Résidu en s = 1 des fonctions zêta p-adiques

Pierre Colmez

Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn, Federal Republic of Germany

§ 1. Introduction

Soit F un corps totalement réel, \mathcal{O}_F son anneau des entiers, et $\zeta_F(s)$ la fonction zêta de Dedekind de F. $\zeta_F(s)$ est une série de Dirichlet possédant un produit

Eulerien
$$\zeta_F(s) = \prod_{\mathfrak{p}} \frac{1}{(1 - N\mathfrak{p}^{-s})}$$
 qui converge pour Re(s)>1. $\zeta_F(s)$ peut se prolon-

ger en une fonction méromorphe à tout le plan complexe, holomorphe en dehors d'un pôle simple en s=1. Le résidu en s=1 de $\zeta_F(s)$ est donné par la formule suivante:

$$\lim_{s\to 1} (s-1) \zeta_F(s) = \frac{2^n R_\infty h}{w \sqrt{D}},$$

où h est le nombre de classes de F, R_{∞} son régulateur, D son discriminant, w=2 le nombre de racines de l'unité contenues dans F et $n=[F:\mathbb{Q}]$.

On sait de plus que si k est un entier positif, $\zeta_F(-k)$ est un nombre rationnel. On possède à l'heure actuelle deux démonstrations de ce fait; l'une, due à Siegel [Si], utilise les formes modulaires de Hilbert et l'autre, due à Shintani [Sh], utilise une décomposition en cônes simpliciaux de $(\mathbb{R}^+)^n$ modulo l'action des unités de \mathcal{O}_F . Ces deux démonstrations ont conduit à deux constructions différentes des fonctions zêta p-adiques. Utilisant la méthode de Siegel, Serre [Se 1] a construit une fonction zêta p-adique continue sur $\mathbb{Z}_p - \{1\}$, $\zeta_{F,p}$. Posons q = 4

si
$$p = 2$$
, $q = p$ sinon, $E_p(s) = \prod_{\mathfrak{p} \mid p} \left(1 - \frac{1}{N\mathfrak{p}^s}\right)$, et soit ϕ la fonction indicatrice d'Euler.

$$\zeta_{F,p}$$
 vérifie $\zeta_{F,p}(-k) = \zeta_F(-k) E_p(-k)$, pour tout $k \equiv -1 [\phi(q)]$.

Deligne et Ribet [D-R] ont généralisé cette construction au cas d'une fonction L attachée à un caractère de Dirichlet quelconque de F. Cette construction est en grande partie algébrique et utilise un important bagage de géométrie algébrique. Utilisant la méthode de Shintani [Sh], P. Cassou-Noguès [C-N] et D. Barsky [B] ont donné une construction purement analytique de $\zeta_{F,p}$. Leur démonstration a été reprise et réinterprétée en termes de mesures p-adiques par N. Katz [K].

Le théorème principal de cet article donne une formule pour le résidu en s=1 de la fonction zêta p-adique, à savoir:

$$\lim_{s \to 1} (s-1) \zeta_{F,p}(s) = \frac{2^n R_p h E_p(1)}{w \sqrt{D}},$$

où R_p est le régulateur p-adique de F. Cette formule était connue dans le cas où F est une extension abélienne de $\mathbb Q$ (on en trouve une démonstration dans [Ko] ou [A-F]), et de plus, Serre [Se 2] avait démontré que la valuation p-adique du premier membre était supérieure à celle du second membre. Il est à noter que dans cette expression, R_p et \sqrt{D} ne sont définis qu'au signe près, mais leur quotient est bien défini comme l'ont montré Amice et Fresnel [A-F]. C'est d'ailleurs cette quantité qui apparaîtra naturellement dans les calculs (Lemmes 5.2 à 5.4).

Les paragraphes § 2 et § 3 de cet article sont consacrés à la description d'une variante effective de la méthode de Shintani. Dans le paragraphe § 4, on construit la fonction $\zeta_{F,p}$: la construction ne diffère de celle de P. Cassou-Noguès que par le langage (on utilise le langage des distributions p-adiques de Y. Amice [A]). Le dernièr paragraphe est consacré au calcul du résidu.

§ 2. Méthode de Shintani

On note $\zeta_F(s) = \sum_{\alpha} \frac{1}{N\alpha^s}$ la fonction zêta associée au corps totalement réel F,

où la somme est sur les idéaux de \mathcal{O}_F . Notre but maintenant est d'exprimer $\zeta_F(s)$ comme la transformée de Mellin en n variables d'une fonction rationnelle en e^z . Soit τ_1, \ldots, τ_n les n plongements de F dans \mathbb{R} . On considère F comme étant plongé dans \mathbb{R}^n via $\alpha \to (\tau_1(\alpha), \ldots, \tau_n(\alpha))$. Un élément de F s'écrit comme un vecteur à n composantes: on multiplie les vecteurs composante par composante. On note $\operatorname{Tr} x$ la somme des composantes de $x \in \mathbb{R}^n$, et $X = (\mathbb{R}^{n+*})^n$.

Soit U_p le groupe des unités totalement positives congrues à 1 modulo p. Soit G le groupe des classes de rayon modulo p. On choisit un système de représentants entiers de G. On écrit $b \equiv a$ si b est dans la classe de a. Ceci veut dire qu'il existe $\alpha \in a^{-1}$, α totalement positif, $\alpha \equiv 1[p]$, tel que $b = (\alpha) a$ (un tel α est défini modulo U_p). Pour un idéal α de G, on définit la fonction zêta partielle

$$\zeta_{\mathfrak{a}}(s) = \sum_{\mathfrak{b} \equiv \mathfrak{a}} \frac{1}{N(\mathfrak{b})^{s}} = \frac{1}{N(\mathfrak{a})^{s}} \sum_{\substack{\alpha \in X/U_{p} \\ \alpha \in 1 + p\mathfrak{a}^{-1}}} \frac{1}{N(\alpha)^{s}} = \frac{1}{N(\mathfrak{a})^{s}} \frac{1}{[U_{p}: V]} \sum_{\substack{\alpha \in X/V \\ \alpha \in 1 + p\mathfrak{a}^{-1}}} \frac{1}{N(\alpha)^{s}}.$$

La dernière égalité est valable pour tout sous-groupe V d'indice fini de U_p . On a alors la relation $\sum_{\alpha \in G} \zeta_{\alpha}(s) = \zeta_F(s) E_p(s)$. On exprime maintenant la somme

sur $\alpha \in X/V$ d'une manière plus commode pour les calculs.

Soit $D = X \cap \left\{ z \middle| \prod_{i=1}^{n} z_i = 1 \right\}$, et soit V un sous-groupe libre de rang n-1 de

D. Pour n-1 vecteurs de $V, \varepsilon_1, \ldots, \varepsilon_{n-1}$, et pour chaque $\sigma \in S_{n-1}$, on pose $f_{1,\sigma} = 1$ et $f_{i,\sigma} = \prod_{j < i} \varepsilon_{\sigma(j)}$ pour $2 \le i \le n$. On dit que $\varepsilon_1, \ldots, \varepsilon_{n-1}$ vérifient (H) si:

- (i) le groupe multiplicatif engendré par les ε_i est discret et libre de rang n-1
- (ii) $\forall \sigma \in S_{n-1}$, det $(f_{1,\sigma}, \ldots, f_{n,\sigma})$ est du même signe que $\varepsilon(\sigma)$, la signature de σ .

Lemme 2.1. Si V est un sous-groupe de D, libre de rang n-1, il existe $\varepsilon_1, \ldots, \varepsilon_{n-1} \in V$ tels que $\forall k \geq 1, \varepsilon_1^k, \ldots, \varepsilon_{n-1}^k$ vérifient (H).

Démonstration. Soit Log: $X \to \mathbb{R}^n$

$$(x_1, \ldots, x_n) \rightarrow (\operatorname{Log} x_1, \ldots, \operatorname{Log} x_n).$$

Soit H l'hyperplan d'équation Tr z=0. Log V est alors un réseau de H. Demander que V', le groupe engendré par $\varepsilon_1, \ldots, \varepsilon_{n-1}$, soit d'indice fini dans V revient à demander que $\log \varepsilon_1, \ldots, \log \varepsilon_{n-1}$ forment une famille libre. Soit M>0. On pose

$$l_i(M) = \left(\frac{-M}{n-1}, \frac{-M}{n-1}, \dots, \frac{-M}{n-1}, M, \frac{-M}{n-1}, \dots, \frac{-M}{n-1}\right),$$

où le M est à la (i+1)-ième place. Munissons \mathbb{R}^n de la norme du sup. On note B(x,r) la boule ouverte de centre x et rayon r. Il existe une constante r(V) dépendant uniquement de V telle que pour tout M>0, on puisse choisir $\varepsilon_1, \ldots, \varepsilon_{n-1}$ dans V de telle sorte que $\log \varepsilon_i \in B(l_i(M), r(V))$. Les $l_i(M)$ formant une base de H, les $\log \varepsilon_i$ formeront une famille libre, dés que M est assez grand.

Prenons alors M vérifiant

- (i) $M \ge 2(n-1)^4 r(V)$
- (ii) $M > (n-1)^2 \text{Log } n!$
- (iii) M assez grand pour que Log $\varepsilon_i \in B(l_i(M), r(V))$ implique que les ε_i forment une famille libre.

Soit $\Delta = \det(f_{1, id}^k, ..., f_{n, id}^k)$. Posons $E_i = \exp\left[M\left(1 - \frac{i-2}{n-1}\right)\right]$ et $F_i = \exp\left[-M\left(\frac{i-1}{n-1}\right)\right]$. Alors cette matrice s'écrit:

$$\begin{bmatrix} 1 & \beta_{1,\ 2}^{k} F_{2}^{k} & \beta_{1,\ 3}^{k} F_{3}^{k} & \dots & \beta_{1,\ n}^{k} F_{n}^{k} \\ 1 & \beta_{2,\ 2}^{k} E_{2}^{k} & \beta_{2,\ 3}^{k} E_{3}^{k} & \dots & \beta_{2,\ n}^{k} E_{n}^{k} \\ 1 & \beta_{3,\ 2}^{k} F_{2}^{k} & \beta_{3,\ 3}^{k} E_{3}^{k} & \dots & \beta_{3,\ n}^{k} E_{n}^{k} \\ 1 & \beta_{4,\ 2}^{k} F_{2}^{k} & \beta_{4,\ 3}^{k} F_{3}^{k} & \dots & \beta_{4,\ n}^{k} E_{n}^{k} \\ & & & \dots \\ 1 & \beta_{n,\ 2}^{k} F_{2}^{k} & \beta_{n,\ 3}^{k} F_{3}^{k} & & \beta_{n,\ n}^{k} E_{n}^{k} \end{bmatrix},$$

où, grâce à (i), $e^{\frac{-M}{2(n-1)^3}} \le \beta_{i, j} \le e^{\frac{M}{2(n-1)^3}}$.

Developpons Δ et isolons le terme diagonal; nous obtenons, en utilisant les majorations précédemment obtenues:

$$\left| \Delta - e^{kM \left(\frac{n}{2} \right)} \prod_{i=2}^{n} \beta_{i,i}^{k} \right| \leq (n!-1) e^{\frac{kM}{2(n-1)^{2}}} e^{kM \left(\frac{n}{2} - \frac{n}{n-1} \right)}$$

et donc: $\Delta \ge e^{\frac{kMn}{2}} (e^{\frac{-kM}{2(n-1)^2}} - (n!-1) e^{\left(\frac{kM}{2(n-1)^2} - \frac{kMn}{n-1}\right)} > 0$ d'après (ii).

On démontre de même que det $(f_{1,\sigma}^k, \ldots, f_{n,\sigma}^k)$ est du même signe que $\varepsilon(\sigma)$, ce qui termine la démonstration du lemme 2-1.

Soit $(\varepsilon_1, ..., \varepsilon_{n-1})$ une famille d'éléments de D vérifiant (H), et V le sousgroupe de D engendré par cette famille. Soit J une partie non-vide de [1, ..., n], soit $C_{\sigma,J}$ le cône engendré par $\{f_{j,\sigma}|j\in J\}$: $C_{\sigma,J}=\sum_{i\in J}(\mathbb{R}^{+*})f_{j,\sigma}$. On met une

relation d'equivalence entre les couples (σ, J) de la manière suivante: $(\sigma, J) \simeq (\sigma', J')$ s'il existe $v \in V$ tel que $C_{\sigma, J} = vC_{\sigma', J'}$.

Lemme 2.2.

$$X/V = \coprod_{\{(\sigma, J)/\cong\}} C_{\sigma, J} \tag{1}$$

Démonstration. Notons $C_{\sigma} = C_{\sigma,[1,\ldots,n]}$. Il est démontré dans [C] que sous les hypothèses du Lemme, on a

(i) $vC_{\sigma} \cap v'C_{\sigma'} \neq \emptyset \implies v = v' \text{ et } \sigma = \sigma'.$

(ii) $\bigcup_{\sigma,v} v \bar{C}_{\sigma} = X$ où \bar{C}_{σ} est l'adhérence de C_{σ} dans X. Or, $\bar{C}_{\sigma} = \coprod_{J} C_{\sigma,J}$. On

obtient donc $X = \bigcup_{\{(\sigma, J)/\cong\}, v} vC_{\sigma, J}$. Il suffit donc de prouver que

$$C_{\sigma,J} \cap vC_{\sigma',J'} \neq \emptyset \Rightarrow C_{\sigma,J} = vC_{\sigma',J'},$$

i.e. $(\sigma, J) \simeq (\sigma', J')$. Pour cela, notons $\mathscr{A} = \{\{vf_{1,\sigma}, \dots, vf_{n,\sigma}\} \mid \sigma \in S_{n-1}, v \in V\}$. Si B est une partie finie de X, notons $\mathscr{A}(B) = \{A \in \mathscr{A} \mid B \subset A\}$ et C(B) le cône engendré par les éléments de B.

Sous-Lemme. Si $\mathscr{A}(B) \neq \emptyset$, alors

(1) $C(B) \subset \bigcup_{A \in \mathscr{A}(B)} \overline{C(A)}$]°, où $\overline{C(A)}$ est l'adhérence de C(A) dans X, et E° est

l'intérieur de E dans X.

(2) Soit $x \in C(B)$ et soit $\mathcal{A}(x) = \{A \in \mathcal{A} \mid \forall VU \text{ voisinage de } x, U \cap C(A) \neq \emptyset\}$. Alors $\mathcal{A}(B) = \mathcal{A}(x)$.

$$(3) B = \bigcap_{A \in \mathscr{A}(B)} A.$$

Le résultat cherché se déduit de ce sous-lemme de la manière suivante. Soit $B = \{f_{j,\sigma} | j \in J\}$ et $B' = \{vf_{j',\sigma'} | j' \in J'\}$. On a $C_{\sigma,J} = C(B)$ et $vC_{\sigma',J'} = C(B')$. Soit $x \in C_{\sigma,J} \cap vC_{\sigma',J'}$. Utilisant le (2) du sous-lemme, on en déduit que $\mathscr{A}(x) = \mathscr{A}(B)$ et en utilisant le (3), on obtient B = B' et donc $C_{\sigma,J} = vC_{\sigma',J'}$.

Démonstration du Sous-Lemme. (3) est évident; on a $\mathcal{A}(B) \subset \mathcal{A}(x)$ de manière évidente et l'inclusion inverse découle de (1). Il n'y a donc en fait que (1) à prouver. Considérons les 3 cas suivants:

- a) card B = n. Dans ce cas $\mathscr{A}(B) = \{B\}$ et l'assertion se réduit à $C(B) \subset [\overline{C(B)}]^{\circ}$. En fait, $C(B) = [\overline{C(B)}]^{\circ}$.
- b) card B=n-1. Dans ce cas $\mathscr{A}(B)$ se compose de deux éléments: $B \cup \{f_1\}$ et $B \cup \{f_2\}$, et le résultat découle du fait que f_1 et f_2 ne sont pas du même côté de l'hyperplan engendré par B, comme on peut le constater en calculant les signes des déterminants correspondants (il faut utiliser le fait que det $(f_{1,\sigma}, \ldots, f_{n,\sigma})$ est du signe de $\varepsilon(\sigma)$).
 - c) card $B \le n-2$. Appelons $E(B) = \bigcup_{A \in \mathcal{A}(B)} \overline{C(A)}$. Supposons $C(B) \notin E(B)^{\circ}$ et

soit $b \in C(B) - E(B)^{\circ}$. Soient $\mathscr{A}_{1}(B)$ (resp. $\mathscr{A}_{2}(B)$) l'ensemble des parties à n-1 éléments des éléments de $\mathscr{A}(B)$ contenant B (resp. ne contenant pas B), $\mathscr{A}_{3}(B)$ l'ensemble des parties à n-2 éléments des éléments de $\mathscr{A}(B)$. Soit $\delta = \inf_{A \in \mathscr{A}_{2}(B)} d(b, \overline{C(A)})$; δ est strictement positif car $\mathscr{A}_{2}(B)$ est fini, et si $A \in \mathscr{A}_{2}(B)$,

alors $d(b, \overline{C(A)}) > 0$, car sinon on aurait $b \in \overline{C(A)}$ et $b \in C(B)$ et $C(A \cup B)$ serait inclus dans un hyperplan ce qui est contraire au fait que det $(f_{1,\sigma}, \ldots, f_{n,\sigma})$ est non nul pour tout σ . Comme $b \notin E(B)^{\circ}$, il existe x n'appartenant pas à E(B) et vérifiant $d(b, x) < \delta/2$. On peut alors construire une droite Δ passant par x et ayant les propriétés suivantes:

- 1) si $A \in \mathcal{A}_3(B)$, $\Delta \cap \overline{C(A)} = \emptyset$
- 2) il existe $A_0 \in \mathcal{A}_1(B)$ tel que $\Delta \cap \overline{C(A)} \neq \emptyset$ et si $A' \in \mathcal{A}_2(B)$ et $\Delta \cap C(A') \neq 0$, alors $\delta_0 = d(x, \Delta \cap \overline{C(A_0)}) < d(x, \Delta \cap \overline{C(A')})$.

En effet, pour vérifier 1), il suffit de prendre Δ non contenue dans un nombre fini d'hyperplans. Pour vérifier 2), il suffit de prendre Δ suffisamment proche de la droite (b, x) (voir la définition de δ et de x) et en dehors de ce nombre fini d'hyperplans. E(B) étant fermé, il existe $y \in E(B) \cap \Delta$ tel que $d(y, x) \le \delta_0$ et $[x, y[\cap E(B) = \emptyset]$. On déduit alors des propriétés 1) et 2) vérifiées par Δ , que si $A \in \mathcal{A}_3(B) \cup \mathcal{A}_2(B)$, $y \notin \overline{C(A)}$; et comme

$$E(B) = \bigcup_{A \in \mathscr{A}(B)} C(A) \bigcup_{\mathscr{A} \in \mathscr{A}_1(B)} C(A) \bigcup_{A \in \mathscr{A}_2(B)} C(A) \bigcup_{A \in \mathscr{A}_3(B)} \overline{C(A)},$$

il existe $A \in \mathcal{A}(B) \cup \mathcal{A}_1(B)$ tel que $y \in C(A)$. De plus $[x, y[\cap E(B) = \emptyset]$ implique $y \notin E(B)^\circ$, mais ceci est en contradiction avec $y \in C(A)$ car C(A) est ouvert si $A \in \mathcal{A}(B)$ et $C(A) \subset E(A)^\circ \subset E(B)^\circ$ si $A \in \mathcal{A}_1(B)$ d'après b). Et donc $C(B) \subset E(B)^\circ$, ce qui termine la démonstration du sous-lemme et donc du Lemme 2.2. \square

D'après un théorème de Dirichlet, U_p est un sous-groupe discret et libre de range n-1 de D, donc par le Lemme 2.1, il existe $\varepsilon_1, \ldots, \varepsilon_{n-1} \in U_p$ vérifiant (H). Notons V le sous-groupe de U_p engendré par $\varepsilon_1, \ldots, \varepsilon_{n-1}$. Il est sous-entendu à partir de maintenant que tous les objets que l'on considère dépendent de V; nous n'indiquerons pas cette dépendance par un indice supplémentaire pour ne pas surcharger les notations.

Soit $D_{\sigma,J} = \{ y \in C_{\sigma,J} | y = \sum_{j \in J} x_j p f_{j,\sigma}, 0 < x_j \le 1 \}$. La somme sur $\alpha \in X/V$, $\alpha \in I + p \alpha^{-1}$ s'exprime comme la somme sur $\alpha \in [I] [(1 + p \alpha^{-1}) \cap C_{\sigma,J}]$. Posons

 $D_{\sigma,J,\alpha} = [D_{\sigma,J} \cap (1+p\alpha^{-1})]$. Alors $D_{\sigma,J,\alpha}$ est fini et on a:

$$[(1+p\mathfrak{a}^{-1})\cap C_{\sigma,J}]=\coprod_{y\in D_{\sigma,J,\mathfrak{a}}}(y+\sum_{j\in J}\mathbb{N}pf_{j,\sigma}).$$

Afin de trouver la fonction rationnelle de e^z qu'on cherche, on rappelle l'égalité:

$$\frac{1}{N(\alpha)^{s}} = \frac{1}{\Gamma(s)^{n}} \int_{X} e^{-(\alpha_{1}z_{1} + \dots + \alpha_{n}z_{n})} \prod_{i=1}^{n} (z_{i}^{s-1} dz_{i}).$$
 (2)

On a pour chaque cône la relation:

$$\sum_{\alpha \in C_{\sigma,J} \cap (1+p\alpha^{-1})} \frac{1}{N(\alpha)^s} = \frac{1}{\Gamma(s)^n} \sum_{\{m_i, j \in J, m_i \in \mathbb{N}\}} \sum_{y \in D_{\sigma,J,\bullet}} \int_X F_{y,m,\sigma,J}(z) \prod_{i=1}^n (z_i^{s-1} dz_i),$$

où, écrivant $\alpha = y + p \sum_{i \in J} m_i f_{j,\sigma}$, on a posé

$$F_{y, m, \sigma, J}(z) = e^{-\operatorname{Tr} yz - p\left[\sum_{j \in J} m_j \operatorname{Tr} f_{j, \sigma} z\right]}$$

On pose

$$F_{y,\,\sigma,\,J}(z) = \sum_{\{m_J \mid j \in J,\,m_J \in \mathbb{N}\}} F_{y,\,m,\,\sigma,\,J}(z) = e^{-\operatorname{Tr} yz} \left[\prod_{j \in J} \frac{1}{1 - e^{-p\operatorname{Tr} f_{J,\,\sigma}z}} \right].$$

On définit finalement $F_{\mathbf{a}, \sigma}(z) = \sum_{J} \sum_{y \in D_{\sigma, J, \bullet}} F_{y, \sigma, J}(z)$, J décrivant les parties de

 $\{1, \ldots, n\}$ telles que (σ, J) est dans l'ensemble des représentants de la relation d'équivalence \simeq . On obtient:

$$\zeta_{\mathbf{a}}(s) = \frac{1}{\left[U_p : V\right]} \frac{1}{N \mathbf{a}^s} \frac{1}{\Gamma(s)^n} \sum_{\sigma \in S_{n-1}} \int_X F_{\mathbf{a}, \sigma}(z) \prod_{i=1}^n (z_i^{s-1} dz_i), \tag{3}$$

l'échange des signes \sum et \int se justifiant par la convergence absolue de toutes les sommes considérées.

Soit $\beta \in \mathcal{O}_F$ tel que (1) $\beta \equiv 1$ [p]. (2) $\mathcal{O}_F/(\beta) \simeq \mathbb{Z}/b\mathbb{Z}$, où $b = N((\beta))$.

Soit \mathfrak{D} la différente de \mathscr{O}_F . Il existe alors $v \in \mathfrak{D}^{-1}\beta^{-1}$ tel que $\operatorname{Tr} v = c/b$ avec (b, c) = 1. On obtient:

$$\zeta_{\alpha}(s)(b^{1-s}-1) = \frac{1}{N(\alpha)^s} \frac{1}{\left[U_p\colon V\right]} \sum_{\substack{\mu=1\\\alpha\in X/V}}^{b-1} \sum_{\substack{\alpha\in 1+p\alpha^{-1}\\\alpha\in X/V}} \frac{e^{2i\pi\operatorname{Tr}(\alpha\,\mu\,v)}}{N(\alpha)^s}.$$

Cette égalité se déduit immédiatement du Théorème 4 de [C-N] en tenant compte du fait que $\zeta_{a(\beta)^{-1}}(s) = \zeta_a(s)$, dans les notations de ce théorème. Posons $\xi_{i,\sigma,\mu} = e^{2i\pi \operatorname{Tr}(\mu\nu\rho f_{i,\sigma})}$. $\xi_{i,\sigma,\mu}$ est une racine b-ième de l'unité différente de 1 pour $1 \le \mu \le b-1$.

Lemme 2.3. Posons
$$G_{y,\sigma,J,\mu}(z) = \frac{e^{-\text{Tr}(yz)}e^{2i\pi \text{Tr}(y\mu\nu)}}{\prod_{i\in J} [1-\xi_{j,\sigma,\mu}e^{-p\text{Tr}f_{j,\sigma}z}]}, et$$

$$G_{\alpha}(z) = \sum_{\mu=1}^{b-1} \sum_{(\sigma,I)} \sum_{y \in D} G_{y,\sigma,J,\mu}(z).$$

Alors

$$\zeta_{\alpha}(s)(b^{1-s}-1) = \frac{1}{N(\alpha)^{s}} \frac{1}{[U_{n}:V]} \frac{1}{\Gamma(s)^{n}} \int_{V} G_{\alpha}(z) \prod_{i=1}^{n} (z_{i}^{s-1} dz_{i}). \tag{4}$$

Le gros avantage de l'expression (4) sur la (3) est que comme $\xi_{j,\sigma,\mu} \neq 1$, $G_a(z)$ est C^{∞} sur $(\mathbb{R}^+)^n$, contrairement à $F_{a,\sigma}(z)$ qui a une singularité en 0. Le désavantage est que le facteur $(b^{1-s}-1)$ fait disparaître le pôle en s=1. On utilisera donc l'expression (4) pour l'interpolation p-adique et l'expression (3) pour le calcul du résidu.

§ 3. Prolongement analytique et valeurs aux entiers négatifs

Lemme 3.1. Soit $\phi(z)$ une fonction de \mathbb{R}^+ dans \mathbb{R} , C^∞ à décroissance rapide à l'infini. Posons $F(\phi,s) = \frac{1}{\Gamma(s)} \int\limits_0^\infty \phi(z) \, z^{s-1} \, dz$. Alors $F(\phi,s)$ est définie pour $\operatorname{Re}(s) > 0$ et admet un prolongement analytique à tout le plan complexe. De plus pour tout k entier positif, $F(\phi,-k) = (-1)^k \left(\frac{d}{dz}\right)^k \phi(z)\Big|_{z=0}$.

Ce résultat est classique: voir par exemple [Schwartz, tome 1, p. 43].

Lemme 3.2. Soit $\phi(z)$ une fonction C^{∞} sur $(\mathbb{R}^+)^n$ à décroissance rapide à l'infini. Posons $F(\phi, s_1, ..., s_n) = \int\limits_X \phi(z) \prod_{i=1}^n \left[\frac{z_i^{s_i-1}}{\Gamma(s_i)} dz_i \right]$. Alors $F(\phi, s_1, ..., s_n)$ est définie pour $\text{Re}(s_i) > 0$ et admet un prolongement analytique à \mathbb{C}^n . De plus pour tout n-uple $(k_1, ..., k_n) \in \mathbb{N}^n$, $F(\phi, -k_1, ..., -k_n) = \left[\prod_{i=1}^n \left(-\frac{\partial}{\partial z_i} \right)^{k_i} \right] \phi(z) \right|_{z=0}$.

Démonstration. Ce lemme est une conséquence presque immédiate du précédent.

Corollaire: Prenons $s_1 = ... = s_n = s$ et $\phi(z) = G_a(z)$. On en déduit que $\zeta_a(s)(b^{1-s}-1)$ admet un prolongement analytique à tout le plan complexe et de plus si k est un entier positif, on a:

$$\frac{\left[U_p:V\right]}{N(\mathfrak{a})^k} \zeta_{\mathfrak{a}}(-k)(b^{-k-1}-1) = (-1)^{nk} \left[\prod_{i=1}^n \left(\frac{\partial}{\partial z_i}\right)^k\right] G_{\mathfrak{a}}(z) \Big|_{z=0}.$$

Lemme 3.3. Soit $\mathcal{L} = (L_1, ..., L_n)$ une famille de formes linéaires à coefficients réels positifs, et soit f(z) une fonction de la forme $\frac{\phi(z)}{L_1(z)...L_n(z)}$, où $\phi(z)$ est une fonction C^{∞} sur $(\mathbb{R}^+)^n$, à décroissance rapide à l'infini. Alors la fonction $H(\phi, \mathcal{L}, s) \stackrel{\text{def}}{=} \frac{1}{\Gamma(s)^n} \int\limits_X f(z) \prod_{i=1}^n (z_i^{s-1} dz_i)$ converge pour Re(s) > 1 et se prolonge méromorphiquement à tout le plan complexe. De plus, si on pose pour $1 \le i \le n$:

$$K_{k,i} = \left\{ (k_1, \dots, k_n) \middle| \sum_{j=1}^n k_j = n(k+1) \quad \text{et} \quad 0 \le k_j \le k \text{ si } j \ne i \right\},$$

et on appelle ${\bf k}$ les éléments de $K_{{\bf k},i},$ on peut définir les objets suivants :

$$\begin{split} \Delta_{\mathbf{k}} &= \left[\prod_{j=1}^{n} \left(\frac{\partial}{\partial z_{j}} \right)^{k_{j}} \right]_{|z=0}, \\ L_{l,i}(u) &= \frac{1}{u_{i}} \left[L_{1}(u_{1} u_{i}, \ldots, u_{i}, \ldots, u_{n} u_{i}) \right] \ pour \ 1 \leq l \leq n, \\ et \ \alpha_{\mathbf{k},\mathscr{L}} &= \frac{k!}{k_{i}!} \prod_{j\neq i} C_{k}^{k_{j}} \left(\frac{\partial}{\partial u_{j}} \right)^{k-k_{j}} \left[\prod_{l=1}^{n} \frac{1}{L_{l,i}(u)} \right]_{u=0}, \end{split}$$

et on obtient

$$H(\phi, \mathcal{L}, -k) = T_{k, \mathcal{L}}(\phi)$$

où $T_{k,\mathscr{L}}$ est la distribution $\frac{(-1)^{nk}}{n} \sum_{i=1}^{n} \sum_{\mathbf{k} \in K_{k,i}} \alpha_{\mathbf{k},\mathscr{L}} \Delta_{\mathbf{k}}$.

Démonstration. Soit $Y = \left\{ z \in (\mathbb{R}^+)^n \middle| \sum_{i=1}^n z_i = 1 \right\}$. Soit $(\psi_i)_{1 \le i \le n}$ une famille de fonc-

tions C^{∞} sur Y vérifiant:

(i)
$$\sum_{i=1}^{n} \psi_i(z) = 1 \ \forall z \in Y.$$

(ii) $\psi_i(z) = 0$ s'il existe $j \neq i$ tel que $z_j \ge 2z_i$.

Prolongeons ψ_i à $(\mathbb{R}^+)^n - \{0\}$ en posant $\psi_i(\lambda z) = \psi_i(z) \ \forall \lambda \in \mathbb{R}^{+*}$. On peut remarquer que les conditions (i) et (ii) impliquent en particulier que $\psi_i(z) = 1$ si $j + i \Rightarrow z_j \le z_i/2$. De plus ψ_i est C^{∞} sur $(\mathbb{R}^+)^n - \{0\}$. On peut alors écrire pour $\operatorname{Re}(s) > 1$:

$$H(\phi, \mathcal{L}, s) = \sum_{i=1}^{n} \frac{1}{\Gamma(s)^{n}} \int_{X} \frac{\phi(z) \psi_{i}(z)}{\prod_{l} L_{l}(z)} \prod_{i=1}^{n} (z_{i}^{s-1} dz_{i}).$$

Effectuons alors le changement de variable $z_i=u_i, z_j=u_iu_j$ pour $j\neq i$ dans la *i*-ième intégrale. Posons

$$\phi_i(u) = \frac{\phi(u_i u_1, \ldots, u_i u_{i-1}, u_i, u_i u_{i+1}, \ldots, u_i u_n) \psi_i(u_1, \ldots, u_{i-1}, 1, u_{i+1}, \ldots, u_n)}{\prod_l L_{l,i}(u)}.$$

On obtient $H(\phi, \mathcal{L}, s) = \sum_{i=1}^{n} \frac{1}{\Gamma(s)^n} \int_{X} \phi_i(u) \prod_{j \neq i} (u_j^{s-1} du_j) u_i^{ns-n-1} du_i$. $\phi_i(u)$ est alors une fonction C^{∞} sur $(\mathbb{R}^+)^n$ et à décroissance rapide à l'infini. En effet $\psi_i(u) = 0$

une fonction C^{∞} sur $(\mathbb{R}^+)^n$ et à décroissance rapide à l'infini. En effet $\psi_i(u)=0$ s'il existe $j \neq i$ tel que $u_j \ge 2$, ce qui nous donne la décroissance rapide suivant u_j ; celle suivant u_i est assurée par la décroissance rapide de $\phi(u_1 \ u_i, \ldots, u_i, \ldots, u_n \ u_i)$. On a alors:

$$H(\phi, \mathcal{L}, s) = \sum_{i=1}^{n} \frac{\Gamma(ns-n)}{\Gamma(s)} F(\phi_i, s, \ldots, s, ns-n, s, \ldots, s).$$

On obtient donc un prolongement méromorphe à tout le plan complexe avec au plus des pôles simples aux pôles de $\frac{\Gamma(ns-n)}{\Gamma(s)}$. De plus, si k est un entier positif, on a

$$H(\phi, \mathcal{L}, -k) = \frac{(-1)^{nk}}{n} \frac{k!}{(nk+n)!} \sum_{i=1}^{n} \left[\left(\frac{\partial}{\partial u_i} \right)^{nk+n} \prod_{j \neq i} \left(\frac{\partial}{\partial u_j} \right)^k \right] \phi_i(u) \bigg|_{u=0}.$$

On obtient le résultat final après des calculs sans mystère en utilisant la formule de Leibnitz pour la dérivée d'un produit et en observant que $\psi_i(u_1, \ldots, u_{i-1}, 1, u_{i+1}, \ldots, u_n)$ étant égale à 1 dans un voisinage de 0, toutes ses dérivées sont nulles à l'origine. \square

Corollaire. Posons
$$\phi_{\alpha,\sigma}(z) = \left[\prod_{i=1}^{n} (\operatorname{Tr} f_{i,\sigma} z)\right] F_{\alpha,\sigma}(z)$$
. $\phi_{\alpha,\sigma}(s)$ est alors C^{∞} sur $(\mathbb{R}^{+})^{n}$

à décroissance rapide à l'infini. Ecrivant

$$\zeta_{\mathfrak{a}}(s) = \frac{1}{[U_p: V]} \frac{1}{N(\mathfrak{a})^s} \frac{1}{\Gamma(s)^n} \sum_{\sigma \in S_{n-1}} \int_X \frac{\phi_{\mathfrak{a}, \sigma}(z)}{\prod\limits_{i=1}^n \operatorname{Tr} f_{i, \sigma} z} \prod_{i=1}^n (z_i^{s-1} dz_i)$$

et appliquant le Lemme 3.3, on obtient le prolongement méromorphe de $\zeta_{\mathbf{a}}(s)$ et une formule explicite pour $\zeta_{\mathbf{a}}(-k)$ beaucoup plus compliquée que la précédente mais qui nous sera plus utile pour déterminer le résidu de la fonction zêta p-adique.

§ 4. Distributions p-adiques

Soit p un nombre premier. Fixons un plongement τ de \mathbb{Q} dans \mathbb{C}_p . Soient τ_1, \ldots, τ_n les n plongements de F dans \mathbb{Q} . On considère F comme étant plongé dans \mathbb{C}_p^n de la manière suivante:

$$\begin{array}{cccc} F \rightarrow & \overline{\mathbb{Q}}^n & \rightarrow & \mathbb{C}_p^n \\ \alpha \rightarrow (\tau_1(\alpha), \, \ldots, \, \tau_n(\alpha)) \rightarrow (\tau \circ \tau_1(\alpha), \, \ldots, \, \tau \circ \tau_n(\alpha)). \end{array}$$

Soit X l'adhérence p-adique de \mathcal{O}_F dans \mathbb{C}_p^n . On fixe une base g_1, \ldots, g_n de \mathcal{O}_F sur \mathbb{Z} : X est alors isomorphe à \mathbb{Z}_p^n . Si $x \in X$ on dispose de deux écritures différentes pour x: la première provient de l'inclusion de X dans \mathbb{C}_p^n , et on écrit $x = (x_1, \ldots, x_n)$. Pour l'autre, on écrit $x = y_1 g_1 + \ldots + y_n g_n$, où $y_i \in \mathbb{Z}_p$.

Pour tout $h \in \mathbb{N}$, soit LA_h l'espace des fonctions analytiques sur $a + p^h X$ pour tout $a \in X$, et LA l'espace des fonctions localement analytiques sur X. X étant compact, on a $LA = \bigcup_{h \in \mathbb{N}} LA_h$. Si f appartient à LA_h , f(x) s'écrit au voisinage de $a = (a_1, \ldots, a_n)$:

$$f(x) = \sum_{k_1, \dots, k_n} b_{k_1, \dots, k_n} \prod_{i=1}^n (x_i - a_i)^{k_i}.$$

On pose $||f||_h = \sup_{a,k_1,\ldots,k_n} |p^{h(k_1+\ldots+k_n)}b_{k_1,\ldots,k_n}|_p$ et on munit LA de la topologie

induite par cette famille de normes. Soit LA' le dual de LA. Si $T \in LA'$, on associe à T une série caractéristique $F_T(z) = T(e^{Tr zx})$, qu'on note en général

$$\int_X e^{\operatorname{Tr} zx} dT. \text{ On pose aussi } G_T(w) = \int_X \prod_{i=1}^n (1+w_i)^{y_i} dT. \text{ Cette construction des dis-}$$

tributions p-adiques sur X rappelle celle des mesures sur X: si on considère l'espace des fonctions continues à la place de LA, muni de la norme du sup, on obtient la construction classique des mesures.

Remarque.
$$F_T(z) = G_T(e^{\text{Tr} g_1 z} - 1, \dots, e^{\text{Tr} g_n z} - 1).$$

Théorème [Y. Amice]. Soit $B(0, 1^-)$ la boule ouverte de centre 0 et rayon 1 dans \mathbb{C}_p : $B(0, 1^-) = \{z \in \mathbb{C}_p | |z|_p < 1\}$. Soit $T \in LA'$. Alors $G_T(w)$ est une série entière en w_1, \ldots, w_n qui converge pour $w \in B(0, 1^-)^n$. Réciproquement, si G(w) est une série entière convergeante pour $w \in B(0, 1^-)^n$, alors il existe $T \in LA'$ telle que $G = G_T$.

Remarque. Si en fait G(w) est une série entière à coefficients bornés, T est une mesure sur X et réciproquement.

Lemme 4.1. Soit $k_1, ..., k_n$ des entiers positifs et $T \in LA'$. Alors on a

$$\int\limits_{X} \prod_{i=1}^{n} x_{i}^{k_{i}} dT = \prod_{i=1}^{n} \left(\frac{\partial}{\partial z_{i}} \right)^{k_{i}} F_{T}(z) \bigg|_{z=0}.$$

Démonstration. La démonstration est évidente: il suffit de développer $e^{\text{Tr}zx}$ en série entière.

série entière. Soit
$$F_{y,\sigma,J}(z) = e^{-\text{Tr}\,yz} \prod_{j \in J} \frac{1}{1 - e^{-p\,\text{Tr}\,f_{j,\sigma}\,z}}$$
 et $\phi_{y,\sigma,J}(z) = \left(\prod_{i=1}^n \text{Tr}\,f_{i,\sigma}\,z\right) F_{y,\sigma,J}(z)$, comme au § 2.

Lemme 4.2. Il existe $T_{v,\sigma,J} \in LA'$ telle que $F_{T_{v,\sigma,J}}(z) = \phi_{v,\sigma,J}(z)$.

 $\begin{array}{lll} \textit{D\'{e}monstration.} & \text{Soit} & w_i = e^{\text{Tr}\,g_i,z} - 1 & \text{et} & G_{y,\,\sigma,\,J}(w) = \phi_{y,\,\sigma,\,J}(z). & \text{On} & \text{pose} \\ f_{i,\,\sigma} = \sum_{l=1}^n c_{i,\,l,\,\sigma}\,g_l, & \text{où } c_{i,l,\,\sigma} \in \mathbb{Z} \text{ car les } g_i \text{ forment une base de } \mathcal{O}_F \text{ sur } \mathbb{Z}. \end{array}$

On obtient alors:
$$e^{\operatorname{Tr} f_{i,\sigma} z} = \prod_{i=1}^{n} (1 + w_i)^{c_{i,l,\sigma}}$$
 (1)

et Tr
$$f_{i,\sigma} z = \sum_{l=1}^{n} c_{i,l,\sigma} \text{Log}(1+w_l)$$
. Ceci nous donne: (2)

$$\frac{\operatorname{Tr} f_{j,\sigma} z}{1 - e^{-p \operatorname{Tr} f_{j,\sigma} z}} = \frac{1}{p} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left[\prod_{l=1}^{n} (1 + w_l)^{-pc_{j,l,\sigma}} - 1 \right]^{k-1}.$$
 (3)

Cette expression converge pour $w \in B(0, 1^-)^n$. De plus, pour tout

$$x \in F \cap X$$
, $e^{\operatorname{Tr} xz} = \prod_{i=1}^{n} (1 + w_i)^{y_i}$ avec $y_i \in \mathbb{Z}_p$. (4)

Mais comme $\phi_{y,\sigma,J} = e^{-\operatorname{Tr} yz} \prod_{j \neq J} (\operatorname{Tr} f_{j,\sigma} z) \prod_{j \in J} \left(\frac{\operatorname{Tr} f_{j,\sigma} z}{1 - e^{-p\operatorname{Tr} f_{j,\sigma} z}} \right)$, cette expression

converge pour $w \in B(0, 1^-)^n$ car $e^{-\operatorname{Tr} yz}$ le fait par (4), $\prod_{j \notin J} \operatorname{Tr} f_{j,\sigma} z$ le fait par (2), et le reste par (3).

Corollaire. Il existe $T_{\alpha,\sigma} \in LA'$ telle que $F_{T_{\alpha,\sigma}}(z) = \phi_{\alpha,\sigma}(z)$.

Lemme 4.2 bis. Il existe une mesure $\lambda_{y,\sigma,J,\mu}$ sur X telle que

$$F_{\lambda_{\nu,\sigma,J,\mu}}(z) = G_{\nu,\sigma,J,\mu}(z),$$

où $G_{y,\sigma,J,\mu}$ est la fonction défine au Lemme 2.3.

Démonstration. La seule chose à changer par rapport à la démonstration du Lemme 4.2 est qu'il faut prouver que $\frac{1}{1-\xi_{\sigma,j,\mu}\prod_{n}(1+w_i)^{c_{i,I},\sigma}} \text{ est à coefficients}$

bornés. Pour cela il suffit de le prouver pour $\frac{1}{1-\xi(1+w)}$ où ξ est une racine de l'unité d'ordre divisant b (donc premier à p). Mais ce dernier résultat est évident.

Corollaire. Il existe une mesure λ_{α} sur X telle que $F_{\lambda_{\alpha}}(z) = G_{\alpha}(z)$.

Définition. Soit U un ouvert-compact de X, et T une distribution sur X. On dit que T est à support dans U si quelque soit $\phi \in LA$ telle que $\phi \mid U = 0$, alors $T(\phi) = 0$.

Lemma 4.3. La distribution $T_{v,\sigma,J}$ est à support dans 1+pX.

Démonstration. Soit μ_r la distribution $\frac{1}{p^{\#J(r+1)}} \sum_{\substack{m_j=0 \ j \in J}}^{p^r-1} \delta_{-y-p \sum\limits_{j \in J} m_j f_{j,\sigma}}$, où δ_x est la

masse de Dirac au point x, et #J est le cardinal de J. Soit $T_r = \mu_r * \Big|_{j \notin J} \frac{1}{p^{r+1}} (\delta_0 - \delta_{-p^{r+1}f_{J,\sigma}})\Big|$, où * représente la convolution des distributions (en particulier, pour les masses de Dirac, $\delta_x * \delta_y = \delta_{x+y}$). T_r est de manière évidente à support dans 1 + pX car $y \equiv 1[p]$. Or,

$$G_{T_r}\!(z) \!=\! \! \left[\prod_{j \in J} \frac{1 - e^{-p^{r+1} \operatorname{Tr} f_{J,\sigma} z}}{p^{r+1} (1 - e^{-p \operatorname{Tr} f_{J,\sigma} z})} \right] \! \left[\prod_{j \in J} \frac{1 - e^{-p^{r+1} \operatorname{Tr} f_{J,\sigma} z}}{p^{r+1}} \right] e^{-\operatorname{Tr} y z}$$

et donc $\lim_{r \to \infty} G_{T_r}(z) = G_{T_{y,\sigma,J}}(z)$. $T_{y,\sigma,J}$ est donc limite de distributions à support

dans 1 + pX, donc est à support dans 1 + pX. \square

Corollaire. $T_{a,\sigma}$ est à support dans 1 + pX.

Lemme 4.3 bis. λ_a est à support dans 1 + pX.

La démonstration de ce lemme est à peu près identique à celle du Lemme 4.3.

Lemme 4.4. Soit k un entier > 0 et $\psi(x)$ la fonction caractéristique de 1+pX. On obtient:

$$\zeta_{a}(-k)(b^{-k-1}-1) = \frac{(-1)^{nk}}{[U_{p}:V]} N(a)^{k} \int_{X} \psi(x) \prod_{i=1}^{n} x_{i}^{k} d\lambda_{a}.$$

Démonstration. Utilisant le Lemme 4.1 et la formule obtenue au corollaire du Lemme 3.2, on obtient;

$$\zeta_{\mathfrak{a}}(-k)(b^{-k-1}-1) = \frac{(-1)^{nk}}{[U_p:V]} N(\mathfrak{a})^k \int_X \prod_{i=1}^n x_i^k d\lambda_{\mathfrak{a}}.$$

Le lemme s'en déduit en utilisant le Lemme 4.3 bis.

L'application $k \to \psi(x) \prod_{i=1}^n x_i^k$ peut se prolonger en une application continue

de \mathbb{Z}_p à valeurs dans les applications continues sur X. Si l'on fixe $k_0 \in (\mathbb{Z}/q\mathbb{Z})^*$, l'application $k \to N(\mathfrak{a})^k$ pour $k \equiv k_0 \lfloor \phi(q) \rfloor$ peut se prolonger par continuité à \mathbb{Z}_p ainsi que $k \to b^{-k-1}$, et si $k \equiv k_0 \lfloor \phi(q) \rfloor$, $(-1)^{nk} = (-1)^{nk_0}$. On obtient alors comme corollaire:

Théorème [Cassou-Noguès]. Soit $k_0 \in (\mathbb{Z}/q\mathbb{Z})^*$. Il existe un application continue $\zeta_{\mathfrak{a},\,p,\,k_0}$ de $\mathbb{Z}_p - \{1\}$ dans \mathbb{C}_p telle que pour tout $k \in \mathbb{N}$, $k \equiv k_0 [\phi(q)]$, on ait $\zeta_{\mathfrak{a},\,p,\,k_0}(-k) = \zeta_{\mathfrak{a}}(-k)$. De plus $\lim_{s \to 1} (s-1) \zeta_{\mathfrak{a},\,p,\,k_0}(s)$ existe et vaut

$$\frac{1}{\log_p b} \frac{(-1)^{nk_0}}{[U_p:V]} \omega(N(\mathfrak{a}))^{k_0} \langle N(\mathfrak{a}) \rangle^{-1} \int\limits_X \prod_{i=1}^n x_i^{-1} d\lambda_{\mathfrak{a}}, \ où \ \omega(x) \ est \ le \ caractère \ de$$
 Teichmüller, $\langle x \rangle = x/\omega(x)$ et \log_n est le logarithme p-adique.

La suite de l'article va être consacrée à trouver une expression plus explicite de cette limite. On se bornera à traiter le cas $k_0 = -1$ et on notera $\zeta_{a,p}$ au lieu de $\zeta_{a,p,-1}$. On posera aussi $\zeta_{F,p} = \sum_{a \in G} \zeta_{a,p}$. Alors $\zeta_{F,p}$ est une fonction conti-

nue de $\mathbb{Z}_p - \{1\}$ dans \mathbb{C}_p vérifiant $\zeta_{F,p}(-k) = \zeta_F(-k) E_p(-k)$ si k est un entier positif congru à -1 modulo $\phi(q)$.

On introduit ici quelques lemmes techniques qui serviront au calcul du résidu.

Soit $P_{k,\mathcal{L},i}(x_1,\ldots,x_n) = \sum_{\mathbf{k}\in K_{k,i}} \alpha_{\mathbf{k},\mathcal{L}} \prod_{j=1}^n x_j^{k_j}$, où $\alpha_{\mathbf{k},\mathcal{L}}$ est la quantité définie au Lemme 3.3. On pose

$$L_l(z) = \sum_{j=1}^{n} \alpha_{l,j} z_j$$
 et $L_{l,i}(z) = \alpha_{l,i} (1 + \sum_{j \neq i} \beta_{l,i,j} z_j)$

avec $\beta_{l,i,j} = \frac{\alpha_{l,j}}{\alpha_{l,i}}$.

Lemme 4.5. Soit $A_i = \prod_{l=1}^{n} \alpha_{l,i}$, et soit $\mathbf{t} = (t_{i,j})$ une famille d'entiers positifs ou nuls pour l = 1, ..., n et $j = 1, ..., \hat{\imath}, ..., n$. Posons

$$\nabla^{\mathbf{t}} = \prod_{l, j \neq i} \left(\frac{\partial}{\partial \beta_{l, i, j}} \right)^{t_{l, j}} \Big|_{\beta_{l, i, j} = 1}.$$

Posons aussi

$$a_j(\mathbf{t}) = \sum_{l=1}^n t_{l,j}, \quad s(\mathbf{t}) = \sum_{l=1}^n \sum_{j\neq i} t_{l,j} = \sum_{j\neq i} a_j(\mathbf{t})$$

et

$$\lambda(\mathbf{t}) = \frac{\prod_{i=1}^{n} (\sum_{j \neq i} t_{i,j})! \prod_{j \neq i} a_j(\mathbf{t})!}{(n-1+s(\mathbf{t}))!}$$

Alors on a:

$$\nabla^{\mathbf{t}}[A_{i}P_{k,\mathcal{L},i}(x)] = \lambda(\mathbf{t}) \int_{0}^{x_{i}} u^{n-1+s(\mathbf{t})} (x_{i}-u)^{k} \prod_{j\neq i} (C_{k}^{a_{j}(\mathbf{t})}(x_{j}-u)^{k-a_{j}(\mathbf{t})} (-1)^{a_{j}(\mathbf{t})}) du.$$

Démonstration. Posons $\Box^{\mathbf{k}} = \prod_{j \neq i} \left(\frac{\partial}{\partial u_j} \right)^{k-k_j} \Big|_{u=0}$, et $\mu(\mathbf{k}) = \frac{k!}{k_i!} \prod_{j \neq i} C_k^{k_j}$. Alors $\alpha_{\mathbf{k}, \mathcal{L}} = \mu(\mathbf{k}) \Box^{\mathbf{k}} \left(\prod_{l=1}^{n} \frac{1}{L_{l,i}(u)} \right)$. On obtient:

$$\begin{split} V^{\mathbf{t}} \big[A_i \, \alpha_{\mathbf{k}, \, \mathscr{L}} \big] &= \mu(\mathbf{k}) \, V^{\mathbf{t}} \, \square^{\mathbf{k}} \bigg[\prod_{l=1}^n \, \frac{\alpha_{l, \, i}}{L_{l, \, i}(u)} \bigg] = \mu(\mathbf{k}) \, \square^{\mathbf{k}} \, V^{\mathbf{t}} \bigg[\prod_{l=1}^n \, \frac{\alpha_{l, \, i}}{L_{l, \, i}(u)} \bigg] \\ &= \mu(\mathbf{k}) \, \square^{\mathbf{k}} \big[\prod_{j \neq i} u_j^{a_j(\mathbf{t})} \bigg[\frac{(-1)^{s(\mathbf{t})} \prod_{l=1}^n \big(\sum_{j \neq i} t_{l, \, j}\big)!}{(1 + \sum_{j \neq i} u_j)^{n+s(\mathbf{t})}} \bigg]. \end{split}$$

Or, pour n'importe quelle fonction $\phi(u)$, C^{∞} dans un voisinage de 0, $\Box^{\mathbf{k}} \phi(u)$ est égal à $\prod_{i=1}^{k} (k-k_j)! \times$ terme en $\prod u_j^{k-k_j}$ dans le developpement de $\phi(u)$, et donc

$$\square^{\mathbf{k}} \prod_{j\neq i} u_j^{a_j} \phi(u) = \prod_{j\neq i} \frac{(k-k_j)!}{(k-k_j-a_j)!} \left(\frac{\partial}{\partial u_j} \right)^{k-k_j-a_j} \phi(u) \Big|_{0}.$$

Done

$$V^{\mathbf{t}}[A_i \alpha_{\mathbf{k},\mathscr{S}}] = \mu(\mathbf{k}) \lambda(\mathbf{t}) \left[\prod_{i \neq j} C_{k-k_j}^{a_j(\mathbf{t})} (-1)^{k-k_j} \right] \left[k_i - k - 1 \right]!.$$

On obtient alors

$$\nabla^{\mathbf{t}}[A_{i}P_{k,\mathscr{L},i}(x)] = \lambda(\mathbf{t})\sum_{\mathbf{k}}\mu(\mathbf{k})[\prod_{j\neq i}C_{k-k_{j}}^{a_{j}(\mathbf{t})}(-1)^{k-k_{j}}x_{j}^{k_{j}}][k_{i}-k-1]!x_{i}^{k_{i}}.$$

Dérivant alors k+1 fois par rapport à x_i , on obtient:

$$\begin{split} \left(\frac{\partial}{\partial x_{i}}\right)^{k+1} V^{\mathbf{t}} [A_{i} P_{k, \mathcal{L}, i}(x)] &= \lambda(\mathbf{t}) \, k! \sum_{\mathbf{k}} \prod_{j \neq i} [C_{k'}^{k_{j}} C_{k-k_{j}}^{a_{j}(\mathbf{t})} x_{j}^{k_{j}} (-x_{i})^{k-k_{j}}] \, x_{i}^{n-1} \\ &= \lambda(\mathbf{t}) \, k! \prod_{j \neq i} [C_{k}^{a_{j}(\mathbf{t})} (-x_{i})^{a_{j}(\mathbf{t})} (x_{j} - x_{i})^{k-a_{j}(\mathbf{t})}] \, x_{i}^{n-1} \stackrel{\text{def}}{=} \lambda(\mathbf{t}) \, k! \, Q_{k, i, \mathbf{t}}(x). \end{split}$$

L'avant-dernière égalité provient de la formule:

$$\sum_{i=0}^{k} C_{k}^{k-i} C_{k-1}^{a} x^{i} y^{k-i} = \frac{y^{a}}{a!} \left(\frac{\partial}{\partial y} \right)^{a} (x+y)^{k} = C_{k}^{a} y^{a} (x+y)^{k-a}.$$

Pour terminer la démonstration constatons que la valuation de $V^1[A_i P_{k, \mathcal{L}, i}(x)]$ en x_i est supérieure à n(k+1)-(n-1) $k=n+k \ge k+1$ et donc:

$$V^{\mathbf{t}}[A_{i}R_{k,\mathscr{L},i}(x)] = \int_{0}^{x_{i}} \int_{0}^{u_{0}} \dots \int_{0}^{u_{k-1}} \lambda(\mathbf{t}) k! Q_{k,i,\mathbf{t}}(x_{1}, \dots, x_{i-1}, u_{k}, x_{i+1}, \dots, x_{n}) du_{k} \dots du_{1} du_{0}$$

$$= \int_{0}^{x_{i}} \int_{u_{k-1}}^{x_{i}} \dots \int_{u_{1}}^{x_{i}} \lambda(\mathbf{t}) k! Q_{k,i,\mathbf{t}}(x_{1}, \dots, u_{k}, \dots, x_{n}) du_{0} \dots du_{k-1} du_{k}$$

$$\cdot \int_{0}^{x_{i}} \lambda(\mathbf{t}) Q_{k,i,\mathbf{t}}(x_{1}, \dots, u_{k}, \dots, x_{n}) (x_{i} - u_{k})^{k} du_{k}. \quad \Box$$

On passe maintenant à l'étude p-adique de $P_{k,\mathscr{L},i}$. Notons par $\|\ldots\|$ la norme sur LA_1 .

Lemme 4.6. Posons $k(m) = -1 + (p-1) p^m$, pour m un entier suffisammant grand. Alors

$$\left\| \frac{(k(m)+1) \, V^{t} \, P_{k(m), \, \mathscr{L}, \, i}(x)}{\prod_{l \in I_{i}, \, j} (t_{i, \, j})!} \right\| \leq n \, p^{\frac{n-1+s(t)}{p-1}} \left| \frac{1}{A_{i}} \right|_{p}.$$

Démonstration, Soit

$$P(u, x) = u^{n-1+s(t)}(x_i - u)^{k(m)} \prod_{i \neq j} C_{k(m)}^{a_i(t)}(x_j - u)^{k(m)-a_j(t)}.$$

Alors P(u, x) est un polynôme à coefficients entiers en $u, x_1, ..., x_n$ de degré n(k(m)+1)-1 en u. Donc, après intégration, on va obtenir un polynôme de la forme

$$\sum_{\mathbf{k}, k_1 \leq n(k(m)+1)} \left(\frac{1}{k_i}\right) \beta_{\mathbf{k}} \prod_{j=1}^n x_j^{k_j}$$

où β_k est entier, et donc $\left| \frac{(k(m)+1)\beta_k}{k_i} \right|_p \le np$. Ceci nous donne

$$|A_i|_{p^{\times}} \left\| \frac{(k(m)+1) \, \mathcal{V}^t \, P_{k(m), \, \mathscr{L}, \, i}(x)}{\prod_{l, \, j} (t_{l, \, j})!} \right\| \leq \left| \frac{\lambda(t)}{\prod_{l, \, j} (t_{l, \, j})!} \right|_{p^{\times} n \, p} \leq n \, p^{\frac{n-1+s(t)}{p-1}+1},$$

$$\operatorname{car} \frac{\prod\limits_{l=1}^{n} \left(\sum\limits_{j\neq i} t_{l,j}\right)! \prod\limits_{j\neq i} a_{j}(\mathbf{t})!}{\prod\limits_{l,j} \left(t_{l,j}\right)!} \text{ est entier et } \left| \frac{1}{(n-1+s(\mathbf{t}))!} \right|_{p} \leq p^{\frac{n-1+s(\mathbf{t})}{p-1}}. \quad \Box$$

Lemme 4.7. Soit $\psi(x)$ la fonction caractéristique de 1 + pX. Alors

$$\begin{aligned} & \left\| \psi(x) \left[A_i(k(m)+1) \, \nabla^{\mathbf{t}} \, P_{k(m), \, \mathscr{L}, \, i}(x) - (-1)^{s(\mathbf{t})+n-1} \, \frac{\lambda(\mathbf{t})}{n} \, \prod_{j \neq i} (-1)^{a_j(\mathbf{t})} \, C_{k(m)}^{a_j(\mathbf{t})} \right] \right\| \\ & \leq n(p-1) \, (n+s(\mathbf{t})) \times |(k(m)+1) \, \lambda(\mathbf{t})|_p \end{aligned}$$

Démonstration.

$$A_i \nabla^t P_{k(m), \mathcal{L}, i}(x) = \lambda(t) \int_0^{x_i} u^{n-1+s(t)} (x_i - u)^{k(m)} \prod_{j \neq i} \left[C_{k(m)}^{a_j(t)} (x_j - u)^{k(m)-a_j(t)} (-1)^{a_j(t)} \right] du.$$

Ecrivant alors u=(u-1)+1 et $x_j-u=(x_j-1)+(1-u)$ et développant, on obtient, écrivant k pour k(m), s pour s(t) et a_i pour $a_i(t)$:

$$A_{i} \nabla^{t} P_{k, \mathcal{L}, i}(x) = \lambda(t) \sum_{r=0}^{n-1+s} C_{n-1+s}^{r} (-1)^{n-1+s-r} \sum_{b=0}^{nk-s} Q_{b}(x-1) \int_{0}^{x_{i}} (1-u)^{n(k+1)-1-r-b} du,$$

où $Q_b(x-1)$ est un polynôme à coefficients entiers, homogène de degré b en les (x_i-1) . Ceci nous donne:

$$\begin{split} A_i \nabla^{\mathbf{t}} \, P_{k,\,\mathcal{L},\,i} &= \lambda(\mathbf{t}) \sum_{r=0}^{n-1+s} C_{n-1+s}^r (-1)^{n-1+s-r} \sum_{b=0}^{nk-s} Q_b(x-1) \frac{1-(1-x_i)^{n(k+1)-r-b}}{n(k+1)-r-b} \\ &= \lambda(\mathbf{t}) \bigg[(-1)^{n-1+s} \prod_{j \neq i} (C_k^{a_j} (-1)^{a_j}) \frac{1-(1-x_i)^{n(k+1)}}{n(k+1)} + \text{termes avec } r+b \geq 1 \bigg]. \end{split}$$

Pour obtenir le résultat, notons que $\psi(x) \neq 0 \Rightarrow |x_j - 1| \leq p^{-1}$ pour tout j et donc que $\|\psi(x) Q_b(x-1)\| \leq p^{-b}$. Etant donné la grande divisibilité de k+1 par p, on obtient $\left|\frac{1}{n(k+1)-(r+b)}\right| \leq n(p-1)(r+b) \leq n(p-1)(n-1+s-b)$ et le résultat

découle alors de la majoration évidente $p^{-b}(n-1+s+b) \le n+s$.

Lemme 4.8. Supposons que $\beta_{l,i,j} \equiv 1[q]$ pour tout l, j, et posons

$$F_{i}(\mathcal{L}) = \sum_{\mathbf{t}} \lambda(\mathbf{t}) (-1)^{s(\mathbf{t})} \prod_{l,j} \frac{(\beta_{l,i,j} - 1)^{t_{l,j}}}{(t_{l,j})!}.$$

Alors

$$\lim_{m \to +\infty} (k(m)+1) \psi A_i P_{k(m),\mathcal{L},i} = \frac{(-1)^{n-1}}{n} F_i(\mathcal{L}) \psi,$$

la limite étant prise pour la topologie de LA_1 .

Le lemme est immédiat à partir de la formule

$$A_{i} P_{k(m), \mathscr{L}, i}(x) = \sum_{\mathbf{t}} \prod_{j, l} \frac{(\beta_{l, i, j} - 1)^{t_{l, j}}}{t_{l, j}!} \nabla^{\mathbf{t}} (A_{i} P_{k(m), \mathscr{L}, i}(x))$$

et des majorations obtenues aux Lemmes 4.6 et 4.7 (il faut aussi utiliser le fait que quand m tend vers $+\infty$, $(-1)^a C_{k(m)}^a$ tend vers 1 p-adiquement).

Corollaire. Soit T une distribution à support dans 1 + pX, et soit $P_{k,\mathscr{L}} = \sum_{i=1}^{n} P_{k,\mathscr{L},i}$.

$$\lim_{m \to \infty} (k(m) + 1) \int_{X} P_{k(m), \mathcal{L}}(x) dT = \frac{(-1)^{n-1}}{n^2} a_0(T) \sum_{i=1}^{n} \frac{F_i(\mathcal{L})}{A_i}$$

où $a_0(T) = \int\limits_X dT$ est le terme constant de la série caractéristique associée à T.

§5. Calcul du résidu

Soit $\varepsilon_1, \ldots, \varepsilon_{n-1}$ une famille de vecteurs de U_p remplissant les conditions du Lemme 2.1. Notes V_r le sous-groupe de U_p engendré par $\{\varepsilon_1^{pr}, \ldots, \varepsilon_{n-1}^{pr}\}$. On pose $f_{i,\sigma,r} = f_{i,\sigma}^{pr}$, où $f_{i,\sigma}$ est le vecteur défini avant le Lemme 2.1. Soit $\mathscr{L}_{\sigma,r}$ la famille de formes linéaires (Tr $f_{i,\sigma,r}z$) pour $1 \le i \le n$. On rajoute aussi un indice r à tous les objets définis après les Lemmes 2.2 et 4.1 et dans le corollaire du Lemme 4.2, pour indiquer que le rôle sous-entendu de V est ici joué explicitement par V_r .

Lemme 5.1.
$$\zeta_{\mathfrak{a}}(-k) = \frac{N(\mathfrak{a})^k}{[U_p : V_r]} \sum_{\sigma} \int_{X} P_{k, \mathscr{L}_{\sigma,r}}(x) dT_{\mathfrak{a}, \sigma, r}.$$

Démonstration. La démonstration est une conséquence directe de la formule pour $\zeta_0(-k)$ donnée dans le corollaire du Lemme 3.3, et du Lemme 4.1.

Lemme 5.2. Soit $\Delta_{\sigma,r} = \det(f_{1,\sigma,r}, \ldots, f_{n,\sigma,r})$. Alors

$$a_0(T_{\mathfrak{a},\,\sigma,\,r}) = \frac{\varepsilon(\sigma)\,\Delta_{\sigma,\,r}}{p^n\,N(\mathfrak{a}^{-1})\,\sqrt{D}}.$$

Le signe de \sqrt{D} est determiné par le fait que $a_0(T_{a,\sigma,r})$ est un rationnel positif.

Démonstration. On a

$$a_0(T_{\alpha,\sigma,r}) = \lim_{z \to 0} \phi_{\alpha,\sigma,r}(z).$$

Or.

$$\phi_{\alpha,\sigma,r} = \sum_{J} \sum_{y \in D_{\sigma,J,\alpha,r}} \phi_{y,\sigma,J,r}(z)$$

οù

$$\phi_{y,\sigma,J,r}(z) = e^{-\text{Tr} yz} \prod_{j \in J} \frac{1}{1 - e^{-p \, \text{Tr} f_{J,\sigma,r} z}} \prod_{i=1}^{n} \text{Tr} f_{i,\sigma,r} z.$$

Il est clair que si $J \neq [1, ..., n]$, $\lim_{z \to 0} \phi_{y, \sigma, J, r}(z) = 0$ et si J = [1, ..., n],

$$\lim_{z\to 0} \phi_{y,\sigma,J,r}(z) = \frac{1}{p^n}. \quad \text{Donc} \quad a_0(T_{\alpha,\sigma,r}) = \frac{1}{p^n} \# D_{\sigma,[1,\ldots,n],\alpha,r}. \quad \text{Par} \quad \text{définition}$$

 $D_{\sigma,[1,\ldots,n],\alpha,r} = D_{\sigma,[1,\ldots,n],r} \cap 1 + p\alpha^{-1}$ et comme $D_{\sigma,[1,\ldots,n],r}$ est un domaine fondamental de \mathbb{R}^n pour l'action du réseau Λ engendré par $pf_{1,\sigma,r},\ldots,pf_{n,\sigma,r}$, et $p\alpha^{-1}$ est un réseau de \mathbb{R}^n contenant Λ , on a

$$p^{n} a_{0}(T_{\alpha,\sigma,r}) = [p\alpha^{-1} : \Lambda] = \frac{\operatorname{vol} \Lambda}{\operatorname{vol} p\alpha^{-1}} = \frac{|\det (pf_{1,\sigma,r}, \dots, pf_{n,\sigma,r})|}{N(p\alpha^{-1}) \operatorname{vol} \mathcal{O}_{F}}$$
$$= \frac{p^{n} \varepsilon(\sigma) \Delta_{\sigma,r}}{p^{n} N(\alpha^{-1}) \sqrt{D}}. \quad \Box$$

Corollaire. Utilisant le corollaire du lemme 4.8, on obtient:

$$\begin{split} &\lim_{m \to \infty} \left(k(m) + 1 \right) \zeta_{\alpha}(-k(m)) \\ &= (-1)^{n} N(\alpha)^{-1} \frac{1}{\left[U_{p} \colon V_{r} \right]} \sum_{\sigma \in S_{n-1}} a_{0}(T_{\alpha, \sigma, r}) \left[\prod_{i=1}^{n} F_{i}(\mathcal{L}_{\sigma, r}) \frac{(-1)^{n-1}}{n^{2}} \right] \\ &= (-1)^{n} N(\alpha)^{-1} \sum_{\sigma \in S_{n-1}} \frac{\varepsilon(\sigma) \Delta_{\sigma, r}}{p^{n} N(\alpha)^{-1} \sqrt{D} \left[U_{p} \colon V_{r} \right]} \left[\prod_{i=1}^{n} F_{i}(\mathcal{L}_{\sigma, r}) \frac{(-1)^{n-1}}{n^{2}} \right]. \end{split}$$

Remarque. Le membre de gauche est indépendant de r et est égal à l'opposé du résidu en s=1 de la fonction zêta p-adique partielle $\zeta_{a,p}$. Pour obtenir une expression satisfaisante du résidu, on va faire tendre r vers $+\infty$.

Soit V un sous-groupe multiplicatif libre de rang n-1 de $X \cap \left\{z \in (\mathbb{C}_p^*)^n \middle| \prod_{i=1}^n z_i = 1\right\}$. On définit le régulateur p-adique de V de la manière suivante. On choisit $\gamma_1, \ldots, \gamma_{n-1}$ une base de V, et on note $\gamma_i = (\gamma_{i,1}, \ldots, \gamma_{i,n})$. $R_p(V)$ sera alors le déterminant $n-1 \times n-1$ de la matrice $[Log_p \gamma_{i,j+1}], 1 \le i \le n-1, 1 \le j \le n-1$. $R_p(V)$ n'est défini qu'au signe près. Si V' est un sous-groupe d'indice fini de V, on a la relation: $R_n(V') = \pm [V: V'] R_n(V)$.

Lemme 5.3.
$$\Delta_{\sigma,r} \equiv n \varepsilon(\sigma) p^{(n-1)r} R_p(V_0) [p^{nr-1}].$$

Remarque. Ceci fixe un choix de signe pour $R_p(V_0)$, de la même manière que le Lemme 4.8 en fixe un pour \sqrt{D} . Il est facile de voir que ces signes dépendent de l'ordre de (τ_1, \ldots, τ_n) mais que leur rapport n'en dépend pas!

Démonstration. On a $f_{i,\sigma,r} \equiv 1 + p^r \sum_{j < i} \text{Log}_p \, \varepsilon_{\sigma(j)} [p^{2r-1}]$. Ecrivons alors le détermi-

nant $\Delta_{\sigma,r}$ et effectuons les opérations suivantes: on commence par retirer la première colonne aux autres et ensuite on ajoute toutes les lignes à la première. Le déterminant devient:

$$\begin{bmatrix} n & 0 & \dots & 0 \\ 1 & & & \\ 1 & & p^r B \\ 1 & & & \end{bmatrix}$$
 où tous les termes sont écrits modulo p^{2r-1} et $B = B_1 \times B_2 \times B_3$:

$$B_1 = \begin{bmatrix} \operatorname{Log}_p \tau_2(\varepsilon_1) \dots \operatorname{Log}_p \tau_2(\varepsilon_{n-1}) \\ \operatorname{Log}_p \tau_n(\varepsilon_1) \dots \operatorname{Log}_p \tau_n(\varepsilon_{n-1}) \end{bmatrix},$$

 B_2 est la matrice de permutation de σ échangeant les colonnes, et

$$B_{3} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 0 & 1 & \dots & 1 \\ & & & & & & \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$

On a donc:

$$\Delta_{\sigma,r} \equiv n \, p^{(n-1)r} \det B_1 \det B_2 \det B_3 \left[p^{nr-1} \right]$$

$$\equiv n \, p^{(n-1)r} \, R_n(V_0) \, \varepsilon(\sigma) \left[p^{nr-1} \right]. \quad \Box$$

Lemme 5.4.
$$\lim_{r\to m} \frac{\varepsilon(\sigma) \Delta_{\sigma,r}}{[U_p: V_r]} = nR_p(U_p).$$

Démonstration. $[U_p: V_r] = p^{(n-1)r}[U_p: V_0]$ et $R_p(V_0) = [U_p: V_0] R_p(U_p)$.

Corollaire.
$$\lim_{k \to -1} (k+1) \zeta_{a, p}(-k) = \frac{-R_p(U_p)}{p^n \sqrt{D}}$$
.

Démonstration. $\lim_{r\to\infty} F_i(\mathcal{L}_{\sigma,r}) = \lambda(\mathbf{0}) = \frac{1}{(n-1)!}$, comme on peut s'en rendre compte

a partir de la définition de $F_i(\mathcal{L})$ et le corollaire découle immédiatement du corollaire du Lemme 5.2 et du Lemme 5.4.

Corollaire. Soit h_p^+ le cardinal du groupe de classes de rayons modulo p. Alors $\lim_{s\to 1} (s-1)\zeta_{F,p}(s) = \frac{h_p^+ R_p(U_p)}{p^n \sqrt{D}}$.

Lemme 5.5. Soit h le nombre de classes de F. Soit E le groupe des unités globale de E, on a la décomposition de E suivante: $E = W \times U$ où W est le groupe des racines de l'unité de \mathcal{O}_F et U un groupe libre de rang n-1 contenant U_p . On a alors les relations:

$$R_p = R_p(U) = [U: U_p]^{-1} \times R_p(U_p) \quad \text{et} \quad h_p^+ = 2^n \frac{h \times \#(\mathcal{O}_F/p\mathcal{O}_F)^*}{[U: U_p] \ w} = 2^n \frac{h p^n E_p(1)}{[U: U_p] \ w},$$
où w est le cardinal de W (ici w = 2).

Démonstration. La définition de G nous donne la suite exacte

$$0 \to \{1, -1\}^n \times (\mathcal{O}_E/p\mathcal{O}_E)^*/(E/U_p) \to G \to Cl(\mathcal{O}_E) \to 0.$$

et on en tire la deuxième égalité, la première égalité étant une conséquence immédiate de la définition du régulateur.

On obtient alors comme corollaire le

Théorème.
$$\lim_{s \to 1} (s-1) \zeta_{F, p}(s) = \frac{2^n h R_p E_p(1)}{w \sqrt{D}}$$
.

Bibliographie

- [A] Amice, Y.: Duals. Proceedings of the conference on p-adic analysis [1978-Nijmegen]; pp. 1–15. Nijmegen, Mathematische Institut Katholische Universität, 1978
- [A-F] Amice, Y., Fresnel, J.: Fonctions zêta p-adiques des corps de nombres algébriques abéliens reéls. Acta Arith. Warzawa 20, 353-384 (1972)
- [B] Barsky, D.: Fonctions zêta p-adiques d'une classe de rayon des corps de nombres totalement réels. Groupe d'études d'analyse ultramétrique, 1977–1978; errata 1978–1979
- [C-N] Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math. 51, 29-59 (1979)

- [C] Colmez, P.: Valeurs spéciales de fonctions L attachées à des caractères de Hecke de type A_0 d'une extension d'un corps quadratique imaginaire. (à paraître)
- [D-R] Déligne, P., Ribet, K.: Values of Abelian L-functions at negative integers over totally real fields. Invent. Math. 59, 227-286 (1980)
- [K] Katz, N.: Another look at p-adic L-functions for totally real fields. Math. Ann. 255, 33-43 (1981)
- [Ko] Koblitz, N.: P-adic Analysis: A Short Course on Recent Work. London Math. Lecture Notes, Series 46. Cambridge University Press: Cambridge London New York (1980)
- [Sc] Schwartz, L.: Théorie des distributions. Publications de l'Institut de Mathématiques de l'Université de Strasbourg IX. Hermann: Paris 1957
- [Se 1] Serre, J.-P.: Formes modulaires et fonctions zêta p-adiques. Dans: Modular functions of one variable III (1972). Antwerpen 191–268. (Lect. Notes Math., vol. 350). Springer: Berlin Heidelberg New York
- [Se 2] Serre, J.-P.: Sur le résidu de la fonction zêta p-adique d'un corps de nombres. C.R. Acad. Sci. Paris 287, 83-126 (1978), série A
- [Sh] Shintani, T.: On evaluation of zêta functions of totally real algebraic number fields at non positive integers. J. Fac. of Sci., University of Tokyo, Section 2, 23, 393–417 (1976)
- [Si] Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Göttingen Nach. 3, 15-56 (1970)

Oblatum 28-III-1987 & 3-IX-1987