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Abstract. We prove that the irreducible components of the space of framed
deformations of the trivial 2-dimensional mod 2 representation of the absolute
Galois group of Q2 are in natural bijection with those of the trivial character,
confirming a conjecture of Böckle. We deduce from this result that crystalline
points are Zariski dense in that space: this provides the missing ingredient for
the surjectivity of the p-adic local Langlands correspondence for GL2(Qp) in
the case p = 2 (the result was already known for p ≥ 3).

1. Introduction

Let p be a prime number and let L be a finite extension of Qp. The p-adic
local Langlands correspondence for GL2(Qp) is given by a functor for the category
of unitary admissible L-Banach representations of GL2(Qp) to that of continuous
L-representations of the absolute Galois group GQp of Qp. One natural question is
whether any 2-dimensional L-representation of GQp is in the image (surjectivity of
the correspondence). As was suggested by Kisin, one can try to answer this question
by using the fact that crystalline representations are in the image and that they
form a Zariski dense subset of the space of all representations. This program was
carried out, by two different methods, in [18] (with some exceptions for p = 2 and
p = 3) and [11] (with the same exceptions as in [18] for p = 2), and the upshot is
that surjectivity is known except for p = 2 and for representations of GQ2 whose
reduction mod 2 are trivial, up to semi-simplification and torsion by a character.
The aim of this paper is to remove this exception and hence prove the surjectivity of
the p-adic local Langlands correspondence for GL2(Qp) in full generality. Together
with [13] this shows that the p-adic local Langlands correspondence has all the
properties that one can wish for.

The methods developped in [11] reduce the problem to that of the Zariski den-
sity of crystalline points in the relevant deformation space (Kisin’s approach [18]
would require additional information about Ext groups of mod p representations
of GL2(Qp)). This question can be asked in any dimension and for representations
of the absolute Galois group GK of a finite extension K of Qp, and the methods
developped in [9, 18] (in dimension 2) and in [8, 22] (for higher dimensions), make
it possible to show that the Zariski closure of the set of crystalline points is a union
of irreducible components. Deformation spaces are very often irreducible, but Ch-
enevier [7] realised that for p = 2 and K = Q2, this is not the case because the
space of deformations of the determinant is not irreducible. This led Böckle to
conjecture that, in general, irreducible components of the deformation space of a
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mod p representation of GK are in bijection with those of its determinant, a con-
jecture that he verified with Juschka [5, cor. 1.8] in dimension 2, for p ≥ 3 and also
for p = 2 in the case of the trivial representation and K 6= Q2 (see the comments
following corollary 1.8 of loc. cit.). Our main result (theorem 1.1 below) is a proof
of this conjecture in the case of the trivial 2-dimensional representation of GQ2 .

To state the result more precisely, let us introduce some notations. Let O be
the ring of integers of L, choose a uniformizer $ of L and let k := O/$ be the
residue field. Let 1 be a one dimensional k-vector space on which GQ2 acts trivially,
and let D1 be the deformation functor of 1, and let D� be the framed deformation
functor of 1⊕1, so that for each local artinian O-algebra (A,mA) with residue field
k, D1(A) is the set of continuous group homomorphisms from GQ2 to 1 + mA and
D�(A) is the set of continuous group homomorphisms from GQ2 to 1 + M2(mA).
These functors are represented by complete local noetherian O-algebras R1 and R�

respectively. Mapping a framed deformation of 1 ⊕ 1 to its determinant induces
a natural transformation D� → D1, and hence a homomorphism of O-algebras
d : R1 → R�.

Theorem 1.1. The map d : R1 → R� induces a bijection between the irreducible
components of SpecR� and SpecR1.

Let ρuniv : GQ2 → GL2(R�) be the universal framed deformation of 1⊕1. If x is
a closed point of SpecR�[1/2] then its residue field κ(x) is a finite extension of L.
We let ρuniv

x : GQ2 → GL2(κ(x)) be the representation obtained by specializing
the universal representation to x. We say that a closed point x of SpecR�[1/2] is
crystalline if ρuniv

x is a crystalline representation of GQ2 . Theorem 1.1 allows us to
deduce that every irreducible component of SpecR� contains a crystalline point,
such that ρuniv

x additionally satisfies some mild hypothesis (named begnin by Kisin).
Since we know that the closure of such points in SpecR� is a union of irreducible
components, we obtain:

Theorem 1.2. The set of crystalline points in SpecR�[1/2] is dense in SpecR�.

To prove theorem 1.1 we first produce an explicit presentation, denoted by S in
the sequel, of R� as a quotient of a formal power series ring in 12 variables over O
by 4 relations. The presentation comes from the presentation of the maximal pro-2
quotient of GQ2 as a pro-2 group with 3 generators and one relation, see lemma 2.1.
We then show that S is Cohen-Macaulay by bounding its dimension by 9 in §3
and S[1/2] is regular in codimension 1 by bounding the dimension of the singular
locus by 6 in §4. Serre’s criterion allows us to deduce that S[1/2] is normal, and so
irreducible and connected components coincide. We then show that any irreducible
component of SpecS intersects a well-chosen hypersurface (corollary 5.2) and we
bound (§§ 7 and 8) the number of connected components of this hypersurface and
then of SpecS by looking at the chain-connected components (a p-adic avatar of
path-connectedness defined in § 6). This is the trickiest part of the proof which
uses the presentation in an essential way. In § 9 we deduce theorem 1.2 from this.

Remark 1.3. For applications to the p-adic Langlands correspondence, treating
the case of the trivial residual representation is enough, but for other questions
(for example for global questions) it could be useful to have a result analogous to
theorem 1.1 for non trivial extensions of the trivial character by itself. It is quite
likely that the methods of this article could be used to prove such a generalisation
(one would have to pay more attention to the arcs used in §§ 7 and 8).
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2. Notations and preliminaries

In this section we introduce notation that will be used in the sequel, and recall
some classical commutative algebra results. If R is a commutative ring then we
denote by M2(R) the ring of 2 × 2-matrices with entries in R. If A,B ∈ GL2(R)
then we let

[A,B] = ABA−1B−1.

If A1, ..., Ak, B1, ..., Bk ∈ M2(R) we write R/(A1 = B1, ..., Ak = Bk) for the quo-
tient of R by the ideal generated by the entries of the matrices A1−B1, ..., Ak−Bk.
In order to avoid confusion we reserve capital letters for the matrices and small let-
ters for the matrix entries. Let

X =
(
x11 x12

x21 x22

)
, Y =

(
y11 y12
y21 y22

)
, Z =

(
z11 z12
z21 z22

)
.

We consider the matrix entries of X, Y and Z as indeterminates and let

O[[X,Y, Z]] := O[[x11, x12, x21, x22, ..., z11, ..., z22]].

The matrices
X̃ := 1 +X, Ỹ := 1 + Y, Z̃ := 1 + Z

are in GL2(O[[X,Y, Z]]). Let

S := O[[X,Y, Z]]/(X̃2Ỹ 4[Ỹ , Z̃] = 1),

so that S is a quotient of a formal power series ring over O in 12 variables by 4
relations.

Lemma 2.1. There is an isomorphism of O-algebras R� ∼= S.

Proof. Let GQ2(2) be the maximal pro-2 quotient of GQ2 . This group is topologi-
cally generated by 3 generators x, y, z and the relation x2y4[y, z] = 1, see [23]. Since
X̃, Ỹ , Z̃ are congruent to identity matrix modulo mS , sending x 7→ X̃, y 7→ Ỹ ,
z 7→ Z̃ induces a continuous representation ρS : GQ2(2) → GL2(S). We consider ρS
as a framed deformation of 1⊕ 1 to S. This gives a homomorphism of O-algebras
ϕ : R� → S.

Let (A,mA) be a local artinian O-algebra with residue field k. The set D�(A)
is in bijection with the set of continuous group homomorphisms ρ : GQ2 → 1 +
M2(mA). Every such ρ factors through the maximal pro-2 quotient GQ2(2) of GQ2

as the target has order 2n for some natural number n. Thus mapping ρ : GQ2(2) →
1 + M2(mA) to (ρ(x)− 1, ρ(y)− 1, ρ(z)− 1) induces a bijection between the set of
such ρ and the set of triples (XA, YA, ZA) ∈ M2(mA)3 satisfying X̃2

AỸ
4
A[ỸA, Z̃A] = 1,

where X̃A = 1 + XA, ỸA = 1 + YA and Z̃ = 1 + ZA. These are in bijection with
HomO(S,A). Thus ϕ : R� → S is an isomorphism. �

Observe that δ = det X̃ det Ỹ 2 ∈ S satisfies δ2 = 1. We let

S+ = S/(δ + 1), S− = S/(δ − 1).

Lemma 2.2. SpecS±[1/2] is an open subset of SpecS[1/2] and a union of irre-
ducible components of SpecS[1/2].

Proof. Observe that 1±δ
2 is an idempotent in S[1/2] and SpecS±[1/2] is the zero

locus of this idempotent. �
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Lemma 2.3. Let (A,mA) be a a complete local noetherian ring, and let a ∈ mA.
Then dimA[ 1a ] ≤ dimA − 1. If a is not nilpotent and A is equidimensional then
dimA[ 1a ] = dimA− 1.

Proof. We may assume that a is not nilpotent, so that A[ 1a ] 6= 0. Given a chain
of prime ideals in SpecA[ 1a ] of length r, we may consider them as prime ideals of
SpecA, and then extend the chain by including mA, thus obtaining a chain of prime
ideals in SpecA of length r + 1. Hence, dimA[ 1a ] ≤ dimA− 1.

Suppose further that A is equidimensional. Replacing A by A/q, where q is a
minimal prime of A which does not contain a, we may assume that A is an integral
domain. If p is a maximal ideal of A[ 1a ] then dimA/p = 1, (as follows from theorem
146 in [17]). Since A is catenary [6, cor.2.1.13], it follows that dimAp = dimA− 1.
Since dimA[ 1a ] ≥ dimAp (as a /∈ p), the result follows. �

3. S is complete intersection

Lemma 3.1. Let A be a commutative ring and let Y ∈ M2(A). If t = tr(Y ) and
d = detY , then

Y 5 = (t4 − 3dt2 + d2)Y − dt(t2 − 2d) and tr(Y 5) = t(t4 − 5t2d+ 5d2).

Proof. This follows by repeated applications of the Cayley-Hamilton theorem. �

Proposition 3.2. S is complete intersection of dimension 9, and $, tr(X̃), x12, x21

form a regular sequence on S. In particular, S is flat over O.

Proof. It is enough to prove that the ring A := S/($, tr(X̃), x12, x21) is at most 5-
dimensional, as S is a quotient of a 13-dimensional local regular ring by 4 equations
and we quotient out further by 4 equation, all of them in the maximal ideal. Further,
it is enough to prove that B := k[[Y, Z]]/(Ỹ 4[Ỹ , Z̃] = det Ỹ 2) is at most 5-dimen-
sional, as A is finite over B.

Let p be a prime ideal of B, which we consider as a prime ideal of k[[Y, Z]] con-
taining (Ỹ 4[Ỹ , Z̃] = det Ỹ 2). Since Ỹ 5 = (det Ỹ 2)Z̃Ỹ Z̃−1 in M2(B/p), lemma 3.1
yields (tr Ỹ )3((tr Ỹ )2 + det Ỹ ) ∈ p. Since (tr Ỹ )2 + det Ỹ is a unit, we must have
tr Ỹ ∈ p. Using lemma 3.1 again and dividing by the unit det Ỹ 2, the equation
Ỹ 5 = (det Ỹ 2)Z̃Ỹ Z̃−1 can be rewritten as Ỹ Z̃ = Z̃Ỹ in M2(B/p). Combined
with the equations 2 = 0 and tr Ỹ = 0, this yields y12 tr Z̃ = 0 and y21 tr Z̃ = 0
in B/p. We conclude that the surjection k[[Y, Z]] � B/p factors through either
k[[y11, Z]] � B/p or k[[y12,y21,z12,z21]]

y12z21+y21z12
[[y11, z11]] � B/p. In both cases we obtain

dimB/p ≤ 5 and the result follows. �

4. S[1/2] is normal

Let x be a closed point of SpecS[1/2] corresponding to a maximal ideal mx of
S[1/2]. Then its residue field κ(x) is a finite extension of L and the image of S in
κ(x) is contained in Oκ(x). The resulting morphism S → Oκ(x) is continuous (for
the mS-adic topology on S and the p-adic topology on Oκ(x)). The universal framed
deformation ρuniv : GQ2 → GL2(S) of the trivial representation induces therefore a
continuous morphism ρuniv

x : GQ2 → GL2(κ(x)).
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Lemma 4.1. If x is a singular point of SpecS[1/2], then there is a character
δ : GQ2 → O∗

κ(x) and an exact sequence of κ(x)[GQ2 ]-modules

0 → δ → ρuniv
x → δε→ 0,

where ε : GQ2 → Z×
2 is the 2-adic cyclotomic character.

Proof. By lemma 2.3.3 and proposition 2.3.5 of [20], the mx-adic completion Ŝx of
S[1/2] is isomorphic to the framed deformation ring R�

x of the representation ρuniv
x .

Since x is a singular point of SpecS[1/2], Ŝx is not regular and in particular not
formally smooth. Thus the deformation problem for ρuniv

x is obstructed and hence
H2(GQ2 , ad(ρuniv

x )) 6= 0. By Tate duality this is equivalent to H0(GQ2 , ad(ρuniv
x )⊗

ε) 6= 0, or HomGQ2
(ρuniv
x , ρuniv

x ⊗ ε) 6= 0. In particular, ρuniv
x is reducible (as

det ρuniv
x 6= det(ρuniv

x ⊗ ε)) and the result follows then easily. �

Proposition 4.2. The singular locus of SpecS[1/2] has dimension ≤ 6.

Proof. Since S[1/2] is excellent, the singular locus is closed in S[1/2]. Since S[1/2]
is Jacobson, this implies that the singular locus is also Jacobson. It follows from
lemma 4.1 that all singular closed points of S[1/2] are contained in V (I), where I
is the ideal of S generated by the elements

(1) (tr ρuniv(g))2 − (ε(g) + 1)2ε(g)−1 det ρuniv(g),

as g varies over GQ2 . Hence, the singular locus is also contained in V (I). Thus it
is enough to prove that dimS/I ≤ 7, as lemma 2.3 implies that dim(S/I)[1/2] ≤ 6.

Let J :=
√

($, I) and let ρ̃ : GQ2 → GL2(S/J) be the representation obtained
by reducing the entries of ρuniv modulo J . It is enough to bound dimS/J by 6.
Since ε(g) ≡ 1 (mod $), we deduce from (1) that (tr ρuniv(g))2 ≡ 0 (mod ($, I)),
and hence tr ρ̃(g) = 0 for all g ∈ GQ2 . Hence the surjection S � S/J factors
through:

(2) B :=
k[[X,Y, Z]]

(det X̃ − det Ỹ −2, tr X̃, tr Ỹ , tr Z̃, tr X̃Ỹ , tr X̃Z̃, tr Ỹ Z̃)
� S/J

Let us note that if tr Ỹ = tr Z̃ = 0 then tr Ỹ Z̃ = y12z21 + y21z12, as we are in
characteristic 2. Let I ′ be the ideal in k[x12, x21, y12, y21, z12, z21] generated by all
2× 2 minors of the matrix (

x12 y12 z12
x21 y21 z21

)
.

It follows from proposition 1.1 in [15] that I ′ defines an irreducible variety of di-
mension 4. This implies that

A :=
k[[x12, x21, y12, y21, z12, z21]]

(x12y21 + x21y12, x12z21 + x21z12, y12z21 + y21z12)

is 4-dimensional. The relation det X̃−det Ỹ −2 implies thatB is finite overA[[y11, z11]]
and hence dimB = 6. It follows from (2) that dimS/J ≤ 6. �

Proposition 4.3. The rings S[1/2] and S±[1/2] are normal.

Proof. Using lemma 2.2, it suffices to prove that S[1/2] is normal. Since this ring
is Cohen-Macaulay by proposition 3.2, it satisfies Serre’s condition S2. By Serre’s
criterion of normality, it suffices therefore to prove that S[1/2] is regular in codi-
mension 1. Since S[1/2] is excellent, the singular locus of SpecS[1/2] is closed.
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Since dimS[1/2] = 8 (by lemma 2.3 and taking into account proposition 3.2),
proposition 4.3 follows from proposition 4.2. �

5. A general result about Cohen-Macaulay local rings

The study of S+ and S− will be simplified by considering the hyperplane sec-
tion tr(X̃) = 0. The following result is needed in order to control the irreducible
components of S once we have a good understanding of this hyperplane section.

Proposition 5.1. Let A be a local noetherian ring and suppose that A is Cohen-
Macaulay. Let k ≥ 1 and let x1, ..., xk be a regular sequence in A. Then

a) Each irreducible component of SpecA contains an irreducible component of
SpecA/(x1, ..., xk).

b) If k ≥ 2 then each irreducible component of SpecA[1/xk] meets the closed
subset Spec(A/(x1, ..., xk−1))[1/xk].

Proof. a) We start by proving the result for k = 1. Let p be a minimal prime ideal
of A. Then p ∈ Ass(A), that is there exists f ∈ A such that p = Ann(f). Since x1

is regular, we have Ann(g) = Ann(gx1) for all g ∈ A. Combining this observation
with Krull’s intersection theorem, we may assume that x1 does not divide f . Let
π : A → A/x1A be the canonical projection. Then π(p) ⊂ Ann(π(f)) and since
π(f) 6= 0, there is an associated prime q of A/x1A such that π(p) ⊂ q. Since
x1 is regular and A is Cohen-Macaulay, A/x1A is Cohen-Macaulay and thus q is
a minimal prime of A/x1A. Since V (p) contains Spec(A/x1A)/q, we obtain the
desired result for k = 1. The general case is proved by induction on k, noting that
A/(x1, ..., xk−1) is Cohen-Macaulay and xk is regular on it.

b) Let I = (x1, ..., xk−1). By a), it suffices to prove that each irreducible com-
ponent C of SpecA/I meets the open subset D(xk). Since (x1, . . . xk) is a regular
sequence in A, dimA/(x1, . . . , xi) = dimA − i, for all 1 ≤ i ≤ k. Since Cohen-
Macaulay rings are equidimensional, we have dimC = dimA/I = dimA− k+ 1. If
C does not meet D(xk), then C ⊂ SpecA/(x1, ..., xk) and thus dimC ≤ dimA− k,
a contradiction. The result follows. �

Corollary 5.2. Each irreducible component of SpecS±[1/2] meets the vanishing
locus of tr(X̃), x12 and x21.

Proof. Each irreducible component of SpecS±[1/2] is an irreducible component of
SpecS[1/2]. The result follows from propositions 5.1 and 3.2. �

6. Chains of closed points

Let A be a complete local noetherian O-algebra, with residue field equal to k,
and let X = SpecA[1/2]. In the following let K be any finite field extension of L,
OK the ring of integers of K and mK the maximal ideal of OK . Let TK be the Tate
algebra in one variable over K, that is the ring of power series in OK [[t]][1/2], which
converge on the whole of OC2 , where C2 is the 2-adic completion of the algebraic
closure of Q2.

Definition 6.1. We say x0, x1 ∈ X(K) are arc-connected, if there is an O-algebra
homomorphism ϕ : A → TK , such that x0 : A → K is obtained by specializing
ϕ at t = 0 and x1 : A → K is obtained by specializing ϕ at t = 1. We say that
x0, x1 ∈ X(K) are chain-connected if there is a finite sequence of elements of X(K),
x0 = y0, . . . , yn = x1, such that yi−1, yi are arc-connected for all 1 ≤ i ≤ n.
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Example 6.2. If A = O[[x]] then every y ∈ X(K) is arc-connected to x0 : A→ K,
f 7→ f(0). The arc ϕ : A→ TK connecting x0 and y is given by f 7→ f(αt), where
α := y(x). The map is well defined, as α lies in mK .

Example 6.3. If A = O[[x1, . . . , xn]]/(f1, . . . , fm) then x 7→ (x(x1), . . . , x(xn))
induces a bijection between X(K) and the set of n-tuples (α1, . . . , αn) of elements
in mK , such that fi(α1, . . . , αn) = 0 for all 0 ≤ i ≤ m. Let x, y ∈ X(K) correspond
to n-tuples (α1, . . . , αn) and (β1, . . . , βn) respectively. If we can find topologically
nilpotent elements a1(t), . . . , an(t) ∈ TK , such that aj(0) = αj , aj(1) = βj for all
1 ≤ j ≤ n, and fi(a1(t), . . . , a1(t)) = 0 for all 1 ≤ i ≤ m then the arc ϕ : A→ TK ,
f 7→ f(a1(t), . . . , an(t)) connects x and y.

Example 6.4. Let us elaborate on the example 6.3 in our particular situation,
when A = S. The set X(K) is in bijection with triples (X̃, Ỹ , Z̃) of matrices in
1 + M2(mK), such that X̃2Ỹ 4[Ỹ , Z̃] = 1. To show that two points corresponding
to triplets (X̃0, Ỹ0, Z̃0) and (X̃1, Ỹ1, Z̃1) are arc-connected it is enough to produce
matrices (X̃(t), Ỹ (t), Z̃(t)) in M2(TK) such that the following hold:

• the entries of X̃ − 1, Ỹ − 1 and Z̃ − 1 are topologically nilpotent in TK ;
• X̃(t)2Ỹ (t)4[Ỹ (t), Z̃(t)] = 1;
• (X̃0, Ỹ0, Z̃0) = (X̃(0), Ỹ (0), Z̃(0)), (X̃1, Ỹ1, Z̃1) = (X̃(1), Ỹ (1), Z̃(1)).

Lemma 6.5. If x, y ∈ X(K) are arc-connected then they lie on the same irreducible
component of X.

Proof. Let ϕ : A → TK be an arc connecting x and y. The kernel of ϕ is a prime
ideal of A as TK is an integral domain. Thus Kerϕ contains a minimal prime q of
A[1/2], and both x and y lie on V (q). �

Lemma 6.6. Assume that distinct irreducible components of X do not intersect.
If x, y ∈ X(K) are chain-connected then they lie on the same irreducible component
of X.

Proof. The assumption implies that every x ∈ X(K) lies on a unique irreducible
component of X. The assertion follows from lemma 6.5. �

Remark 6.7. We only used disks to define arc-connectedness because this is all
that we need, but one can also use pieces of analytic curves: i.e. O-algebra mor-
phisms from A to L〈x, y〉/(f), where f ∈ L〈x, y〉 remains irreducible after any finite
extension L′ of the field L of coefficients. This gives more flexibility.

7. S+[1/2] is an integral domain

Let K be a finite extension of L and let

V = SpecS+[1/2]/(tr(X̃)).

The main result of this section is

Proposition 7.1. Any two points in V (K) are chain-connected in SpecS+[1/2].

Before proving the proposition, we record a corollary.

Corollary 7.2. S+[1/2] is an integral domain.
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Proof. It follows from proposition 4.3 that S+[1/2] is a product of integral domains.
Thus it is enough to prove that X := SpecS+[1/2] is irreducible. If X is not
irreducible, then we may find a finite extension K of L, and points x, y ∈ X(K)
lying on different irreducible components of X. It follows from corollary 5.2 that
we may assume that x and y lie in V (K). Proposition 7.1 implies that x and y are
chain connected in X. Since S+[1/2] satisfies the assumption of lemma 6.6, x and
y lie on the same irreducible component of X, giving a contradiction. �

The proof of proposition 7.1 will be split into several lemmas, in each case pro-
ducing a triple (X̃(t), Ỹ (t), Z̃(t)) as in example 6.4. For α ∈ O let

Vα = SpecS+[1/2]/(tr(X̃), tr(Ỹ )2 − α det Ỹ ).

Lemma 7.3. V (K) is the disjoint union of V0(K) and V4(K). Moreover:
a) V0(K) is the set of triples (X̃, Ỹ , Z̃) in (1 +M2(mK))3 such that

tr(Ỹ ) = 0, Ỹ Z̃ = Z̃Ỹ , tr(X̃) = 0, det(X̃Ỹ 2) = −1.

b) V4(K) is the set of triples (X̃, Ỹ , Z̃) in (1 +M2(mK))3 such that

tr(Ỹ )2 = 4det Ỹ , 5Ỹ − 2 tr(Ỹ ) = Z̃Ỹ Z̃−1, tr(X̃) = 0, det(X̃Ỹ 2) = −1.

Proof. Elements of V (K) are the triples (X̃, Ỹ , Z̃) in (1 + M2(mK))3 such that
X̃2Ỹ 4[Ỹ , Z̃] = 1, det(X̃Ỹ 2) = −1 and tr(X̃) = 0. Letting d = det Ỹ , the last
two equations and the Cayley-Hamilton theorem yield X̃2 = 1

d2 , thus the first
equation is equivalent to Ỹ 5 = d2Z̃Ỹ Z̃−1. Taking the trace of this equality and
using lemma 3.1 we obtain t(t2−d)(t2−4d) = 0, where t = tr(Ỹ ). Since t ∈ mK and
d ≡ 1 (mod mK), the last relation is equivalent to t = 0 or t2 = 4d. This establishes
the first part of the lemma. The description of V0(K) and V4(K) follows from what
we have already explained and lemma 3.1. �

Lemma 7.4. Any two K-points of Spec O[[X]][1/2]/(tr(X̃),det X̃ + 1) are chain
connected.

Proof. It suffices to prove that any point K-point X̃ is chain connected with the
point X̃0 =

(
1 0
0 −1

)
. Write X̃ =

(
1+α β
γ −1−α

)
with α, β, γ ∈ mK and α(α+2)+βγ =

0. If v2(α+ 2) ≤ 1, use the arc

X̃(t) =
(

1+tα tβ

γ tα+2
α+2 −1−tα

)
to connect X̃ to some matrix

(
1 0
∗ −1

)
, then move ∗ along a segment to 0 to reach

X̃0.
If v2(α + 2) > 1, then letting α1 = −α − 2 we still have α1(α1 + 2) + βγ = 0,

and v2(α1 + 2) = v2(α) = 1. Thus we can apply the previous argument with
α1 instead of α and connect X̃ with

(−1 0
∗ 1

)
for some ∗, then to

(−1 0
0 1

)
. Finally,

it remains to see that we can connect
(

1 0
0 −1

)
and

(−1 0
0 1

)
. We can use the arc(

1−2t2(2−t)2 2t(1−t)(2−t)2

2t(1−t)(1+2t−t2) −1+2t2(2−t)2

)
. �

Lemma 7.5. Any point of V4(K) is chain-connected with (X̃0 :=
(

1 0
0 −1

)
, 1, 1).

Proof. Let (X̃, Ỹ , Z̃) be a point in V4(K). The arc

Ỹ (t) = tỸ + 1− t, X̃(t) =
det Ỹ

det Ỹ (t)
X̃, Z̃(t) = Z̃
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connects (X̃, Ỹ , Z̃) with a point of the form (X̃1, 1, Z̃) (the reader can check that
(X̃(t), Ỹ (t), Z̃(t)) satisfy all equations given in part b) of lemma 7.3). Thus we may
assume that Ỹ = 1. The arc (X̃, 1, tZ̃ + 1− t) connects (X̃, 1, Z̃) to (X̃, 1, 1). This
last point is connected to (X̃0, 1, 1) by lemma 7.4. �

Lemma 7.6. Any point of V0(K) is chain-connected with (X̃0, X̃0, 1).

Proof. Consider a point (X̃, Ỹ , Z̃) of V0(K) and write

Ỹ =
(

1+a b
c −1−a

)
, Z̃ =

(
1+α β
γ 1+δ

)
with a, b, c, α, β, γ, δ ∈ mK . The condition that Ỹ and Z̃ commute is expressed as

(3) bγ = cβ, 2β(1 + a) = b(α− δ), 2γ(1 + a) = c(α− δ).

Consider now the arc

Ỹ (t) =
(

1+(1−t)a (1−t)b
(1−t)c −1−(1−t)a

)
, X̃(t) =

det Ỹ
det Ỹ (t)

X̃,

and

Z̃(t) =
(

1+(1−t)α (1−t)2β· 1+a
1+(1−t)a

(1−t)2γ· 1+a
1+(1−t)a

1+(1−t)δ

)
.

One checks that (X̃(t), Ỹ (t), Z̃(t)) satisfy all equations in part a) of lemma 7.3 (it is
enough to verify that Ỹ (t) and Z̃(t) commute, which follows by verifying relations
(3)), thus we obtain an arc connecting (X̃, Ỹ , Z̃) and (X̃1, X̃0, 1) for some matrix
X̃1 with trace 0 and determinant −1. Lemma 7.4 allows us to connect (X̃1, X̃0, 1)
and (X̃0, X̃0, 1), and the result follows. �

Lemma 7.7. The points (X̃0, 1, 1) and (X̃0, X̃0, 1) are arc-connected in SpecS+[1/2].

Proof. Use the arc

X̃(t) =
(

1 0
0 − 1

(2t−1)2

)
, Ỹ (t) =

(
1 0
0 2t−1

)
, Z̃(t) = 1.

�

8. S−[1/2] is an integral domain

Let K be a finite extension of L containing 4
√
−1 and

√
2 and let

V = Spec
S−[1/2]

(tr(X̃), x12, x21)
.

The main result of this section is

Proposition 8.1. Any two points in V (K) belong to the same irreducible compo-
nent of SpecS−[1/2].

As in the previous section, the proposition together with proposition 5.1 and
corollary 5.2 imply that

Corollary 8.2. S−[1/2] is an integral domain.
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The proof of proposition 8.1 will also be split in a sequence of lemmas. For α ∈ O
define

Vα = Spec
S−[1/2]

(tr(X̃), x12, x21, tr(Ỹ )2 − α det Ỹ )
.

The proof of the following lemma is identical to that of lemma 7.3 and left to the
reader:

Lemma 8.3. V (K) is the disjoint union of V0(K) and V2(K). Moreover, fixing a
square root i of −1 in O, we have

a) The points of V0(K) are the triples (X̃, Ỹ , Z̃) in (1 +M2(mK))3 with

X̃ = ±
(

i
det Ỹ

0

0 − i
det Ỹ

)
, tr(Ỹ ) = 0, Ỹ Z̃ + Z̃Ỹ = 0.

Any such point automatically satisfies tr(Z̃) = 0.
b) The points of V2(K) are the triples in (1 +M2(mK))3 with

X̃ = ±
(

i
det Ỹ

0

0 − i
det Ỹ

)
, tr(Ỹ )2 = 2det Ỹ , Ỹ Z̃ = Z̃Ỹ .

Lemma 8.4. Let (X̃, Ỹ , Z̃) be a point of V (K). Then (X̃, Ỹ , Z̃) and (−X̃, Ỹ , Z̃)
are arc-connected in SpecS−[1/2].

Proof. There is a ∈ 1 + mK such that X̃ =
(
a 0
0 −a

)
. At the end of the proof of

lemma 7.5 we constructed an arc U(t) connecting
(

1 0
0 −1

)
and

(−1 0
0 1

)
and such that

tr(U(t)) = 0 and detU(t) = −1. Simply use the arc X̃(t) = aU(t), Ỹ (t) = Ỹ and
Z̃(t) = Z̃. �

Lemma 8.5. The ring

R = O[[Y, Z]]/(tr(Ỹ ), tr(Z̃), Ỹ Z̃ + Z̃Ỹ = 0)

is an integral domain.

Proof. Writing
Ỹ =

(
1+a b
c −1−a

)
, Z̃ =

(
1+x y
z −1−x

)
we check that the condition Ỹ Z̃+Z̃Ỹ = 0 is equivalent to 2(1+a)(1+x)+bz+cy = 0.
Thus

R ' O[[a, b, c, x, y, z]]
2(1 + a)(1 + x) + bz + cy

.

It suffices therefore to show that f = 2(1 + a)(1 + x) + bz + cy is irreducible in the
unique factorization domain O[[a, b, c, x, y, z]]. This follows from the fact that the
reduction of f modulo $ is bz + cy, which is irreducible in k[[b, c, y, z]] as can be
proved by looking at the associated graded ring. �

Lemma 8.6. Any two points of V0(K) are on the same irreducible component of
SpecS−[1/2].

Proof. Let Rε be the quotient of S− by the ideal generated by the relations tr(Ỹ ) =

0, tr(Z̃) = 0 and X̃ = ε

(
i

det Ỹ
0

0 − i
det Ỹ

)
for ε ∈ {−1, 1}. It follows from lemma 3.1

that Rε is isomorphic to the ring R introduced in lemma 8.5. Thus Rε is an in-
tegral domain and so SpecRε[1/2] is contained in an irreducible component Cε
of SpecS−[1/2]. Lemma 8.3 implies that all points of V0(K) are K-points of
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SpecRε[1/2] for some ε ∈ {−1, 1}, thus all points of V0(K) belong to C1 or C−1.
Finally, note that if (X̃, Ỹ , Z̃) is a K-point of SpecR1[1/2], then (−X̃, Ỹ , Z̃) is a
K-point of SpecR−1[1/2]. But by lemma 8.4 these two points belong to the same
irreducible component of SpecS−[1/2]. The result follows. �

Lemma 8.7. Any two points of V2(K) are chain connected in SpecS−[1/2]. In
particular, there is an irreducible component of SpecS−[1/2] containing all points
of V2(K).

Proof. Any point (X̃, Ỹ , Z̃) of V2(K) is arc-connected to the point (X̃, Ỹ , Ỹ ) via
the arc (X̃(t), Ỹ (t), Z̃(t)) = (X̃, Ỹ , tZ̃+(1− t)Ỹ ), thus we may assume that Ỹ = Z̃.
Let X̃0 =

(
1 0
0 −1

)
and Ỹ0 = ( 1 0

0 i ). We will connect (X̃, Ỹ , Ỹ ) and (X̃0, Ỹ0, Ỹ0) using
only arcs of the form (X̃(t), Ỹ (t), Ỹ (t)).

Write Ỹ = ( a bc e ) with b, c ∈ mK and a, e ∈ 1 + mK . The condition tr(Ỹ )2 =
2 det Ỹ is equivalent to a2 + e2 + 2bc = 0. Using the arc

Ỹ (t) =
(

1+(a−1)t b
1+(a−1)t

a

c
1+(a−1)t

a e
1+(a−1)t

a

)
, X̃(t) =

det Ỹ
det Ỹ (t)

X̃,

we may assume that a = 1.
Suppose first that bc 6= 0. Since (1 + ei)(1− ei) = −2bc, we have either v2(b) <

v2(1 + ei) or v2(c) < v2(1− ei). If v2(b) < v2(1 + ei) then the arc

Ỹ (t) =
(

1 tb

tc+
(t−1)(1+ei)

b te+(1−t)i

)
, X̃(t) =

det Ỹ
det Ỹ (t)

X̃

connects (X̃, Ỹ , Ỹ ) to some triple (X̃1, ( 1 0
∗ i ) , (

1 0
∗ i )). On the other hand, if v2(c) <

v2(1− ei), a similar argument shows (replace e by −e and exchange b and c) that
(X̃, Ỹ , Ỹ ) is connected to some triple (X̃1,

(
1 ∗
0 −i

)
,
(

1 ∗
0 −i

)
).

We may thus assume that bc = 0 and X̃ is diagonal, of trace 0. Note that e = ±i.
If b = 0, consider the arc

Ỹ (t) = ( 1 0
tc e ) , X̃(t) =

det Ỹ
det Ỹ (t)

X̃

to reduce to the case b = c = 0 and X̃ diagonal of trace 0. A similar argument
applies when c = 0. Thus we are now in the situation Ỹ = Ỹ0 or Ỹ = Ỹ1 :=

(
1 0
0 −i

)
,

with X̃ diagonal of trace 0. If Ỹ = Ỹ1, use the arc

Ỹ (t) =
(

1 2t(t2−1)(t2−2)

2t(t2−1) (4t2−2t4−1)i

)
, X̃(t) =

det Ỹ
det Ỹ (t)

X̃

to reduce to the case Ỹ = Ỹ0. Then necessarily X̃ = X̃0 or its opposite. We
conclude using lemma 8.4. �

Lemma 8.8. There are points of V0(K) and V2(K) respectively which are chain
connected in SpecS−[1/2]. Consequently, all points of V (K) are on a single irre-
ducible component of SpecS−[1/2].

Proof. Let ρ be a square root of i, thus ρ is a primitive 8th root of unity in K. Let
α be a square root of 2 in K and consider the point

x = (X̃ =
(−i −iα
iα i

)
, Ỹ = ρ−1

(−1 0
α 1

)
, Z̃ =

(
1 α
0 −1

)
).
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Note that det X̃ = −1, det Ỹ 2 = −1, tr(X̃) = 0, Ỹ Z̃ + Z̃Ỹ = 0 and Ỹ 4 = −1.
Thus x is a K-point of SpecS−[1/2]. Moreover, since det(X̃) = −1 and tr(X̃) = 0,
lemma 7.4 shows that x is chain-connected in SpecS−[1/2] with the point

x′ = (
(

1 0
0 −1

)
, ρ−1

(−1 0
α 1

)
,

(
1 α
0 −1

)
),

which belongs to V0(K). We will prove that x is also chain connected with some
point of V2(K), which is enough to conclude.

Consider the arc

X̃(t) =
(
i(1−2t2) −itα
itα i

)
, Ỹ (t) = ρ−1

(−1 0
tα 1

)
, Z̃(t) =

(
1 tα
0 −1

)
.

We claim that this is an arc in SpecS−[1/2]. Let U(t) =
(−1 0
tα 1

)
, then U(t)2 =

Z̃(t)2 = 1, so Ỹ (t)4 = −1 and

[Ỹ (t), Z̃(t)] = [U(t), Z̃(t)] = (U(t)Z̃(t))2.

But by construction X̃(t) = −iZ̃(t)U(t), thus

X̃(t)2Ỹ (t)4[Ỹ (t), Z̃(t)] = (Z̃(t)U(t))2(U(t)Z̃(t))2 = 1

and the claim is proved.
It follows that x is arc-connected with the point

y = (X̃(0) = ( i 0
0 i ) , Ỹ (0) = ρ−1

(−1 0
0 1

)
, Z̃(0) =

(
1 0
0 −1

)
).

Finally, consider the arc

X̃(t) = Ỹ (t)−2, Ỹ (t) = (1− t)Ỹ (0) + t ( 1 0
0 i ) , Z̃(t) =

(
1 0
0 −1

)
in SpecS−[1/2]. It connects the point y with the point

y′ = (
(

1 0
0 −1

)
, ( 1 0

0 i ) ,
(

1 0
0 −1

)
)

and this point belongs to V2(K). �

9. Density of crystalline points

Let 1 be a one dimensional k-vector space on which GQ2 acts trivially, and let D1

be the deformation functor of 1. Since EndGQ2
(1) = k this functor is representable

by a complete local noetherian O-algebra R1. We will describe this ring explicitly.
Let ψuniv : GQ2 → R×

1 be the universal deformation. Let Qab
2 (2) be the compositum

in Q2 of all finite abelian extensions K of Q2, such that [K : Q2] is a power of 2.
Then Gal(Qab

2 (2)/Q2) is isomorphic to the maximal pro-2, abelian quotient of GQ2 ,
which we denote by Gab

Q2
(2). It follows from local class field theory that Qab

2 (2)
is the compositum of the 2-adic cyclotomic extension Q2(µ2∞) and the maximal
unramified extension Qnr

2 (2) in Qab
2 (2). Since Q2(µ2∞) ∩ Qnr

2 (2) = Q2 and Gab
Q2

(2)
is abelian, we have

(4) Gab
Q2

(2) ∼= Gal(Q2(µ2∞)/Q2)×Gal(Qnr
2 (2)/Q2).

Local class field theory and (4) gives us an isomorphism

(5) Gab
Q2

(2) ∼= Z×
2 × Z2

∼= 1 + 4Z2 × {±1} × Z2.

Thus we may choose α, β, γ ∈ GQ2 , such that their images in 1 + 4Z2 × {±1} × Z2

under (5) are (5, 1, 0), (1,−1, 0) and (1, 1, 1), respectively. Since 5 generates 1+4Z2

and 1 generates Z2 as topological groups, it follows from (5) that the images of α,
β and γ generate Gab

Q2
(2) as a topological group.
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Proposition 9.1. R1
∼= O[[x, y, z]]/((1 + y)2 − 1).

Proof. Let (A,mA) be a local artinian O-algebra with residue field k. Then D1(A)
is in bijection with the set of continuous group homomorphism ψ : GQ2 → 1 + mA.
Since 1 + mA is an abelian 2-group, any such homomorphism factors through ψ :
Gab

Q2
(2) → 1 + mA. Thus it follows from (5) that the map ψ 7→ (ψ(α) − 1, ψ(β) −

1, ψ(γ) − 1) induces a bijection between the set of such ψ and the set of triples
(a, b, c) ∈ m3

A, such that (1 + b)2 = 1, which in turn is in bijection with the set of
O-algebra homomorphisms from O[[x, y, z]]/((1 + y)2 − 1) to A. �

Corollary 9.2. R1 is O-torsion free and has two irreducible components.

Proof. The first assertion follows from the fact that (1 + y)2 − 1 is not divisible by
$ in O[[x, y, z]]. The two components are given by y = 0 and y = −2. �

Corollary 9.3. Let x, y ∈ SpecR1[1/2] be closed points, such that ψuniv
x and ψuniv

y

are crystalline. Then x and y lie on the same irreducible component of SpecR1 if
and only if the Hodge–Tate weights of ψuniv

x and ψuniv
y have the same parity.

Proof. It follows from the proofs of proposition 9.1 and corollary 9.2 that x and y lie
on the same irreducible component if and only if ψuniv

x (β) = ψuniv
y (β). Since both

characters are crystalline by assumption, we have ψuniv
x = εwxµ and ψuniv

y = εwyµ′,
where ε is the cyclotomic character, wx, wy are the Hodge–Tate weights and µ, µ′

are unramified characters. Since β was chosen so that its image in Gnr
Q2

(2) is trivial
and ε(β) = −1, we deduce that ψuniv

x (β) = (−1)wx and ψuniv
y (β) = (−1)wy . �

Mapping a framed deformation to its determinant induces a natural transforma-
tion D� → D1, and hence a homomorphism of O-algebras d : R1 → R�.

Theorem 9.4. The map d : R1 → R� induces a bijection between the irreducible
components of SpecR� and SpecR1.

Proof. Since det
(
ψ 0
0 1

)
= ψ, d induces a surjection m-SpecR�[1/2] → m-SpecR1[1/2].

Since R1[1/2] is reduced and Jacobson, we conclude that d : R1[1/2] → R�[1/2]
is injective. Let e = y/2 ∈ R1[1/2], where y is as in proposition 9.1. Then
e2 = e, and since d is injective d(e) is a non-trivial idempotent in R�[1/2]. Since
R�[1/2] ∼= S[1/2] ∼= S+[1/2] × S−[1/2], and S+[1/2] and S−[1/2] are integral do-
mains by corollaries 7.2, 8.2, we can conclude that d induces a bijection between
the irreducible components of SpecR�[1/2] and SpecR1[1/2]. Since both R1 and
R� are both O-torsion free, this implies the assertion. �

Lemma 9.5. Let K be a finite extension of L and let ρ : GQ2 → GL2(K) be
a continuous representation, such that ρ̄ss is trivial. Then there is an O-algebra
homomorphism x : R� → K ′ with K ′ a finite extension of K, such that ρuniv

x
∼=

ρ⊗K K ′.

Proof. Since ρ̄ss is trivial, we may choose a K-basis of the underlying vector space
of ρ, so that the image of ρ is contained in

(
1+mK OK

mK 1+mK

)
. By conjugating ρ with(

$K′ 0
0 1

)
, where K ′ = K(

√
$K), we may assume that the image of ρ is contained

in
( 1+mK′ mK′

mK′ 1+mK′

)
. Hence, ρ is a framed deformation to OK′ of the trivial rep-

resentation of GQ2 on a 2-dimensional kK-vector space. This deformation prob-
lem is represented by OK ⊗O R�, and hence we obtain x : R� → K ′, such that
ρuniv
x

∼= ρ⊗K K ′. �
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We say that a closed point x of SpecR�[1/2] is crystalline if ρuniv
x is a crystalline

representation of GQ2 .

Theorem 9.6. The set of crystalline points in SpecR�[1/2] is dense in SpecR�.

Proof. Let ε be the cyclotomic character and let k ≥ 2 be an integer. The group
H1
f (ε

k) classifying the crystalline extensions 0 → εk → ρ → 1 → 0 is one dimen-
sional, see for example [3, Ex. 3.9]. Thus there is a crystalline indecomposable
representation ρ ∼=

(
εk ∗
0 1

)
. Such representation is easily seen to be benign in the

sense of [18]. Since det ρ = εk, lemma 9.5, theorem 9.4 and corollary 9.3 imply
that both irreducible components of SpecR� contain a crystalline benign point.
The closure of such points is a union of irreducible components of SpecR� by [18,
cor.1.3.4], which allows us to conclude. �

Remark 9.7. The proof shows that crystalline benign points form a Zariski dense
subset of SpecR�[1/2]. The subset of irreducible and crystalline benign points is
still Zariski dense, since the reducible locus of SpecR�[1/2] has dimension at most
7 and SpecR�[1/2] is equidimensional of dimension 8.

Remark 9.8. If ρ is an indecomposable 2-dimensional, characteristic 2 representa-
tion of GQ2 whose semi-simplification is not trivial up to twist by a character, then,
according to [7, cor. 4.2], the generic fiber of the space of framed deformations of
ρ has two irreducible components, determined by the sign of the determinant on
−1 (the determinant is viewed as a character of Q×

2 via local class field theory).
It is not difficult to deduce from this the Zariski density of benign ireducible crys-
talline points, but this is not written down explicitely in the litterature. As in the
proof of theorem 9.6, it is enough to produce one benign crystalline point in each
component.
• If ρ is a non trivial extension of 2 distinct characters, this can be done as in

the proof of theorem 9.6.
• If ρ is irreducible, we may assume, after twisting by a character, that ρ is

obtained by induction of Serre’s fundamental character ω2 of the absolute Galois
group GF of the unramified quadratic extension F of Q2. The character χ attached
to a Lubin-Tate formal group for F (and uniformiser p) is a lifting of ω2, and so is χi

for any integer i congruent to 1 modulo 3. As all the inductions of these characters
are benign crystalline, it suffices to show that the sign of the determinant on −1 of
the induction Vi of χi is (−1)i. For this, pick a ∈ O×

F with norm −1 in Q×
2 , and

lift a to an element g of the inertia of GF . By construction g maps to −1 in the
inertia of G ab

Q2
(isomorphic to Z×

2 by local class field theory) and the value of the
determinant on −1 is the same as its value on g. But Vi, restricted to GF , is the
sum of χi and its conjugate χ̄i (where x 7→ x̄ is the non trivial automorphism of
F ). So detVi(g) = NF/Q2(χ

i(g)) = NF/Q2(a
i) = (−1)i.

10. Surjectivity of the p-adic local Langlands correspondence

In this paragraph we explain how to adapt the arguments of [11, chap. II] to
prove surjectivity of the p-adic local Langlands correspondence in the cases not
covered by [11].

Let p be any prime, and let L be a finite extension of Qp with ring of integers O.
Let G = GL2(Qp). The p-adic Langlands correspondence is given by a functor Π 7→
V(Π) from the category RepL(G) of unitary, admissible, L-Banach representations
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of G, residually of finite length, to the category of continuous, finite dimensional
L-representations of GQp

(see [11, chap. IV] for the definition of this functor). We
want to prove that any 2-dimensional L-representations V of GQp is in the image
of this functor, and the strategy used in [11, chap. II] (see also [12]) is to construct
explicitly an object of RepL(G) mapping to V . We will need to recall some parts of
this construction; this will require the introduction of a certain number of objects
from the theory of (ϕ,Γ)-modules.

Let OE be the p-adic completion of O[[T ]][T−1]. Let ΦΓet be the category
of étale (ϕ,Γ)-modules1 over OE . The category ΦΓet is equivalent by Fontaine’s
theorem [16] to the category RepO(GQp) of O-modules, free of finite rank, with a
continuous, O-linear action of GQp = Gal(Qp/Qp).

To any D ∈ ΦΓet, one can associate:
– a compact sub-OL[[T ]]-module D\ stable by Γ and the canonical left inverse ψ

of ϕ ([10, § II.5 and § II.6], it is immediate, from the definition, that (OL′⊗OL
D)\ =

OL′ ⊗OL
D\ if L′ is a finite extension of L),

– for each continuous character δ : Q×
p → O×, a G-equivariant sheaf U 7→

(D �δ U) (cf. [11, § II.1] which relies heavily on [10, chap. V]).
The space D �δ Zp of sections on Zp is D, and the G-equivariance implies that

the space D�δ P1 of global sections is equipped with an action of G, but this con-
struction gives an interesting G-module only if the pair (D, δ) is G-compatible [12]:
we denote by (D\ �δ P1)ns the set of z ∈ D�δ P1 such that ResZp

((
pn 0
0 1

)
z
)
∈ D\,

for all n ∈ Z; this OL-module is always stable by the upper Borel subgroup of G
and we say that (D, δ) is G-compatible if it is also stable by G.

Now, if V is a finite dimensional L-representation of GQp , we say that (V, δ) is
G-compatible if, for one (equivalently any) O-lattice V0 stable by G, (D(V0), δ) is
G-compatible. If this is the case, we set

D(V ) �δ P1 = L⊗O (D(V0) �δ P1) and D(V )\ �δ P1 = L⊗O (D(V0)\ �δ P1)ns.

The modules D(V )�δP1 and D(V )\�δP1 do not depend on the choice of V0, and
the quotient Πδ(V ) is an object of RepL(G) such that

V(Πδ(V )) ∼= V̌ ,

where V̌ = Hom(V,L(1)) is the Cartier dual of V (this is a translation, via
Fontaine’s equivalence of categories, of [12, th. III.49] (which is a cleaner version
of [11, prop. IV.4.10])).

So, to prove the surjectivity of the p-adic local Langlands correspondence it
suffices, for each 2-dimensional L-representation V of GQp

, to find a character δV
such that (V, δV ) is G-compatible (if V is absolutely irreducible, the results of [13]
show that there is at most one such δV ). Such a character is given by the following
statement (which is [11, Th. II.3.1] but see (ii) of rem. II.3.2 and note 7, p. 292, of
loc. cit.), in which ε : GQp → O× is the p-adic cyclotomic character.

Proposition 10.1. If δV = ε−1 detV , then (V, δV ) is G-compatible.

Proof. Say that V is good if (V, ε−1 detV ) is G-compatible. We want to prove that
any 2-dimensional V is good. The proof of [11] relies on two main ingredients:

1These are OE -modules, free of finite rank, endowed with semi-linear commuting actions of
Frobenius ϕ and Γ = Gal(Qp(µp∞ )/Qp), with ϕ of slope 0.
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— Irreducible benign crystalline representations are good ([11, prop. II.3.8],
building upon [2]).

— If S is a reduced2 quotient of O[[X1, . . . , Xn]] for some n, which is flat overs O,
if V is a free S-module of rank 2 with a continuous S-linear action of GQp , and if
Vs is good for s in a Zariski dense subset of Spm(S[1/p]), then Vs is good for any
s ∈ Spm(S[1/p]) (cf. [11, § II.3, no2] applied to the (ϕ,Γ)-module D(V ) as defined
in [14]).

To prove that a given V is good, it suffices therefore to check that benign irre-
ducible crystalline points are dense (one can ignore the irreducibility condition as
reducible representations form a Zariski subset of codimension ≥ 1 in the generic
fiber) in the space of framed deformations of the reduction modulo p of a suitably
chosen stable lattice in V . At the time [11] was written, this was known in most
cases, but not all: it is easy to check for p ≥ 5, less for p = 3 in a special case,
but this was verified by Böckle [4], and the results of Chenevier [7] allow to prove
it (cf. remark 9.8) for p = 2 if the semi-simplification of the residual representation
of V is not trivial (up to twist by a character). Now, goodness is invariant by
torsion by a character (this follows from [11, prop. II.1.11]) and V is good if and
only if there exists a finite extension L′ of L such that L′⊗L V is good (this follows
from the equality (OL′ ⊗OL

D)\ = OL′ ⊗OL
D\). So theorem 9.6 combined with

lemma 9.5 allows to conclude also in this case. �
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