...,X;,), where x, ;=Tr(g;y,) and x, ;=Tr(g;" y,).
The map y; - x; induces an isomorphism of Op,-modules between Y; and
Oy ~Z;, Ifz;=(z; 1, ..., 2, for i=1,2 is sufficiently close to zero in C}, we set

Wi =(W; 15...,W; ), Where wy j=exp(—Tr(f;z,))—1 and w, ;=exp(—Tr(f; z,))— 1.

Let A be a closed subring of O the ring of integers of C,. A A-valued measure
on a compact and totally disconnected topological space X is a continuous (for
the supremum norm) linear map on the space of continuous functions on X with
values in C, whose values on characteristic functions of compact open subsets of
X are in A. If p is a A-valued measure on Yy ,, we define its Fourier—Laplace

transform by
2 n
F(z4,25)= J; exp(—Tr(y zy +y,25))du = Lh 1_11 1_11 (14w, dig,
H.p p 1=1J=

where A is the measure on Z2" deduced from po via the map (yq, y,)—(x;, x,).

LEMMA 7. If pis a A-valued measure on Yy ,, then F (z,, z,) is given by a power
series in a neighborhood of zero, and reciprocally, if F(z,, z,) is a power series, then
for F(z,,z,) to be the Fourier—Laplace transform of a A-valued measure, it is
necessary and sufficient that F(z,,z,) expressed in wy, w, is a power series with

coefficients in A.
Proof. The general case reduces easily to the case n=1 which is well-known.

We shall write Wy (w,, w,) for the Fourier-Laplace transform of y expressed
in wy,w,. If ye H/dp,0p,, we define a locally constant character y, of Y;
identified with Opv ®, 0 by the formula y,(y)=(y|y)p (cf.1), and if
yeHY /depOH yp» we define a locally constant character y, of ¥,~05®y,05
by the formula y,(y,)=(y, 7). The map y -y, induces an isomorphism from
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H /d,},ll, Oy (resp. HY /d, \f/pOH ) to the group of locally constant characters on
Y, (resp. Y5).

LEMMA 8. Let j, keN and y, € H/dy ;0 , and y, eHV/dAxll Oy >y Then

(l) IYH » Xn(yI)Xyz(yZ)N(yl)jN(yZ)k d:u VJ V (va,xny(zl’ 22))2, =2,=0s Where lf¢ is
a continuous function on Yy, then ¢u is the measure defined by
§v, ¥ d(@p) =y, o¥ du, and

(11) ny‘x“u(zla ZZ) = I/VB.M(' LR gi,j(l + Wi,j) - 15 . -),

where the ¢; ; are p*th roots of unity defined by &1 ;=2 (f) and &5 ;= 1,,(f;").
Proof. (i) follows by developing exp(— Tr(ylz1 +y,2,)) as a power series and
(ii) is evident if we remark that y, (y)=1I}_, &fiJ, which gives

Fralnz) = | 1 H (&1, (1 +w; ) d .

Hpi=1j=1

Our aim in the rest of this section will be to prove that under suitable
conditions, the holomorphic part of K(z,,z,, ¢, %) is the Fourier—Laplace
transform of a measure on Yy ,. We shall first consider the case H =K, and this
will involve the study of the p-adic behavior of Eisenstein—Kronecker series.
This is the aim of the next paragraph, and in the paragraph after that we shall
reduce the general case to the case H=K.

2. p-Adic properties of Eisenstein—Kronecker series

As stated at the end of the last paragraph, this paragraph deals with the case
F=K. Our aim is to obtain integrality results for Eisenstein—Kronecker series
attached to lattices in K. Although these results are more or less equivalent to
those obtained by Yager or de Shalit, there does not seem to exist in the
literature a formulation of them suitable for our purposes. Therefore, we
develop a method giving naturally the desired formulation.

Let us begin by recailing the definitions and some basic facts about
Eisenstein—Kronecker series. We refer to [W2] for the proofs. Let L be a lattice
in C and A(L)=n"'Vol(L). If u, ze C, we set

{z, uy; = exp(A(L) ™ !(zir— uz)). (20)

If kK > 1 is an integer, we define for Re(s) > 1 the function H,(s, z, u, L) by the
formula

Ez+a)

‘ +a)|2s (21)

Hk(s9 Z, U, L) F(S)A(L)s , z < w,u >L
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This function has an analytic continuation to the whole complex plane and
satisfies the functional equations

Hk(S> Z, U, L) = <u7 Z>LHk(k+ 1 _S, u, z, L)’ (22)
Hy(s, 2, u, L)=[L: L1 3 <y, uppHuls, z+y, [L':L]u, L) (23)
yeL’/L

if L is a sublattice of L', and
H,(s, Az, Au, ALy = A"*H,(s, z, u, L) for AeC. (24)

From (23) and (24) one deduces that if ue QL and b e C is an endomorphism of L
such that buelL,
- )
H(s, z,u, L)= Y. (. buy Hs, y+b~'z, 0, L). (25)

l 'Zs
yeb 'L/L

If j is an integer such that I <j and ke N, we define

Eij(z L) = Hi (j, 2, 0, L) and E;(z, L)=E, ;(z, L), (26)

a(L)=E;Q©, L)=E;_, ,(0, L), 27
and

§(z, L) = E(z, L) — a,(L) (so ©'(z, L)= — Ej(z, L)). (28)

E(z, L) has the following Laurent expansion in a neighborhood of 0:

Eyz L) = —ﬁ+z‘l + z a,,H(L)(—z) (29)

and E, ;(z, L) — <A(L)> z(j)

PROPOSITION 9. There exists a (non-unique) polynomial P, ; with rational
coefficients in the variables E(z,L)={E(z,L),...,Ej(z,L),...} and a(L)=
{a\(L),...,a;(L),...} such that P, j(E(z, L), a(L))=E, j(z,L) for z¢ L.

REMARK. If k < j, there is a stronger statement proved in [W2, Ch. VI (11)]:
the variables a(L) are unnecessary and P, ; has coefficients in Z[%].
Proof. The proof is by induction. The statement is trivial for k=0 and j > 1

d ..
Moreover, as d_zE"’ iz, L)= —E, ;,(z, L), if the statement is true for (k, j) it is
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true for (k, j+ 1). Thus the problem is to show the existence of P, ; ; assuming
the existence of P, ; for k < n and j > 1. If we write down a Laurent expansion

1 . .
for E,, , 4(z, L)+——=E(z, L)"*? in a neighborhood of 0, we obtain
‘ n

+2

1 e n n+2-— z F(J)
n+1 1(Z L)+ + (Z L) 2= kZO j; an}(a(L))<A(L)> Zj +R,,(Z),

where the Q,,; are polynomials with rational coefficients and R,(z) is real
analytic in a neighborhood of 0. From this we deduce that

n +2 -
En+1,1(ZaL)+<$E1(Z’L)n+2 kZO JZI Pk](E(Z L a(L))anja(L))>

0
is a doubly periodic real analytic function annihilated by a power of ( 6z> and

hence a constant. Using the fact that E, . (0, L) =a,.,(L) we find that this
constant can be expressed as a polynomial in the a;(L) with rational coefficients,
which concludes the proof.

Let E be an elliptic curve with Weierstrass model y?=4x>—g,x —g3, defined
over Og with complex multiplication by Oy and with good ordinary reduction
at p. Let L be the period lattice of w =dx/y. Choose a basis (y, 7,) of H,(E(C), Z):
then {,,w=1[,, o for some 1€ K, and a=Z+ Z is a fractional ideal of K. We
assume that we have chosen our basis (y,, y,) in such a way that vy(a)=1uv(a)=0.
Let # =(x + a,(L))w. Then (w, 1) is a basis of H)x(E) and if a € O, then a*w =aw
and o*n=an in Hpg(E). Set v, ={,, w and n, =, #. Using Legendre’s relation,
we obtain A(L)= — @ /M. If aeK, we let a=aw,,eQL, and if P is a torsion
point on E, we let z(P)e K be any element such that Z(P)=wz(P) corresponds
to P via the isomorphism C/L ~ E(C). Of course, z(P) is only determined up to
an element in a.

Let t= —2x/y= —24p(z)/%’(z)=(z + ---) be the parameter of the formal group
E which is the kernel of reduction mod p, A(f) be the power series giving z in
terms of ¢ (it is the logarithm of E and we have dA(t)=w(t)), and @ denote the
formal group law on E. Let I » C O be the ring of integers of the completion of
the maximal unramified extension of Q, and M =Q,(g,, g5). The formal groups
E and G,, are then isomorphic over I P.E defy 92, 93). We shall fix an isomorph-
ism 1 from E to G,, by requiring that the following condition holds. Let Q be a
point of p®-division on E. Then we want 1+ 1(t(Q)) = {Z(Q), T)L where the left-
hand side is a p*th root of unity in C, and the right-hand side is a p®th root of
unity in C. We will write &(Q) for this p*th root of unity. For reasons to become
obvious later, we write —n,, for the coefficient of ¢ in 1€ I, g[t] (z has no constant
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term), and extend the isomorphism from K < Cto K = C, to an isomorphism
from K(n,) to K (n,) sending 7, to #,. Note that this is possible because 7, is
transcendent due to a theorem of Cudnovskii (cf. [Wa]) and 11, also in a more
trivial way.

Suppose G(zy,...,z,) is locally real analytic around 0. We define the

holomorphic part of G to be #(G(z,,...,z,), the power series in z,,...,z,
obtained by equating z,,...,z, to 0 in the formal Taylor series expansion
of G in z,..., 2, Zy...,2z,. If H(zq,...,z,) is locally of the form

F(zy,...,2,)/Gl(zq,...,z,), where F is real analytic around 0 and G holomorphic,
we define the holomorphic part of H, #(H(zy,...,z,))eC(zy,...,z,)), by
H#(H)=H#(F)/G. If moreover #(F) and G have coefficients in K(z.,), we shall
also view #’(H) as an element of C,((z, ..., z,)).

PROPOSITION 10. Let ae(K—p~ ®a) U a, which means that the division point
P(«) corresponding to o is either O or does not belong to E. Then if 1, is the
characteristic function of a, we have:

(i) A(E @+ A1), L)=1,(0)t "+ Ey(& L)+ Z2  b(0)t" ™ G (a, 1), where b,(P)
is in the ring of integers of M(P()).

(i) E,@ L) = an, (mod O).

(iii) If Q is a p*-division point, then G,(«, 1(Q)) (which converges by (i) is equal to
E\(&+ZQ), L).

Proof. Let ¢(z,u)=E (z+u, L)— E,(z, L)— E(u, L). Then ¢ is a meromorphic
function in u and z and hence an algebraic function on E x E. Moreover,
it is easily seen to belong to M(E x E) and to have a well-defined reduction
mod p (in fact ¢z, u) = ————(25(050(8) _&;8;) Now, if aeK —p~*a, then
H(E(At)+a, L)—E,(AMt),L)—E,(& L))+t~! is an algebraic function on E
without singularities on E and whose reduction mod p is defined, and so is given
on E by a power series in t with coefficients in the ring of integers of M(P(x)).
Hence, to prove (i) and (iii) for any «, it suffices to prove them for x=0.

Let B e O such that f is prime to p. By the same arguments as before, one sees
that #(E,(BA(t), L)— BE,(A(t), L))+ B~ *(N(B)— 1)t ' is an algebraic function on
E with no singularities on E, and so is given on E by a power series Ggy(t) with
coefficients in the ring of integers of M. Now take f,€ Oy satisfying B, =1
(mod p”) and B, = 0 (mod p"). Let n tend to + co. Then G (t) obviously tends to
E (At))—t~* which concludes the proof of (i). To prove (iii), suppose Q is a p™-
torsion point. Then if n>m, we have f,0=0 and so Gy (HQ)=
(1—-B,)E (Q), L)— B, *(N(B,)— Q) ! (as G, is an algebraic function, one can
evaluate it at a point defined over K using complex arguments). But when n
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tends to + 00, Gy (1(Q)) tends to G,(0, Q) —(Q)~ ' and the right-hand side
tends to E;(3(Q), L)—t(Q) ! which concludes the proof of (iii).

It remains to prove (ii). First note that if x ea, there is nothing to prove as
E (& L)=0. So suppose a¢a and write a=a,+a,; where a;ep” “a and
vp(ato) = 0. Then, using (i) and (iii) with =0, and Q corresponding to &;, we
deduce that if (ii) is true for a, then it is true for « and we are reduced to the case
when a¢a and vy() > 0. Now, if €Oy, then Fy(z)=E,(Bz, L)—BE,(z,L) is an
algebraic function on E whose reduction mod p is defined, so if z corresponds to
a point defined over K which does not reduce to a f-division point mod p, then
Fy(z)e 0. One deduces from this that if (ii) is true for o it is true for o, and if § is
prime to p and (ii) is true for « then it is true for B~ 'a. Now let h be the class
number of K and let z be a generator of p”. By the previous reductions, it suffices
to verify (ii) for a=7""and n > 1. Let ke Z and o,=7"". Then

1 -~
El(k&n’ L) =H1(1’ k&na 09 L) = Hl(l’ O, k&m L) =P Z <)’, k>LE1(Y5 L)‘
yenr ~nL/L
y#0

Let ¢ = {y,1>,. Then using the isomorphism 1, we see that

1
E (k&,, L) = 7 Y. &G40, 17 (e—1)).
=1
e#1

So

z (e=1)G,(0, 1" (e —1)).
=1

El(&na L) = El(&n’ L)_E1(07 L) =

|-

But as tG,(0, 1™ (£)) e —n,+tI, gt ], we obtain the desired result by applying the
following obvious identities:

Z (e—1i=
et =1
¥ 1

COROLLARY. 7, = lim, ., p"E,(p ", L).

—1l(modn") ifi=0
0 (mod =") ifi> 1.

Thus 5, appears as the p-adic period of the differential form n=(x+ a,(L)}(dx/y)
integrated along the cycle y, viewed in T,(E) in the obvious way (cf. [P-R],
[de S]). Using this remark, it is easy to show that the isomorphism between
K (1) and K (1) does not depend on the choice of E or y,; it depends only on the
embeddings of K into C and C,.
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PROPOSITION 11. Let ae(K—p~*a) and let G, ;(a, t)=H(E, {&+ At), L)).
Then

() Gi (@ )e0[t] ® Q,
(i) If Q is a p*-division point, then G {a, 1(Q)) = E, (& +2Z(Q), L).

Proof. If k=0, then (i) follows from Proposition 10 and the fact that

d d dtd
E0,~=——ZE0,J-_1 and &—&a

where

dt "
&el + tO[1],

and (i) follows from the fact that E, ; is a rational function on E. The general
case follows then from the existence of P, ; (Proposition 9).

PROPOSITION 12. Let ae K, vy(a) > 0. Let A(2)=<z,8);. Then

(i) A#(A(A) O[]

(i) If Q is a p™-division point, then H#(A(A(t))) evaluated at t =1(Q) is equal to
A(2(Q)) where z(Q) has to be chosen so that az(Q) e p~ ®a (this restriction being due
to the fact that Az) is not periodic of period L in z).

Proof. Everything is obvious once we have proved that #(A (A(t))) = (1 + (1))~
But we have Aa(z)=exp(A(L)“(zEw—ame)). So using the identity
A(L)= —dn,' we obtain: H#(A,(2))=exp(—n,az), and p-adically, (A, (A1)
=exp(—1,%A(t)). As 4 is an isomorphism from E to G,, we find that 1(f)=
exp(uA(t))—1 for some ueC,. Equating terms of degree 1 in t gives u= —,
which allows us to conclude.

PROPOSITION 13. Let xe K—p~ *a and e K such that vy(f) = 0. Then for
1 <j < k we have:

() H(H ), &+40), B, L)e0[t] ® Qp.
(ii) If Q is a p*-division point then the previous series evaluated at t=1t(Q) is
equal to H,(j,a+%Q), B, L), where z(Q) has to be chosen in such a way that

Pz(Q)ep™ ~a.
Proof. Choose b e Oy satisfying (b, p)=1 and bfea. Then formula (25) gives:

Th—j

~ b
Hk(j7 &+'1(t)> :B’ L) =

—~ a A
S BLE (y +§+%,L>.

v yeb—1L/L
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Since b is prime to p, b~ ! is an endomorphism of E and b~ 'A(t)=A([b~']¢). Then
(i) follows directly from Proposition 11(i).

Now let Q be a p”-division point and let b* € O be such that b*b = 1 (mod p”).
Then [b~']t(Q)=t(b*Q) and so by Proposition 11(ii), we obtain that
H(H,(j, @+ A1), B, L)) evaluated at t=¢(Q) is equal to

bk~ . ~
Y <y bBYLE—; vy +3b™ +b*%(Q), L) = H,(j, &+bb*X(Q), B, L),

VY a5

which allows us to conclude.

PROPOSITION 14. Let o.€ K be such that vy(®) = 0 and pe K —p~ “a. Then for
1<j<k

() H(H(, & f+A0), L)eO[1] ® Q,
(i) If Q is a p®-division point, then the previous series evaluated at t=t(Q) is
equal to H,(j, & f+%Q), L).

Proof. Everything follows easily from the previous proposition and the
functional equation for H,(j, u, z, L) which says that

HHj, & B+At), L) =(1+ut)*A#(H(k+1—j, B+At), & L)).

Note however that Proposition 13(ii)) would give some restrictions as to the
possible value of z(Q) which makes (ii) work, but since H,(j, u, z, L) is periodic of
period L in z this restriction is unnecessary.

PROPOSITION 15. Let «, fe K —a. Let k, leN and Gy, , 4(t,, ;) be the power
series defined by
Grap(tss t2) = H (Hys (I, &+ A(t1), B+ (1), L).

If a, Be Ok, then

() Gipas(ts, )€l gts,t2]-
() If Q,, Q, are p™-division points, then

G s(8(Q1), HQ2)) = Hy, (I, & +Z(Qy), E"‘ #Q,), L),

where z(Q,) has been chosen so that z(Q,)f+z(Q,))ep™ *a.

The proof of this proposition will need several lemmas (as well as the
preceding propositions). First, call a power series H(t,,t,) =%, ;a; jtit5 ‘almost
bounded’ if, when i is fixed, g; ; is bounded as j varies and if Q is a p*-division
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point, then H(t,, t(Q)), which converges because of what precedes, is a bounded
power series in ¢. If H is almost bounded, then if @, and Q, are p*-division
points we can define H(t(Q,), t(Q,)) as the value of H(ty, t(Q,)) at t; =tQ,).

LEMMA 16. If H is an almost bounded power series satisfying H(t(Q), (Q,))=0
whenever Q, and Q, are p®-division points, then H is identically equal to 0.
Proof. If you fix Q,, then the series H(t,, t(Q,)) is bounded and is equal to O if
t, =t(Q) where Q is a p*-division point. This implies that H(t,, #(Q,)) isequal to 0
as a power series in ¢, hence for all i > 0, Z2  a; ;(t(Q,)) =0. But this is true for
all p*-division points Q,, so g; ;=0 for all i and j.
LEMMA 17. Gy, is almost bounded.
Proof. We have

i (=Alty))

=

Grap(ti, t2)= . H(Hyip4 141, 4, B"F Aty), L))=Zai,jti1té-
i LJ

By Proposition 14(i) and the fact that A(f) has no constant term, we obtain that
when i is fixed, g; ; is bounded as j varies. Moreover, by Proposition 14(ii), if Q, is
a p*-division point then:

o (— i -
Guaasltn Q) = 3 I My 145 F 200, D

i
= H(Hy 1L, 3+ A1,), B+EQ,), L).

Then Proposition 13(i) allows us to conclude. But in addition, Proposition 13(ii)
gives (ii) of Proposition 15.

LEMMA 18. Let § € Ok ,, d € Ok satisfy déecaand (d, p)=1. Let & be a generator
of p* and € a satisfy 5, = 6 (mod 7"). Then

. . -5
S= 3 Gl s uty D=m'u S0y, H, (1, . L).

yedn—nL/dL

Proof. We have

S — <5+(l), 7)>L <(1) u>
yedn-7L/dL oel. =~ WO +Z > HL
But
nh X —n
~ p™ if 0p+wen"L
o0+, = i
yedn~nL/dL < e {0 otherwise.
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The result follows easily using formula (24). Note that the above formal
computations can be justified by analytic continuation.

LEMMA 19. Let a, beZ, and set G, ;=G ; . 5. Then we have, for a, fe Ok ,:

def 1 - —b
-t S YooY #00)%(Q,) G, 4(HO,), HQ,))

Q16E,m Q€E,.
= (B.bya~ " ™H (1, (x"/7"\&—D), (x"/z")\B— o —a), L),

where Boea and By = B (mod 7™), and &Q) is the p®th root of unity defined
together with 1n,,.

Proof. Using Lemma 18 with 6=0,=b, d=1 and the value of G, 4(t(Q;),
t(Q,)), we obtain

1
= Y 807G, 4(1Qy), HQ2))
p Q,€E,.
= <ﬁ, B>Lﬁ_"H1(l’ (&+E(Q1)—I;)/7_f", ""ﬁ, L)

= 2""B, a+2Q,)>LH (1, nB, G+Q,)—b)ya", L)

Let d' € Ok verify (d', p)=1 and d’Bea. By Proposition 15(ii), we have to choose
z(Q,) for Q, in E_.. so that z(Q,}f+2(Q,))ep~ *a. This means that we can take
the z(Q,) in 7z ~™7"d’a and the &~ "z(Q,) will run through a set of representatives
of n~™d’ajd’a. So, writing <f,%(Q,)>.=<n"B, 7 "%Q,)>,. and &Q,) “=<{n"a,
77 "2(Q,)>, we can apply Lemma 18 again with é=n"(a+f), 6o=n"(a+ Bo),
d=d', u=7""(@&—b) and z=7=", to find that Z,, , , is equal to

mm B &5, <a—b, Bo+ay H (1, (WA —Bo—&), (x"/a"&—b), L).

The result follows from the functional equation of H,.

LEMMi\ 20. Let y,0e€ K—a verify vp(y) = 0, vy(0) = 0, vy(y)+v3(8) = p. Then
Hy(1,%,3,L)el, 5

Proof. Choose deOg Sllch that v,(d)=sup(0, —vg(é)), vp(d)=0 and déea. By
formula (25), H,(L7%,0, L)=(1/d)Zyes-11r.<y,d0).E,((7/d)+y,L). Writing
(d)=p*d where d is prime to p, we can write yed ~'L/Lin a unique way as %, + %,
where z,ed " 'a/a and z, ep *a/a. Set &' =dJ and y'=d~'y. We obtain

H(1,7%,3, Ly=d™' Y <z, 3’>L Y <G, 3’>LE1(}~),+20+219L)-

zoed " 'aja z,ep *a/a



164 P. Colmez and L. Schneps

By Proposition 10, we can write

a0 Y CuNEF +EtE, D)=d 7 Y &G, 420,17 e~ 1))

z,ep”*a/a e =1

But G,(y'+zo, t) € M(P(y' +z,)) [[t] and with the exception of the constant term
has integral coefficients. As y'+z,€ Oy ,, P(y’+2,) is defined over the maximal
unramified extension of M which implies that

G,(y +z0, 17 '(W)€E (¥ +Z¢, L)+ W, g[w].
But we also have
E\(7'+Zo, L) = 1,(t' + Zo) = 1,7’ (mod I, ),
so we see that
G1(V + 2o, 17 '(W) = 1,7 €1, g[W].
As T (e— 1)‘33'62 and is congruent to 0 (mod p*), we finally obtain

Hl(l, ?s 53 L)_ ’7,;3_" Z <,V, 3’>L€(pk/d)Ip,Ea
yed 'L/L

which gives the result, since (p*/d)el, ; and 2 ea-1/1. <y, 0> =0 when J ¢a.

COROLLARY. X, ,n€l, ;.

Define a measure y, ; on Yy ,=0, x Op by

Hap(@+P™) X (B+D™) =2y p pm-

This is an I, z-valued measure. Let

H(ty, t;) = J; (T4t )) (L +a(t2)Y dpty p(x, y);

then H(ty,t;)el, g[t;,t,] and if Q,, Q, are p®-division points, then by
construction of y, ;, H(t(Q,), Q)= G, ;((Q,), 1(Q)) and so H= G, ; by virtue
of Lemma 16.

This concludes the proof of Proposition 15 for k=0 and /=1. The general case
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follows from the following identity:
Hyyj(j, &+2z, f+u, L)

R\ AV "
=<u’&+Z>L<_5> [<&+z,u>L<—0—z> Hl(l,&+z,ﬂ+u,L)],

which yields

_ 0 k _ ji—1
G jap(ty, 2)=(1+ut3))" (— m) [(1 +1(t) " <— 3 iftl)> Gy p(ts, tz)]-
(30)

PROPOSITION 21. If Q, and Q, are p*-division points, then

Gop(t; ®UQ,y), t, DUQL) =(1+ l(tZ))_Z(Ql)GaH-z(Ql),ﬂ+z(Q2)(t19 ty).

where z(Q,) has to be chosen so that z(Q,)(f+2(Q,))ep *a.
Proof.Set Gy ; , 4(t1,t;)=(1+ z(tz))_a‘Gk,j,a,a(tl, t,). Then formula (30) becomes:

—a o 6 kG/ Gr
(am) (- aig) Gt =Gt

so that, as power series, we get

G;c,j+1,a,ﬂ(w1’ wy).

— AtV (= At,)F
Gt ®wy, 1, ®wy) = Zk( j(!tl)) ( k(!tz))

Now, let w, =t(Q,) and w, =1(Q,). Using Proposition 15(ii) and Proposition 12,
we obtain:

Gop(ty @ UQy), 1, D UQ>))

— i(— k
(14 ey AW (A0

> i Hee a4 1, 3+2Q), B+2(Q2), L)

But using (30) replacing t,, t, by 0, by a+z(Q,) and S by f+2(Q,), we find that:

(—H0)) (= 402"
j,zk j! k!2

Hey o (j+1, &+%Q,), f+2Q,), L)
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is the Taylor expansion in —A(t,), —A(t,) of
1+ l(tz))_&_E(Q’)Gwz(gl),tﬂz(Q;)(tn t2),

which concludes the proof.

1
If a is a fractional ideal of K, let K(z4, z,, a)=):we,.T—(co+z1 |25)- If 1, is
w+z,

the characteristic function of a, then we have K(z,, z,, a)=K(z,, z,, 1,, (1)) in the
notations of Section II. Let ¢ € C with Im(t) > 0 be such that Oy =Z @ Zz. Then,
we have (y|z),, =<y, (t—7)N(a)z), and formally:

K(z,, z,, a) = {2z, (t—T)N(a)z,),H (1, z,, (1 —T)N(a)z,, a)

= H1(19 (T_f)N(a)ZZ’ Z1s a)'

This formal computation can be justified, as usual, using analytic continuation.
Set w;=exp(—z;)—1 for i=1,2.

PROPOSITION 22. Let €K, ;€ K—00g and f,€ K—(60x)". Then

(@) f( (/31 ﬂ2+ 501())512(’100)[[21’22}]-

(i) If moreover & is a unit in Og,, B, and B, belong to OKp and

Ws.p,.5:(W1, W) €C[wy, wy ] is equal to %( <ﬁ1 ﬂ2+ 50K>>

expressed in wy, w,, then W; g 5 €1,[w;, w,].
(iii) If y,, y,€ K/Ok,p and &=y, (1), then

Wi, p((1+wi)e; —1, (1+wy)e—1)

1 . z
—W( <ﬂ1+7’1 1., ﬁ2+7’2+—2‘7, 501()( B> > )
i 2mi 2ni

where 9, is a representative of y, in p~ ®°60x and $, a representative of y, in

P 00k +(B)+ ()"
2 )= 3
2ni>w> =(1+w).

Proof. Part (iv) is obvious. To prove (i), (ii) and (iii), let us introduce an elliptic
curve E with Weierstrass model defined over the ring of integers of the Hilbert
class field of K with good reduction at all places above p and j-invariant equal to
j(Og). This implies that the period lattice of E has the form o (E)Ox for some

(iv) If BeK, then # ((B
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2ni 1
no_2 and n,(E)e If. Now, straightfor-

w(E)e C*. Then, we have  (E) = ~
o (E)T—1

ward computation yields

1 zZ, 1z, 1 _ z, 74
k(2L 2 ——H, (1, -2, 2L
2ni <2ni’2ni’5oK> 2ni 1( (=Dl 2ni’2ni’5oK

ad:d H, (1,(1-_1)60“o 0z,, 219 0x>

= 2mio 2mi §2mi’ ™

1 ~Z, Z 1
= H/(1,-322L _~ .0 >
5(1_1)7100 1( Neo ’700 6(1*‘5) K

Hence, as 1 '(w)=41"1(—n, ' log(1 +w))=4"1(n, 'z;), we obtain

Wspip(W1s W2) = Gayal [ =01-171(w)), [6E =11~ 1 -17 Y (wy)),

5~y

where 1 is the isomorphism between E and G,, and [§] is the endomorphism of E

- 1
associated to f, a;=—0f, and a, =5—(%—15[31. Now (i), (ii) and (iii) are just

reinterpretations of Propositions 15 and 21.

3. Construction of p-adic measures attached to generalized Eisenstein-
Kronecker series

If ¢ € ¥ 1(H) where T N |(p)l = &, set ¢ = ¢, * ¢ where
¢p = N(dH,p)_l/zld,;‘eylpl,H

is the Fourier transform of the characteristic function of O considered as an
element of &5 V. Let I,y be the ring of integers of the completion of the
maximal unramified extension of the field generated over Q, by all conjugates of

H and ,/N(dg,). The aim of this paragraph is to prove the following theorem:

THEOREM 23. Let # be a finite set of bases of H over K. Then there exists
S=S,(B)ePH) and S'=Sy(B)eP(H") such that for all TeP(H) satisfying
Tnlp) = O, all e S r(H), all (by,b)e Cr (S, S'), we have:

Zy Iy

@) %((Zm) K(Z_ni’ i’ ¢b1,b2,33>>€K('1m)[[21,22]] and is the Fourier—

Laplace transform of an I, y-valued measure py 1, 4 5 on Yy ,.
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(ii) Let ¢ be a locally constant function on Y; which can also be considered as an
element of ¥\p,nv, and ¢, a locally constant function on Y, also considered as an
element of &y Then the Fourier—Laplace transform of ¢ ¢, p, 4.4 is

H <(2m’)"‘K <22—7;, 22_;1” F 1 @1) * D2 * Py p,» g))

LEMMA 24. Let A be a principal ideal domain having only a finite number of
prime ideals and let K be its field of fractions. Let v,,...,v,€ A" be a basis of K"
over K but not of A" over A; then there exists we A" such that for all 1 <i<n,
det(vy,..., V;_ 1, W,V;41,...,0,) is either O or a strict divisor of det(vy,...,0,).

Proof. Choose w,;=Z!_, av; with a;€ K, belonging to A" but not to the
submodule of 4" spanned by the v;’s. If a;€ 4, set b;=a,. If a;¢ A, we can write
a;=c;/d;, with ¢;, d; € A relatively prime; let b; € A be relatively prime to ¢; and be
divisible by all prime ideals of 4 not dividing ¢;. Then ¢;=c;—b;d; is a unitin 4
and w=2X!_, (a;— b,)v; obviously answers the question.

If M e M, (K), we set

Z M,(2) n
M| | = and fy(z) = det(M) H Mz)~ .
Zy M,(2) =t

LEMMA 25. Let A be as in Lemma 24 and M € GL,(K). We can find a finite family
N of elements of GL,(A) such that

fu@= Y ful2)
Net

Proof. First note that f;,(z) does not change if M is multiplied by a scalar; so
we may suppose that M € M,(A4). Let vy, ..., v, be the rows of this matrix. Then
either v,,...,v, generate A" in which case M € GL,(A4) and there is nothing to
prove, or we can find w as in the preceding lemma. Let v, ; (resp.wy)for1 <j<n
be the coordinates of v; (resp. of wyand M, ;. ,(z) =X}_; w;z;. Let N, be the matrix
whose jth row is equal to v; if j # i and w if j = i. We obtain:

Uiy o U, My(2)
0 =det U;;,1 Ur;,n M,;(z) = (fM(Z) - i; fN.»(Z)> 11:[1 Mj(z),
wy ot w, Mn + I(Z)

where the first equality is obtained remarking that the last column is a linear
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combination of the others, and the second is obtained by developing the
determinant with respect to the last column. Now, removing from the N; those
with determinant 0, we obtain f,,(z)=XZy fy(z), where the det(N) are strict
divisors of det(M). We just go on with this process until we reach the desired
result.

COROLLARY. Let B be a basis of H over K. We can find a finite family €(B) of
bases of dy 3Oy, over Oy , such that, for all ¢ € S (H), we have

K(zl’ Z35 ¢’ B) = z K(Zla 225 ¢’ C)
Ce%(B)

Proof. Choose a basis C,, of dj 0y , over Ok ,; then there exists M € GL,(K)
such that B=MC,. We just apply Lemma 25 to this M and A = Oy , (which has
only two prime ideals) to conclude.

REMARK 1. The above computation should be first performed for
K(z,, 25, ¢, 8, s) and then evaluated at s=0. As this does not create any problem,
we shall content ourselves with formal computations in the rest of this
paragraph.

REMARK 2. Replacing # in Theorem 23 by ( Jp.5 %(B), we see that we can
suppose that all elements of 2 are bases of dj; ;O , over Ok ,. On the other hand
if #, and %, are finite sets of bases of H over K satisfying Theorem 23, then
setting S,(B, U B,)=S,(B,) U S,(B,) and S,(B, U B,)=S%RB,) LU SH(AB,), we
see that 8, U 4, also satisfies Theorem 23. Hence, it is enough to treat the case
where #=B and B=(f1,..., f,) is a basis of d,}j—,OH,p over Ok, which we can
take to be the B used in III, §1.

If acI(H), set a=dpa. If ¢ belongs to & (H) with T n|(p)| = &, then $ is
constant modulo a for some a e I(H) satisfying |a| = T; so by linearity, we are
reduced to the case where ¢ is the characteristic function of a+ &, where |a| = T
and a edy 0% 1. Let gg: C" — C" be defined by g(z) =(Tr(f,2), ..., Tr(f,2)). As B
is a basis of d ;O , over Ok ,, the image of dg }, by g s a lattice L contained in
(Ok,p)" such that Ok L = (Og )" and so contains (650y)" for some dze Oy
relatively prime to p. There exists d, € K* with |(§,)] = Tk such that a contains
0,0y . Hence, if we set 8, p=0,05, we have |(3, p)] = T U |(6p)| and gp(d) contains
(64,80x)" Let Y be a set of representatives of g(d) modulo (6, 30)". Using the
identity (z,|z,) =II7—  (Tr fiz; | Tr f;" z,).,, We obtain

- det B "
Kz, 20 B, B)=\/Te(d—,,§ yezy ,-Ul K(y;+ Tr(f(z, + @), Tr(f;¥ 2,), 8, 50k).

(1)
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On the other hand, a straightforward computation yields

K(Zla 225 ¢b1,bz’B)= Z Z (—BZIO‘_'_ZI)OOK(ZI +ﬂl’ 22+ﬂ2> ¢aB)
Bieby 'ajd lngbz_ll_’ziv/l—’lﬁv
B¢ By¢baV
(32)

Now, by Lemma 5, we can find S(B)e #(H) and S'(B)e #(H") such that if
(b, by) € Cryip)(S(B), S'(B)), then for all ae I(H) with |a] < T, all «in dj ;0 r, all
B1, B, as above, we have

Tr(fi(e+ B1))¢0a50x and  Tr(f;" B2)¢(0250k)"-

On the other hand Tr(f(ax+f,)) and Tr f;¥ B, belong to O,, so putting
together formulae (31) and (32) we see that K(z,, z,, d;bbbz, B) can be expressed in
terms of the functions studied in Proposition 22. Thus part (i) of Theorem 23 is a
direct consequence of (i) and (ii) of this proposition. To prove (ii), we can restrict
ourselves to the case ¢, =y,, and ¢, =y,,, since the x, form a basis of the space
of locally constant functions. Now, using Proposition 22(iii) along with formulae
(31) and (32), we obtain that the Fourier—Laplace transform of , x,, iy, b, ¢4 iS:

1 ~ | 2 R z n z ~
H\ | 92| ) K( 91+ 555 d2+ 52 G, B ) ) (33)
(27i) 27 ) 2mi 2mi

where %, is a representative of y, in p~©ab, and , is a representative of y, in
p~“b,(a+(®)+(y,)+dgp)", from which we can deduce the result after a
straightforward computation (the main ingredient being the fact that if
wefy+a+by 4, then y, ()=, | w),).

4. Complements to Shintani’s method

In this paragraph, we shall use the results of the preceding paragraph to prove
that Agg g (k, j, ) does not really depend on the choice of %, B, or §,.

THEOREM 26. Let ¢ € &, y(H). We can define a number A'(k, j, ¢) such that

(i) For all BeB(V), there exists S(B)e P(H) and S'(B)e P(H") such that
Az gk j §)=N'(k,j, §) for all ¢ €S r(H) and all (B,), (B,)) € C3(S(B), S'(B),

(ii) A'(k, j, §) = A(k, j, ¢) if eithern=1,20orn>3 and k =0 or j = 1,

(iii) A?(k, J» @ey) =N H/K(V)jN k() —kA?(k, J> @),

(iv) Ak, j, ) = (= 1V~ DrA(j — 1, k + 1, Fy(9).

REMARK. Of course, we expect that A’(k, j, ¢) is always equal to A(k,j, $). In
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this direction, (iii) and (iv) are functional equations also satisfied by A(k, j, ¢)
(formulae (4) and (16)).

Proof. Suppose ¢ € ¥ +(H). By linearity, we can restrict ourselves to the case
¢ = ¢, for some locally constant character x of OF. Choose a prime p splitting in
K such that Tn|(p) = & and |dg| n|(p) = &. Let Be B(V) and let

S(#) = 5,(#) v S,(#B) v |(p)l and  S(B) = S1(%) L SHB) v |(p)l,

where S,(%#) and S'(%) are defined in Lemma 6 and S,(#) and S%(%) are defined
in Theorem 23.

If p is a measure on Yy , and y € O ,, we define a measure p°y on Yy ,and a
measure n(u) on Yy ,=0, x O by the following formulae:

L fy, y)d(uey) = jY fOy, " 'y2)du, (34

L Sy, Xz)dn(u)=L f(N(y,), N(y;)) du. (35)

LEMMA 27. If (b,,b,)e C}(S(%B), S'(®)) and y € Of; , satisfies

1)1k N (Iby] L [by]) =,

then

(i, b, pop,8) = Nux (V) lttp b,.0.2°7))-

Proof. To prove that two measures p; and u, on Yy , are equal, it is sufficient
to verify that [y xiy(x;)du, =y xi¥(x;)du, for all ieN and all locally
constant functions ¥ on Op. But we have

L X1Y(x2) Ay, b, ge7,8) = L N(y,)yre N(y2) din, b, ge7,9> (36)

and by Lemma 8, this is equal to V applied to the Fourier—Laplace transform of
Yo N(y,)dpp, b, ¢y and evaluated at z;=z,=0. Now, as yoN is locally
constant, we can use Theorem 23(ii) to obtain (cf. formula (12))

L X3P (x;) Ay, b, oy, @) = Ag0, i+1, o N %(d o)y, p,)- (37)
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The same computation gives

Nyx(7) L Xy W(x) (i, b, 4.5 ° 7))

K.p

= NH/K(V)i+ ! J; N(J’1)i¢(N(V “1y2) dﬂbl,bz,d),ﬂ
= Nyx() "' Ag(0, i+ 1, (W' * Py, ), (38)
where ¥/(y,) =W(N(y ™' y2)).

Let ¢’ =(y' * @)y, p,- Then iy o N x(¢ °y)y, p, is neither more nor less than ¢’ < y.
Now, using the corollary to Theorem 3, we obtain Ag0,i+1, ¢ )=A(0,i+1, ¢")
and Az(0,i+1,¢ 2y)=A(0,i+1,¢pey), and the desired equality follows from
formula (16).

COROLLARY 1. Under the same hypothesis as in Lemma 27, we have

Az ks J, d°9) = Nux@Y Nux(y) ~*Aap, gk . @)-

Proof. By the very definition of Agy s (k, j, @) (cf. (19)) and of uy p, 42, We
obtain, using Lemma 8§,

Agp (ks s @)= vp (K, j; %) L x4 dnlug ) 8,).0.8): (39)
K.p

and the result is an immediate consequence of Lemma 27.

COROLLARY 2. Let (8,), (8,)) and ((B,), (L)) belong to C2(S(2B), S'(®)). Then

Agg gk, j, &) = Agp p(k, J, D).

Proof. Up to introducing an auxiliary ((87), (8%)) € CHS(#), S'(#)), we may
suppose

(1B DIk V(B N (IBIk v Bk = D

As

A A AR A AL ATA

we have

Hp 8208802 = HBIB).BB,)(8,) %>
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hence by formula (39) we have

ve, .k Js 1) Mg, gk, G gy
= vg gk o 0 AN gy gk, J, D)

We obtain the result using formula (15) and the previous corollary.

COROLLARY 3. A’(k, j, ¢) does not depend on the choice of (1), (B,)) € CHS(2),
S'(B)).

It remains to check that A’(k, j, ¢) is independent of the choice of % and this
follows from the following lemma whose proof is identical to that of Lemma 27.

LEMMA 28. Let B,, B,c (V) and S=S(&,) U S(&,), S’ =S(&,) U S(B,). If
pe L r(H) and (By), (B,) € C(S, S') then m(up (5,62, = Tkp,)(5.).6.8.)-

This concludes the proof of (i). Now (ii) is a consequence of the corollary of
Theorem 3, while (iii) follows from Corollary 1 of Lemma 27 and (iv) from
Theorem 3(v).

IV. Special values of Hecke L-functions

Let  be a Hecke character of H (i.e. a continuous C*-valued character of
A} /H*). Let m,, be the conductor of y. We can associate to i a character of
I, (H), still denoted by ¢, by the formula: if qeP(H)—|m,|, then
Y@ =w((1,...,1,wg ', 1,..., 1)), where wg is a uniformizing parameter of Og. If
is a Hecke character of H, let ¥ be the Hecke character of H" defined by
YyV@=N@) ‘Y@ )ifaely (H").

A Hecke character of H will be called K-admissible if there exists k() e N and
j(W)eN—{0} such that for all « = 1 (mod m,),

Y(@) =N H/K(“) KON H/K(O‘) v,

In particular, a K-admissible Hecke character is of type 4, and critical in the
sense of Deligne (cf. [D]). If  is K-admissible, so is ¥ and we have
k(y¥)=j(y)—1 and j(y ") =k()+1.

If Y is a Hecke character of H and S e #(H) contains |m,,|, we set

b
v Y(b)

Ls(y, s) = W,

(40)
beli (H)
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and if ae Cl(Oy), we set

, y(b)
Ls(y, a, s) = Z - 41)
’ bel(H)na N(b)

These two series converge for Re(s) > 0 and define functions of s possessing
meromorphic continuations to the whole s-plane, holomorphic if ¢ is K-
admissible. If i is a K-admissible Hecke character, we set

I_‘ n n
Asth) = (2“()'5,)&) Ly(9.0) and A= 2 o0 Ls(h 8.0, @)
and if S = |m,,|, we drop it from the notations.
If qe P(H), let Yg€ &y be defined by
(..., 1, x, 1,..., 1) if xq€OF
Ve = { ’ it £OF 43)

Hence, if q ¢ |m,,|, we have yq = 6,. Let wq be a uniformizing parameter of O, and
aq=v4(mydy). Let us view H{ as a subgroup of A} in the obvious way, so that
Y(wg) has a well defined meaning.

LEMMA 29. (i) There exists a constant W) (the local root number of Y at q)
independent of the choice of wy such that

Wo (g “D(@gix) if qemy|

T = {W..www.;“w (@) if a¢lmy|

Moreover, we have

(i) W) =1if q¢|mydy|.
(iii) Wo)Wa(d”) = g(— D).

Proof. Everything follows from standard computations (cf. [L]).

The following observation is an easy consequence of the weak approximation
theorem for the multiplicative group.

OBSERVATION. Let O(k, j, ). ¥ — C be a map satisfying formula (16). Let
SeP(#) contain |my| and ¢se Fs y satisfy ¢pgob=y(b)¢s for all be Of. For
aelg(H) set pga(x)=Ps(xs)Iges lail(xq) where 1“61 is the characteristic function
of the fractional ideal of H, generated by a™'. Finally, if A < Is(H) is a set of
representatives for CI(Op) set ¢s 4 =Z,c4 Y(a)Ps,. Then we have:
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(i) O(k®W), j(¥), ¢s,4) is independent of the choice of A.
(i) @KWY, j¥), ¢s.4°b)=Y(B)OKW), j()), ¢s.4) for all be(Af)*.

Whenever it is defined, we have, with obvious notations

Op* s a=0sa— Psap-+ and & x ds 4=¢s 4—N(c)~ 1¢S,Aé’ (44)

from which we deduce, using the fact that multiplication by an ideal induces a
bijection on CIl(Op), that we have

OK(Y), J), % b, % 63% 5.0
= TT (=) TT (1= @Ok, J. bs..) 45)

whenever everything is defined.
If T =« #(H), we define the Euler factor of  above T by

Exy)= [l (—va) (46)

qeT —|m,|

the local root number of y above T by

Wr) =[] W) (47)
qeT
and
or = || wjaeHf. (48)
qeT

If Se2(H) contains |m,|, let Ys€ &5 y be defined by Yg(x)=Iges/q(xq). We
have g b=y(b)yrs for all b e OF, so we choose a set A e Ig(H) of representatives
for CI(Og) and we set Og() = OK(Y), j(¥), s, 4), OY)= O (). As everything
we said about O(k,j,-) applies to the map A(k,j,"), we get two different
definitions for Ag(y) (cf. formula (42)). But, if aeIg(H) is in the ideal class a,
writing be I (H) n a in the form b=(p)a, where fea™! is uniquely determined
modulo Uy, we see that Ag(y,a) is neither more nor less than y(a)A(k(y),
J(¥), Y5,4), which means that the two definitions coincide.

If Sy = S, we define Y5 5,€ 5 4 by

Usso®) = [1 Wqlxg [T Fqlhq)x). (49)

qeS—S, qeS,
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LEMMA 30. (i) O5(¥) = Es(¥)OW).
(il) We have Yss,°ob=y(blss, for all beOF and if Aels(H) is a set of
representatives for Cl(Oy), then

OKW), j(W), Ys,s0,4) = Ws(W)Es,() ¥ )Es _s5,(1)OW).

Proof. (i) We have Ys 4 = *¢es_m,| Oq * ¥m,.4, SO the result is an immediate
consequence of formula (45).
(i) Using Lemma 29, we obtain

Ws,5,4= Wso(lﬁ)lﬁ(a’s_ol)< * Oq * Of * me,A> ° Wsoy (50)

qeS—(Souimy))  qeSo—(m|

from which everything follows easily using formula (45).
Let us define the global root number W(y) by
W) = (=™ [T W)
qeimydy|

Suppose that ©O(k, j,*) satisfies the following functional equation:
Ok, j, ¢) = (=1 V1@ — 1, k+ 1, Fy(9). (51)

forall j = 1, k > 0 and all ¢ € #(H). Then we have

LEMMA 31. W)OW) =i "OW").
Proof. Let a€ljy 4, (H). Using Lemma 29, we obtain

FuvWir,z) = N@). Win,a,0) - V(@pmyd,)  ¥mya=t © Ojmydy s (52)

from which we obtain, with obvious notations

F iy Wi, 1) = Winydu ) - ¥(Oma,) - Y, a1 © Ojmyd- (53)

The lemma follows easily, using formula (51).

This lemma applied to A(k,j,*) is nothing else than Hecke’s functional
equation. But, we can also apply everything to A’(k, j,-). The results that we
obtain in this way are summarized in the following proposition.

PROPOSITION 32. (i) If aeIs(H), we set A3}, a) = Y(@)A’(k(¥), (), ¥sa)- Then
Ak, a) depends only on the image of a in CI(Oy).

If A < I{(H) is a set of representatives of CI(Oy), set A5()=Z,c4 AY, a). Then
we have:
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(i) AS()=Es@)A'W).

(ii)) Zacs Y@A'KW), j()), Vs s,2)=[ges, WaW)Es, W )Es - s W)A').
(iv) WA W) =i""A'(y).

V) A'W)=AW) if n=1,2 or n >3 and k()=0 or ji)=1.

V. p-Adic measures on Galois groups and p-adic L-functions
1. Preliminary constructions

Let i be a Hecke character of H of type 4, and conductor m,,. We can associate
to ¥ a unique continuous character ' with values in C} satisfying y*X(a)=y/(a)
for any a € I, (,(H) (cf. [W1]). But, as P is trivial on the connected component
of 1 of A}/H*, it can be interpreted as a character of Gal(H*/H). In fact ¢/
factors through 9y p, , = Gal(Hy)-/H), where m is the prime-to-p part of m,,
and H )~ is the union of all abelian extensions of H of level m(p)* for k > 0. We
shall say that ¥ is p-admissible if it is K-admissible and y® factors through
G 1mp=Gal(Hyp=/H) (note that this is equivalent to k() =0 and y3=1 on Of)).
Let us choose a set A < iy, (H) of representatives of Cl(Oy). We have the
following isomorphisms of topological spaces:

Gmp = AX(Og/m)* x Y ,)/Uy
and
GHmp = AX(Og/m)* x Y},)/Up,

where U—H denotes the topological closure of U in the space considered. If fisa
function on 9y, , (resp. on Gy, ), let f be the function on A x (O /m)* x Yi,
(resp. A x(Oy/m)*x Yif,) obtained by composing with the projection
modulo —U_H

Choose a torsion free subgroup V of finite index of the subgroup of Uy of
elements of norm 1 over K and # € #(V). Let T € 2(H) contain |m|, |(p)| and |a|
forallac A. If xe(Opm)* and a€ A4, let ¢,, € & 1(H) be the function defined by

¢oz,a(x) = ¢a,|m|(xlm|) : ¢p(xp) l_[ la“(xq)s (61)

q¢/mp|

where @y m|(Xjm) =1 if X €2+ mO,y and O otherwise, and ¢, is the function
defined in III §3.

For all (by,b,)eC;(S(%#), S'(#)), where S(#) and S'(#) are as defined in
Theorem 26 we define a measure Ay p,m On ¥ymp and a measure uy, p , ON
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Yy mp by the formulae:

1 - .
J fdpm=rg—q X X |, @0 y)digam  (62)
“Hmp H- "1 act a0y /my 4 Y73 12
1 -
d P— ~
JgH,m,P 4 Hbybym [Ug:V] z z Y x Y3 f@ %y, y2) d‘ubl’bl"f’a,a’g’

aed ae(0y/m)*
(63)

where w3, 4 % 1S the measure constructed in Theorem 23, and if p is a measure
on Y* x Y,, then [ is the measure defined by

j SO Y2)dﬁ=J N~ fO1 ' y2)du. (64)
Y¥xY, Y¥xY,

Let vy, p,(¥) = (1 — Yy H)1 — ¢V (by 1))
PROPOSITION 33. (i) Ay b,m is the unique measure on Gy, , such that

LH . Y2 dy, b,m = Vb, b,(WEjp( ) Wp (V) Ejm (W)AW) (65)

for all p-admissible Hecke characters of H of conductor dividing mp®.
(ii) p, b, m is the unique measure on 4y y , such that

LH W2 dptp, bm = Vb, b,(WE 5/ ) Wp) (V) Ejeng (V)AG)) (66)
»m,p

for all K-admissible Hecke characters of H of conductor dividing m(p)*® satisfying

k()=0 or j(¥)=1.
(i) Moreover, if we do not assume k(y)=0 or j()=1, then

LH WP duy, b,m = Vb, b, )E; 5/ V) Wipi (V) Epmg (DA’ W). (67)
m,p

COROLLARY. If one can prove by any other method (for example using
refinements of Harder’s proof) that there exists a measure satisfying (ii) for all K-
admissible W, then A(W)=A’(Y) in all cases. (If H is a CM field, Katz[K] has
constructed such a measure, but we have not checked the compatibility of his results
with ours.)

Proof. Let § be a K-admissible Hecke character. By definition of uy, p, m, We
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have
1
(p) d m = G
LH’""” ’ Pt (Un:V] ag Ve ae(O%/m)* @ (68)
where
G(tX) = !//lm| (a) J‘Y wf;/ (Y1)‘/’13(J’2)N(Y1)jw’ B lN(yZ)k(./’) d#bpbz,d’zx,a,g' (69)

Now, using Theorem 23(ii) and formula (48), we obtain that the Fourier—
Laplace transform of

1
m ado%:/m)* ‘lllml (Of)l//i;/ (4% 1)1115()’2)%1,1;1,%‘,,93

is

1 1 z, z
[Uy:V] # (2_,” K (2—,;, 2—;; (‘plm(P)l,lpI,a)bpbz,ﬁ)> ) (70)

and we can deduce (iii) from Lemma 8 and Proposition 32(ii). Then (ii) follows
from the fact that A’(Y)= A(Y) if k(¥)=0 or j(y)=1 and (i) is obtained in exactly
the same way as (iii). The unicity of A, p, m and p 3, m is due to the fact that the
subspace of the space of continuous functions on ¥y, , (resp. ¥y mp) generated
by the ¥ with k(y)=0 and j(i/)=1 is dense (we are allowed to multiply by any
locally constant character).

2. Measures and pseudo-measures on profinite abelian groups

In order to put the results of the preceding paragraph in a more satisfactory
form, we shall shift to the language of pseudo-measures. In this paragraph, we
shall collect from [Se] the definitions and some basic facts about pseudo-
measures.

Let G be a profinite abelian group and A be a closed subring of 0. We define
the Iwasawa algebra A[G] of G as lim A[G/H ] where H runs through the open
subgroups of G. Then A[G] is a dense subalgebra of A[G] and we have a
canonical isomorphism between A[G] and the algebra of A-valued measures on
G, the multiplication in A[G] corresponding to convolution of measures. This
will enable us to view a A-valued measure on G as an element of A[G]. For
example, the measure associated to ge G is the Dirac measure at g.
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Let X(G) be the group of continuous C}-valued homomorphisms of G
endowed with the topology of uniform convergence. If y € X(G) and pe A[G ], we
write (x, u) instead of | y du and let yue A[G] be defined by (¥, xu)> = <Yy, u).
Then we have (y, ud) =y, up<x, 4> and x(pd)=(u(xA).

Suppose from now on that G has a quotient isomorphic to Z,andletI' = G
be a lifting of Z,. Let A’'[G] be the total fraction ring of A[G] (i.e. the ring of
«~ !B where a, f are elements of A[G] and « is not a zero divisor). If
A=a"'Be A'[G] and y € X(G) satisfies {x, a) # 0, we set (x, A> =y, 0> "y, B>
and this depends only on 4, not on the particular decomposition of 4 in the form
a~'B. The map y — (¥, A) is defined on a dense open subset of X(G). If Ae A[G]
and y € X(G) we can still define yAe A’[G] and we still have y(Au)=(yA)(xn). An
element A€ A’[G] will be called a ‘pseudo-measure’ if (1—g)ie A[G] for all
g€ G. We shall write A[G] for the space of pseudo-measures.

Let n: G' - G be a surjective morphism of profinite abelian groups. Then =«
induces a surjective morphism from A[G'] to A[G] which can be prolonged in a
unique way to a morphism from A[G’'] to A[G] in the following way. If g€ G,
then g— 1 is a zero divisor if and only if the topological closure of the subgroup
generated by g in G has a finite p-Sylow subgroup; in particular if the image of g
in Z, is non-zero, then g—1 is not a zero divisor and the set of ge G such that
g—11is a zero divisor is contained in a closed subset with empty interior. So take
41eA[G] and geG such that m(g)—1 is not a zero divisor and set
m(4) = (n(g)— 1)~ 'n((g — 1)A). This clearly does not depend on the choice of g and
defines a pseudo-measure on G.

LEMMA 34. (i) If the p-Sylow subgroup of G/T is infinite, then A[G]=A[G], or
otherwise stated, all pseudo-measures are measures.

(i) If n: G’ — G is a surjective morphism of profinite abelian groups and 4 is a
pseudo-measure on G' such that ©(1) is a measure, then A itself is a measure.

Proof. This follows easily from the structure of A[G] given in Th. 1.15 of [ Se].

COROLLARY. Suppose G has a quotient isomorphic to Z2. Let
Xis---» Xn€X(G) and AeN[G] be such that V(g,,...,9,)€G",
AT (1 —x:(9)9:) € A[G], then A is a measure.

Proof. An immediate induction reduces the study to the case n=1. So let
x€ X(G) and A€ A'[G] be such that (1 — x(g)g)1 € A[G ] for all ge G. We then find
that ¥~ (1 —x(9)9)A)=(1—gXy '4) is a measure for all geG. As G has a
quotient isomorphic to Z2 this implies by (i) that y ~ ' 1 is a measure, hence 1 also.

3. p-Adic L- functions

If SeP(H) satisfies Sn|(p)l = &, let Gy 5, (resp. p 5p) be the Galois group
over H of the union of all abelian extensions of H of level m with |m] < S U |(p)|
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(resp. m| = S U |p|). If p denotes the complex conjugation on K induced by the
embedding of K into C, the map ¢ — & defined by &(x)= p(a(p(x))) induces a
(canonical) isomorphism between %y, and Yyvg, If xeApj/H*, let
o, € Gal(H®/H) be its Artin symbol. If be I s, (H), let 6, € Gy 5, (resp. iy 5,) be
the Artin symbol of the idele (..., xg,...), where vg(xg)= —0v4(b), xq=1, if
qeSu|(p)land 6_, €%y g, be the Artin symbol of (..., X, ...) where xg= —1if
q<|pl and x4=1 otherwise. If be Is ) (H), we have o5=0y, in v 5,. Let N be
the cyclotomic character of ¥y 5, defined by N(oy,) = N(b) and if y is a C}-valued
continuous character of ¥y ,, let ¥ be the character of ¥y v 5, defined by
1" (@)=N(o) 'x@ ).

If (by, b,) € C1(S(B), S'(B)), we let py p, s€ [, i[9 ns,p] and Ay b, s€ L, u[Gh,sp]
be the respective projective limits of the w, p, m and 4, p m defined in Proposition
33. If y is a continuous C}-valued character of 9y 5, (resp. 9y 5,), we set

Ly s(x) = [(1 —x(on,)” )1 —N(by)x(o5)] ' LH X dZp, b,.s>
P

and

L,s(x) = [(1—x(op) N1 —x Y (op,) " H]~* LHS X dpip b, s-
D

L,s and L, are independent of the choice of (b, b,) as can easily be deduced
from Proposition 33. We can now state our main result:

THEOREM 35. (i) L,5(x) is an Iwasawa function of y, i.e. there exists a (unique)
measure ps on Gy s, such that Lp,S(X)=If¢H,s,p xdus.
(i) If ¥ is a K-admissible Hecke character of conductor m,, satisfying

Im, | = SUI(p)l, then L, s(¥?)= Ejp(¥ ¥ )Es ;) Wiy (DA’ W).
(iii) If the conductor of y is divisible by all elements of S, then there exists a p-
adic unit W®(y) such that

W)L, s(x) = x(6- )L,s(x")-
Moreover, if Y is an admissible Hecke character, then

W””(l//“’)) =" H VVq (l//)

qeSuldy|—I()l

(iv) There exists a (unique) pseudo-measure As on Gy s, such that

Lys(x) = J x d4s,
YH,Sp
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and As is a measure if S # (J or if the p-adic regulator R, of Uy is equal to 0. If

hR 1
R, # 0, L, o has a simple pole at y=1 of residue — —r (1 — —) ,
P P N( dH,p) qelp| N(q)

where h = card(Cl(Oy)) is the class number of H.
(v) If ¥ is a p-admissible Hecke character of H of conductor m,, satisfying
Im,| = S pl, then Ly s()P)= Eg(y ¥ )Wip(W)Es(W)AW)-

Proof. (i) First note that %5, has a quotient isomorphic to Z2, namely
Gal(HK ,/H), where K, is the union of all Z -extensions of K, and that the
image of Cr(5(%),S'(#)) by the Artin map is dense in ¥p5,x%yv 5, by
Tchebotarev’s density theorem. Hence, there exists a subset C of C(S(%), S'(%))
dense in Yyg,x%yvg, such that the quotient of 5 by
(1—op, )1 —N(b,)dp,) is well-defined. An immediate consequence of Proposi-
tion 33 is that this quotient is independent of the choice of (b;, b,) € C. We shall
denote it by us. We see that (1 —op, Ha — N(b,)ap )us is a measure on Yy 5, for
all (b;,b;)eC. As C is dense in %yg,x%yvs, this implies that
(1—0)(1—N(0,)0,)us is a measure for all o, 6,€ %y 5 ,; hence, us is a measure
by virtue of the corollary of Lemma 34.

(i) and (v) These are immediate consequences of Proposition 33.

(iii) Let ¥ be an admissible Hecke character of conductor m, satisfying
Sc|my,| = Sulp). We have:

L,s(W?) = Ey(WE(\ " )WpWA'(W),
Lps(@¥)®) = Epi(¥ ¥ )Ep () Wiy (0 AW Y),
WN'(Y) =i "N,

Wil )W (0) = Y (— 1),

W) =(—D)"WuWe®) T W)

qeim,dy| —[(p)|

Y P(o 1) = (=)™ (1),

from which the formula for W®@/®) follows immediately. The fact that
W®(P) is a p-adic unit is a consequence of the fact that Wy(y) is a unit at all
places prime to N(q). The general case can be deduced from this case as in
[d Sh, 11, §6].

(iv) The definition of Ag is about the same as that of ug. The quotient of
b b,s by (1—oy, 1 —N(b,)o3) does not depend on the choice of
(by, by) e C1(S(4B), S'(B)) and will be denoted by Ag. The difference with (a) is that
now, N(b,) is not a continuous function of o3, and the image of C(S(%), S'(%)) in
(%1,5p)* x OF by the map (b, b,) - (oy:1, 05, N(b,)) is dense. This implies that
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(I—0,)1—a0,)4s is a measure for all 0,,0,€ %y, and oc OF. Hence

(=0 )1—po,y)is =2(1—0a,) <1 - ‘1—;—1) Uz) is—(1 =01 —03)As

is a measure. But (1 —pa,)~ ! =%, p*o% is a measure and so (1—o0,)is is a
measure for all ¢, €%y 5,, which means that g is a pseudo-measure.

Now, if § # (J, take g€ S and let S'=S —q. Let r be the projection from ¥ HSp
to 95, Then we have n(ls)=(1—0y)As and thus n(ig) is a measure which
implies by Lemma 34(b) that g is a measure if § # @f. The fact that Agis a
measure if R, =0 could be obtained by the same method as in [Se], but we shall
deduce it from the formula giving the residue.

4. Calculation of the residue

If F(z,) is a function of z, =(z, y,.. ., z; ,)€ C" with reasonable singularities (e.g.
simple poles situated on hyperplanes) we define V/ (F)z _p to be:

dzy, Andzy,
2ni ’

s»_,r( j ¢(Zl)F(Zl)H<21k][Z1k|2(s 1

where ¢ is any C® compactly supported function on C” equal to 1 in a
neighborhood of 0. Of course, if F is C* in a neighborhood of z; =0, the two
definitions of V4(F )., —o coincide.

Let V be a subgroup of finite index in the subgroup Uy of elements of norm 1
over K, #e#(V) and ey ;y(H). Write A(j, ¢) instead of A(0,j, #) and
suppose that ¢ satisfies conditions (2) and (4) of conditions (*) and (**) (cf. II), so
that in particular, F(z,, z,,¢, #) is regular at z,=0.

LEMMA 36. A(j, $)=V{" Y(F(z,, 0, ¢, B)),, o

Proof. First note that this definition of V{1 allows us to extend formula (7)
to the case where 8 belongs to some of the hyperplanes of equation Tr( f; zvz)=0,
as can be seen by rearranging the terms as in [Col, I, Lemma 4]. Thus the proof
of Theorem 3 can be applied unchanged (but with the new meaning of V¢~ in

formula (13)).

REMARK. The advantage of using this new V{ is that it dispenses us from
introducing an auxiliary b, which has the disagreeable effect of multiplying all
the results by 1—(b; }) and removing the pole at i = 1. The drawback is that
the formulae become much more complicated.
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If a€ Iy, (H) and ye(Oyp))*, let ¢,,€ L (H) be the function defined by
Pay(x) = F |]')|(1?)(x|p’)n la“(xq),
q¢lpl
where 1;€ %5 gV is the characteristic function of ¥+ pO,s,.
LEMMA 37. Let § be an unramified p-admissible Hecke character of H,

A < 1,(H) be a set of representatives of Cl(Oy) and C < (Og,)* be a set of
representatives of (Oy/p)*. Then

Y 2 Y@AGW), dap1) = LypgW®).

aeAd yeC

Proof. Note that Z,.c 1;(xp) = Ilgep0g(xg)- Thus, Z,cca,1=Vppa (se€
formula (48)). Since @y(,),1(X)= @, ,-1(yx), we apply formula (16) to obtain:

Y X V@@AGH) dap) = X ¥(@) 3 AGW); ¢ay-)

aeA yeC acAd 7eC
= Z W(a)/\(}(l//), l/’tpl,!pl,a)s
acA

and the result follows from Lemma 30 and Theorem 35(v).

LEMMA 38. (i) Let T, B, S5(#B) and ¢ be as in Theorem 23. Then for all
B=(fip---» fup)e®B, all ¢eFr(H) and all b,eCHY) satisfying
b, N (S2(2B) 0 TL(p)) =

1
[T (s ((W K( L0, %4, B))

is the Fourier-Laplace transform of a p-adic distribution T, 4 on Yy, (cf.
[Co2, §4]).

(i) If ¢, is a locally constant function on Yy , viewed as an element of &\, v ,
the Fourier—Laplace transform of ¢,Ty, 4 p is given by

[T (Tehiaz)t ((21)" ( 0, 35 F (1) o, B))

Proof. The proof is about the same as that of Theorem 23 except that we need
Proposition 10 to understand what happens at z, =0.

COROLLARY. (i) Let € A(V), A and C be as in Lemma 37 and let T € 2(H)
contain |(p)|, all |a| for ac A and all |(y)| for yeC. Then for all |b,Je C(HY)



p-Adic interpolation 185

satisfying |b,y| N (SHB)U T) = &, all ae A, all ye C and all Be %,

T Tehaz) ((zl)nK<Z—‘.,o, 351 % Buip B))

is the Fourier—Laplace transform of a p-adic distribution Ty ,, p on Yy, whose
support is in 1 +pYy .
(i) We have

(1—y V(b L, g(lﬁ)_ ] Z Y, Y w(a(y) JY Pjyy—1,80) Ty, 5.8

acA yeC Be#
(71)

where if ¥y is the family of linear forms (Tt(f} pz),. .., Tr(f, pz)) and keN, P, g is
the polynomial which was called Py o, in [Co2, Corollaire du Lemme 4.8].

Proof. Using Lemma 38, we see that Ty, 5, 3= Ty, a-i(y- 1B where ¢, is the
characteristic function of 1+pYy, This proves (i. The proof of (ii) is a
consequence of the definition of Py g of [Co2]. The (—1)" appears because of the
difference between this article and [Co2] in sign convention for the Fourier—
Laplace transform.

If t e N, let Y, be the unramified p-admissible Hecke character of H defined by
¥, (a)=Np,x(®)®~ V7 if a e I(H) and « is a generator of the principal ideal a*. We
have j(y,)=h(p —1)p' and P tends to 1 as ¢ tends to + co. When we say that
Ly, &(x) has a simple pole at y=1 of residue R we mean explicitly: Vo € G g,

lim (x(0) — D)Ly g(x) = (h(p—1)) ~!log, (¥ ()R,

where log, is the p-adic logarithm. Note that this limit exists and is equal to
ng@,p d((c —1)Ag). Since the limit exists, we can compute it by using ¥, and
letting ¢ tend to + co. Then the fact that L, 5(y) has a simple pole of residue R at
x=1is equivalent to

tlgg j(‘//t)Lp,Q(wt) =

We indicate briefly how to compute this limit using the results of [Co2, §5].
Let #,,...,n,-, be elements of Uy satisfying n; = 1 (mod p), Ny (n;)=1 and
generating a subgroup of finite index of Uy. If reN, let ;. =#?". Let V, be the
subgroup of Uy generated by #,,,..., ,—;, and if 6eS,_, let f; ,,=1 and
Jior=Tciny)., Let o= £ 1 be the sign of det(1,log|n,l,...,logln,_,|) where
log|n;| is the vector of R" whose jth coordinate is log|t;(n;)|. Set
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R,=R,(Up)= wdet(l log,ny,..., log,n,-,), where log,n; is the

1
[Uu:V1n
vector of C, whose jth coordinate is log,t;(n;). Also let £, =
{B,,|6€S,-1}€B(V,), where B,,=(fisr>--->fnor) if o.e6)=1 and
Byr=foor> Joor- s Somt.0m fl.an) If @.8(6)=—1 and choose b,,e C(H")
satisfying |b, N (T U S5(%,)=J.

LEMMA 39. The constant term of the Fourier—Laplace transform of Ty, a s, is

_f:_d—_)“‘N(b“” det B, .
H

Proof. Stralghtforward.

equal to —

Thus, using [Co2, Corollaire du Lemme 4.8] while letting ¢ tend to + o0 in
formula (71) and then letting r tend to + co as in [Co2, §5], we obtain

o hR !
lim jf )Ly o) = — ﬁ [ (1 - W> ’

qelpl

where R, appears as

> card(4 x C)
as —————

1
~ lim [Ug: V] 'det(B,,): h[] <1 _— >
nr—=o

qelp| N

and

(=)= (== (=1

where the (—1)" comes from formula (71) and (—1)*"! from [Co2, Corol-
laire du Lemme 4.8]. The term (1—N(b,,) disappears because
lim,, , (1—¢,"(b;}))=1—N(b,,). The extra terms in [Co2, Corollaire du
Lemme 4.8] disappear in the same way as in [Co2, §5]; namely, 4,=A4,(¥3,)
tends to 1 and Fy(Zp ) to 1/(n—1)! This concludes the proof of Theorem 35.
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