Fontaine's rings and p-adic L-functions

Pierre Colmez

C.N.R.S. Institut de Mathématiques de Jussieu

These are notes from a course given at Tsinghua University during the fall of 2004. The aim of the course was to explain how to construct p-adic L functions using the theory of (φ, Γ)-modules of Fontaine. This construction is an adaptation of an idea of Perrin-Riou. The content of the course is well reflected in the table of contents which is almost the only thing that I modified from the notes taken and typed by the students Wang Shanwen, Chen Miaofen, Hu Yongquan, Yin Gang, Li Yan and Hu Yong, under the supervision of Ouyang Yi, all of whom I thank heartily. The course runs in parallel to a course given by Fontaine in which the theory of (φ, Γ)-modules was explained as well as some topics from p-adic Hodge theory which are used freely in these notes, which means that they are not entirely self-contained. Also, as time runs short at the end, the last chapter is more a survey than a course. For a bibliography and further reading, the reader is referred to my Bourbaki talk of June 2003 published in Astérisque 294.

Contents

I Classical p-adic L-functions: zeta functions and modular forms

1 The p-adic zeta function of Kubota-Leopoldt 3
1.1 The Riemann zeta function at negative integers 3
1.2 p-adic Banach spaces 5
1.3 Continuous functions on \mathbb{Z}_{p} 7
1.3.1 Mahler's coefficients 7
1.3.2 Locally constant functions. 9
1.4 Measures on \mathbb{Z}_{p} 10
1.4.1 The Amice transform 10
1.4.2 examples of measures on \mathbb{Z}_{p} and of operations on mea- sures. 12
1.5 The p-adic zeta function 15
1.5.1 Kummer's congruences. 15
1.5.2 Restriction to \mathbb{Z}_{p}^{*}. 16
1.5.3 Leopoldt's Γ-transform. 17
$1.6 \mathcal{C}^{k}$ functions 19
1.6.1 Definition. 19
1.6.2 Mahler's coefficients of \mathcal{C}^{r}-functions. 21
1.7 locally analytic functions 23
1.7.1 Analytic functions on a closed disk. 23
1.7.2 Locally analytic functions on \mathbb{Z}_{p}. 25
1.8 Distributions on \mathbb{Z}_{p} 27
1.8.1 The Amice transform of a distribution. 27
1.8.2 Examples of distributions. 29
1.8.3 Residue at $s=1$ of the p-adic zeta function. 30
1.9 Tempered distributions 31
1.9.1 Analytic functions inside \mathcal{C}^{r} functions 31
1.9.2 Distributions of order r 33
1.10 Summary 36
2 Modular forms 39
2.1 Generalities 39
2.1.1 The upper half-plane 39
2.1.2 Definition of modular forms 40
2.1.3 q-expansion of modular forms. 40
2.1.4 Cusp forms. 41
2.2 The case $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ 42
2.2.1 The generators S and T of $\mathrm{SL}_{2}(\mathbb{Z})$ 42
2.2.2 Eisenstein series 43
2.2.3 The fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$ 44
2.2.4 The $\frac{k}{12}$ formula. 46
2.2.5 Dimension of spaces of modular forms. 47
2.2.6 Rationality results. 48
2.3 The algebra of all modular forms 50
2.4 Hecke operators 53
2.4.1 Preliminary. 53
2.4.2 Definition of Hecke operators: $R_{n}, T_{n}, n \geq 1$. 54
2.4.3 Action of Hecke operators on modular forms. 56
2.5 Petersson scalar product 58
2.6 Primitive forms 60
$3 p$-adic L-functions of modular forms 63
3.1 L-functions of modular forms. 63
3.1.1 Estimates for the fourier coefficients 63
3.1.2 Dirichlet series and Mellin transform 65
3.1.3 Modular forms and L-functions 66
3.1.4 Euler products 68
3.2 Higher level modular forms 69
3.2.1 Summary of the results 69
3.2.2 Taniyama-Weil Conjecture 71
3.3 Algebraicity of special values of L-functions 71
3.3.1 Modular symbols 71
3.3.2 The results 73
3.3.3 Rankin's method 74
$3.4 \quad p$-adic L-functions of modular forms 77
II Fontaine's rings and Iwasawa theory 83
4 Preliminaries 85
4.1 Some of Fontaine's rings 85
4.1.1 Rings of characteristic p 85
4.1.2 Rings of characteristic 0 87
$4.2(\varphi, \Gamma)$-modules and Galois representations. 89
5 (φ, Γ)-modules and Galois cohomology 91
5.1 Galois Cohomology 91
5.2 The complex $C_{\varphi, \gamma}(K, V)$ 92
5.3 Tate's Euler-Poincaré formula. 95
5.3.1 The operator ψ. 95
5.3.2 $\quad D^{\psi=1}$ and $D /(\psi-1)$ 98
5.3.3 The Γ-module $D^{\psi=0}$. 100
5.3.4 Computation of Galois chomology groups 103
5.3.5 The Euler-Poincaré formula. 104
5.4 Tate's duality and residues 105
$6(\varphi, \Gamma)$-modules and Iwasawa theory 109
6.1 Iwasawa modules $H_{\mathrm{Iw}}^{i}(K, V)$ 109
6.1.1 Projective limits of cohomology groups 109
6.1.2 Reinterpretation in terms of measures 110
6.1.3 Twist by a character (à la Soulé) 111
6.2 Description of H_{Iw}^{i} in terms of $D(V)$ 112
6.3 Structure of $H_{\mathrm{Iw}}^{1}(K, V)$ 115
$7 \mathbb{Z}_{p}(1)$ and Kubota-Leopoldt zeta function 117
7.1 The module $D\left(\mathbb{Z}_{p}(1)\right)^{\psi=1}$ 117
7.2 Kummer theory 118
7.3 Coleman's power series 119
7.4 An explicit reciprocity law 122
7.5 Proof of the explicit reciprocity law 123
7.5.1 Strategy of proof of Theorem 7.4.1 123
7.5.2 Explicit formulas for cocyles 125
7.5.3 Tate's normalized trace maps 127
7.5.4 Applications to Galois cohomology 130
7.5.5 No $2 \pi i$ in \mathbb{C}_{p} ! 131
$8(\varphi, \Gamma)$-modules and p-adic L-functions 133
8.1 Tate-Sen's conditions 133
8.1.1 The conditions (TS1), (TS2) and (TS3) 133
8.1.2 Example : the field \mathbb{C}_{p} 134
8.2 Sen's method 136
8.2.1 Almost étale descent 136
8.2.2 Decompletion 138
8.2.3 Applications to p-adic representations 140
8.3 Overconvergent (φ, Γ)-modules 141
8.3.1 Overconvergent elements 141
8.3.2 Overconvergent representations 145
8.3.3 p-adic Hodge theory and (φ, Γ)-modules 147
8.3.4 A map of the land of the rings 148
8.4 Explicit reciprocity laws and p-adic L-functions 149
8.4.1 Galois cohomology of $B_{d R}$ 149
8.4.2 Bloch-Kato's dual exponential maps 150
8.4.3 The explicit reciprocity law 152
8.4.4 Cyclotomic elements and Coates-Wiles morphisms. 154
8.4.5 Kato's elements and p-adic L-functions of modular forms. 155

Part I

Classical p-adic L-functions: zeta functions and modular forms

Chapter 1

The p-adic zeta function of Kubota-Leopoldt

1.1 The Riemann zeta function at negative integers

We first recall the definitions of Riemann zeta function and the classical Gamma function:

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{+\infty} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1}, \text { if } \operatorname{Re}(s)>1 . \\
\Gamma(s) & =\int_{0}^{+\infty} e^{-t} t^{s} \frac{d t}{t}, \text { if } \operatorname{Re}(s)>0 .
\end{aligned}
$$

The Γ-function has the following properties:
(i) $\Gamma(s+1)=s \Gamma(s)$, which implies that Γ has a meromorphic continuation to \mathbb{C} with simple poles at negative integers and 0 .
(ii) $\Gamma(n)=(n-1)$! if $n \geq 1$.
(iii) $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}$, which implies that $\frac{1}{\Gamma(s)}$ is an entire(or holomorphic) function on \mathbb{C} with simple zeros at $-n$ for $n \in \mathbb{N}$.
(iv) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

4CHAPTER 1. THE P-ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

Then we have the following formulas:

$$
\begin{aligned}
n^{-s} & =\frac{1}{\Gamma(s)} \int_{0}^{+\infty} e^{-n t} t^{s} \frac{d t}{t} \\
\zeta(s) & =\frac{1}{\Gamma(s)} \int_{0}^{+\infty} \sum_{n=1}^{+\infty} e^{-n t} t^{s} \frac{d t}{t}=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} \frac{1}{e^{t}-1} t^{s} \frac{d t}{t}
\end{aligned}
$$

Lemma 1.1.1. If $f: \mathbb{R}_{+} \rightarrow \mathbb{C}$ is a \mathcal{C}^{∞}-function on \mathbb{R}_{+}, rapidly decreasing (i.e., $t^{n} f(t) \rightarrow 0$ when $t \rightarrow+\infty$ for all $n \in \mathbb{N}$), then

$$
L(f, s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} f(t) t^{s} \frac{d t}{t}, \operatorname{Re}(s)>0
$$

has an analytic continuation to \mathbb{C}, and

$$
L(f,-n)=(-1)^{n} f^{(n)}(0) .
$$

Proof. Choose a \mathcal{C}^{∞}-function ϕ on \mathbb{R}_{+}, such that $\phi(t)=1$ for $t \in[0,1]$ and $\phi(t)=0$ for $t \geq 2$.

Let $f=f_{1}+f_{2}$, where $f_{1}=\phi f, f_{2}=(1-\phi) f$. Then $\int_{0}^{\infty} f_{2}(t) t^{s} \frac{d t}{t}$ is holomorphic on \mathbb{C}, hence $L\left(f_{2}, s\right)$ is also holomorphic and $L\left(f_{2},-n\right)=0=$ $f_{2}^{(-n)}(0)$. Since, for $\operatorname{Re}(s)>0$,

$$
\begin{aligned}
L\left(f_{1}, s\right) & =\left.\frac{1}{\Gamma(s)}\left[f_{1}(t) \frac{t^{s}}{s}\right]\right|_{0} ^{+\infty}-\frac{1}{s \Gamma(s)} \int_{0}^{+\infty} f_{1}^{\prime}(t) t^{s+1} \frac{d t}{t} \\
= & -L\left(f_{1}^{\prime}(t), s+1\right)=(-1)^{n} L\left(f_{1}^{(n)}, s+n\right),
\end{aligned}
$$

we get analytic continuation for f_{1} and hence for f, moreover,

$$
\begin{gathered}
L(f,-n)=L\left(f_{1},-n\right)=(-1)^{n+1} L\left(f_{1}^{(n+1)}, 1\right) \\
=(-1)^{n+1} \int_{0}^{+\infty} f_{1}^{(n+1)}(t) d t=(-1)^{n} f_{1}^{(n)}(0)=(-1)^{n} f^{(n)}(0) .
\end{gathered}
$$

We now apply the above lemma to the function $f(t)=\frac{t}{e^{t}-1}$. Note that

$$
f(t)=\sum_{0}^{\infty} B_{n} \frac{t^{n}}{n!},
$$

where $B_{n} \in \mathbb{Q}$ is the n-th Bernoulli number with value:

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0 \cdots
$$

Since $f(t)-f(-t)=-t$, we have $B_{2 k+1}=0$ if $k \geq 1$. Now :

$$
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} f(t) t^{s-1} \frac{d t}{t}=\frac{1}{s-1} L(f, s-1)
$$

so we obtain the following result.
Theorem 1.1.2. (i) ζ has a meromorphic continuation to \mathbb{C}. It is holomorphic except for a simple pole at $s=1$ with residue $L(f, 0)=B_{0}=1$.
(ii) If $n \in \mathbb{N}$, then

$$
\begin{aligned}
\zeta(-n) & =\frac{-1}{n+1} L(f,-n-1)=\frac{(-1)^{n}}{n+1} f^{(n+1)}(0) \\
& =(-1)^{n} \frac{B_{n+1}}{n+1} \in \mathbb{Q} \\
(& \left.=-\frac{B_{n+1}}{n+1} \text { if } n \geq 2\right)
\end{aligned}
$$

Theorem 1.1.3 (Kummer). If p does not divide the numerators of $\zeta(-3)$, $\zeta(-5), \cdots, \zeta(2-p)$, then the class number of $\mathbb{Q}\left(u_{p}\right)$ is prime to p.

Remark. This theorem and a lot of extra work implies Fermat's Last Theorem for these regular primes. We will not prove it in these notes, but we will focus on the following result, also discovered by Kummer, which plays an important role in the proof.

Theorem 1.1.4 (Kummer's congruences). Let $a \geq 2$ be prime to p. Let $k \geq 1$. If $n_{1}, n_{2} \geq k$ such that $n_{1} \equiv n_{2} \bmod (p-1) p^{k-1}$, then

$$
\left(1-a^{1+n_{1}}\right) \zeta\left(-n_{1}\right) \equiv\left(1-a^{1+n_{2}}\right) \zeta\left(-n_{2}\right) \bmod p^{k} .
$$

$1.2 \quad p$-adic Banach spaces

Definition 1.2.1. A p-adic Banach space B is a \mathbb{Q}_{p}-vector space with a lattice $B^{0}\left(\mathbb{Z}_{p}\right.$-module $)$ separated and complete for the p-adic topology, i.e.,

$$
B^{0} \simeq{\underset{n \in \mathbb{N}}{ }}_{\lim ^{0}} B^{0} / p^{n} B^{0}
$$

For all $x \in B$, there exists $n \in \mathbb{Z}$, such that $x \in p^{n} B^{0}$. Define

$$
v_{B}(x)=\sup _{n \in \mathbb{N} \cup\{+\infty\}}\left\{n: x \in p^{n} B^{0}\right\} .
$$

It satisfies the following properties:

$$
\begin{aligned}
& v_{B}(x+y) \geq \min \left(v_{B}(x), v_{B}(y)\right), \\
& v_{B}(\lambda x)=v_{p}(\lambda)+v_{B}(x), \text { if } \lambda \in \mathbb{Q}_{p} .
\end{aligned}
$$

Then $\|x\|_{B}=p^{-v_{B}(x)}$ defines a norm on B, such that B is complete for $\left\|\|_{B}\right.$ and B^{0} is the unit ball.
Example 1.2.2. (i) $B=\mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}_{p}}}, B^{0}=\mathcal{O}_{\mathbb{C}_{p}}, v_{B}(x)=\left[v_{p}(x)\right] \in \mathbb{Z}$;
(ii) The space $B=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ of continuous functions on \mathbb{Z}_{p}. $B^{0}=$ $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is a lattice, and $v_{B}(f)=\inf _{x \in \mathbb{Z}} v_{p}(f(x)) \neq-\infty$ because \mathbb{Z}_{p} is compact.
(iii) Let $B=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right), B^{0}=C^{0}\left(\mathbb{Z}_{p}, \mathcal{O}_{\mathbb{C}_{p}}\right) ; v_{B}(f)=\inf _{x \in \mathbb{Z}}\left[v_{p}(f(x))\right]$.

Definition 1.2.3. A Banach basis of a p-adic Banach space B is a family $\left(e_{i}\right)_{i \in I}$ of elements of B, satisfying the following conditions:
(i) For every $x \in B, x=\sum_{i \in I} x_{i} e_{i}, x_{i} \in \mathbb{Q}_{p}$ in a unique way with $x_{i} \rightarrow 0$ when $i \rightarrow \infty$; equivalently for any C, the set $\left\{i \mid v_{p}\left(x_{i}\right) \leq C\right\}$ is a finite set.
(ii) $v_{B}(x)=\inf _{i \in I} v_{p}\left(x_{i}\right)$.

Theorem 1.2.4. A family $\left(e_{i}\right)_{i \in I}$ of elements of B is a Banach basis if and only if
(i) $e_{i} \in B^{0}$ for all i;
(ii) the set $\left(\bar{e}_{i}\right)_{i \in I}$ form a basis of $B^{0} / p B^{0}$ as a \mathbb{F}_{p}-vector space.

Proof. We leave the proof of the theorem as an exercise.
Let B and B^{\prime} be two p-adic Banach spaces with Banach basis $\left(e_{i}\right)_{i \in I}$ and $\left(f_{j}\right)_{j \in J}$ respectively, then $B \widehat{\bigotimes} B^{\prime}$ is a p-adic Banach space with Banach basis $\left(e_{i} \otimes f_{j}\right)_{(i, j) \in I \times J}$. Thus for all $x \in B \widehat{\bigotimes} B^{\prime}$,

$$
\begin{aligned}
x & =\sum_{i, j} x_{i, j} e_{i} \otimes f_{j} \quad\left(x_{i, j} \in \mathbb{Q}_{p}, x_{i, j} \rightarrow 0 \text { as }(i, j) \rightarrow \infty\right) \\
& =\sum_{j} y_{j} \otimes f_{j} \quad\left(y_{j} \in B, y_{j} \rightarrow 0 \text { as } j \rightarrow \infty\right) \\
& =\sum_{i} e_{i} \otimes z_{i} \quad\left(z_{i} \in B^{\prime}, z_{i} \rightarrow 0 \text { as } i \rightarrow \infty\right) .
\end{aligned}
$$

Exercise. $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)=\mathbb{C}_{p} \widehat{\bigotimes} \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.

1.3 Continuous functions on \mathbb{Z}_{p}

1.3.1 Mahler's coefficients

We have the binomial function:

$$
\binom{x}{n}= \begin{cases}1, & \text { if } n=0 \\ \frac{x(x-1) \cdots(x-n+1)}{n!}, & \text { if } n \geq 1\end{cases}
$$

Lemma 1.3.1. $\left.v_{\mathcal{C}^{0}}\binom{x}{n}\right)=0$.
Proof. Since $\binom{n}{n}=1, v_{\mathcal{C}^{0}}\left(\binom{x}{n}\right) \leq 0$.
If $x \in \mathbb{N}$, then $\binom{x}{n} \in \mathbb{N}$ implies $v_{p}\left(\binom{x}{n}\right) \geq 0$. Hence for all $x \in \mathbb{Z}_{p}$, $v_{p}\left(\binom{x}{n}\right) \geq 0$ because \mathbb{N} is dense in \mathbb{Z}_{p}.

For all $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, we write

$$
f^{[0]}=f, \quad f^{[k-1]}(x)=f^{[k]}(x+1)-f^{[k]}(x)
$$

and write the Mahler's coefficient

$$
a_{n}(f)=f^{[n]}(0) .
$$

Hence:

$$
\begin{aligned}
f^{[n]}(x) & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(x+n-i), \\
a_{n}(f) & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(n-i) .
\end{aligned}
$$

Theorem 1.3.2 (Mahler). If $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, then
(i) $\lim _{n \rightarrow \infty} v_{p}\left(a_{n}(f)\right)=+\infty$,
(ii) For all $x \in \mathbb{Z}_{p}, f(x)=\sum_{n=0}^{\infty} a_{n}(f)\binom{x}{n}$,
(iii) $v_{\mathcal{C}^{0}}(f)=\inf v_{p}\left(a_{n}(f)\right)$.

Proof. Let $\ell_{\infty}=\left\{a=\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{Q}_{p}\right.$ bounded $\}, v_{\ell_{\infty}}(a)=\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)$. Then

- $f \mapsto a(f)=\left(a_{n}(f)\right)_{n \in \mathbb{N}}$ is a continuous map from $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ to ℓ_{∞}. and $v_{\ell_{\infty}}(a(f)) \geq v_{C^{0}}(f)$.
- The space $\ell_{\infty}^{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \rightarrow 0\right.$, as $\left.n \rightarrow \infty\right\}$ is a closed subspace of ℓ_{∞} and $B=\left\{f: a(f) \in \ell_{\infty}^{0}\right\}$ is a close subspace of $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.
- For all $a \in \ell_{\infty}^{0}$,

$$
f_{a}=\sum_{n=0}^{+\infty} a_{n}\binom{x}{n} \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)
$$

because the series converges uniformly. Moreover, $v_{\mathcal{C}^{0}}\left(f_{a}\right) \geq v_{\ell_{\infty}}(a)$ and as $\binom{x+1}{n+1}-\binom{x}{n+1}=\binom{x}{n}$,

$$
f_{a}^{[k]}=\sum_{n=0}^{+\infty} a_{n+k}\binom{x}{n} .
$$

Hence we have: $a_{k}(f)=f^{[k]}(0)=a_{k}$, which implies $a\left(f_{a}\right)=a$.

- $f \mapsto a(f)$ is injective. Since $a(f)=0$ implies $f(n)=0$ for all $n \in \mathbb{N}$. Hence $f=0$ by the density of \mathbb{N} in \mathbb{Z}_{p}.

Now for $f \in B, a(f) \in \ell_{\infty}^{0}$ implies $f-f_{a(f)}=0$ because $a\left(f-f_{a(f)}\right)=$ $a(f)-a(f)=0$ and a is injective. So $f \in B$ implies that f satisfies (ii). Moreover, since

$$
v_{\ell_{\infty}}(a(f)) \geq v_{\mathcal{C}^{0}}(f)=v_{\mathcal{C}^{0}}\left(f_{a(f)}\right) \geq v_{\ell_{\infty}}(a(f)),
$$

(iii) is also true. It remains to show that:

Claim: $B=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.
(a) First proof. We have a lemma:

Lemma 1.3.3. If $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, then there exists $k \in \mathbb{N}$ such that

$$
v_{\mathcal{C}^{0}}\left(f^{\left[p^{k}\right]}\right) \geq v_{\mathcal{C}^{0}}(f)+1 .
$$

Proof. We have
$f^{\left[p^{k}\right]}(x)=f\left(x+p^{k}\right)-f(x)+\sum_{i=1}^{p^{k}-1}(-1)^{i}\binom{p^{k}}{i} f\left(x+p^{k}-i\right)+\left(1+(-1)^{p^{k}}\right) f(x)$.
Now $v_{p}\left(\binom{p^{k}}{i}\right) \geq 1$, if $1 \leq i \leq p^{k}-1$ et $v_{p}\left(1+(-1)^{p^{k}}\right) \geq 1$. Since \mathbb{Z}_{p} is compact, f is uniformly continuous. For every c, there exists N, when $v_{p}(x-y) \geq N$, we have $v_{p}(f(x)-f(y)) \geq c$. It gives the result for $k=N$.

First proof of the Claim. Repeat the lemma: for every $c=v_{\mathcal{C}^{0}}(f)+k$, there exists an N, such that $v_{\mathcal{C}^{0}}\left(f^{[N]}\right) \geq c$. Hence, for all $n \geq N, v_{p}\left(a_{n}(f)\right) \geq c$.

1.3.2 Locally constant functions.

Choose a $z \in \mathbb{C}_{p}$, such that $v_{p}(z-1)>0$. Then

$$
f_{z}(x)=\sum_{n=0}^{+\infty}\binom{x}{n}(z-1)^{n} \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)
$$

Note $k \in \mathbb{N}, f_{z}(k)=z^{k}$. So we write, $f_{z}(x)=z^{x}$ and we have $z^{x+y}=z^{x} z^{y}$.
Example 1.3.4. (i) $z^{\frac{1}{2}}=\sum_{n=0}^{+\infty}\binom{\frac{1}{2}}{n}(z-1)^{n} . \quad z=\frac{16}{9}, z-1=\frac{7}{9}$, the series converges in \mathbb{R} to $\frac{4}{3}$, and converges in \mathbb{Q}_{7} to $-\frac{4}{3}$.
(ii) If z is a primitive p^{n}-th root of 1 , then

$$
v_{p}(z-1)=\frac{1}{(p-1) p^{n-1}}>0
$$

Note that $z^{x+p^{n}}=z^{x}$ for all x, then z^{x} is locally constant ($\operatorname{constant} \bmod p^{n} \mathbb{Z}_{p}$). The characteristic function of $i+p^{n} \mathbb{Z}_{p}$ is given by

$$
1_{i+p^{n} \mathbb{Z}_{p}}(x)=\frac{1}{p^{n}} \sum_{z^{p^{n}}=1} z^{-i} z^{x}
$$

since

$$
\sum_{z^{p^{n}}=1} z^{x}= \begin{cases}p^{n} & \text { if } x \in p^{n} \mathbb{Z}_{p} \\ 0 & \text { if not }\end{cases}
$$

Lemma 1.3.5. The set of locally constant functions $L C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \subset B$.
Proof. By compactness of \mathbb{Z}_{p}, a locally constant function is a linear combination of $1_{i+p^{n} \mathbb{Z}^{p}} z^{x}, z \in \boldsymbol{\mu}_{p^{\infty}}$, thus a linear combination of z^{x}. But $a_{n}\left(z^{x}\right)=$ $(z-1)^{n}$ goes to 0 , when n goes to ∞, hence $z^{x} \in B$.

Lemma 1.3.6. $L C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ is dense in $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.
Proof. For every $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, let

$$
f_{k}=\sum_{i=0}^{p^{k}-1} f(i) 1_{i+p^{k} \mathbb{Z}_{p}}
$$

Then $f_{k} \rightarrow f$ in \mathcal{C}^{0} because f is uniformly continuous.
Second proof of the Claim. By the above two lemmas, $L C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \subset B \subset$ $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right), B$ is closed and $L C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ is dense in $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, hence $B=$ $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.

1.4 Measures on \mathbb{Z}_{p}

1.4.1 The Amice transform

Definition 1.4.1. A measure μ on \mathbb{Z}_{p} with values in a p-adic Banach space B is a continuous linear map $f \mapsto \int_{\mathbb{Z}_{p}} f(x) \mu=\int_{\mathbb{Z}_{p}} f(x) \mu(x)$ from $C^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ to B.

Remark. (i) If $L \subset \mathbb{C}_{p}$ is a closed subfield and B is an L-vector space, then μ extends by continuity and L-linearity to $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, L\right)=L \widehat{\bigotimes} C^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$.
(ii) We denote $\mathcal{D}_{0}\left(\mathbb{Z}_{p}, B\right)$ the set of the measure on \mathbb{Z}_{p} with values in B, then $\mathcal{D}_{0}\left(\mathbb{Z}_{p}, B\right)=\mathcal{D}_{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \widehat{\otimes} B$.

Definition 1.4.2. The Amice transform of a measure μ is defined to be the map:

$$
\mu \mapsto A_{\mu}(T)=\int_{\mathbb{Z}_{p}}(1+T)^{x} \mu(x)=\sum_{n=0}^{+\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{x}{n} \mu .
$$

Lemma 1.4.3. If $v_{p}(z-1)>0, A_{\mu}(z-1)=\int_{\mathbb{Z}_{p}} z^{x} \mu(x)$.

Proof. Since $z^{x}=\sum_{n=0}^{+\infty}(z-1)^{n}\binom{x}{n}$ with normal convergence in $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, one can exchange \sum and \int.
Definition 1.4.4. The valuation on \mathcal{D}_{0} is

$$
v_{\mathcal{D}_{0}}(\mu)=\inf _{f \neq 0}\left(v_{p}\left(\int_{\mathbb{Z}_{p}} f \mu\right)-v_{\mathcal{C}^{0}}(f)\right) .
$$

Theorem 1.4.5. The map $\mu \mapsto A_{\mu}$ is an isometry from $\mathcal{D}_{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ to the set $\left\{\sum_{n=0}^{+\infty} b_{n} T^{n}, b_{n}\right.$ bounded, and $\left.b_{n} \in \mathbb{Q}_{p}\right\}$ with the valuation $v\left(\sum_{n=0}^{+\infty} b_{n} T^{n}\right)=$ $\inf _{n \in \mathbb{N}} v_{p}\left(b_{n}\right)$.
Proof. On one hand, for all $\mu \in \mathcal{D}_{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, write $A_{\mu}(T)=\sum_{n=0}^{+\infty} b_{n}(\mu) T^{n}$, then $b_{n}(\mu)=\int_{\mathbb{Z}_{p}}\binom{x}{n} \mu$. Since $v_{\mathcal{C}^{0}}\left(\binom{x}{n}\right)=0$ by Lemma 1.3.1,

$$
v_{p}\left(b_{n}(\mu)\right) \geq v_{\mathcal{D}_{0}}(\mu)+v_{\mathcal{C}^{0}}\left(\binom{x}{n}\right) \geq v_{\mathcal{D}_{0}}(\mu)
$$

for all n, hence $v\left(A_{\mu}\right) \geq v_{\mathcal{D}_{0}}(\mu)$.
On the other hand, if $\left(b_{n}\right)_{n \in \mathbb{N}}$ is bounded, $f \mapsto \sum_{n=0}^{+\infty} b_{n} a_{n}(f)$ (by Mahler's theorem, $\left.a_{n}(f) \rightarrow 0\right)$ gives a measure μ_{b} whose Amice transform is

$$
A_{\mu_{b}}(T)=\sum_{n=0}^{+\infty} T^{n} \int_{\mathbb{Z} p}\binom{x}{n} \mu_{b}=\sum_{n=0}^{+\infty} T^{n}\left(\sum_{i=0}^{+\infty} b_{i} a_{i}\left(\binom{x}{n}\right)\right)=\sum_{n=0}^{+\infty} b_{n} T^{n}
$$

since

$$
a_{n}\left(\binom{x}{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } i=n \\
0 & \text { otherwise } .
\end{array}\right.
$$

Hence

$$
\begin{aligned}
v_{p}\left(\sum_{n=0}^{+\infty} b_{n} a_{n}(f)\right) & \geq \min _{n}\left(v_{p}\left(b_{n}\right)+v_{p}\left(a_{n}(f)\right)\right) \\
& \geq \min _{n}\left(v_{p}\left(b_{n}\right)\right)+\min _{n}\left(a_{n}(f)\right) \\
& =v\left(\sum b_{n} T^{n}\right)+v_{\mathcal{C}^{0}}(f) \\
& =v\left(A_{\mu}\right)+v_{\mathcal{C}^{0}}(f)
\end{aligned}
$$

Thus $v_{\mathcal{D}_{0}}\left(\mu_{b}\right) \geq v\left(A_{\mu}\right)$. Then we have $v\left(A_{\mu}\right)=v_{\mathcal{D}_{0}}(\mu)$.

12CHAPTER 1. THE P-ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

By Lemma 1.3.6, we know that locally constant functions are dense in $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$. Explicitly, for all $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, the locally constant functions $f_{n}=\sum_{i=0}^{p^{n}-1} f(i) 1_{i+p^{n} \mathbb{Z}_{p}} \rightarrow f$ in \mathcal{C}^{0}.

Now if $\mu \in \mathcal{D}_{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, set $\mu\left(i+p^{n} \mathbb{Z}_{p}\right)=\int_{\mathbb{Z}_{p}} 1_{i+p^{n} \mathbb{Z}_{p}} \mu$. Then $\int_{\mathbb{Z}_{p}} f \mu$ is given by the following "Riemann sums"

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f \mu=\lim _{n \rightarrow \infty} \sum_{i=0}^{p^{n}-1} f(i) \mu\left(i+p^{n} \mathbb{Z}_{p}\right) \tag{1.1}
\end{equation*}
$$

Note that $v_{p}\left(\mu\left(i+p^{n} \mathbb{Z}_{p}\right)\right) \geq v_{\mathcal{D}_{0}}(\mu)$.
Theorem 1.4.6. If μ is an additive bounded function on compact open subsets of \mathbb{Z}_{p} (by compactness of \mathbb{Z}_{p} is a finite disjoint union of $i+p^{n} \mathbb{Z}_{p}$ for some n), then μ extends uniquely as a measure on \mathbb{Z}_{p} via (1.1).

Proof. Since μ is an additive function on compact open subsets, μ is linear on locally constant functions. And μ is bounded, hence μ is continuous for $v_{\mathcal{C}^{0}}$. As the locally constant functions are dense in $\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, we have μ as a measure on \mathbb{Z}_{p}.

1.4.2 examples of measures on \mathbb{Z}_{p} and of operations on measures.

Example 1.4.7. Haar measure: $\mu\left(\mathbb{Z}_{p}\right)=1$ and μ is invariant by translation. We must have $\mu\left(i+p^{n} \mathbb{Z}_{p}\right)=\frac{1}{p^{n}}$ which is not bounded. Hence, there exists no Haar measure on \mathbb{Z}_{p}.

Example 1.4.8. Dirac measure: For $a \in \mathbb{Z}_{p}$, we define δ_{a} by $\int_{\mathbb{Z}_{p}} f(x) \delta_{a}=$ $f(a)$. The Amice transform of δ_{a} is $A_{\delta_{a}}(T)=(1+T)^{a}$.

Example 1.4.9. Multiplication of a measure by a continuous function. For $\mu \in \mathcal{D}_{0}, f \in \mathcal{C}^{0}$, we define the measure $f \mu$ by

$$
\int_{\mathbb{Z}_{p}} g \cdot f \mu=\int_{\mathbb{Z}_{p}} f(x) g(x) \mu
$$

for all $g \in \mathcal{C}^{0}$.
(i) Let $f(x)=x$, since

$$
x\binom{x}{n}=(x-n+n)\binom{x}{n}=(n+1)\binom{x}{n+1}+n\binom{x}{n},
$$

the Amice transform is

$$
\begin{aligned}
A_{x \mu} & =\sum_{n=0}^{+\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{x}{n} x \mu \\
& =\sum_{n=0}^{+\infty} T^{n}\left[(n+1) \int_{\mathbb{Z}_{p}}\binom{x}{n+1} \mu+n \int_{\mathbb{Z}_{p}}\binom{x}{n} \mu\right] \\
& =(1+T) \frac{d}{d T} A_{\mu} .
\end{aligned}
$$

(ii) Let $f(x)=z^{x}, v_{p}(z-1)>0$. For any $y, v_{p}(y-1)>0$, then

$$
\int_{\mathbb{Z}_{p}} y^{x}\left(z^{x} \mu\right)=\int_{\mathbb{Z}_{p}}(y z)^{x} \mu=A_{\mu}(y z-1)
$$

which implies that

$$
A_{z^{x} \mu}(T)=A_{\mu}((1+T) z-1)
$$

(iii) The restriction to a compact open set X of \mathbb{Z}_{p} : it is nothing but the multiplication by 1_{X}. If $X=i+p^{n} \mathbb{Z}_{p}$, then $1_{i+p^{n} \mathbb{Z}_{p}}(x)=p^{-n} \sum_{z^{p^{n}}=1} z^{-i} z^{x}$, hence

$$
A_{\operatorname{Res}_{i+p^{n} \mathbb{Z}_{p}} \mu}(T)=p^{-n} \sum_{z^{p^{n}}=1} z^{-i} A_{\mu}((1+T) z-1)
$$

Example 1.4.10. Actions of φ and ψ. For $\mu \in \mathcal{D}_{0}$, we define the action of φ on μ by

$$
\int_{\mathbb{Z}_{p}} f(x) \varphi(\mu)=\int_{\mathbb{Z}_{p}} f(p x) \mu
$$

Hence

$$
A_{\varphi(\mu)}(T)=\sum_{n=0}^{+\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{p x}{n} \mu=A_{\mu}\left((1+T)^{p}-1\right)=\varphi\left(A_{\mu}(T)\right)
$$

where $\varphi: T \mapsto(1+T)^{p}-1$ (compare this formula with (φ, Γ)-modules). We define the action of ψ by

$$
\int_{\mathbb{Z}_{p}} f(x) \psi(\mu)=\int_{\mathbb{Z}_{p}} f\left(\frac{x}{p}\right) \mu
$$

Then $A_{\psi(\mu)}=\psi\left(A_{\mu}\right)$ where

$$
\psi(F)\left((1+T)^{p}-1\right)=\frac{1}{p} \sum_{z^{p}=1} F((1+T) z-1) .
$$

The actions φ and ψ satisfy the following properties:
(i) $\psi \circ \varphi=\mathrm{Id}$;
(ii) $\psi(\mu)=0 \Leftrightarrow \mu$ has a support in \mathbb{Z}_{p}^{*};
(iii) $\operatorname{Res}_{\mathbb{Z}_{p}^{*}}(\mu)=(1-\varphi \psi) \mu$.

The map ψ is very important in the theory of (φ, Γ)-modules.
Example 1.4.11. Action of Γ. Let $\Gamma=\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}_{p}\right)$. Let $\chi: \Gamma \xrightarrow{\sim} \mathbb{Z}_{p}^{*}$ be the cyclotomic character. For $\gamma \in \Gamma$ and $\mu \in \mathcal{D}_{0}$, we let $\gamma \mu$ be given by

$$
\int_{\mathbb{Z}_{p}} f(x) \gamma \mu=\int_{\mathbb{Z}_{p}} f(\chi(\gamma) x) \mu .
$$

One can verify that $A_{\gamma \mu}(T)=A_{\mu}\left((1+T)^{\chi(\gamma)}-1\right)=\gamma\left(A_{\mu}(T)\right)$ for $\gamma(T)=$ $(1+T)^{\chi(\gamma)}-1$. (Compare this formula with (φ, Γ)-modules.)

For all $\gamma \in \Gamma, \gamma$ commutes with ϕ and ψ.
Example 1.4.12. Convolution $\lambda * \mu$. Let λ, μ be two measures, their convolution $\lambda * \mu$ is defined by

$$
\int_{\mathbb{Z}_{p}} f(x) \lambda * \mu=\int_{\mathbb{Z}_{p}}\left(\int_{\mathbb{Z}_{p}} f(x+y) \mu(x)\right) \lambda(y) .
$$

Here we have to verify $y \mapsto \int_{\mathbb{Z}_{p}} f(x+y) \mu(x) \in \mathcal{C}^{0}$, which is a direct consequence of the fact f is uniformly continuous.

Let $f(x)=z^{x}, v_{p}(z-1)>0$, then

$$
\int_{\mathbb{Z}_{p}} z^{x} \lambda * \mu=\int_{\mathbb{Z}_{p}} z^{x} \mu(x) \int_{\mathbb{Z}_{p}} z^{y} \lambda(y),
$$

thus $A_{\lambda * \mu}=A_{\lambda} A_{\mu}$.

1.5 The p-adic zeta function

1.5.1 Kummer's congruences.

Lemma 1.5.1. For $a \in \mathbb{Z}_{p}^{*}$, there exists a measure $\lambda_{a} \in \mathcal{D}_{0}$ such that

$$
A_{\lambda_{a}}=\int_{\mathbb{Z}_{p}}(1+T)^{x} \lambda_{a}=\frac{1}{T}-\frac{a}{(1+T)^{a}-1} .
$$

Proof. This follows from Theorem 1.4.5 and the fact

$$
\frac{a}{(1+T)^{a}-1}=\frac{a}{\sum_{n=1}^{\infty}\binom{a}{n} T^{n}}=\frac{1}{T} \cdot \frac{1}{1+\sum_{n=2}^{\infty} a^{-1}\binom{a}{n} T^{n-1}} \in \frac{1}{T}+\mathbb{Z}_{p}[[T]]
$$

since $a^{-1}\binom{a}{n} \in \mathbb{Z}_{p}$. Moreover, we have $v_{\mathcal{D}_{0}}\left(\lambda_{a}\right)=0$.
Proposition 1.5.2. For every $n \in \mathbb{N}, \int_{\mathbb{Z}_{p}} x^{n} \lambda_{a}=(-1)^{n}\left(1-a^{1+n}\right) \zeta(-n)$.
Proof. For $a \in \mathbb{R}_{+}^{*}$, for $T=e^{t}-1$, let

$$
f_{a}(t)=A_{\lambda_{a}}(T)=\frac{1}{e^{t}-1}-\frac{a}{e^{a t}-1},
$$

then f_{a} is in \mathcal{C}^{∞} on \mathbb{R}^{+}and rapidly decreasing. Hence

$$
\begin{aligned}
& L\left(f_{a}, s\right)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} f_{a}(t) t^{s} \frac{d t}{t}=\left(1-a^{1-s}\right) \zeta(s) \\
& f_{a}^{n}(0)=(-1)^{n} L\left(f_{a},-n\right)=(-1)^{n}\left(1-a^{1+n}\right) \zeta(-n)
\end{aligned}
$$

The identity $f_{a}^{n}(0)=(-1)^{n}\left(1-a^{1+n}\right) \zeta(-n)$ is algebric, so is true for all a, hence even on \mathbb{Z}_{p}^{*}. Thus

$$
\int_{\mathbb{Z}_{p}} x^{n} \lambda_{a}=\left.\left(\frac{d}{d t}\right)^{n}\left(\int_{\mathbb{Z}_{p}} e^{t x} \lambda_{a}\right)\right|_{t=0}=\left.\left(\frac{d}{d t}\right)^{n} A_{\lambda_{a}}\left(e^{t}-1\right)\right|_{t=0}=f_{a}^{(n)}(0)
$$

Corollary 1.5.3. For $a \in \mathbb{Z}_{p}^{*}, k \geq 1$ ($k \geq 2$ if $p=2$), $n_{1}, n_{2} \geq k, n_{1} \equiv$ $n_{2} \bmod (p-1) p^{k-1}$, then

$$
v_{p}\left(\left(1-a^{1+n_{1}}\right) \zeta\left(-n_{1}\right)-\left(1-a^{1+n_{2}}\right) \zeta\left(-n_{2}\right)\right) \geq k .
$$

Proof. The left hand side $L H S=v_{p}\left(\left(1-a^{1+n_{1}}\right) \zeta\left(-n_{1}\right)-\left(1-a^{1+n_{2}}\right) \zeta\left(-n_{2}\right)\right)$ is

$$
v_{p}\left(\int_{\mathbb{Z}_{p}}\left(x^{n_{1}}-x^{n_{2}}\right) \lambda_{a}\right) \geq v_{\mathcal{D}_{0}}\left(\lambda_{a}\right)+v_{\mathcal{C}^{0}}\left(x^{n_{1}}-x^{n_{2}}\right)
$$

From the proof of Lemma 1.5.1, $v_{\mathcal{D}_{0}}\left(\lambda_{a}\right)=0$, thus LHS $\geq v_{\mathcal{C}^{0}}\left(x^{n_{1}}-x^{n_{2}}\right)$. It suffices to show $v_{\mathcal{C}^{0}}\left(x^{n_{1}}-x^{n_{2}}\right) \geq k$. There are two cases:

If $x \in p \mathbb{Z}_{p}$, then $v_{p}\left(x^{n_{1}}\right) \geq k$ and $v_{p}\left(x^{n_{2}}\right) \geq k$ since $n_{1}, n_{2} \geq k$.
If $x \in \mathbb{Z}_{p}^{*}, v_{p}\left(x^{n_{1}}-x^{n_{2}}\right) \geq k$ because $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{*}$ has order $(p-1) p^{k-1}$ and $n_{1}-n_{2}$ is divisible by $(p-1) p^{k-1}$.

Remark. The statement is not clean because of $x \in p \mathbb{Z}_{p}$.

1.5.2 Restriction to \mathbb{Z}_{p}^{*}.

Lemma 1.5.4. $\psi\left(\frac{1}{T}\right)=\frac{1}{T}$.
Proof. Let $F(T)=\psi\left(\frac{1}{T}\right)$, then

$$
\begin{aligned}
F\left((1+T)^{p}-1\right) & =\frac{1}{p} \sum_{z^{p}=1} \frac{1}{(1+T) z-1} \\
& =\frac{-1}{p} \sum_{z^{p}=1} \sum_{n=0}^{+\infty}((1+T) z)^{n} \\
& =-\sum_{n=0}^{+\infty}(1+T)^{p n}=\frac{1}{(1+T)^{p}-1} .
\end{aligned}
$$

Proposition 1.5.5. $\psi\left(\lambda_{a}\right)=\lambda_{a}$.
Proof. We only need to show the same thing on the Amice transform, but

$$
A_{\lambda_{a}}(T)=\frac{1}{T}-\frac{a}{(1+T)^{a}-1}=\frac{1}{T}-a \cdot \gamma_{a}\left(\frac{1}{T}\right)
$$

where $\gamma_{a} \in \Gamma$ is the inverse of a by $\chi: \Gamma \rightarrow \mathbb{Z}_{p}^{*}$, i.e., $\chi\left(\gamma_{a}\right)=a$. Since ψ and γ_{a} commutes and $\psi\left(\frac{1}{T}\right)=\frac{1}{T}$, we have

$$
\psi\left(A_{\lambda_{a}}\right)=\frac{1}{T}-a \gamma_{a}\left(\frac{1}{T}\right)=A_{\lambda_{a}} .
$$

Corollary 1.5.6. (i) $\operatorname{Res}_{\mathbb{Z}_{p}^{*}}\left(\lambda_{a}\right)=(1-\phi \psi) \lambda_{a}=(1-\phi) \lambda_{a}$,
(ii) $\int_{\mathbb{Z}_{p}^{*}} x^{n} \lambda_{a}=\int_{\mathbb{Z}_{p}} x^{n}(1-\phi) \lambda_{a}=(-1)^{n}\left(1-a^{n+1}\right)\left(1-p^{n}\right) \zeta(-n)$.

Remark. The factor $\left(1-p^{n}\right)$ is the Euler factor of the zeta function at p.
Theorem 1.5.7. For $i \in \mathbb{Z} /(p-1) \mathbb{Z}$ (or $i \in \mathbb{Z} / 2 \mathbb{Z}$ if $p=2$), there exists a unique function $\zeta_{p, i}$, analytic on \mathbb{Z}_{p} if $i \neq 1$, and $(s-1) \zeta_{p, 1}(s)$ is analytic on \mathbb{Z}_{p}, such that $\zeta_{p, i}(-n)=\left(1-p^{n}\right) \zeta(-n)$ if $n \equiv-i \bmod p-1$ and $n \in \mathbb{N}$.
Remark. (i) If $i \equiv 0 \bmod 2$, then $\zeta_{p, i}=0$ since $\zeta(-n)=0$ for n even and ≥ 2;
(ii) To get p-adic continuity, one has to modify ζ by some "Euler factor at p ".
(iii) Uniqueness is trivial because \mathbb{N} is infinite and \mathbb{Z}_{p} is compact.
(iv) The existence is kind of a miracle. Its proof relies on Leopoldt's Γ-transform.

1.5.3 Leopoldt's Γ-transform.

Lemma 1.5.8. (i) Every $x \in \mathbb{Z}_{p}^{*}$ can be written uniquely as $x=\omega(x)\langle x\rangle$, with

$$
\omega(x) \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)=\left\{\begin{array}{ll}
\{ \pm 1\} & \text { if } p=2, \\
\boldsymbol{\mu}_{p-1}, & \text { if } p \neq 2
\end{array} \quad \text { and } \quad\langle x\rangle \in 1+2 p \mathbb{Z}_{p}\right.
$$

(ii) $\omega(x y)=\omega(x) \omega(y),\langle x y\rangle=\langle x\rangle\langle y\rangle$.

Proof. If $p=2$, it is obvious.

$$
\text { If } p \neq 2, \omega(x)=\lim _{n \rightarrow \infty} x^{p^{n}}=[\bar{x}]
$$

Remark. (i) ω is the so-called Teichmüller character;
(ii) $\langle x\rangle=\exp (\log (x))$;
(iii) $x^{n}=\omega(x)^{n}\langle x\rangle^{n}$, here $\langle x\rangle^{n}$ is the restriction to \mathbb{N} of $\langle x\rangle^{s}$ which is continuous in $s, \omega(x)^{n}$ is periodic of period $p-1$, which is not p-adically continuous.

Proposition 1.5.9. If λ is a measure on $\mathbb{Z}_{p}^{*}, u=1+2 p$, then there exists a measure $\Gamma_{\lambda}^{(i)}$ on \mathbb{Z}_{p} (Leopoldt's transform) such that

$$
\int_{\mathbb{Z}_{p}^{*}} \omega(x)^{i}\langle x\rangle^{s} \lambda(x)=\int_{\mathbb{Z}_{p}} u^{s y} \Gamma_{\lambda}^{(i)}(y)=A_{\Gamma_{\lambda}^{(i)}}\left(u^{s}-1\right)
$$

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}^{*}} \omega(x)^{i}\langle x\rangle^{s} \lambda(x) & =\sum_{\varepsilon \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)} \omega(\varepsilon)^{i} \int_{\varepsilon+2 p \mathbb{Z}_{p}}\langle x\rangle^{s} \lambda(x) \\
= & \sum_{\varepsilon \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)} \omega(\varepsilon)^{i} \int_{1+2 p \mathbb{Z}_{p}}\langle x \varepsilon\rangle^{s} \gamma_{\varepsilon^{-1}} \cdot \lambda(x),
\end{aligned}
$$

where $\gamma_{\varepsilon} \in \Gamma$ is such that $\chi\left(\gamma_{\varepsilon}\right)=\varepsilon$. We have a isomorphism

$$
\begin{aligned}
\alpha: 1+2 p \mathbb{Z}_{p} & \simeq \mathbb{Z}_{p} \\
x & \mapsto y=\frac{\log (x)}{\log (u)} .
\end{aligned}
$$

Then

$$
\int_{\mathbb{Z}_{p}} f(y) \alpha_{*}\left(\gamma_{\varepsilon^{-1}} \lambda\right)=\int_{1+2 p \mathbb{Z}_{p}} f(\alpha(x)) \gamma_{\varepsilon^{-1}} \lambda .
$$

Now $\langle x\rangle^{s}=\exp (s \log x)=\exp (s \log u y)=u^{s y}$ and hence

$$
\sum_{\varepsilon \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)} \omega(\varepsilon)^{i} \int_{1+2 p \mathbb{Z}_{p}}\langle x \varepsilon\rangle^{s} \lambda(x)=\sum_{\varepsilon \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)} \omega(\varepsilon)^{i} \int_{\mathbb{Z}_{p}} u^{s y} \alpha_{*}\left(\gamma_{\varepsilon^{-1}} \cdot \lambda\right),
$$

we just set $\Gamma_{\lambda}^{(i)}=\sum_{\varepsilon \in \boldsymbol{\mu}\left(\mathbb{Q}_{p}\right)} \omega(\varepsilon)^{i} \alpha_{*}\left(\gamma_{\varepsilon^{-1}} \cdot \lambda\right)$.

Definition 1.5.10.

$$
\zeta_{p, i}(s)=\frac{-1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{-i}\langle x\rangle^{-s} \lambda_{a}(x)
$$

Proof of Theorem 1.5.7. If $n \equiv-i \bmod p-1$, then

$$
\begin{aligned}
\zeta_{p, i}(-n) & =\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1+n}} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{-i}\langle x\rangle^{n} \lambda_{a}(x) \\
& =\frac{1}{1-\omega(a)^{1+n}\langle a\rangle^{1+n}} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{n}\langle x\rangle^{n} \lambda_{a}(x) \\
& =\left(1-p^{-n}\right) \zeta(-n) .
\end{aligned}
$$

The function $\zeta_{p, i}$ is analytic if $\omega(a)^{1-i} \neq 1$, which can be achieved if $i \neq 1$. If $i=1$, there is a pole at $s=1$.

Remark. (i) A theorem of Mazur and Wiles (originally the Main conjecture of Iwasawa theory) describes the zeros of $\zeta_{p, i}(s)$ in terms of ideal class groups of $\mathbb{Q}_{p}\left(\boldsymbol{\mu}_{p^{n}}\right), n \in \mathbb{N}$.
(ii) Main open question: For $i \equiv 1 \bmod 2$, can $\zeta_{p, i}(k)=0$, if $k>1$ and $k \in \mathbb{N}$?

The case $k=1$ is known. In this case, $\zeta_{p, i}(1)$ is a linear combination with coefficients in $\overline{\mathbb{Q}}^{\times}$of \log of algebraic numbers, hence by transcendental number theory (Baker's theorem), $\zeta_{p, i}(1) \neq 0$.

$1.6 \quad \mathcal{C}^{k}$ functions

1.6.1 Definition.

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ be a given function. We define

$$
\begin{aligned}
f^{\{0\}}(x) & =f(x) \\
f^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right) & \\
& =\frac{1}{h_{i}}\left(f^{\{i-1\}}\left(x+h_{i}, h_{1}, \cdots, h_{i-1}\right)-f^{\{i-1\}}\left(x, h_{1}, \cdots, h_{i-1}\right)\right) \\
& =\frac{1}{h_{1} \cdots h_{i}}\left(\sum_{I \subset\{1, \cdots, i\}}(-1)^{i-|I|} f\left(x+\sum_{j \in I} h_{j}\right)\right)
\end{aligned}
$$

One notes that $f^{\{i\}}$ is the analogue of the usual derivation in $\mathcal{C}(\mathbb{R}, \mathbb{C})$. In fact, if $f: \mathbb{R} \rightarrow \mathbb{C}$ is in \mathcal{C}^{k} and $i \leq k$, define $f^{\{i\}}$ by the above formula, then

$$
f^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right)=\int_{[0,1]^{i}} f^{(i)}\left(x+t_{1} h_{1}+\cdots+t_{i} h_{i}\right) d t_{1} \cdots d t_{i}
$$

hence $f^{\{i\}}$ is continuous and $f^{\{i\}}(x, 0, \cdots, 0)=f^{(i)}(x)$.
Definition 1.6.1. A function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\left(\right.$ or $\left.\mathbb{C}_{p}\right)$ is in \mathcal{C}^{k} if $f^{\{i\}}$ can be extended as a continuous function on \mathbb{Z}_{p}^{i+1} for all $i \leq k$.

Remark. If $f \in \mathcal{C}^{0}$ and $h_{1}, \cdots, h_{i} \neq 0$, then we have:

$$
v_{p}\left(f^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right)\right) \geq v_{\mathcal{C}^{0}}(f)-\sum_{j=1}^{i} v_{p}\left(h_{j}\right)
$$

Example 1.6.2. The definition of \mathcal{C}^{k} here is different than the usual case.
Here is an example. For all x in $\mathbb{Z}_{p}, x=\sum_{n=0}^{+\infty} p^{n} a_{n}(x)$ with $a_{n}(x) \in\{0,1, \cdots, p-$ 1\}. Let $f(x)=\sum_{n=0}^{+\infty} p^{2 n} a_{n}(x)$, then $v_{p}(f(x)-f(y))=2 v_{p}(x-y)$. Hence $f^{\prime}(x)=0$ for all $x \in \mathbb{Z}_{p}$, thus f is in \mathcal{C}^{∞} in the usual sense. But f is not \mathcal{C}^{2} in our case. In fact, let $\left(x, h_{1}, h_{2}\right)=\left(0, p^{n}, p^{n}\right)$ and $\left((p-1) p^{n}, p^{n}, p^{n}\right)$, here $p \neq 2$, we have:

$$
\begin{gathered}
f^{\{2\}}\left(0, p^{n}, p^{n}\right)=0 \\
f^{\{2\}}\left((p-1) p^{n}, p^{n}, p^{n}\right)=p-p^{2}
\end{gathered}
$$

We define a valuation on \mathcal{C}^{k} functions by:

$$
v_{\mathcal{C}^{k}}^{\prime}(f)=\min _{0 \leq i \leq k} \inf _{\left(x, h_{1}, \cdots, h_{i}\right) \in \mathbb{Z}_{p}^{i+1}} v_{p}\left(f^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right)\right) .
$$

Let $L(n, k)=\max \left\{\sum_{j=1}^{i} v_{p}\left(n_{j}\right), i \leq k, \sum n_{j}=n, n_{j} \geq 1\right\}$
Theorem 1.6.3 (Barsky). $p^{L(n, k)}\binom{x}{n}$ is a Banach basis of \mathcal{C}^{k}.
Exercise. there exists a C_{k}, such that for all $n \geq 1$,

$$
k \frac{\log n}{\log p}-C_{k} \leq L(n, k) \leq k \frac{\log n}{\log p}
$$

Corollary 1.6.4. The following three conditions are equivalent:
(i) $\sum_{n=0}^{+\infty} a_{n}\binom{x}{n} \in \mathcal{C}^{k}$,
(ii) $\lim _{n \rightarrow+\infty} v_{p}\left(a_{n}\right)-k \frac{\log n}{\log p}=+\infty$,
(iii) $\lim _{n \rightarrow+\infty} n^{k}\left|a_{n}\right|=0$.

Definition 1.6.5. If $r \geq 0, f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ is in \mathcal{C}^{r} if

$$
f=\sum_{n=0}^{+\infty} a_{n}(f)\binom{x}{n}
$$

and

$$
n^{r}\left|a_{n}(f)\right| \rightarrow 0 \text { when } n \rightarrow+\infty .
$$

\mathcal{C}^{r} becomes a Banach space with the valuation:

$$
v_{\mathcal{C}^{r}}(f)=\inf _{n \in \mathbb{N}}\left\{v_{p}\left(a_{n}\right)-r \frac{\log (1+n)}{\log p}\right\} .
$$

1.6.2 Mahler's coefficients of \mathcal{C}^{r}-functions.

We need Mähler's Theorem in several variables to prove Barsky's theorem.
Let $g\left(x_{0}, x_{1}, \cdots, x_{i}\right)$ be a function defined on \mathbb{Z}_{p}^{i+1}. We define the action $\alpha_{j}^{[k]}$ on g by the following formula:

$$
\begin{aligned}
& \alpha_{j}^{[1]} g\left(x_{0}, \cdots, x_{i}\right)=g\left(x_{0}, \cdots, x_{j}+1, \cdots, x_{i}\right)-g\left(x_{0}, \cdots, x_{i}\right), \\
& \alpha_{j}^{[k]}=\alpha_{j}^{[1]} \circ \alpha_{j}^{[1]} \circ \cdots \circ \alpha_{j}^{[1]}, k \text { times } .
\end{aligned}
$$

We set

$$
a_{k_{0}, \cdots, k_{i}}(g)=\alpha_{0}^{\left[k_{0}\right]} \cdots \alpha_{i}^{\left[k_{i}\right]} g(0, \cdots, 0)
$$

Recall that

$$
\mathcal{C}^{0}\left(\mathbb{Z}_{p}^{i+1}, \mathbb{Q}_{p}\right)=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \widehat{\bigotimes} \cdots \widehat{\bigotimes} \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)
$$

Theorem 1.6.6 (Mähler). If g is continuous on \mathbb{Z}_{p}^{i+1}, then $a_{k_{0}, \cdots, k_{i}}(g) \rightarrow 0$ when $\left(k_{0}, \cdots, k_{i}\right) \rightarrow \infty$ and we have the following identity:

$$
\begin{equation*}
g\left(x_{0}, \cdots, x_{i}\right)=\sum_{k_{0}, \cdots, k_{i} \in \mathbb{N}} a_{k_{0}, \cdots, k_{i}}(g)\binom{x_{0}}{k_{0}} \cdots\binom{x_{i}}{k_{i}} \tag{1.2}
\end{equation*}
$$

Conversely, if $a_{k_{0}, \cdots, k_{i}} \rightarrow 0$, then the function g via equation (1.2) is continuous on $\mathbb{Z}_{p}^{i+1}, a_{k_{0}, \cdots, k_{i}}(g)=a_{k_{0}, \cdots, k_{i}}$, and

$$
v_{\mathcal{C}^{0}}(g)=\inf v_{p}\left(a_{k_{0}, \cdots, k_{i}}\right) .
$$

Proof of Theorem 1.6.3. Let $g_{T}(x)=(1+T)^{x}$, then we have:

$$
\begin{aligned}
g_{T}^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right) & =\frac{1}{h_{1} \cdots h_{i}}\left(\sum_{I \subset\{1, \cdots, i\}}(-1)^{i-|I|} g_{T}\left(x+\sum_{j \in I} h_{j}\right)\right) \\
& =(1+T)^{x} \prod_{j=1}^{i} \frac{(1+T)^{h_{j}}-1}{h_{j}}
\end{aligned}
$$

Let $P_{n}=\binom{x}{n}$. Since $\frac{1}{x}\binom{x}{n}=\frac{1}{n}\binom{x-1}{n-1}$ and $g_{T}^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right)=\sum_{n=0}^{\infty} P_{n}^{\{i\}}\left(x, h_{1}, \cdots, h_{i}\right) T^{n}$, we have the following formulas:

$$
P_{n}^{\{i\}}\left(x_{0}, h_{1}, \cdots, h_{i}\right)=\sum_{\substack{n_{0}+n_{1}+\cdots+n_{i}=n, n_{1}, \cdots, n_{i} \geq 1}} \frac{1}{n_{1} \cdots n_{i}}\binom{x_{0}}{n_{0}}\binom{h_{1}-1}{n_{1}-1} \cdots\binom{h_{i}-1}{n_{i}-1} .
$$

Let

$$
\begin{aligned}
Q_{n, i}\left(x_{0}, \cdots, x_{i}\right) & =P_{n}^{\{i\}}\left(x_{0}, x_{1}+1, \cdots, x_{i}+1\right) \\
& =\sum_{\substack{n_{0}+n_{1}+\cdots+n_{i}=n, n_{1}, \cdots, n_{i} \geq 1}} \frac{1}{n_{1} \cdots n_{i}}\binom{x_{0}}{n_{0}}\binom{x_{1}}{n_{1}-1} \cdots\binom{x_{i}}{n_{i}-1} .
\end{aligned}
$$

For all $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, we have $f(x)=\sum_{n=0}^{+\infty} a_{n}(f)\binom{x}{n}$. We denote

$$
g_{i}\left(x_{0}, \cdots, x_{i}\right)=\sum_{n=0}^{+\infty} a_{n}(f) Q_{n, i}\left(x_{0}, \cdots, x_{i}\right)
$$

if $x_{j}+1 \neq 0, j \geq 1$. We have:

$$
a_{n_{0}, n_{1}-1, \cdots, n_{i}-1}\left(g_{i}\right)=\sum_{n=0}^{+\infty} a_{n}(f) a_{n_{0}, n_{1}-1, \cdots, n_{i}-1}\left(Q_{n, i}\right)
$$

where

$$
a_{n_{0}, n_{1}-1, \cdots, n_{i}-1}\left(Q_{n, i}\right)= \begin{cases}0 & \text { if } n \neq \sum_{j=0}^{i} n_{j} \\ \frac{1}{n_{1} \cdots n_{i}} & \text { if } n=\sum_{j=0}^{i} n_{j}\end{cases}
$$

If f is in $\mathcal{C}^{k}, i \leq k$, then g_{i} is continuous on \mathbb{Z}_{p}^{i+1}, thus

$$
\frac{a_{n_{0}+n_{1}+\cdots+n_{i}}(f)}{n_{1} \cdots n_{i}} \rightarrow 0 .
$$

Conversely, if $\frac{a_{n_{0}+n_{1}+\cdots+n_{i}}(f)}{n_{1} \cdots n_{i}} \rightarrow 0$, then

$$
\sum_{n=0}^{+\infty} \sum_{n_{0}+n_{1}+\cdots+n_{i}=n}^{+\infty} \frac{a_{n_{0}, n_{1}, \cdots, n_{i}}(f)}{n_{1} \cdots n_{i}}\binom{x_{0}}{n_{0}}\binom{x_{1}}{n_{1}-1} \cdots\binom{x_{i}}{n_{i}-1}
$$

defines a continuous functions G_{i} on \mathbb{Z}_{p}^{i+1}. But $G_{i}=g_{i}$ on \mathbb{N}^{i+1}, hence $G_{i}=g_{i}, x_{j}+1 \neq 0$, for all $j \geq 1$, hence f is in \mathcal{C}^{k}.

1.7 locally analytic functions

1.7.1 Analytic functions on a closed disk.

Lemma 1.7.1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ with a_{n} in \mathbb{C}_{p} be a sequence such that $v_{p}\left(a_{n}\right) \rightarrow \infty$ when $n \rightarrow \infty$, let $f=\sum_{n=0}^{+\infty} a_{n} T^{n}$. Then:
(i) If $x_{0} \in \mathcal{O}_{\mathbb{C}_{p}}$, then $f^{(k)}\left(x_{0}\right)$ converges for all k and

$$
\lim _{n \rightarrow \infty} v_{p}\left(\frac{f^{(k)}}{k!}\left(x_{0}\right)\right)=\infty
$$

(ii) If x_{0}, x_{1} are in $\mathcal{O}_{\mathbb{C}_{p}}$, then

$$
f\left(x_{1}\right)=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x_{1}-x_{0}\right)^{n}
$$

and

$$
\inf _{n \in \mathbb{N}} v_{p}\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}\right)=\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)
$$

(iii) $\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)=\inf _{x \in \mathcal{O}_{\mathbb{C}_{p}}} v_{p}(f(x))$ and $v_{p}(f(x))=\inf _{n} v_{p}\left(a_{n}\right)$ almost everywhere (i.e.,outside a finite number of $x_{i}+\mathfrak{m}_{\mathbb{C}_{p}}$).
Proof. (i) $\frac{f^{(k)}}{k!}=\sum_{n=0}^{+\infty} a_{n+k}\binom{n+k}{k} T^{n}$. Let $T=x_{0}$; since $\left.v_{p}\binom{n+k}{k}\right) \geq 0, v_{p}\left(x_{0}^{n}\right) \geq$ 0 , we get (1) and also

$$
v_{p}\left(\frac{f^{(k)}\left(x_{0}\right)}{k!}\right) \geq \inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)=\inf _{n \in \mathbb{N}} v_{p}\left(\frac{f^{(n)}(0)}{n!}\right)
$$

(ii)

$$
\begin{aligned}
f\left(x_{1}\right) & =\sum_{n=0}^{+\infty} a_{n} x_{1}^{n}=\sum_{n=0}^{+\infty} a_{n}\left(\sum_{k=0}^{+\infty}\binom{n}{k}\left(x_{1}-x_{0}\right)^{k} x_{0}^{n-k}\right) \\
& =\sum_{k=0}^{+\infty}\left(\sum_{n=0}^{+\infty} a_{n}\binom{n}{k} x_{0}^{n-k}\right)\left(x_{1}-x_{0}\right)^{k}=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x_{1}-x_{0}\right)^{n} .
\end{aligned}
$$

So we can exchange the the roles of 0 and x_{0} to get

$$
\inf _{n \in \mathbb{N}} v_{p}\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}\right)=\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)
$$

(iii) That $\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right) \leq \inf _{x \in \mathcal{O}_{\mathbb{C}_{p}}} v_{p}(f(x))$ is clear. As $v_{p}\left(a_{n}\right)$ goes to $+\infty$, $v_{p}\left(a_{n}\right)$ reaches its infimum at some $n_{0} \in \mathbb{N}$. So we can divide everything by $a_{n_{0}}$ and we may assume that $\inf _{n \in \mathbb{N}} v_{p}\left(a_{n}\right)=0$. Let $\bar{f}(T)=f(T) \bmod \mathfrak{m}_{\mathbb{C}_{p}} \in$ $\mathbb{F}_{p}[T]$. If $x \in \mathcal{O}_{\mathbb{C}_{p}}$ doesn't reduce $\bmod \mathfrak{m}_{\mathbb{C}_{p}}$ to a root of \bar{f}, then $\bar{f}(x) \neq 0$, equivalently, $v_{p}(f(x))=0$.

Corollary 1.7.2. Let $f=\sum_{n=0}^{+\infty} a_{n} T^{n}, g=\sum_{n=0}^{+\infty} b_{n} T^{n}$, then $f g=\sum_{n=0}^{+\infty} c_{n} T^{n}$, where $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$. Suppose that $v_{p}\left(a_{n}\right)$ and $v_{p}\left(b_{n}\right)$ go to infinity when n goes to infinity, then $v_{p}\left(c_{n}\right)$ goes to infinity and $\inf _{n} v_{p}\left(c_{n}\right)=\inf _{n}\left(a_{n}\right)+\inf _{n}\left(b_{n}\right)$.
Definition 1.7.3. For $x_{0} \in \mathbb{C}_{p}, r \in \mathbb{R}$, we define

$$
D\left(x_{0}, r\right)=\left\{x \in \mathbb{C}_{p}, v_{p}\left(x-x_{0}\right) \geq r\right\}
$$

Definition 1.7.4. A function $f: D\left(x_{0}, r\right) \rightarrow \mathbb{C}_{p}$ is analytic if it is sum of its Taylor expansion at x_{0} or equivalently, if

$$
\lim _{n \rightarrow+\infty}\left(v_{p}\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}\right)+n r\right)=+\infty
$$

We define $v_{x_{0}}^{\{r\}}(f)=\inf _{n}\left(v_{p}\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}\right)+n r\right)$.
Proposition 1.7.5. If the function $f: D\left(x_{0}, r\right) \rightarrow \mathbb{C}_{p}$ is analytic, then
(i) For all $k \in \mathbb{N}$, $f^{(k)}$ is analytic on $D\left(x_{0}, r\right)$,

$$
v_{x_{0}}^{\{r\}}\left(\frac{f^{(k)}\left(x_{0}\right)}{k!}\right)+k r \geq v_{x_{0}}^{\{r\}}(f)
$$

and goes to $+\infty$ if k goes to $+\infty$.
(ii) f is the sum of its Taylor expansion at any $x \in D\left(x_{0}, r\right)$.
(iii) $v_{x_{0}}^{\{r\}}(f)=\inf _{x \in D\left(x_{0}, r\right)} v_{p}(f(x))$.
(iv) $v_{x_{0}}^{\{r\}}(f g)=v_{x_{0}}^{\{r\}}(f)+v_{x_{0}}^{\{r\}}(g)$.

Proof. If $r \in \mathbb{Q}$, one can choose $\alpha \in \mathbb{C}_{p}$, such that $v_{p}(\alpha)=r$. Let $F(x)=$ $f\left(x_{0}+\alpha x\right), x \in \mathcal{O}_{\mathbb{C}_{p}}$. Apply the previous lemma, we can get the result.

If $r \notin \mathbb{Q}$, choose r_{n} decreasing with the limit $r, r_{n} \in \mathbb{Q}$. Use $D\left(x_{0}, r\right)=$ $\cup_{n} D\left(x_{0}, r_{n}\right)$ and the case $r \in \mathbb{Q}$, we get the result.

1.7.2 Locally analytic functions on \mathbb{Z}_{p}.

Definition 1.7.6. Let $h \in \mathbb{N}$ be given. The space $L A_{h}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ is the space of f whose restriction to $x_{0}+p^{h} \mathbb{Z}_{p}$ is the restriction of an analytic function $f_{x_{0}}$ on $D\left(x_{0}, h\right)$, for all $x_{0} \in \mathbb{Z}_{p}$. The valuation of the space is $v_{L A_{h}}=\inf _{x_{0} \in S} v_{x_{0}}^{\{h\}}\left(f_{x_{0}}\right)$, S be any set of representations of $\mathbb{Z}_{p} / p^{h} \mathbb{Z}_{p}$. (Use above proposition to prove that this does not depend on S.)
Lemma 1.7.7. $L A_{h}$ is a Banach space. Moreover, let

$$
e_{n}=1_{i+p^{h} \mathbb{Z}_{p}}\left(\frac{x+i}{p^{h}}\right)^{m-1}, n=m p^{h}-i, m \geq 1,1 \leq i \leq p^{h},
$$

then e_{n} 's are a Banach basis of $L A_{h}$.
Theorem 1.7.8 (Amice). The functions $\left[\frac{n}{p^{h}}\right]!\binom{x}{n}, n \in \mathbb{N}$ are a Banach basis of $L A_{h}$.
Proof. The idea is to try to relate the $g_{n}=\left[\frac{n}{p^{h}}\right]!\binom{x}{n}$ to the e_{n}.
(i) First step: For $1 \leq j \leq p^{h}$, we denote

$$
g_{n, j}(x)=g_{n}\left(-j+p^{h} x\right)=\left[\frac{n}{p^{h}}\right]!\frac{1}{n!} \prod_{k=0}^{n-1}\left(-j-k+p^{h} x\right) .
$$

If $v_{p}(j+k)<h$, then $v_{p}\left(-j-k+p^{h} x\right)=v_{p}(j+k)$, for all x in $\mathcal{O}_{\mathbb{C}_{p}}$. If $v_{p}(j+k) \geq h$, then $v_{p}\left(-j-k+p^{h} x\right) \geq h$ with equality if $\bar{x} \notin \mathbb{F}_{p} \subset \overline{\mathbb{F}_{p}}$. So, we get

$$
v_{0}^{\{0\}}\left(g_{n, j}\right)=v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right)-v_{p}(n!)+\sum_{k=0}^{n-1} \inf \left(v_{p}(j+k), h\right)=\sum_{i=1}^{\infty} \#\left\{k: v_{p}(k) \geq i, 1 \leq k \leq n\right\} .
$$

Since $v_{p}(n!)=\sum_{k=1}^{n} v_{p}(k)=\sum_{i=1}^{+\infty}\left[\frac{n}{p^{i}}\right]$, we have

$$
v_{p}(n!)-v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right)=\sum_{i=1}^{h} \#\left\{k: v_{p}(k) \geq i, 1 \leq k \leq n\right\}=\sum_{k=1}^{n} \inf \left(v_{p}(k), h\right) .
$$

Thus,

$$
\begin{aligned}
v_{0}^{\{0\}}\left(g_{n, j}\right) & =\sum_{k=1}^{n}\left[\inf \left(v_{p}(j+k-1), h\right)-\inf \left(v_{p}(k), h\right)\right] \\
& =\sum_{l=1}^{h}\left(\left[\frac{n+j-1}{p^{l}}\right]-\left[\frac{j-1}{p^{l}}\right]-\left[\frac{n}{p^{l}}\right]\right)
\end{aligned}
$$

As $[x+y] \geq[x]+[y]$, we have $v_{0}^{\{0\}}\left(g_{n, j}\right) \geq 0$, for all $1 \leq j \leq p^{h}$. So, we have $v_{L A_{h}}\left(g_{n}\right) \geq 0$.
(ii) Second step: we need a lemma

Lemma 1.7.9. Let $n=m p^{h}-i, \overline{g_{n, j}} \in \mathbb{F}_{p}[x]$, then:
(i) $\overline{g_{n, j}}=0$, if $j>i$,
(ii) $\operatorname{deg} \overline{g_{n, j}}=m-1$, if $j=i$,
(iii) $\operatorname{deg} \overline{g_{n, j}} \leq m-1$ if $j<i$.

The lemma implies the theorem: $\overline{g_{n}}$ can be written in terms of the $\overline{e_{n}}$, multiplying by an invertible upper triangular matrix. Now use the fact that x_{n} is a Banach basis if and only if $\overline{x_{n}}$ is a basis of $L A_{h}^{0} / p L A_{h}^{0}$ over \mathbb{F}_{p}.

Proof of Lemma 1.7.9. (i) If $j>i$, then $j-1 \geq i$. Since

$$
\left[\frac{n+j-1}{p^{h}}\right]-\left[\frac{j-1}{p^{h}}\right]-\left[\frac{n}{p^{h}}\right]=m-(m-1)=1,
$$

we have $v_{0}^{\{0\}}\left(g_{n, j}\right) \geq 1$, then $\overline{g_{n, j}}=0$.
(ii) and (iii):If $j \leq i$, write

$$
g_{n, j}(x)=\sum_{k=0}^{n} a_{k} x^{k}, a_{k} \in \mathbb{Z}_{p}
$$

The zeros of $g_{n, j}$ are the $\frac{j+k}{p^{h}}, 0 \leq k \leq n-1$ and

$$
\#\left\{\operatorname{zeros} \text { in } \mathbb{Z}_{p}\right\}=\#\left\{k: v_{p}(j+k) \geq h\right\}=\left[\frac{n+j-1}{p^{h}}\right]-\left[\frac{j-1}{p^{h}}\right]=m-1 .
$$

Let $\left\{\alpha_{i}: 1 \leq i \leq m-1\right\}$ be the set of the roots with $\alpha_{1}, \cdots, \alpha_{m-1}$ in \mathbb{Z}_{p} and $\alpha_{m}, \cdots, \alpha_{n}$ not in \mathbb{Z}_{p}. Then

$$
g_{n, j}=c \prod_{l=1}^{m-1}\left(x-\alpha_{l}\right) \prod_{l=m}^{n}\left(1-\alpha_{l}^{-1} x\right),(c \text { is a constant }) .
$$

Since $v_{p}\left(\alpha_{l}^{-1}\right)>0$ when $l \geq m$, then $v_{p}\left(a_{m-1}\right)=v_{p}(c)=v_{0}^{\{0\}}\left(g_{n, j}\right)$. It implies $c \in \mathbb{Z}_{p}$. Hence

$$
\overline{g_{n, j}}=\bar{c} \prod_{l=1}^{m-1}\left(x-\bar{\alpha}_{l}\right) .
$$

It remains to prove $v_{0}^{\{0\}}\left(g_{n, i}\right)=0$. Since

$$
v_{0}^{\{0\}}\left(g_{n, i}\right)=\sum_{l=1}^{h}\left(\left[\frac{m p^{h}-1}{p^{l}}\right]-\left[\frac{i-1}{p^{l}}\right]+\left[\frac{m p^{h}-i}{p^{l}}\right]\right)
$$

and $-\left[\frac{-i}{a}\right]=\left[\frac{i-1}{a}\right]+1$, we get the result.
Let $L A=\left\{\right.$ locally analytic functions on $\left.\mathbb{Z}_{p}\right\}$. Because \mathbb{Z}_{p} is compact, $L A=\cup L A_{h}$ and is an inductive limit of Banach spaces. So
(i) A function $\varphi: L A \rightarrow B$ is continuous if and only if $\left.\varphi\right|_{L A_{h}}: L A_{h} \rightarrow B$ is continuous for all h.
(ii) A sequence $f_{n} \rightarrow f$ converges in $L A$ if and only if there exists h, such that for all $n, f_{n} \in L A_{h}$ and $f_{n} \rightarrow f$ in $L A_{h}$.

Since $\frac{1}{n} v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right) \sim \frac{1}{(p-1) p^{h}}$, we have the following theorem:
Theorem 1.7.10. The function $f=\sum_{n=0}^{+\infty} a_{n}\binom{x}{n}$ is in $L A$ if and only if there exists $r>0$, such that $v_{p}\left(a_{n}\right)-r n \rightarrow+\infty$ when $n \rightarrow+\infty$.

1.8 Distributions on \mathbb{Z}_{p}

1.8.1 The Amice transform of a distribution.

Definition 1.8.1. A distribution μ on \mathbb{Z}_{p} with values in B is a continuous linear map $f \mapsto \int_{\mathbb{Z}_{p}} f \mu$ from $L A$ to B. We denote the set of distributions from $L A$ to B by $\mathcal{D}\left(\mathbb{Z}_{p}, B\right)$.

Remark. (i) $\left.\mu\right|_{L A_{h}}$ is continuous for all $h \in \mathbb{N}$. Set

$$
v_{L A_{h}}(\mu)=\inf _{f \in L A_{h}}\left(v_{B}\left(\int_{\mathbb{Z}_{p}} f \mu\right)-v_{L A_{h}}(f)\right)
$$

Then $v_{L A_{h}}$ is a valuation on $\mathcal{D}\left(\mathbb{Z}_{p}, B\right)$ for all h, and $\mathcal{D}\left(\mathbb{Z}_{p}, B\right)$ is complete for the Fréchet topology defined by $v_{L A_{h}}, h \in \mathbb{N}$ which means that μ_{n} goes to μ if and only if $v_{L A_{h}}\left(\mu_{n}-\mu\right) \rightarrow+\infty$ for all h.
(ii) $\mathcal{D}\left(\mathbb{Z}_{p}, B\right)=\mathcal{D}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \widehat{\otimes} B$. From now on, we will denote $\mathcal{D}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ by \mathcal{D}.

Let \mathcal{R}^{+}be the ring of analytic functions defined on $D\left(0,0^{+}\right)=\{x \in$ $\left.\mathbb{C}_{p}, v_{p}(x)>0\right\}$. A function $f \in \mathcal{R}^{+}$can be written as $f=\sum_{n=0}^{+\infty} a_{n} T^{n}, a_{n} \in \mathbb{Q}_{p}$ for all $n \in \mathbb{N}$.

Let $v_{h}=\frac{1}{(p-1) p^{h}}=v_{p}(\varepsilon-1)$, where ε is a primitive p^{h+1} root of 1 .
If $F(T)=\sum_{n=0}^{+\infty} b_{n} T^{n} \in \mathcal{R}^{+}$, we define $v^{(h)}(F)$ to be

$$
v^{(h)}(F)=v_{0}^{\left\{v_{h}\right\}}(F)=\inf _{n \in \mathbb{N}} v_{p}\left(b_{n}\right)+n v_{h} .
$$

Then, for $F, G \in \mathcal{R}^{+}$,

$$
v^{(h)}(F G)=v^{(h)}(F)+v^{(h)}(G)
$$

We put on \mathcal{R}^{+}the Fréchet topology defined by the $v^{(h)}, h \in \mathbb{N}$.
Definition 1.8.2. The Amice transform of a distribution μ is the function:

$$
A_{\mu}(T)=\sum_{n=0}^{+\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{x}{n} \mu=\int_{\mathbb{Z}_{p}}(1+T)^{x} \mu
$$

Note that the last identity in the above definition is only a formal identity here. However, we have

Lemma 1.8.3. If $v_{p}(z)>0$, then $\int_{\mathbb{Z}_{p}}(1+z)^{x} \mu=A_{\mu}(z)$
Proof. Choose h such that $v_{h}<v_{p}(z)$. Then

$$
v_{p}\left(\frac{z^{n}}{\left[\frac{n}{p^{n}}\right]!}\right) \rightarrow+\infty
$$

therefore $\sum_{n=0}^{+\infty} z^{n}\binom{x}{n}$ converges to $(1+z)^{x}$ in $L A_{h}$.
Theorem 1.8.4. The map $\mu \mapsto A_{\mu}$ is an isomorphism of Fréchet spaces from \mathcal{D} to \mathcal{R}^{+}. moreover,

$$
v^{(h)}\left(A_{\mu}\right) \geq v_{L A_{h}}(\mu) \geq v^{(h+1)}\left(A_{\mu}\right)-1 .
$$

Proof. Let $A_{\mu}(T)=\sum_{n=0}^{+\infty} b_{n} T^{n}$. Since $b_{n}=\int_{\mathbb{Z}_{p}}\binom{x}{n} \mu$ and $v_{p}(n!) \leq \frac{n}{p-1}$, then we have:

$$
\begin{aligned}
v_{p}\left(b_{n}\right) & =v_{p}\left(b_{n}\right)-v_{L A_{h}}\left(\binom{x}{n}\right)+v_{L A_{h}}\left(\binom{x}{n}\right) \\
& \geq v_{L A_{h}}(\mu)+v_{L A_{h}}\left(\binom{x}{n}\right)=v_{L A_{h}}(\mu)-v_{p}\left(\left[\frac{n}{p^{h}}!!\right)\right. \\
& \geq v_{L A_{h}}(\mu)-\frac{n}{(p-1) p^{h}}=v_{L A_{h}}(\mu)-n v_{h} .
\end{aligned}
$$

Hence $A_{\mu} \in \mathcal{R}^{+}$and $v^{(h)}\left(A_{\mu}\right) \geq v_{L A_{h}}(\mu)$.
Conversely, for $F \in \mathcal{R}^{+}, F=\sum_{n=0}^{+\infty} b_{n} T^{n}$, then for all h,

$$
v_{p}\left(\left[\frac{n}{p^{h}}\right)!b_{n}\right)=v_{p}\left(b_{n}\right)+\frac{n}{(p-1) p^{h}} \rightarrow \infty .
$$

So $f \mapsto \sum_{n=0}^{+\infty} b_{n} a_{n}(f)$ is a continuous map on $L A_{h}$. Denote the left hand side by $\int_{\mathbb{Z}_{p}} f \mu$, this defines a distribution $\mu \in \mathcal{D}$. Moreover,

$$
\begin{aligned}
v_{L A_{h}}(\mu) & =\inf _{n \in \mathbb{N}} v_{p}\left(\left[\frac{n}{p^{h}}\right]!b_{n}\right) \geq \inf _{n \in \mathbb{N}} v_{p}\left(\left[\frac{n}{p^{h+1}}\right]!b_{n}\right) \\
& \geq \inf _{n \in \mathbb{N}}\left(v_{p}\left(b_{n}\right)+\frac{n}{(p-1) p^{h+1}}\right)-1=v_{L A_{h}}^{(h+1)}\left(A_{\mu}\right)-1 .
\end{aligned}
$$

1.8.2 Examples of distributions.

(i) Measures are distributions and $\mathcal{D}_{0} \subset \mathcal{D}$.
(ii) One can multiply a distribution $\mu \in \mathcal{D}$ by $g \in L A$, and one gets

- $A_{x \mu}=\partial A_{\mu}, \partial=(1+T) \frac{d}{d T}$;
- $A_{z^{x} \mu}(T)=A_{\mu}((1+T) z-1)$;
- $A_{\operatorname{Res}_{a+p^{n} \mathbb{Z}_{p}} \mu}(T)=p^{-n} \sum_{z^{p^{n}}=1} z^{-a} A_{\mu}((1+T) z-1)$
(iii) one gets actions φ, ψ, Γ with the same formulas than on measures.
(iv) Convolution of distributions: If $f \in L A_{h}$ and for all $y \in y_{0}+p^{h} \mathbb{Z}_{p}$,

$$
f(x+y)=\sum_{n=0}^{+\infty} \frac{p^{n h} f^{(n)}\left(x+y_{0}\right)}{n!}\left(\frac{y-y_{0}}{p^{h}}\right)^{n} \in L A_{h}(x) \widehat{\bigotimes} L A_{h}(y)
$$

and $v_{L A_{h}}\left(\frac{p^{n h} f^{(n)}\left(x+y_{0}\right)}{n!}\right)$ goes to $+\infty$, when $n \rightarrow+\infty$. Hence

$$
\int_{\mathbb{Z}_{p}}\left(\int_{\mathbb{Z}_{p}} f(x+y) \mu(x)\right) \lambda(y)=\int_{\mathbb{Z}_{p}} f \lambda * \mu
$$

is well defined, $A_{\lambda * \mu}=A_{\lambda} A_{\mu}$.
(v) The derived distribution: $\mu \mapsto d \mu$ given by $\int_{\mathbb{Z}_{p}} f d \mu=\int_{\mathbb{Z}_{p}} f^{\prime} \mu$. Easy to check $A_{d \mu}(T)=\log (1+T) A_{\mu}(T)$. μ can't be integrated because $\log (1+T)=0$ if $T=\varepsilon-1, \varepsilon \in \boldsymbol{\mu}_{p^{\infty}}$.
(vi) Division by x, the Amice transform $A_{x^{-1} \mu}$ of $x^{-1} \mu$ is a primitive(or called antiderivative) of $(1+T)^{-1} A_{\mu}$, so $A_{x^{-1} \mu}$ is defined up to $\alpha \delta_{0}, \alpha \in \mathbb{Q}_{p}$ (we have $x \delta_{0}=0$).

1.8.3 Residue at $s=1$ of the p-adic zeta function.

The Kubota-Leopoldt distribution $\mu_{K L}$ given by $A_{\mu_{K L}}(T)=\frac{\log (1+T)}{T}$. Then

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} x^{n} \mu_{K L} & =\left(\frac{d}{d t}\right)_{t=0}^{n}\left(\int_{\mathbb{Z}_{p}} e^{t x} \mu_{K L}\right)=\left(\frac{d}{d t}\right)_{t=0}^{n} A_{\mu_{K L}}\left(e^{t}-1\right) \\
& =\left(\frac{d}{d t}\right)_{t=0}^{n}\left(\frac{t}{e^{t}-1}\right)=(-1)^{n} n \zeta(1-n), \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

Since

$$
\psi\left(\frac{1}{T}\right)=\frac{1}{T} \quad \text { and } \varphi(\log (1+T))=p \log (1+T)
$$

we get $\psi\left(\mu_{K L}\right)=\frac{1}{p} \mu_{K L}$ and

$$
\begin{gathered}
\int_{\mathbb{Z}_{p}^{*}} x^{n} \mu_{K L}=\left(1-p^{n-1}\right) \int_{\mathbb{Z}_{p}} x^{n} \mu_{K L}=(-1)^{n} n\left(1-p^{n-1}\right) \zeta(1-n) \\
\zeta_{p, i}(s)=\frac{(-1)^{i-1}}{s-1} \int_{\mathbb{Z}_{p}^{*}} \omega(x)^{1-i}\langle x\rangle^{1-s} \mu_{K L}
\end{gathered}
$$

The integral is analytic in s by the same argument as for measures.

Proposition 1.8.5. $\lim _{s \rightarrow 1}(s-1) \zeta_{p, 1}(s)=\int_{\mathbb{Z}_{p}^{*}} \mu_{K L}=1-\frac{1}{p}$, (compare with $\left.\lim _{s \rightarrow 1}(s-1) \zeta(s)=1\right)$.

Proof. It follows from the following lemma.
Lemma 1.8.6. $\int_{a+p^{n} \mathbb{Z}_{p}} \mu_{K L}=p^{-n}$, for all n, for all $a \in \mathbb{Z}_{p}$ (almost a Haar measure but $\mu * \delta_{a} \neq \mu$).
Proof.

$$
\int_{a+p^{n} \mathbb{Z}_{p}} \mu_{K L}=p^{-n} \sum_{z^{p^{n}}=1} z^{-a} A_{\mu_{K L}}(z-1)=p^{-n}\left(1+\sum_{z^{p^{n}}=1, z \neq 1} \frac{\log z}{z-1}\right),
$$

and $\frac{\log z}{z-1}=0$, if $z^{p^{n}}=1, z \neq 1$.

1.9 Tempered distributions

1.9.1 Analytic functions inside \mathcal{C}^{r} functions

Theorem 1.9.1. For all $r \geq 0, L A \subset \mathcal{C}^{r}$. Moreover there exists a constant $C(r)$ depending on r, such that for all $h \in \mathbb{N}$ and for all f in $L A_{h}$,

$$
v_{\mathcal{C}^{r}}(f) \geq v_{L A_{h}}(f)-r h-C(r)
$$

Proof. Since $v_{L A_{h}}(f)=\inf _{n}\left(v_{p}\left(a_{n}(f)\right)-v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right)\right)$, we have
$v_{\mathcal{C}^{r}}(f)=\inf _{n}\left(v_{p}\left(a_{n}(f)\right)-r \frac{\log (1+n)}{\log p}\right) \geq v_{L A_{h}}(f)+\inf _{n}\left(v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right)-r \frac{\log (1+n)}{\log p}\right)$.
We have a formula for every a :

$$
v_{p}(a!)=\left[\frac{a}{p}\right]+\cdots+\left[\frac{a}{p^{h}}\right]+\cdots \geq \frac{a}{p-1}-\frac{\log (1+a)}{\log p} .
$$

Write $n=p^{h} a+b, 0 \leq b \leq p^{h}-1$, then we have

$$
\begin{aligned}
v_{\mathcal{C}^{r}}(f)-v_{L A_{h}}(f) & \geq \inf _{n}\left(v_{p}\left(\left[\frac{n}{p^{h}}\right)!\right)-r \frac{\log (1+n)}{\log p}\right) \\
& =\inf _{\substack{a \in \mathbb{N} \\
0 \leq b \leq p^{h}-1}}\left(v_{p}(a!)-r \frac{\log \left(a p^{h}+b+1\right)}{\log p}\right) \\
& \geq \frac{a}{p-1}-(r+1) \frac{\log (a+1)}{\log p}-r h .
\end{aligned}
$$

The function $-\frac{a}{p-1}+(r+1) \frac{\log (a+1)}{\log p}$ of a is bounded above, we just let $C(r)$ be its maximum.

Observe that the function \log is well defined on \mathbb{Z}_{p}^{*}. First if $v_{p}(x-1)>0$, let

$$
\log x=\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n}
$$

in general, if $x=\omega(x)\langle x\rangle$, let $\log x=\log \langle x\rangle$. If $x=p$, let $\log p=0$. By the formula $\log x y=\log x+\log y, \log$ is well defined in $\mathbb{Q}_{p}-\{0\}$. This \log is the so-called Iwasawa's \log, or $\log _{0}$.

However, we can define the value at p arbitrarily. For $\mathcal{L} \in \mathbb{Q}_{p}$, define $\log _{\mathcal{L}} p=\mathcal{L}$, then $\log _{\mathcal{L}} x=\log _{0} x+\mathcal{L} v_{p}(x)$.

Theorem 1.9.2. Choose a \mathcal{L} in \mathbb{C}_{p}. Then there exists a unique $\log _{\mathcal{L}}: \mathbb{C}_{p}^{*} \mapsto$ \mathbb{C}_{p} satisfying:
(i) $\log _{\mathcal{L}} x=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n}$, here $v_{p}(x-1)>0$,
(ii) $\log _{\mathcal{L}} x y=\log _{\mathcal{L}} x+\log _{\mathcal{L}} y$,
(iii) $\log _{\mathcal{L}}=\mathcal{L}$.

Proposition 1.9.3. If $r \geq 0, j>r$, then $x^{j} \log _{\mathcal{L}} x \in \mathcal{C}^{r}$.
Proof. We have

$$
x^{j} \log _{\mathcal{L}} x=\sum_{n=0}^{+\infty} \sum_{a=1}^{p-1} 1_{p^{n} a+p^{n+1} \mathbb{Z}_{p}} x^{j} \log _{\mathcal{L}} x .
$$

Let $f_{n, a}=1_{p^{n} a+p^{n+1} \mathbb{Z}_{p}} x^{j} \log _{\mathcal{L}} x$. We have to prove the sum converges in \mathcal{C}^{r}. On $p^{n} a+p^{n+1} \mathbb{Z}_{p}$, we have

$$
\begin{aligned}
x^{j} \log _{\mathcal{L}} x & =\left(x-p^{n} a+p^{n} a\right)^{j} \log _{\mathcal{L}}\left(p^{n} a+\left(x-p^{n} a\right)\right) \\
& =p^{n j}\left(a+p \frac{x-p^{n} a}{p^{n+1}}\right)^{j}\left(\log _{\mathcal{L}} p^{n} a+\log _{0}\left(1+p \frac{x-p^{n} a}{p^{n+1} a}\right)\right) .
\end{aligned}
$$

So $f_{n, a} \in L A_{n+1}, v_{L A_{n+1}}\left(f_{n, a}\right) \geq n j$. Use the previous theorem, we get $v_{\mathcal{C}^{r}}\left(f_{n, a}\right) \geq n j-r(n+1)-C(r)$ and it goes to $+\infty$.

1.9.2 Distributions of order r

Definition 1.9.4. Let $r \geq 0$ and B be a Banach space. A distribution $\mu \in \mathcal{D}\left(\mathbb{Z}_{p}, B\right)$ is a distribution of order r if $f \mapsto \int_{\mathbb{Z}_{p}} f \mu$ is a continuous map from $\mathcal{C}^{r}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ to B. We denote the set of distributions of order r by $\mathcal{D}_{r}\left(\mathbb{Z}_{p}, B\right)$. We define a valuation on $\mathcal{D}_{r}\left(\mathbb{Z}_{p}, B\right)$ by

$$
v_{\mathcal{D}_{r}}^{\prime}(\mu)=\inf _{f \in \mathcal{C}^{r}}\left(v_{p}\left(\int_{\mathbb{Z}_{p}} f \mu\right)-v_{\mathcal{C}^{r}}(f)\right)
$$

Remark. (i) Under the above valuation, $\mathcal{D}_{r}\left(\mathbb{Z}_{p}, B\right)$ is a p-adic Banach space and $\mathcal{D}_{r}\left(\mathbb{Z}_{p}, B\right)=\mathcal{D}_{r}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \widehat{\bigotimes} B$. We denote $\mathcal{D}_{r}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ by \mathcal{D}_{r}.
(ii) $\mathcal{D}_{\text {temp }}=\cup \mathcal{D}_{r}=$ set of tempered distributions.
(iii) Since $L A_{h} \subset \mathcal{C}^{r}$, and for $f \in L A_{h}, v_{\mathcal{C}^{r}}(f) \geq v_{L A_{h}}(f)-r h-C(r)$, we get, for $\mu \in \mathcal{D}_{r} \subset L A_{h}^{*}$,

$$
v_{L A_{h}^{*}}(\mu)=\inf _{f \in L A_{h}}\left(v_{p}\left(\int_{\mathbb{Z}_{p}} f \mu\right)-v_{L A_{h}}(f)\right) \geq v_{\mathcal{D}_{r}}^{\prime}(\mu)-r h-C(r) .
$$

Theorem 1.9.5. $\mu \in \mathcal{D}$, the following are equivalent: (i) $\mu \in \mathcal{D}_{r}$ i.e. μ can be extended by continuity to \mathcal{C}^{r}.
(ii) There exists a constant C, such that $v_{p}\left(\int_{\mathbb{Z}_{p}}\binom{x}{n} \mu\right) \geq C-r \frac{\log (1+n)}{\log p}$, for all n.
(iii) There exists a constant C, such that $v_{p}\left(\int_{a+p^{h} \mathbb{Z}_{p}}(x-a)^{j} \mu\right) \geq C+h(j-$ $r)$, for all $a \in \mathbb{Z}_{p}, j \in \mathbb{N}, h \in \mathbb{N}$.
(iv) There exists a constant C, such that $v_{L A_{h}}(\mu) \geq C-r h$, for all $h \in \mathbb{N}$.

Remark. It follows that

$$
v_{\mathcal{D}_{r}}(\mu)=\inf _{\substack{a \in \mathbb{Z}_{p} \\ j \in \mathbb{N}, n \in \mathbb{N}}}\left(v_{p}\left(\int_{a+p^{h} \mathbb{Z}_{p}}(x-a)^{j} \mu\right)-h(j-r)\right)
$$

is equivalent to $v_{\mathcal{D}_{r}}^{\prime}$.
Proof. (i) $\Leftrightarrow(i i)$ is just the definition of $v_{\mathcal{D}_{r}}^{\prime} . \quad(i i i) \Leftrightarrow(i v)$ is true by the definition of $L A_{h}$ (with some C). Remains to prove (ii) $\Leftrightarrow(i v)$. We have $v^{(h)}\left(A_{\mu}\right) \geq v_{L A_{h}}(\mu) \geq v^{(h+1)}\left(A_{\mu}\right)-1$, hence the proof is reduce to the following lemma with $F=A_{\mu}$.

34CHAPTER 1. THE P-ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

Lemma 1.9.6. Suppose $F \in \mathcal{R}^{+}, F=\sum_{n=0}^{+\infty} b_{n} T^{n}$, the following are equivalent:
(i) there exists C, such that $v^{(h)}(F) \geq C-r h$, for all $h \in \mathbb{N}$,
(ii) there exists C^{\prime}, such that $v_{p}\left(b_{n}\right) \geq C^{\prime}-r \frac{\log (1+n)}{\log p}$ for all n.

Proof. Let

$$
\begin{gathered}
C_{0}=\inf _{h \in \mathbb{N}}\left(v^{(h)}(F)+r h\right)=\inf _{h \in \mathbb{N}}\left(\inf _{n \in \mathbb{N}}\left(v_{p}\left(b_{n}\right)+\frac{n}{(p-1) p^{h}}\right)+r h\right), \\
C_{1}=\inf _{n \in \mathbb{N}}\left(v_{p}\left(b_{n}\right)+r \frac{\log (1+n)}{\log p}\right) .
\end{gathered}
$$

Let $h=\left[\frac{\log (1+n)}{\log p}\right]$, then

$$
v_{p}\left(b_{n}\right) \geq C_{0}-r h-\frac{n}{(p-1) p^{h}} \geq C_{0}-r \frac{\log (1+n)}{\log p}-2
$$

which implies $C_{1} \geq C_{0}-2$.
Now, if h is fixed, then $C_{1}-r \frac{\log (1+n)}{\log p}+\frac{n}{(p-1) p^{h}}$ is minimal for $(1+n)=$ $(p-1) p^{h} r$. Hence,

$$
C_{1}-r \frac{\log (1+n)}{\log p}+\frac{n}{(p-1) p^{h}} \geq C_{1}-r h-\frac{\log (p-1) r}{\log p} .
$$

Thus, $C_{0} \geq C_{1}-r \frac{\log (p-1) r}{\log p}$.
For $N \geq 0$, let $L P^{[0, N]}$ be the set of the locally polynomial functions of degree no more than N on \mathbb{Z}_{p}.

Theorem 1.9.7. Suppose $r \geq 0, N>r-1$. If $f \mapsto \int_{\mathbb{Z}_{p}} f \mu$ is linear function from $L P^{[0, N]}$ to a Banach space B, such that there exists C,

$$
v_{p}\left(\int_{a+p^{n} \mathbb{Z}_{p}}(x-a)^{j} \mu\right) \geq C+(j-r) n
$$

for all $a \in \mathbb{Z}_{p}$ and $n, j \in \mathbb{N}$, then μ extends uniquely to an element of \mathcal{D}_{r}.
Remark. (i) Let $r=0, N=0$, we recover the construction of measures as bounded additive functions on open compact sets.
(ii) We define a new valuation on \mathcal{D}_{r}

$$
v_{\mathcal{D}_{r, N}}(\mu)=\inf _{a \in \mathbb{Z}_{p} n \in \mathbb{N}, j \in \mathbb{N}} v_{p}\left(\int_{a+p^{n} \mathbb{Z}_{p}}(x-a)^{j} \mu\right)-n(j-r),
$$

then $v_{p}\left(\int_{\mathbb{Z}_{p}} f \mu\right) \geq v_{L A_{h}}(f)+v_{\mathcal{D}_{r, N}}(\mu)-r n$ for all $f \in L P^{[0, N]} \cap L A_{h}$;
(iii) The open mapping theorem in Banach spaces implies that $v_{\mathcal{D}_{r, N}}$ is equivalent to $v_{\mathcal{D}_{r}}$.

Proposition 1.9.8. If $f \in L A, r \geq 0, N>r-1$, put

$$
f_{n}=\sum_{i=0}^{p^{n}-1} 1_{i+p^{n} \mathbb{Z}_{p}}\left(\sum_{k=0}^{N} \frac{f^{(k)}(i)}{k!}(x-i)^{k}\right) \in L P^{[0, N]}
$$

then $f_{n} \rightarrow f$ in \mathcal{C}^{r}. Hence $L P^{[0, N]}$ is dense in \mathcal{C}^{r}.
Proof. There exists h, such that $f \in L A_{h}$. We assume $n \geq h$, then

$$
v_{L A_{h}}\left(f-f_{n}\right)=\inf _{0 \leq i \leq p^{n}-1} \inf _{k \geq N+1} v_{p}\left(p^{n k} \frac{f^{(k)}(i)}{k!}\right)
$$

$f \in L A_{h}$ implies $v_{p}\left(\frac{p^{h k} f^{(h)}(i)}{h!}\right) \geq v_{L A_{h}}(f)$. Hence

$$
v_{L A_{h}}\left(f-f_{n}\right) \geq v_{L A_{h}}(f)+(N+1)(n-h) .
$$

Then

$$
\begin{aligned}
v_{\mathcal{C}^{r}}\left(f-f_{n}\right) & \geq v_{L A_{h}}\left(f-f_{n}\right)-r n-C(r) \\
& \geq v_{L A_{h}}(f)-C(r)-(N+1) h+(N+1-r) n \rightarrow+\infty
\end{aligned}
$$

because $N+1-r>0$.
Proof of Theorem 1.9.7. The proposition implies the uniqueness in the theorem. We only need to prove the existence.

We show that if $f \in L A_{h}$, then $\lim _{n \rightarrow \infty} \int_{\mathbb{Z}_{p}} f_{n} \mu$ exists:

$$
\begin{aligned}
v_{p}\left(\int_{\mathbb{Z}_{p}}\left(f_{n+1}-f_{n}\right) \mu\right) & \geq v_{L A_{n+1}}\left(f_{n}-f_{n+1}\right)+v_{\mathcal{D}_{r, N}}(\mu)-r(n+1) \\
& \geq \inf \left(v_{L A_{n+1}}\left(f-f_{n}\right), v_{L A_{n+1}}\left(f-f_{n+1}\right)\right)+v_{\mathcal{D}_{r, N}}(\mu)-r(n+1) \\
& \geq v_{\mathcal{D}_{r, N}}(\mu)+v_{L A_{h}}(f)-r(h-1)+(n-h)(N+1-r) \rightarrow+\infty .
\end{aligned}
$$

Set $\int_{\mathbb{Z}_{p}} f \mu=\lim _{n \rightarrow+\infty} \int_{\mathbb{Z}_{p}} f_{n} \mu$, then

$$
\begin{aligned}
v_{p}\left(\int_{\mathbb{Z}_{p}} f \mu\right) & \geq \inf \left(v_{p}\left(\int_{\mathbb{Z}_{p}} f_{n} \mu\right), v_{p}\left(\inf _{n \geq h} \int_{\mathbb{Z}_{p}}\left(f_{n-1}-f_{n}\right) \mu\right)\right) \\
& \geq v_{L A_{h}}(f)-r h+\left(v_{\mathcal{D}_{r, N}}(\mu)-r\right)
\end{aligned}
$$

This implies that $\mu \in \mathcal{D}_{r}$.

1.10 Summary

To summarize what we established:
(i) We have the inclusions:

$$
\begin{aligned}
& \mathcal{C}^{0} \supset \mathcal{C}^{r} \supset L A \supset L A_{h} \\
& \mathcal{D}_{0} \subset \mathcal{D}_{r} \subset \mathcal{D} \subset L A_{h}^{*}
\end{aligned}
$$

Now, if f is a function on \mathbb{Z}_{p} and μ is a linear form on polynomials, then we have:

$$
\begin{gathered}
f \mapsto a_{n}(f)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(n-i) \\
\mu \mapsto b_{n}(\mu)=\int_{\mathbb{Z}_{p}}\binom{x}{n} \mu
\end{gathered}
$$

(ii) For f a function,

- $f \in \mathcal{C}^{0}$ if only if $v_{p}\left(a_{n}(f)\right) \rightarrow+\infty$ and

$$
v_{\mathcal{C}^{0}}(f)=\inf _{x \in \mathbb{Z}_{p}} v_{p}(f(x))=\inf _{n} v_{p}\left(a_{n}(f)\right) .
$$

- $f \in \mathcal{C}^{r}$ if only if $v_{p}\left(a_{n}(f)\right)-r \frac{\log (1+n)}{\log p} \rightarrow+\infty$ and

$$
v_{\mathcal{C}^{r}}(f)=\inf _{n} v_{p}\left(a_{n}(f)-r \frac{\log (1+n)}{\log p}\right) .
$$

- $f \in L A$ if only if there exists $r>0$ such that $v_{p}\left(a_{n}(f)\right)-r n \rightarrow+\infty$. $L A$ is not a Banach space; it is a compact inductive limit of Banach spaces.
- $f \in L A_{h}$ if and only if $v_{p}\left(a_{n}(f)\right)-v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right) \rightarrow+\infty$ and

$$
v_{L A_{h}}(f)=\inf _{x \in \mathbb{Z}_{p}} \inf _{k \in \mathbb{N}} v_{p}\left(\frac{p^{k h} f^{(k)}(x)}{h!}\right)=\inf _{n}\left(v_{p}\left(a_{n}(f)\right)-v_{p}\left(\left[\frac{n}{p^{h}}\right]!\right)\right)
$$

(iii) For μ a distribution,

- $\mu \in \mathcal{D}_{0}$ if and only if $v_{\mathcal{D}_{0}}(\mu)=\inf _{n} v_{p}\left(b_{n}(\mu)\right)>-\infty$.
- $\mu \in \mathcal{D}_{r}$ if and only if $v_{\mathcal{D}_{r}}^{\prime}(\mu)=\inf _{n} v_{p}\left(b_{n}(\mu)\right)+r \frac{\log (1+n)}{\log p}>-\infty$.
- $\mu \in \mathcal{D}$ if and only if for all $r>0, \inf _{n} v_{p}\left(b_{n}(\mu)\right)+r n>-\infty$.
(iv) $f=\sum_{n=0}^{+\infty} a_{n}(f)\binom{x}{n}$ and $\int_{\mathbb{Z}_{p}} f \mu=\sum_{n=0}^{+\infty} a_{n}(f) b_{n}(\mu)$.

38CHAPTER 1. THE P-ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

Chapter 2

Modular forms

2.1 Generalities

2.1.1 The upper half-plane

By $S L_{2}$ we mean the group of 2×2 matrices with determinant 1 . We write $S L_{2}(A)$ for those elements of $S L_{2}$ with entries in a ring A. In practice, the ring A will be $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $S L_{2}(\mathbb{R}), z$ in $\mathbb{C}-\left\{-\frac{d}{c}\right\}$, let $\gamma z=\frac{a z+b}{c z+d}$, then

$$
\operatorname{Im}(\gamma z)=\frac{(a d-b c)}{|c z+d|^{2}} \operatorname{Im}(z)=\frac{\operatorname{Im} z}{|c z+d|^{2}}
$$

We denote $\mathcal{H}=\{z, \operatorname{Im} z>0\}$ the upper half plane. It is stable under $z \mapsto \gamma z$ and one can verify $\left(\gamma_{1} \gamma_{2}\right) z=\gamma_{1}\left(\gamma_{2} z\right)$.

Proposition 2.1.1. The transform action $z \mapsto \gamma z$ defines a group action of $S L_{2}(\mathbb{R})$ on \mathcal{H}.

Proposition 2.1.2. $\frac{d x \wedge d y}{y^{2}}$ is invariant under $S L_{2}(\mathbb{R})$.
(hint : $d x \wedge d y=\frac{i}{2} d z \wedge d \bar{z}$ and $z \mapsto \gamma z$ is holomorphic.)
Definition 2.1.3. Let $f: \mathcal{H} \mapsto \mathbb{C}$ be a meromorphic function and $\gamma=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be in $S L_{2}(\mathbb{R})$. If k in \mathbb{Z}, we define the weight k action of $S L_{2}(\mathbb{R})$ by $\left(\left.f\right|_{k} \gamma\right)(z)=(c z+d)^{-k} f(\gamma z)$.

Exercise. $\left.\left(\left.f\right|_{k} \gamma_{1}\right)\right|_{k} \gamma_{2}=\left.f\right|_{k} \gamma_{1} \gamma_{2}$.

2.1.2 Definition of modular forms

Definition 2.1.4. Let Γ be a subgroup of $S L_{2}(\mathbb{Z})$ of finite index, χ is a finite order character of Γ (i.e. $\left.\chi(\Gamma) \subset \mu_{N}\right) . f: \mathcal{H} \mapsto \mathbb{C}$ is a modular form of weight k, character χ for Γ, if:
(i) f is holomorphic on \mathcal{H};
(ii) $\left.f\right|_{k} \gamma=\chi(\gamma) f$, if $\gamma \in \Gamma$;
(iii) f is slowly increasing at infinity, i.e. for all $\gamma \in \Gamma \backslash S L_{2}(\mathbb{Z})$, there exists $C(\gamma)$ and $r(\gamma)$ such that $|f|_{k} \gamma(z) \mid \leq y^{r(\gamma)}$, if $y \geq C(\gamma)$.

Definition 2.1.5. Γ is a congruence subgroup if $\Gamma \supset \Gamma(N)=\operatorname{Ker}\left(S L_{2}(\mathbb{Z}) \rightarrow\right.$ $\left.S L_{2}(\mathbb{Z} / N \mathbb{Z})\right)$ for some N in \mathbb{N}.

Example 2.1.6.

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \supset \Gamma(N)
$$

Any character $\chi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ extends to a congruence character

$$
\chi: \Gamma_{0}(N) \rightarrow \mathbb{C}^{*} \quad \chi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \rightarrow \chi(d)
$$

Let $M_{k}(\Gamma, \chi)$ be the set of modular forms of weight k, character χ for Γ. Then $M_{k}(\Gamma, \chi)$ is a \mathbb{C}-vector space.
Remark. (i) If $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=-I \in \Gamma$ and $\chi(-I) \neq(-1)^{k}$, then $M_{k}(\Gamma, \chi)=0$;
(ii) $f \in M_{k}(\Gamma, \chi), g \in S L_{2}(\mathbb{Z}),\left.f\right|_{k} g \in M_{k}\left(g^{-1} \Gamma g, \chi_{g}\right)$ where $\chi_{g}(\gamma)=$ $\chi\left(g \gamma g^{-1}\right)$.

2.1.3 q-expansion of modular forms.

Lemma 2.1.7. If Γ is a subgroup of finite index of $S L_{2}(\mathbb{Z})$ and $\chi: \Gamma \mapsto \mathbb{C}^{*}$ is of finite order, then there exists M in $\mathbb{N}-\{0\}$, such that $\left(\begin{array}{cc}1 & M \\ 0 & 1\end{array}\right) \in \Gamma$ and $\chi\left(\left(\begin{array}{cc}1 & M \\ 0 & 1\end{array}\right)\right)=1$.

Proof. We can replace Γ by Ker χ and assume $\chi=1$. There exists $n_{1} \neq n_{2}$, such that $\left(\begin{array}{ll}1 & n_{1} \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}1 & n_{2} \\ 0 & 1\end{array}\right)$ have the same image in $\Gamma \backslash S L_{2}(\mathbb{Z})$, then $M=\mid$ $n_{1}-n_{2} \mid$ satisfy the condition.

For $M \in \mathbb{N}-\{0\}$, let $q_{M}(z)=e^{\frac{2 \pi i z}{M}}$. Then $z \mapsto q_{M}(z)$ gives a holomorphic bijection $M \mathbb{Z} \backslash \mathcal{H} \simeq \mathcal{D}^{*}=\left\{0<\left|q_{M}\right|<1\right\}$.

Corollary 2.1.8. If $f \in M_{k}(\Gamma, \chi)$, then there exists $M \neq 0, M \in \mathbb{N}$, such that $f\left(z_{\sim}+M\right)=f(z)$. Thus there exists \tilde{f} holomorphic on \mathcal{D}^{*}, such that $f(z)=\tilde{f}\left(q_{M}\right)$.

Now \tilde{f} has a Laurent expansion $\tilde{f}\left(q_{M}\right)=\sum_{n \in \mathbb{Z}} a_{n} q_{M}^{n}$ with

$$
a_{n}=e^{\frac{2 \pi n y}{M}} \cdot \frac{1}{M} \int_{-\frac{M}{2}}^{\frac{M}{2}} f(x+i y) e^{\frac{-2 \pi i n x}{M}} d x
$$

for all y. If $n<0$, when $y \rightarrow \infty$, the right hand side goes to 0 , so $a_{n}=0$. Hence we get the following result.
Proposition 2.1.9. If f is in $M_{k}(\Gamma, \chi)$, there exists $M \in \mathbb{N}-\{0\}$, and elements $a_{n}(f)$ for each $n \in \frac{1}{M} \mathbb{N}$, such that

$$
f=\sum_{n \in \frac{1}{M} \mathbb{N}} a_{n}(f) q^{n}, \text { where } q(z)=e^{2 \pi i z}
$$

which is called the q expansion of modular forms.

2.1.4 Cusp forms.

Definition 2.1.10. (i) $v_{\infty}(f)=\inf \left\{n \in \mathbb{Q}, a_{n}(f) \neq 0\right\} \geq 0$ and we say that f has a zero of order $v_{\infty}(f)$ at ∞. We say that f has a zero at ∞ if $v_{\infty}(f)>0$.
(ii) A modular form f is a cusp form if $\left.f\right|_{k} \gamma$ has a zero at ∞ for all γ in $\Gamma \backslash S L_{2}(\mathbb{Z})$. We denote S_{k} the set of cusp form of weight k. $S_{k}(\Gamma, \chi) \subset$ $M_{k}(\Gamma, \chi)$.
Remark. If f is a cusp form, then f is rapidly decreasing at ∞ since

$$
\left|\left(\left.f\right|_{k} \gamma\right)(z)\right|=O\left(e^{-v_{\infty}\left(\left.f\right|_{k} \gamma\right) 2 \pi y}\right)
$$

Theorem 2.1.11. $S_{k}(\Gamma, \chi)$ and $M_{k}(\Gamma, \chi)$ are finite dimensional \mathbb{C}-vector spaces with explicit formulas for the dimensions(if $k \geq 2$).
Remark. $\oplus_{k, \chi} M_{k}(\Gamma, \chi)=M(\Gamma)$ is an algebra.
The study of $M_{k}(\Gamma, \chi)$ for congruence subgroup and congruence characters (Ker χ congruence subgroup) can be reduced to the study of $M_{k}\left(\Gamma_{0}(N), \chi\right)$ for a simple group theoretic reason. From now on, we write

$$
M_{k}(N, \chi)=M_{k}\left(\Gamma_{0}(N), \chi\right), \quad S_{k}(N, \chi)=S_{k}\left(\Gamma_{0}(N), \chi\right)
$$

2.2 The case $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$

2.2.1 The generators S and T of $\mathrm{SL}_{2}(\mathbb{Z})$.

Let $\mathrm{M}_{k}(1)=\mathrm{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), 1\right), \mathrm{S}_{k}(1)=\mathrm{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), 1\right)$. Let

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

It is easy to verify

$$
T^{n}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \text { for any } n \in \mathbb{Z}
$$

So $S z=-\frac{1}{z}, T^{n} z=z+n$.
Proposition 2.2.1. (i) If $(a, b)=1$, then there exists $n=n(a, b),\left(a_{0}, b_{0}\right)=$ $(1,0),\left(a_{1}, b_{1}\right)=(0,1), \cdots\left(a_{n}, b_{n}\right)=(a, b)$, such that

$$
\left(\begin{array}{cc}
a_{l} & a_{l+1} \\
b_{l} & b_{l+1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { for any } l
$$

(ii) $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.

Proof. (i) We prove it by induction on $|a|+|b|$.
If $|a|+|b|=1$, one can do it by hand:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad S^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad S^{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

If $|a|+|b| \geq 2$, there exists $\mu, \nu \in \mathbb{Z}$, such that $b \mu-a \nu=1$, and $|\nu|<|b|$, which implies $|\mu| \leq|a|$. Then we have $\left(\begin{array}{cc}\mu & a \\ \nu & b\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$ and $|\mu|+|\nu|<|a|+|b|$. Therefore the conclusion is obtained by the inductive assumption.
(ii) Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, there exists $n=n(a, b),\left(a_{0}, b_{0}\right)=(1,0)$, $\left(a_{1}, b_{1}\right)=(0,1), \cdots\left(a_{n}, b_{n}\right)=(a, b)$, such that

$$
\gamma_{l}=\left(\begin{array}{cc}
a_{l} & a_{l+1} \\
b_{l} & b_{l+1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { for any } l .
$$

As $\gamma_{1}=I$ and

$$
\gamma_{l+1}^{-1} \gamma_{l}=\left(\begin{array}{rr}
n_{l} & 1 \\
-1 & 0
\end{array}\right)=T^{-n_{l}} S^{3}
$$

then $\gamma=\prod\left(\gamma_{l+1}^{-1} \gamma_{l}\right)^{-1} \in\langle T, S\rangle$.

Corollary 2.2.2. Let $f=\sum_{n=0}^{+\infty} a_{n} q^{n}$, where $q=e^{2 \pi i z}$, then $f \in \mathrm{M}_{k}(1)$ if and only if the following two conditions hold:
(i) $\sum_{n=0}^{+\infty} a_{n} q^{n}$ converges if $|q|<1$.
(ii) $f\left(-\frac{1}{z}\right)=z^{k} f(z)$.

2.2.2 Eisenstein series

Proposition 2.2.3. If $k \geq 3$, then $G_{k} \in M_{k}(1)$, where

$$
G_{k}(z)=\frac{1}{2} \frac{\Gamma(k)}{(-2 \pi i)^{k}} \sum_{m, n}{ }^{\prime} \frac{1}{(m z+n)^{k}} \in \mathrm{M}_{k}(1)
$$

and \sum^{\prime} means the summation runs over all pairs of integers (m, n) distinct from (0,0).

Proof. As $|m z+n| \geq \min (y, y /|z|) \sup (|m|,|n|)$, the series converges uniformly on compact subsets of \mathcal{H} and is bounded at ∞.

Let $\gamma=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, since

$$
(c z+d)^{-k} \sum_{m, n} '^{\prime} \frac{1}{\left(m \frac{a z+b}{c z+d}+n\right)^{k}}=\sum_{m, n}^{\prime} \frac{1}{((a m+c n) z+(b m+d n))^{k}},
$$

and

$$
(m, n) \mapsto(a m+c n, b m+d n)
$$

is a bijection of $\mathbb{Z}^{2}-\{(0,0)\}$, it follows that $\left.G_{k}\right|_{k} \gamma=G_{k}$.
Proposition 2.2.4.

$$
G_{k}(z)=\frac{\Gamma(k)}{(-2 \pi i)^{k}} \zeta(k)+\sum_{n=1}^{+\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{s}(n)=\sum_{d \mid n, d \geq 1} d^{s}$, and k is even (if k is odd, $\mathrm{M}_{k}(1)=0$, since $-\mathrm{I} \in$ $\mathrm{SL}_{2}(\mathbb{Z})$.

Proof.

$$
G_{k}(z)=\frac{\Gamma(k)}{(-2 \pi i)^{k}} \zeta(k)+\frac{\Gamma(k)}{(-2 \pi i)^{k}} \sum_{m=1}^{+\infty} A_{k}(m z)
$$

where

$$
A_{k}(z)=\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\sum_{l \in \mathbb{Z}} \hat{\phi}(l) q^{l}
$$

for the last identity given by the Poisson summation formula of Fourier transforms, and (by residue computation)

$$
\hat{\phi}(l)=\int_{-\infty}^{+\infty} \frac{e^{-2 \pi i l x}}{(x+i y)^{k}} \mathrm{~d} x= \begin{cases}0, & \text { if } l \leq 0 \\ \frac{(-2 \pi i)^{k}}{(k-1)!} l^{k-1}, & \text { if } l \geq 0\end{cases}
$$

It follows that

$$
G_{k}(z)=\frac{\Gamma(k)}{(-2 \pi i)^{k}} \zeta(k)+\sum_{m=1}^{+\infty} \sum_{l=1}^{+\infty} l^{k-1} q^{l m}=\frac{\Gamma(k)}{(-2 \pi i)^{k}} \zeta(k)+\sum_{n=1}^{+\infty} \sigma_{k-1}(n) q^{n} .
$$

Remark. (i) $G_{2}(z)=\frac{\Gamma(2)}{(-2 \pi i)^{2}} \zeta(2)+\sum_{n=1}^{+\infty} \sigma_{1}(n) q^{n}$ is not a modular form, but it is almost one. Let

$$
G_{2}^{*}(z)=G_{2}(z)+\frac{1}{8 \pi y}=\frac{1}{2} \frac{\Gamma(2)}{(-2 \pi i)^{2}} \lim _{s \rightarrow 0} \sum_{m, n}{ }^{\prime} \frac{1}{(m z+n)^{2}} \frac{y^{s}}{|m z+n|^{2 s}},
$$

G_{2}^{*} is not holomorphic, but $\left.G_{2}^{*}\right|_{2} \gamma=G_{2}^{*}$, for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
(ii) Let $E_{k}=\frac{G_{k}}{a_{0}\left(G_{k}\right)}$, so that $a_{0}\left(E_{k}\right)=1$.

2.2.3 The fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$

Theorem 2.2.5. Let D denotes the shadows in Figure 1.1. Then it is a fundamental domain for $\mathrm{PSL}_{2}(\mathbb{Z})$. Moreover, the stabilizer of $z \in D$ is

- $\{\mathrm{I}\}$ if $z \neq i, \rho$;
- $\{\mathrm{I}, S\}$ if $z=i$;
- $\left\{\mathrm{I}, T S,(T S)^{2}\right\}$ if $z=\rho$.

Figure 2.1: The Fundamental Domain.

Proof. Let $z_{0} \in \mathcal{H}$,

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Since $\operatorname{Im}\left(\gamma z_{0}\right)=\frac{z_{0}}{\left|c z_{0}+d\right|^{2}}$ tends to zero, as (c, d) tends to infinity, there exists γ_{0} such that $\operatorname{Im}\left(\gamma_{0} z_{0}\right)$ is maximal. There exists a unique n such that:

$$
-\frac{1}{2}<\operatorname{Re}\left(\gamma_{0} z_{0}\right)+n \leq \frac{1}{2}
$$

Let $\gamma_{1}=T^{n} \gamma_{0}$, then

$$
\operatorname{Im}\left(\gamma_{1} z_{0}\right)=\operatorname{Im}\left(\gamma_{0} z_{0}\right) \geq \operatorname{Im}\left(S \gamma_{1} z_{0}\right)=\frac{\operatorname{Im}\left(\gamma_{1} z_{0}\right)}{\left|\gamma_{1} z_{0}\right|^{2}}
$$

which implies $\left|\gamma_{1} z_{0}\right| \geq 1$. Therefore D contains a fundamental domain.
If $z_{1}, z_{2} \in D$, and there exists $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, such that $z_{1}=\gamma z_{2}$, we want to show $z_{1}=z_{2}$. By symmetry, we may assume $\operatorname{Im}\left(z_{2}\right) \geq \operatorname{Im}\left(z_{1}\right)$. If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \operatorname{Im}\left(z_{2}\right) \geq \frac{\operatorname{Im}\left(z_{2}\right)}{\left|c z_{2}+d\right|^{2}}$ implies $\left|c z_{2}+d\right|^{2} \leq 1$. As $\operatorname{Im}\left(z_{2}\right) \geq \frac{\sqrt{3}}{2}$, we have $c \leq 1, d \leq 1$. It remains only finite number of cases to check.

If $c=0$, then $d= \pm 1$, and γ is the translation by $\pm b$. Since

$$
-\frac{1}{2}<\operatorname{Re}\left(z_{1}\right), \operatorname{Re}\left(z_{2}\right) \leq \frac{1}{2}
$$

this implies $b=0$, and $\gamma= \pm \mathrm{I}$.
If $c=1$, the fact $\left|z_{2}+d\right| \leq 1$ implies $d=0$ except if $z_{2}=\rho$, in which case we can have $d=0,-1$. The case $d=0$ gives $\left|z_{2}\right| \leq 1$, hence $\left|z_{2}\right|=1$; on the other hand, $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ implies $b=-1$, hence $z_{1}=\gamma z_{2}=a-1 / z_{2} \in D$,

Figure 2.2: The Route $C(M, \varepsilon)$ of Integration.
which implies $a=0$, and $z_{1}=z_{2}=i$. The case $z_{2}=\rho$, and $d=-1$ gives $a+b+1=0$ and $z_{1}=\gamma z_{2}=a-\frac{1}{\rho-1}=a+\rho \in D$, which implies $a=0$ and $z_{1}=z_{2}=\rho$.

If $c=-1$, we have similar argument as $c=1$.
This completes the proof of the Theorem.

2.2.4 The $\frac{k}{12}$ formula.

The following proposition is usually called "the $\frac{k}{12}$ formula".
Proposition 2.2.6. Let $f \in \mathrm{M}_{k}-\{0\}$, then

$$
v_{\infty}(f)+\frac{1}{2} v_{i}(f)+\frac{1}{3} v_{\rho}(f)+\sum_{z \in D-\{i, \rho\}} v_{z}(f)=\frac{k}{12} .
$$

Proof. Apply Cauchy residue formula to $d \log f$ over the path showed in Figure 1.2. As $M \rightarrow+\infty$, and $\varepsilon \rightarrow 0$, we have:

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{C(M, \varepsilon)} \mathrm{d} \log f=\sum_{z \in D-\{i, \rho\}} v_{z}(f), \\
\lim _{M \rightarrow+\infty} \frac{1}{2 \pi i} \int_{C_{\infty}(M)} \mathrm{d} \log f=\lim _{M \rightarrow+\infty}-\frac{1}{2 \pi i} \int_{|z|=e^{-2 \pi M}} \mathrm{~d} \log \sum a_{n}(f) z^{n}=-v_{\infty}(f), \\
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{C(i, \varepsilon)} \mathrm{d} \log f=-\frac{1}{2} v_{i}(f),
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{C(\rho, \varepsilon)} \mathrm{d} \log f=-\frac{1}{6} v_{\rho}(f)=-\frac{1}{6} v_{\rho^{2}}(f)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{C\left(\rho^{2}, \varepsilon\right)} \mathrm{d} \log f \\
& \frac{1}{2 \pi i}\left(\int_{\rho^{2}}^{i} \mathrm{~d} \log f+\int_{i}^{\rho} \mathrm{d} \log f\right)=\frac{1}{2 \pi i} \int_{\rho^{2}}^{i}\left(\mathrm{~d} \log f-\mathrm{d} \log f\left(-\frac{1}{z}\right)\right) \\
&=-\frac{1}{2 \pi i} \int_{\rho^{2}}^{i}\left(\mathrm{~d} \log f-\mathrm{d} \log z^{k} f(z)\right) \\
&=-\frac{k}{2 \pi i} \int_{\rho^{2}}^{i} \frac{\mathrm{~d} z}{z}=-\frac{k}{2 \pi i}\left(\log i-\log \rho^{2}\right)=\frac{k}{12}
\end{aligned}
$$

Putting all these equations together, we get the required formula.
Corollary 2.2.7. G_{4} has its only zero on D at $z=\rho, G_{6}$ has its only zero on D at $z=i$.

$$
\Delta=\left(\left(\frac{G_{4}}{a_{0}\left(G_{4}\right)}\right)^{3}-\left(\frac{G_{6}}{a_{0}\left(G_{6}\right)}\right)^{2}\right) \frac{1}{3 a_{0}^{-1}\left(G_{4}\right)-2 a_{0}^{-1}\left(G_{6}\right)}=q+\cdots \in \mathrm{M}_{12}(1)
$$

does not vanish on $D\left(v_{\infty}(\Delta)=1\right)$.
Remark. One can prove $\Delta=q \prod_{n=1}^{+\infty}\left(1-q^{n}\right)^{24}$.

2.2.5 Dimension of spaces of modular forms.

Theorem 2.2.8. (i) $\mathrm{M}_{k}(1)=0$, if k is odd or $k=2$.
(ii) $\operatorname{dim} \mathrm{M}_{k}(1)=1$, if $k=0$ or k is even and $2<k \leq 10$. In this case $\mathrm{M}_{k}(1)=\mathbb{C} \cdot G_{k}\left(\right.$ We have $\left.G_{0}=1\right)$.
(iii) $M_{k+12}(1)=\mathbb{C} \cdot G_{k+12} \oplus \Delta \cdot \mathrm{M}_{k}(1)$.

Proof. If $f \in \mathrm{M}_{k+12}$, then

$$
f=\frac{a_{0}(f)}{a_{0}\left(G_{k+12}\right)} G_{k+12}+\Delta g
$$

where $g \in \mathrm{M}_{k}(1)$, because Δ does not vanish on $\mathcal{H}, v_{\infty}(\Delta)=1$ and $v_{\infty}(f-$ $\left.\frac{a_{0}(f)}{a_{0}\left(G_{k+12}\right)} G_{k+12}\right) \geq 1$.

Corollary 2.2.9. If k is even, $\operatorname{dim}_{\mathbb{C}} \mathrm{M}_{k}(1)= \begin{cases}{\left[\frac{k}{12}\right],} & k \equiv 2 \bmod 12, \\ {\left[\frac{k}{12}\right]+1,} & \text { if not. }\end{cases}$
Remark. Finite dimensionality of spaces of modular forms has many combinatorical applications. For example, let

$$
\begin{gathered}
\theta(z)=\sum_{n \in \mathbb{Z}} q^{\frac{n^{2}}{2}}=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} z}, \\
\Gamma_{\theta}=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}), \gamma \equiv I \text { or } \gamma \equiv S \bmod 2\right\}, \\
\chi_{\theta}: \Gamma_{\theta} \rightarrow\{ \pm 1\} . \quad \chi_{\theta}(\gamma)= \begin{cases}1 & \text { if } \gamma \equiv I \\
-1 & \text { if } \gamma \equiv S\end{cases}
\end{gathered}
$$

One can check that $\operatorname{dim} \mathrm{M}_{2}\left(\Gamma_{\theta}, \chi_{\theta}\right) \leq 1, \theta^{4} \in \mathrm{M}_{2}\left(\Gamma_{\theta}, \chi_{\theta}\right)$, and $4 G_{2}^{*}(2 z)-$ $G_{2}^{*}\left(\frac{z}{2}\right) \in \mathrm{M}_{2}\left(\Gamma_{\theta}, \chi_{\theta}\right)$, so we have

$$
4 G_{2}^{*}(2 z)-G_{2}^{*}\left(\frac{z}{2}\right)=\frac{3 \zeta(2) \Gamma(2)}{(-2 \pi i)^{2}} \theta^{4}
$$

hence

$$
\left|\left\{(a, b, c, d) \in \mathbb{Z}^{4}: a^{2}+b^{2}+c^{2}+d^{2}=n\right\}\right|=8 \sum_{d \mid n, 4 \nmid d} d,
$$

from which we can deduce that any positive integer can be written as a sum of 4 squares.

2.2.6 Rationality results.

As $\mathrm{M}_{8}(1)$ and $\mathrm{M}_{10}(1)$ are of dimension 1, we have

$$
\begin{equation*}
a_{0}\left(G_{8}\right) G_{4}^{2}=a_{0}\left(G_{4}\right)^{2} G_{8}, \quad a_{0}\left(G_{10}\right) G_{4} G_{6}=a_{0}\left(G_{4}\right) a_{0}\left(G_{6}\right) G_{10} \tag{*}
\end{equation*}
$$

Let

$$
\alpha=\frac{\Gamma(4)}{(-2 \pi i)^{4}} \zeta(4), \quad \beta=\frac{\Gamma(8)}{(-2 \pi i)^{8}} \zeta(8) .
$$

Substituting

$$
G_{4}=\alpha+q+9 q^{2}+\cdots, \quad G_{8}=\beta+q+129 q^{2}+\cdots
$$

in $(*)$, compare the coefficients of q and q^{2}, we have the following equations:

$$
\left\{\begin{array}{l}
2 \alpha \beta=\alpha^{2} \\
\beta(1+18 \alpha)=129 \alpha^{2}
\end{array}\right.
$$

The solution is: $\alpha=\frac{1}{240}, \beta=\frac{1}{480}$. In particular, $\alpha, \beta \in \mathbb{Q}$, which implies G_{4} and G_{8} have rational q-expansions, and $\frac{\zeta(4)}{\pi^{4}} \in \mathbb{Q}, \frac{\zeta(8)}{\pi^{8}} \in \mathbb{Q}$.
Exercise. $a_{0}\left(G_{6}\right)=-\frac{1}{504}$, which implies $\frac{\zeta(6)}{\pi^{6}} \in \mathbb{Q}$.
Let A be a subring of \mathbb{C}, let

$$
\mathrm{M}_{k}(\Gamma, A)=\left\{f \in \mathrm{M}_{k}(\Gamma), a_{n}(f) \in A, \text { for all } n\right\}
$$

then $\mathrm{M}(\Gamma, A)=\sum_{k} \mathrm{M}_{k}(\Gamma, A)$ is an A-algebra.
Theorem 2.2.10. (i) $\mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right) \xrightarrow{\sim} \mathbb{Q}[X, Y]$, where $X=G_{4}, Y=G_{6}$.
(ii) $\mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)=\mathbb{C} \otimes \mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)$.

Proof. If $\sum_{k} f_{k}=0$, where $f_{k} \in \mathrm{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)$, then for any z, for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have $\sum_{k}(c z+d)^{k} f_{k}(z)=0$. Therefore $\sum_{k}(X z+Y)^{k} f_{k}(z)$ is identically zero because it (as a polynomial in X and Y) has too many zeros. Hence $f_{k}(z)=0$, which implies that

$$
\mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)=\bigoplus_{k} \mathrm{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)
$$

Now if $k=12 n, G_{4}^{3 n}, G_{4}^{3(n-1)} \Delta, \cdots, \Delta^{n}$ is a basis of $\mathrm{M}_{k}(1)$; if $k=12 n+2$, $G_{4}^{3(n-1)+2} G_{6}, G_{4}^{3(n-2)+2} G_{6} \Delta, \cdots, G_{4}^{2} G_{6} \Delta^{n-1}$ is a basis of $\mathrm{M}_{k}(1)$, and so on, $\Delta=a G_{4}^{3}+b G_{6}^{2}, a, b \in \mathbb{Q}$. As $G_{4}, G_{6} \in \mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)$, this proves both results.

Corollary 2.2.11. Let $f \in \mathrm{M}_{k}(1), \sigma \in \operatorname{Aut}(\mathbb{C})$, then $f^{\sigma}=\sum a_{n}(f)^{\sigma} q^{n} \in$ $\mathrm{M}_{k}(1)$. Moreover, $\frac{\zeta(k)}{(-2 \pi i)^{k}} \in \mathbb{Q}$ if k is even and $k \geq 4$.

Proof. The first assertion is a direct consequence of Theorem 2.2.10 (ii). For any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
G_{k}^{\sigma}-G_{k}=a_{0}\left(G_{k}\right)^{\sigma}-a_{0}\left(G_{k}\right) \in \mathrm{M}_{k}(1) .
$$

This implies $a_{0}\left(G_{k}\right)^{\sigma}=a_{0}\left(G_{k}\right)$ for any $\sigma \in \operatorname{Aut}(\mathbb{C})$, therefore $a_{0}\left(G_{k}\right) \in$ \mathbb{Q}.

Remark. When $k=2$, we can use

$$
4 G_{2}^{*}(2 z)-G_{2}^{*}\left(\frac{z}{2}\right) \in \mathrm{M}_{2}\left(\Gamma_{\theta}, \mathbb{Q}\right)
$$

to deduce $\frac{\zeta(2)}{\pi^{2}} \in \mathbb{Q}$.
Remark. (i) The zeta function ζ is a special case of L-functions, and $\zeta(k)$ are s pecial values of L-functions (i.e. values of L-functions at integers).

Siegel used the above method to prove rationality of special values of L-functions for totally real fields.
(ii) With a lot of extra work, we can prove integrality results. As

$$
G_{k}(z)=\frac{\Gamma(k)}{(-2 \pi i)^{k}} \zeta(k)+\sum_{n=1}^{+\infty} \sigma_{k-1}(n) q^{n}
$$

and $\sigma_{k-1}(n)=\int_{\mathbb{Z}_{p}} x^{k-1}\left(\sum_{d \mid n} \delta_{d}\right)$, we have all $a_{n}\left(G_{k}\right)$ are given by measures on \mathbb{Z}_{p}, therefore $a_{0}\left(G_{k}\right)$ is also given by measures. From which we can deduce other constructions of Kubota-Leopoldt zeta functions (the work of Serre, Deligne, Ribet).

2.3 The algebra of all modular forms.

Let A be a subring of \mathbb{C}, let

$$
\mathcal{M}_{k}(A)=\bigcup_{\left[S L_{2}(\mathbb{Z}): \Gamma\right]<+\infty} \mathrm{M}_{k}(\Gamma, A)=\left\{\sum a_{n} q^{n} \in \mathrm{M}_{k}(\Gamma, \mathbb{C}), a_{n} \in A, n \in \mathbb{N}\right\} .
$$

Let $\mathcal{M}(A)=\oplus \mathcal{M}_{k}(A)$, then it is an A-algebra. Let

$$
\mathcal{M}^{\text {cong }}(A)=\bigcup_{\Gamma \text { congruence subgroup }} \mathrm{M}(\Gamma, A) .
$$

Theorem 2.3.1. (i) If $f \in \mathcal{M}(\mathbb{C})$, and $\sigma \in \operatorname{Aut}(\mathbb{C})$, then $f^{\sigma} \in \mathcal{M}(\mathbb{C})$.
(ii) $\mathcal{M}(\mathbb{C})=\mathbb{C} \otimes_{\overline{\mathbb{Q}}} \mathcal{M}(\overline{\mathbb{Q}})=\mathbb{C} \otimes_{\mathbb{Q}} \mathcal{M}(\mathbb{Q})$.
(iii) Let $\Pi_{\mathbb{Q}}=\operatorname{Aut}\left(\mathcal{M}(\overline{\mathbb{Q}}) / \mathrm{M}\left(S L_{2}(\mathbb{Z}), \mathbb{Q}\right)\right)$, $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, then we have an exact sequence:

$$
1 \longrightarrow \mathrm{SL}_{2}(\mathbb{Z})^{\wedge} \longrightarrow \Pi_{\mathbb{Q}} \longleftrightarrow G_{\mathbb{Q}} \longrightarrow 1
$$

where $G^{\wedge} \triangleq{\underset{\substack{[G: \Gamma]<\infty \\ \Gamma: \text { normal }}}{\lim }(G / \Gamma) \text {, and } G_{\mathbb{Q}} \rightarrow \Pi_{\mathbb{Q}} \text { is induced by the action on Fourier }}^{*}$ coefficients.
(iv) $\mathcal{M}^{\text {cong }}\left(\mathbb{Q}^{a b}\right)$ is stable by $\Pi_{\mathbb{Q}}$, and

$$
\operatorname{Aut}\left(\mathcal{M}^{c o n g}\left(\mathbb{Q}^{a b}\right) / \mathrm{M}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)\right) \xrightarrow{\sim} \mathrm{GL}_{2}(\hat{\mathbb{Z}}) .
$$

Moreover, we have the following commutative diagram:

where $G_{\mathbb{Q}} \rightarrow \hat{\mathbb{Z}}^{*}$ is the cyclotomic character, $\mathrm{GL}_{2}(\hat{\mathbb{Z}}) \rightarrow \hat{\mathbb{Z}}^{*}$ is the determinant map, and $\hat{\mathbb{Z}}^{*} \rightarrow \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ maps u to $\left(\begin{array}{ll}1 & 0 \\ 0 & u\end{array}\right)$.

Remark. (i) $\mathrm{SL}_{2}(\mathbb{Z})^{\wedge}$ is much bigger than $\mathrm{SL}_{2}(\hat{\mathbb{Z}})$.
(ii) We can get an action of $G_{\mathbb{Q}}$ on $\mathrm{SL}_{2}(\mathbb{Z})^{\wedge}$ by inner conjugation in $\Pi_{\mathbb{Q}}$. This is a powerful way to study $G_{\mathbb{Q}}$ (Grothendieck, "esquisse d'un programme").
(iii) There are p-adic representations of $G_{\mathbb{Q}}$ attached to modular forms (by Deligne) for congruence subgroups. They come from the actions of $G_{\mathbb{Q}}$ on $\mathrm{H}^{1}\left(\mathrm{SL}_{2}(\mathbb{Z})^{\wedge}, W\right)$, where $W=\operatorname{Sym}^{k-2} V_{p} \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}\left[\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma\right], V_{p}$ is \mathbb{Q}_{p}^{2} with actions of $\Pi_{\mathbb{Q}}$ through $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and are cut out using Hecke operators on these spaces.

Proof of Theorem 2.3.1 (i). Let $\mathrm{N}(\Gamma, A)$ denote the set of holomorphic functions $f: \mathcal{H} \rightarrow \mathbb{C}$ satisfying the following conditions:
(a) for any $\gamma \in \Gamma, f(\gamma z)=f(z)$,
(b) for any $\gamma \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$, $f \circ \gamma=\sum_{\substack{n \geq n_{0}(\gamma, f) \\ n \in \frac{1}{M^{Z}}}} a_{n} q^{n}$, and $a_{n} \in A$ for any n.

As $\Delta \in \mathrm{S}_{12}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)$ does not vanish on $\mathcal{H}, \Delta^{\frac{1}{12}} \in \mathrm{~S}_{1}\left(\mathrm{SL}_{2}(\mathbb{Z}), \chi, \mathbb{Q}\right)$, where $\chi: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mu_{12}$. Let $\Gamma_{0}=\operatorname{Ker} \chi$. If $f \in \mathrm{M}_{k}(\Gamma, A), \Delta^{-\frac{k}{12}} f \in \mathrm{~N}\left(\Gamma \cap \Gamma_{0}, A\right)$. If $f \in \mathrm{~N}(\Gamma, A), \Delta^{k} f \in \mathrm{M}_{12 k}(\Gamma, A)$, where $k+n_{0}(\gamma, f) \geq 0$ for any $\gamma \in$
$\Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$. Therefore knowing $\mathrm{N}(\Gamma, A)$ is equivalent to knowing $\mathrm{M}(\Gamma, A)$. So it suffices to prove if

$$
f=\sum_{n \geq n_{0}} a_{n} q^{n} \in \mathcal{N}(\mathbb{C})=\bigcup_{\Gamma} \mathrm{N}(\Gamma, \mathbb{C})
$$

and $\sigma \in \operatorname{Aut} \mathbb{C}$, then $f^{\sigma} \in \mathcal{N}(\mathbb{C})$.
Let $j=\frac{G_{4}^{3}}{a_{0}\left(G_{4}^{3}\right) \Delta}=q^{-1}+\cdots \in \mathrm{N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)$.
Proposition 2.3.2. (i) $\mathrm{N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)=\mathbb{Q}[j], N\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)=\mathbb{C}[j]$.
(ii) $j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H} \rightarrow \mathbb{C}$ is bijective.
(iii) $j(z)-j(\alpha)$ has a zero at $z=\alpha$ of order $e(\alpha)= \begin{cases}3 & \text { if } \alpha \in \mathrm{SL}_{2}(\mathbb{Z}) \rho \\ 2 & \text { if } \alpha \in \mathrm{SL}_{2}(\mathbb{Z}) i, \\ 1 & \text { otherwise. }\end{cases}$
(iv) $j(i), j(\rho) \in \mathbb{Q}$.

Proof. (i) Note that $G_{4}^{3 a}, G_{4}^{3(a-1)} \Delta, \cdots, \Delta^{a}$ is a basis of $\mathrm{M}_{12 a}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Q}\right)$.
(ii) and (iii): For any $\beta \in \mathbb{C}, f=(j-\beta) \cdot \Delta \in \mathrm{M}_{12}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)$, with $v_{\infty}(f)=0$. As $D=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$, and

$$
\sum_{z \in D-\{\rho, i\}} \gamma_{z}(f)+\frac{1}{2} \gamma_{i}(f)+\frac{1}{3}(f)=1,
$$

we can deduce the required results.
(iv) $G_{4}(\rho)=0, G_{6}(i)=0$.

Let $f \in \mathrm{~N}(\Gamma, \mathbb{C})$,

$$
\begin{aligned}
P_{f}(X) & =\prod_{\delta \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})}(X-f \circ \delta) \in \mathrm{N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)[X] \subset \mathbb{C}((q))[X] \\
P_{f^{\sigma}}(X) & =\prod_{\delta \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})}\left(X-(f \circ \delta)^{\sigma}\right) \in \mathrm{N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)[X] \subset \mathbb{C}((q))[X]
\end{aligned}
$$

Denote $P_{f}(X)=\sum_{l=0}^{n} g_{l} X^{l}, P_{f^{\sigma}}(X)=\sum_{l=0}^{n} g_{l}^{\sigma} X^{l}$, where $g_{l} \in \mathrm{~N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)$, and $g_{l}^{\sigma} \in \mathrm{N}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{C}\right)$ thanks to the Corollary 2.2.11. We give the proof in two steps.

Step 1: Prove that f^{σ} is holomorphic on \mathcal{H}, by the Proposition 2.3.2. We have

$$
P_{f}(X)=\sum_{l=0}^{n} P_{l}(j) X^{l}, \quad P_{f^{\sigma}}(X)=\sum_{l=0}^{n} P_{l}^{\sigma}(j) X^{l}
$$

The roots of P_{f} are the $f \circ \delta$'s, where $\delta \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$. They are holomorphic on \mathcal{H}. The roots of $P_{f^{\sigma}}$ are multivalued holomorphic functions on \mathcal{H}. In order to prove that are single valued, it suffices to show there is no ramification. Let α be an arbitrary element in \mathcal{H}. we have, around α, n distinct formal solutions

$$
\sum_{k=0}^{+\infty} a_{l, k}(\alpha)(j-j(\alpha))^{\frac{k}{e(\alpha)}} \quad(1 \leq l \leq n)
$$

of $P_{f}(X)=0$ as $(j-j(\alpha))^{\frac{1}{e(\alpha)}}$ is a local parameter around α by Proposition 2.3.2. Let $\beta_{\sigma} \in \mathcal{H}$ satisfies $j\left(\beta_{\sigma}\right)=j(\alpha)^{\sigma}$, then we have $e\left(\beta_{\sigma}\right)=e(\alpha)$. Therefore

$$
\sum_{k=0}^{+\infty} a_{l, k}(\alpha)^{\sigma}\left(j-j\left(\beta_{\sigma}\right)\right)^{\frac{k}{e(\beta \sigma)}}, \quad(1 \leq l \leq n)
$$

are n distinct formal solutions around β_{σ}. It follows that there is no ramification around β_{σ}, for any β_{σ}. Hence the roots of $P_{f^{\sigma}}$ are holomorphic on \mathcal{H}. In particular, f^{σ} is holomorphic on \mathcal{H}.

Step 2: Prove that there exists $\Gamma^{\prime} \subset \mathrm{SL}_{2}(\mathbb{Z})$ of finite index, such that $f^{\sigma} \circ \gamma=$ f^{σ} for any $\gamma \in \Gamma$. For any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
P_{f^{\sigma}}\left(f^{\sigma} \circ \gamma\right)=\sum_{l=0}^{n} g_{l}^{\sigma}\left(f^{\sigma} \circ \gamma\right)^{l}=\sum_{l=0}^{n} g_{l}^{\sigma} \circ \gamma\left(f^{\sigma} \circ \gamma\right)^{l}=P_{f^{\sigma}}\left(f^{\sigma}\right) \circ \gamma=0
$$

So $f^{\sigma} \circ \gamma$ belongs to the finite set of roots of $P_{f^{\sigma}}$, which leads to the required conclusion.

2.4 Hecke operators

2.4.1 Preliminary.

Let $\Gamma \subset G$ be groups (for example, $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), G=\mathrm{GL}_{2}(\mathbb{Q})^{+}$), let $x \in G$,

$$
x \Gamma=\{x \gamma: \gamma \in \Gamma\}, \quad \Gamma x=\{\gamma x: \gamma \in \Gamma\}
$$

Let A be a ring, define $A[\Gamma \backslash G / \Gamma]$ to be the set of $\phi: G \rightarrow A$ satisfying the following two conditions:
(i) $\phi(\gamma x)=\phi(x \gamma)=\phi(x)$, for all $x \in G, \gamma \in \Gamma$.
(ii) There exists a finite set I such that $\phi=\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i}}$.

Remark. (i) We impose x_{i} to be distinct in $\Gamma \backslash G$, in this situation, the decomposition is unique, λ_{i} 's are unique.
(ii) For any $\gamma \in \Gamma, 1_{\Gamma x_{i} \gamma}(x)=1_{\Gamma x_{i}}\left(x \gamma^{-1}\right)$. So $\phi=\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i}} \in A[\Gamma \backslash G / \Gamma]$ implies

$$
\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i} \gamma}(x)=\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i}}\left(x \gamma^{-1}\right)=\phi\left(x \gamma^{-1}\right)=\phi(x)=\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i}}(x)
$$

Therefore there exists a permutation: $\sigma: I \rightarrow I$, and for any $i \in I$, there exists $\gamma_{i} \in \Gamma$, such that $\lambda_{\sigma(i)}=\lambda_{i}, x_{i} \gamma=\gamma_{i} x_{\sigma(i)}$.

Proposition 2.4.1. (i) If $\phi=\sum_{i \in I} \lambda_{i} 1_{\Gamma x_{i}}, \phi^{\prime}=\sum_{j \in J} \mu_{j} 1_{\Gamma y_{j}} \in A[\Gamma \backslash G / \Gamma]$, then

$$
\phi * \phi^{\prime}=\sum_{(i, j) \in I \times J} \lambda_{i} \mu_{j} 1_{\Gamma x_{i} y_{j}} \in A[\Gamma \backslash G / \Gamma],
$$

and it does not depend on the choices.
(ii) $(A[\Gamma \backslash G / \Gamma],+, *)$ is an associative A-algebra with 1_{Γ} as a unit.
(iii) If M is a right G-module with G action $m \mapsto m * g$, and $\phi=$ $\sum \lambda_{i} 1_{\Gamma x_{i}} \in A[\Gamma \backslash G / \Gamma]$, then for any $m \in M^{\Gamma}, m * \phi=\sum_{i \in I} \lambda_{i} m * x_{i}$ does not depend on the choices of x_{i}. Moreover, $m * \phi \in M^{\Gamma}, m *\left(\phi_{1} * \phi_{2}\right)=\left(m * \phi_{1}\right) * \phi_{2}$, $m *\left(\phi_{1}+\phi_{2}\right)=\left(m * \phi_{1}\right)+\left(m * \phi_{2}\right)$.

Proof. Exercise, using the previous remark.
Remark. If $\Gamma=1$, then $A[\Gamma \backslash G / \Gamma]=A[G]$ is commutative if and only if G is commutative.

2.4.2 Definition of Hecke operators: $R_{n}, T_{n}, n \geq 1$.

Let $G=\mathrm{GL}_{2}(\mathbb{Q})^{+}, \Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.
Lemma 2.4.2. Let $g \in G \cap M_{2}(\mathbb{Z})$, then there exists a unique pair $(a, d) \in$ $\mathbb{N}-\{0\}$, and $b \in \mathbb{Z}$ unique $\bmod d \mathbb{Z}$, such that $\Gamma g=\Gamma\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$

Proof. Let $g=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$, there exists $\mu, \nu \in \mathbb{Z}$, such that $(\mu, \nu)=1$, and $\mu \alpha+\nu \gamma=0$. And there exists $x, y \in \mathbb{Z}$, such that $x \nu-\mu y=1$, Let $\gamma_{0}=\left(\begin{array}{ll}x & y \\ \mu & \nu\end{array}\right)$ if $x \alpha+y \gamma \geq 0 ; \gamma_{0}=-\left(\begin{array}{ll}x & y \\ \mu & \nu\end{array}\right)$ if $x \alpha+y \gamma<0$. Then $\gamma_{0} g=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, where $a>0$. Thus completes the proof of existence.

If $\gamma_{1}, \gamma_{2} \in \Gamma$ satisfies

$$
\gamma_{1} g=\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & d_{1}
\end{array}\right) \quad \gamma_{2} g=\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & d_{2}
\end{array}\right)
$$

then

$$
\left(\gamma_{1} g\right)\left(\gamma_{2} g\right)^{-1}=\left(\begin{array}{cc}
\frac{a_{1}}{a_{2}} & \frac{a_{2} b_{1}-a_{1} b_{2}}{a_{2} d_{2}} \\
0 & \frac{d_{1}}{d_{2}}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

This implies $a_{1}=a_{2}, d_{1}=d_{2}, b_{1}-b_{2}$ divisible by d_{1}.
Lemma-definition 2.4.3. For any $n \geq 1$,

$$
\begin{gathered}
R_{n}=1_{\Gamma\left(\begin{array}{cc}
n & 0 \\
0 & n
\end{array}\right)} \in \mathbb{Z}[\Gamma \backslash G / \Gamma], \\
T_{n}=1_{\left\{g \in \mathrm{M}_{2}(\mathbb{Z}), \operatorname{det} g=n\right\}} \in \mathbb{Z}[\Gamma \backslash G / \Gamma] .
\end{gathered}
$$

Proof. Left and right invariance come from $\operatorname{det} g g^{\prime}=\operatorname{det} g \operatorname{det} g^{\prime}$. And Lemma 2.4.2 implies $T_{n}=\sum_{\substack{a d=n, a>1 \\ b \bmod d}} 1_{\Gamma\left(\begin{array}{c}a \\ 0 \\ 0\end{array}\right)}$, , so get the finiteness needed.

Remark. If p is prime, Then $T_{p}=1_{\Gamma\left(\begin{array}{c}p \\ 0 \\ 0\end{array}\right) \Gamma}$ by elementary divisors for principle ideal domains.

Theorem 2.4.4. (i) For any $n \geq 1$ and $l \geq 1, R_{n} R_{l}=R_{n l}=R_{l} R_{n}$, $R_{n} T_{l}=T_{l} R_{n}$.
(ii) If $(l, n)=1, T_{l} T_{n}=T_{l n}=T_{n} T_{l}$.
(iii) If p is prime and $r \geq 1, T_{p^{r}} T_{p}=T_{p^{r+1}}+p R_{p} T_{p^{r-1}}$.
(iv) Let $\mathbb{T}_{\mathbb{Z}}$ be the subalgebra of $\mathbb{Z}[\Gamma \backslash G / \Gamma]$ generated by R_{n} and $T_{n}(n \geq 1)$. It is a commutative algebra.

Proof. (i) It is trivial.
(ii) We have

$$
T_{n} T_{l}=\sum_{\substack{a d=n, a \geq 1 \\
b \text { mod } d}} \sum_{\substack{a^{\prime} d^{\prime}=n, a^{\prime} \geq 1 \\
b^{\prime} \text { mod } d^{\prime}}} 1_{\Gamma\left(\begin{array}{c}
a a^{\prime} a b^{\prime}+b d^{\prime} \\
0 \\
d d^{\prime}
\end{array}\right)} .
$$

As $(n, l)=1,\left(a, a^{\prime}\right)=1,\left(a, d^{\prime}\right)=1$. This implies $\left\{a a^{\prime}: a\left|n, a^{\prime}\right| l\right\}=$ $\left\{a^{\prime \prime}: a^{\prime \prime} \mid n l\right\}$. Therefore in order to show $T_{n} T_{l}=T_{n l}$, it suffices to verify that $\left\{a b^{\prime}+b d^{\prime}\right\}$ is a set of representatives of $\mathbb{Z} /\left(d d^{\prime}\right) \mathbb{Z}$, where b is a set of representatives of $\mathbb{Z} / d \mathbb{Z}, b^{\prime}$ is a set of representatives of $\mathbb{Z} / d^{\prime} \mathbb{Z}$. It suffices to show the injectivity under the $\bmod d d^{\prime} \mathbb{Z}$ map. If

$$
a b_{1}^{\prime}+b_{1} d^{\prime} \equiv a b_{2}^{\prime}+b_{2} d^{\prime}
$$

then $b_{1}^{\prime} \equiv b_{2}^{\prime} \bmod d^{\prime}$, so $b_{1}^{\prime}=b_{2}^{\prime}$, which leads to the required conclusion.
(iii) We have

$$
T_{p^{r}}=\sum_{i=0}^{r} \sum_{b \bmod p^{i}} 1_{\Gamma\left(\begin{array}{cc}
p^{r-i} & b \\
0 & p^{i}
\end{array}\right)}, \quad T_{p}=1_{\Gamma\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)}+\sum_{c \bmod p} 1_{\Gamma\left(\begin{array}{ll}
1 & c \\
0 & p
\end{array}\right)}
$$

Then

$$
\begin{aligned}
& \left.T_{p^{r}} T_{p}=\sum_{i=0}^{r} \sum_{b \bmod p^{i}} 1_{\Gamma\left(\begin{array}{c}
p^{r+1-i} \\
0
\end{array} \underset{p^{i}}{b}\right)}+\sum_{i=0}^{r} \sum_{b \bmod p^{i}} \sum_{c \bmod p} 1_{\Gamma\left(\begin{array}{c}
p^{r-i} \\
0
\end{array}\right.} i_{\substack{p b+p^{r-i} \\
p^{i+1}}}\right) \\
& =T_{p^{r+1}}+R_{p}\left(\sum_{i=0}^{r-1} \sum_{b \bmod p^{i} c \bmod p} \sum_{\Gamma\left(\begin{array}{c}
p^{r-1-i} \\
0 \\
b+p^{r-1-i} \\
p^{i}
\end{array}\right)}\right)=T_{p^{r+1}}+p R_{p} T_{p^{r-1}} .
\end{aligned}
$$

(iv) It follows from (i),(ii),(iii).

2.4.3 Action of Hecke operators on modular forms.

The following two propositions are exercises in group theory.
Proposition 2.4.5. Assume $G \supset \Gamma$ are groups. Then
(i) If $\left[\Gamma: \Gamma^{\prime}\right]<+\infty$, then Γ^{\prime} contains some $\Gamma^{\prime \prime}$ which is normal in Γ, and $\left[\Gamma: \Gamma^{\prime \prime}\right]<+\infty$.
(ii) If $\left[\Gamma: \Gamma_{1}\right]<+\infty,\left[\Gamma: \Gamma_{2}\right]<+\infty$, then $\left[\Gamma: \Gamma_{1} \cap \Gamma_{2}\right]<+\infty$.
(iii) If $H^{\prime} \subset H \subset G,\left[H: H^{\prime}\right]<+\infty$, then $\left[H \cap \Gamma: H^{\prime} \cap \Gamma\right]<+\infty$.

Proposition 2.4.6. (i) Suppose $\alpha \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$, and $N \in \mathbb{N}$ such that $N \alpha$, $N \alpha^{-1} \in \mathrm{M}_{2}(\mathbb{Z})$, then

$$
\alpha^{-1} \mathrm{SL}_{2}(\mathbb{Z}) \alpha \cap \mathrm{SL}_{2}(\mathbb{Z}) \supset \Gamma\left(N^{2}\right):=\mathrm{SL}_{2}(\mathbb{Z}) \cap\left(1+N^{2} \mathrm{M}_{2}(\mathbb{Z})\right)
$$

(ii) If $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]<+\infty, \alpha \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$, then

$$
\left[\mathrm{SL}_{2}(\mathbb{Z}): S L_{2}(\mathbb{Z}) \cap \alpha^{-1} \Gamma \alpha\right]<+\infty
$$

Proposition 2.4.7.

$$
\mathcal{M}_{k}(\mathbb{C})=\bigcup_{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]<+\infty} \mathrm{M}_{k}(\Gamma, \mathbb{C}), \quad \mathcal{S}_{k}(\mathbb{C})=\bigcup_{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]<+\infty} \mathrm{S}_{k}(\Gamma, \mathbb{C})
$$

are stable under $\mathrm{GL}_{2}(\mathbb{Q})^{+}$.
Proof. For any $\gamma \in \Gamma, f_{\mid k} \gamma=f$. For $\alpha \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$, we have

$$
\left(f_{\mid k} \alpha\right)_{\mid k}\left(\alpha^{-1} \gamma \alpha\right)=f_{\mid k} \alpha
$$

so $f_{\mid k} \alpha$ is invariant for the group $\alpha^{-1} \Gamma \alpha \cap \mathrm{SL}_{2}(\mathbb{Z})$.
To verify that $f_{\mid k} \alpha$ is slowly increasing at ∞, write $\alpha=\gamma\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ for some $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, then

$$
\left(f_{\mid k} \alpha\right)(z)=(a d)^{k-1} d^{-k}\left(f_{\mid k} \gamma\right)\left(\frac{a z+b}{d}\right)
$$

then we get the result.
Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), G=\mathrm{GL}_{2}(\mathbb{Q})^{+}, \varphi=\sum_{i \in I} \lambda_{i} 1_{\Gamma \gamma_{i}} \in \mathbb{Z}[\Gamma \backslash G / \Gamma]$, we define $f_{\mid k} \varphi=\sum_{i \in I} \lambda_{i} f_{\mid k} \gamma_{i}, \quad$ for $f \in \mathrm{M}_{k}(1)=\mathcal{M}_{k}(\mathbb{C})^{\Gamma}$.
The definition is independent of the choice of γ_{i}. From the general theory, we have

$$
\left(f_{\mid k} \varphi\right)_{\mid k} \varphi^{\prime}(z)=f_{\mid k}\left(\varphi * \varphi^{\prime}\right)(z)
$$

If $f \in \mathrm{M}_{k}(1)\left(\right.$ resp. $\left.\mathrm{S}_{k}(1)\right)$, then $f_{\mid k} \varphi \in \mathrm{M}_{k}(1)\left(\right.$ resp. $\left.\mathrm{S}_{k}(1)\right)$.
Facts: $f_{\mid k} R_{n}=n^{k-2} f$, and $f_{\mid k} T_{n}=n^{k-1} \sum_{\substack{a d=n, a \geq 1 \\ \text { bmod } d}} d^{-k} f\left(\frac{a z+b}{d}\right)$.
Proposition 2.4.8. If $f=\sum_{m=0}^{\infty} a_{m}(f) q^{m}$, then $a_{m}\left(f_{\mid k} T_{n}\right)=\sum_{\substack{a \geq 1, a \mid(\bar{m}, n)}} a^{k-1} a_{\frac{m n}{a^{2}}}(f)$.
Proof. For fixed $d \mid n, d \geq 1$,

$$
\begin{aligned}
\sum_{b \bmod d} d^{-k} f\left(\frac{a z+b}{d}\right) & =d^{-k} \sum_{b \bmod d} \sum_{m=0}^{\infty} a_{m}(f) e^{2 \pi i m \frac{a z+b}{d}} \\
& =d^{-k} \sum_{m=0}^{\infty} a_{m}(f) e^{2 \pi i n a z / d} \sum_{b \bmod d} e^{2 \pi i m b / d} \\
& =d^{1-k} \sum_{\substack{m=0 \\
d \mid m}}^{\infty} a_{m}(f) e^{2 \pi i m a z / d} \\
& =d^{1-k} \sum_{l=0}^{\infty} a_{d l}(f) q^{a l} .
\end{aligned}
$$

So

$$
f_{\mid k} T_{n}=n^{k-1} \sum_{a d=n, a \geq 1} d^{1-k} \sum_{l=0}^{\infty} a_{d l}(f) q^{a l}
$$

summing the coefficients of q^{m}, this gives:

$$
\begin{aligned}
a_{m}\left(f_{\mid k} T_{n}\right) & =n^{k-1} \sum_{\substack{a \geq 1 \\
a \mid(m, n)}}(n / a)^{1-k} a_{\frac{m n}{a^{2}}}(f) \\
& =\sum_{\substack{a \geq 1 \\
a \mid(m, n)}} a^{k-1} a_{\frac{m n}{a^{2}}}(f)
\end{aligned}
$$

Corollary 2.4.9. (i) $\mathrm{M}_{k}(\Gamma, \mathbb{Z})$ and $\mathrm{M}_{k}(\Gamma, \mathbb{Q})$ are stable under T_{n} and R_{n}.
(ii) $a_{0}\left(f_{\mid k} T_{n}\right)=\sum_{a \mid n} a^{k-1} a_{0}(f)=\sigma_{k-1}(n) a_{0}(f)$.
(iii) $a_{1}\left(f_{\mid k} T_{n}\right)=a_{n}(f)$, therefore f is determined by

$$
T \longmapsto a_{1}\left(f_{\mid k} T\right)
$$

2.5 Petersson scalar product.

Lemma 2.5.1.

$$
\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}} \frac{d x d y}{y^{2}}=\int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{\sqrt{1-x^{2}}}^{+\infty} \frac{d x d y}{y^{2}}=\frac{\pi}{3}<\infty
$$

Corollary 2.5.2. (i) If $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]<+\infty$, then

$$
\int_{\Gamma \backslash \mathcal{H}} \frac{d x d y}{y^{2}}=\frac{\pi}{3} C(\Gamma),
$$

where $C(\Gamma)=\left[\mathrm{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}\right], \bar{\Gamma}$ is the image of Γ in $\mathrm{PSL}_{2}(\mathbb{Z})$.
(ii) If $\alpha \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$such that $\alpha^{-1} \Gamma \alpha \subset \mathrm{SL}_{2}(\mathbb{Z})$, then $C\left(\alpha^{-1} \Gamma \alpha\right)=C(\Gamma)$.

Proof. (i) Since $\frac{d x d y}{y^{2}}$ is invariant under the action of Γ, the integral is well defined. Put $\left\{\gamma_{i}\right\}$ be a family of representatives of $\Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$, then $\Gamma \backslash \mathcal{H}=$ $\coprod \gamma_{i}(D)$ up to sets of measure 0 (maybe have overlap in $\left.\mathrm{SL}_{2}(\mathbb{Z}) i \cup \mathrm{SL}_{2}(\mathbb{Z}) \rho\right)$.
(ii) Since $\Gamma \backslash \mathcal{H}=\alpha\left(\alpha^{-1} \Gamma \alpha \backslash \mathcal{H}\right)$, the two integrals are the same by the invariance of $\frac{d x d y}{y^{2}}$.

Let $f, g \in \mathrm{~S}_{k}(\mathbb{C})$, choose $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ of finite index such that $f, g \in$ $\mathrm{S}_{k}(\Gamma, \mathbb{C})$.

Proposition 2.5.3.

$$
\langle f, g\rangle:=\frac{1}{C(\Gamma)} \int_{\Gamma \backslash \mathcal{H}} \overline{f(z)} g(z) y^{k} \frac{d x d y}{y^{2}}
$$

converges and is independent of the choice of Γ.
Proof. For $\gamma \in \Gamma$, we have

$$
\begin{gathered}
\overline{f(\gamma z)}=\overline{(c z+d)^{k} f(z)}, \quad g(\gamma z)=(c z+d)^{k} g(z) \\
\operatorname{Im}(\gamma z)=\frac{\operatorname{Im} z}{|c z+d|^{2}}
\end{gathered}
$$

so $\overline{f(z)} g(z) y^{k}$ is invariant under Γ. Now $\Gamma \backslash \mathcal{H}=\bigcup_{i \in I} \gamma_{i} D$ with $|I|=C(\Gamma)$. So if Γ^{\prime} also satisfy that $f, g \in \mathrm{~S}_{k}\left(\Gamma^{\prime}, \mathbb{C}\right)$, then $f, g \in \mathrm{~S}_{k}\left(\Gamma \cap \Gamma^{\prime}, \mathbb{C}\right)$, and

$$
\begin{aligned}
\frac{1}{C(\Gamma)} \int_{\Gamma \backslash \mathcal{H}} \overline{f(z)} g(z) y^{k} \frac{d x d y}{y^{2}} & =\frac{1}{C\left(\Gamma \cap \Gamma^{\prime}\right)} \int_{\left(\Gamma \cap \Gamma^{\prime}\right) \backslash \mathcal{H}} \overline{f(z)} g(z) y^{k} \frac{d x d y}{y^{2}} \\
& =\frac{1}{C\left(\Gamma^{\prime}\right)} \int_{\Gamma^{\prime} \backslash \mathcal{H}} \overline{f(z)} g(z) y^{k} \frac{d x d y}{y^{2}}
\end{aligned}
$$

Because $f_{\mid k} \gamma_{i}$ and $g_{\mid k} \gamma_{i}$ are exponentially decreasing as $y \rightarrow \infty$ on D, $\langle f, g\rangle$ converges.

Remark. In fact, we can choose one modular form and one cusp form, and the integral will still converge.

Proposition 2.5.4. For $f \in \mathrm{~S}_{k}(1)$, we have $\left\langle G_{k}, f\right\rangle=0$.
Proof. By definition,

$$
G_{k}(z)=\frac{1}{2} \frac{\Gamma(k)}{(-2 \pi i)^{k}} \sum_{m, n}{ }^{\prime} \frac{1}{(m z+n)^{k}} \in \mathrm{M}_{k}(1)
$$

and

$$
\begin{aligned}
\sum_{m, n}{ }^{\prime} \frac{1}{(m z+n)^{k}} & =\sum_{a=1}^{\infty} \sum_{(m, n)=1} \frac{1}{(a m z+a n)^{k}} \\
& =\frac{\Gamma(k)}{(2 \pi i)^{k}} \zeta(k) \sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} \frac{1}{(c z+d)^{k}},
\end{aligned}
$$

where Γ_{∞} denotes the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ consisting of all upper triangular matrices. So we just compute $\left\langle\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} \frac{1}{(c z+d)^{k}}, f\right\rangle$. We have

$$
\begin{aligned}
\left\langle\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} \frac{1}{(c z+d)^{k}}, f\right\rangle & =\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}}\left(\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} \frac{1}{\overline{(c z+d)^{k}}}\right) f(z) y^{k} \frac{d x d y}{y^{2}} \\
& =\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}} \sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} f(\gamma z) \operatorname{Im}(\gamma z)^{k} \frac{d x d y}{y^{2}} \\
& =\int_{\Gamma_{\infty} \backslash \mathcal{H}} f(z) y^{k} \frac{d x d y}{y^{2}} \\
& =\int_{0}^{\infty} \int_{0}^{1} f(x+i y) y^{k-2} d x d y=0,
\end{aligned}
$$

where the last equality is because $a_{0}(f)=0$ and $\int_{0}^{1} e^{2 \pi i n x} d x=0$ for $n \geq$ 1.

Lemma 2.5.5. (i) For $\alpha \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$, we have

$$
\left\langle f_{\mid k} \alpha, g_{\mid k} \alpha\right\rangle=(\operatorname{det} \alpha)^{k-2}\langle f, g\rangle .
$$

(ii) Let $\alpha^{\prime}=(\operatorname{det} \alpha) \alpha^{-1}$, then $\left\langle f_{\mid k} \alpha, g\right\rangle=\left\langle f, g_{\mid k} \alpha^{\prime}\right\rangle$.

Proof. (i) Choose Γ such that $f, g \in S_{k}(\Gamma)$ and $\alpha^{-1} \Gamma \alpha \subset \mathrm{SL}_{2}(\mathbb{Z})$, then

$$
\begin{aligned}
C\left(\alpha^{-1} \Gamma \alpha\right)\left\langle f_{\mid k} \alpha, g_{\mid k} \alpha\right\rangle & =(\operatorname{det} \alpha)^{2(k-1)} \int_{\alpha^{-1} \Gamma \alpha \backslash \mathcal{H}} \overline{f(\alpha z)} g(\alpha z) \frac{y^{k}}{|c z+d|^{2 k}} \frac{d x d y}{y^{2}} \\
& =(\operatorname{det} \alpha)^{k-2} \int_{\Gamma \backslash \mathcal{H}} \overline{f(z)} g(z) y^{k} \frac{d x d y}{y^{2}} \\
& =(\operatorname{det} \alpha)^{k-2} C(\Gamma)\langle f, g\rangle .
\end{aligned}
$$

(ii) Replace g by $g_{\mid k} \alpha^{-1}$, then we get

$$
\begin{aligned}
\left\langle f_{\mid k} \alpha, g\right\rangle & =(\operatorname{det} \alpha)^{k-2}\left\langle f, g_{\mid k} \alpha^{-1}\right\rangle \\
& =(\operatorname{det} \alpha)^{k-2}\left\langle f, g_{\mid k}\left(\frac{1}{\operatorname{det} \alpha} \alpha^{\prime}\right)\right\rangle \\
& =\left\langle f, g_{\mid k} \alpha^{\prime}\right\rangle .
\end{aligned}
$$

2.6 Primitive forms

Theorem 2.6.1. (i) If $n \geq 1$, then R_{n} and T_{n} are hermitian.
(ii) The eigenvalues of T_{n} are integers in a totally real field.
(iii) $S_{k}(1)$ has a basis of common eigenvectors for all $T_{n}, n \geq 1$.

Proof. (i) It is trivial for R_{n}. Since $\mathbb{T}_{\mathbb{Z}}$ is generated by R_{p} and T_{p} for p prime, it suffices to consider T_{p}.

Let $\alpha \in \mathrm{M}_{2}(\mathbb{Z})$, $\operatorname{det} \alpha=p$, then there exist $\gamma_{1}, \gamma_{2} \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\alpha=\gamma_{1}\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \gamma_{2}$, then

$$
\begin{aligned}
\left\langle f_{\mid k} \alpha, g\right\rangle & =\left\langle f_{\mid k}\left(\gamma_{1}\left(\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right) \gamma_{2}\right), g\right\rangle \\
& =\left\langle f_{\mid k}\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right), g_{\mid k} \gamma_{2}^{\prime}\right\rangle \\
& =\left\langle f_{\mid k}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), g\right\rangle \\
& =\left\langle f, g_{\mid k}\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)\right\rangle,
\end{aligned}
$$

thus $\left\langle f_{\mid k} T_{p}, g\right\rangle=(p+1)\left\langle f_{\mid k}\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right), g\right\rangle=\left\langle f, g_{\mid k} T_{p}\right\rangle$.
(ii) $S_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ is a lattice in $\mathrm{S}_{k}(1)$ stable under T_{n}, so $\operatorname{det}\left(X I-T_{n}\right) \in$ $\mathbb{Z}[X]$, so the roots are algebraic integers, and real since T_{n} is hermitian.
(iii) $T_{n}{ }^{\prime} s$ are hermitian, hence they are semisimple. Since the T_{n} commute to each other, by linear algebra, there exists a common basis of eigenvectors for all T_{n}.

Theorem 2.6.2. Let $f=\sum_{n=0}^{+\infty} a_{n}(f) q^{n} \in \mathrm{M}_{k}(1)-\{0\}$. If for all $n, f_{\mid k} T_{n}=$ $\lambda_{n} f$, then
(i) $a_{1}(f) \neq 0$;
(ii) if f is normalized, i.e. $a_{1}(f)=1$, then $a_{n}(f)=\lambda_{n}$, for all n, and
(a) $a_{m n}(f)=a_{m}(f) a_{n}(f)$ when $(m, n)=1$.
(b) $a_{p}(f) a_{p^{r}}(f)=a_{p^{r+1}}(f)+p^{k-1} a_{p^{r-1}}(f)$ for p prime and $r \geq 1$.

Proof. (i) Since $a_{n}(f)=a_{1}\left(f_{\mid k} T_{n}\right)=a_{1}\left(\lambda_{n} f\right)=\lambda_{n} a_{1}(f)$, if $a_{1}(f)=0$, then $f=0$.
(ii) The first assertion is obvious, and the other two follow by the same formulae for the R_{p}, T_{p}.

Definition 2.6.3. $f \in \mathrm{~S}_{k}(1)$ is called primitive if $a_{1}(f)=1$ and f is an eigenform for all Hecke operators.

Theorem 2.6.4. (i) If f, g are primitive with the same set of eigenvalues, then $f=g$. (called "Multiplicity 1 theorem").
(ii) The primitive forms are a basis of $\mathrm{S}_{k}(1)$.

Proof. (i) Apply (i) of the previous theorem to $f-g$, since $a_{1}(f-g)=0$, so $f=g$.
(ii) By (iii) of Theorem 2.6.1, there exists a basis of primitive forms. For any two distinct such forms f and f^{\prime}, then there exist n and $\lambda \neq \lambda^{\prime}$ such that

$$
f_{\mid k} T_{n}=\lambda f, \quad f^{\prime}{ }_{\mid k} T_{n}=\lambda^{\prime} f,
$$

then $\lambda\left\langle f, f^{\prime}\right\rangle=\left\langle f_{\mid k} T_{n}, f^{\prime}\right\rangle=\left\langle f, f^{\prime}{ }_{\mid k} T_{n}\right\rangle=\lambda^{\prime}\left\langle f, f^{\prime}\right\rangle$, so $\left\langle f, f^{\prime}\right\rangle=0$. Therefore one has to take all the primitive forms to get a basis of $\mathrm{S}_{k}(1)$.

Remark. Since $\left(G_{k}\right)_{\mid k} T_{n}=\sigma_{k-1}(n) G_{k}$, we get a basis of $M_{k}(1)$ of eigenforms.
Example 2.6.5. Write

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

where $\tau(n)$ is Ramanujan's τ-function. Then

$$
\begin{gathered}
\tau(m n)=\tau(m) \tau(n), \quad \text { if }(m, n)=1 \\
\tau(p) \tau\left(p^{r}\right)=\tau\left(p^{r+1}\right)+p^{11} \tau\left(p^{r-1}\right), \quad \text { if } p \text { is a prime, } n \geq 1
\end{gathered}
$$

Proof. Since $\mathrm{S}_{12}(1)=\mathbb{C} \cdot \Delta$, and is stable by the T_{n}, Δ is an eigenform of T_{n} with eigenvalue $\tau(n)$.

Remark. In 1973, Deligne proved Ramanujan's conjecture that

$$
|\tau(p)| \leq 2 p^{11 / 2}\left(\Longleftrightarrow \operatorname{Re}(s)=11 / 2, \quad \text { if } 1-\tau(p) p^{-s}+p^{11-2 s}=0\right)
$$

as a consequence of the proof of Riemann Hypothesis (Weil Conjecture) for zeta functions of varieties over finite fields.

Chapter 3

p-adic L-functions of modular forms

3.1 L-functions of modular forms.

3.1.1 Estimates for the fourier coefficients

Proposition 3.1.1. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index, let $f=$ $\sum_{n \in \frac{1}{M} \mathbb{N}} a_{n}(f) q^{n} \in \mathrm{M}_{k}(\Gamma, \mathbb{C})$. Then
(i)

$$
a_{n}(f)= \begin{cases}O\left(n^{k-1}\right), & \text { if } k \geq 3 ; \\ O(n \log n), & \text { if } k=2 ; \\ O(\sqrt{n}), & \text { if } k=1 .\end{cases}
$$

(ii) $a_{n}(f)=O\left(n^{k / 2}\right)$, if $f \in \mathrm{~S}_{k}(\Gamma)$.

Proof. We have that

$$
a_{n}(f)=e^{2 \pi n y} y^{-\frac{k}{2}} \frac{1}{M} \int_{0}^{M} y^{\frac{k}{2}} f(x+i y) e^{-2 \pi i n x} d x, \quad \forall y
$$

Define

$$
\varphi(z)=y^{\frac{k}{2}} \sup _{\delta \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})}\left|f_{\mid k} \delta(z)\right| .
$$

It is finite since $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]<+\infty$, and $\varphi(\gamma z)=\varphi(z)$ for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

Let D be the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$. For any $\delta \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})$, there exists C_{δ} such that, for all $z \in D$,

$$
\left|f_{\mid k} \delta(z)-a_{0}\left(f_{\mid k} \delta\right)\right| \leq C_{\delta} e^{-\frac{2 \pi y}{M}}
$$

Let $C=\sup _{\delta} C_{\delta}, \psi(z)=\sup _{(c, d) \neq(0,0)} \frac{y}{|c z+d|^{2}}$, then $\varphi(z) \leq C \psi(z)^{k / 2}+B$ for some B.

$$
\begin{aligned}
a_{n}(f) & \leq e^{2 \pi n y} y^{-\frac{k}{2}} \frac{1}{M} \int_{0}^{M} \varphi(x+i y) d x \\
& \leq e^{2 \pi n y} y^{-\frac{k}{2}} \frac{1}{M} \int_{0}^{M}\left(C \psi(x+i y)^{k / 2}+B\right) d x
\end{aligned}
$$

If $C=0$, take $y=\frac{1}{M n}$, then we get (ii).
We now need to evaluate

$$
\int_{0}^{M} \psi(x+i y)^{\frac{k}{2}}
$$

Let $y \leq 1$ (in application, $y=\frac{1}{M n}$), then $\psi(x+i y) \leq \frac{1}{y}$. Let $j \in \mathbb{N}$. If $\psi(x+i y) \geq \frac{1}{4^{j}} y$, there exists (c, d) such that $c^{2} y^{2}+(c x+y)^{2} \leq 4^{j} y^{2}$, hence there exist $c, d \in \mathbb{Z}$, such that

$$
1 \leq|c| \leq 2^{j}, \quad|c x+d| \leq 2^{j} y
$$

Now

$$
\operatorname{Meas}\left(\left\{x \in[0, M]: \exists d, \text { s.t. }|c x+d| \leq 2^{j} y\right\}\right) \leq 2^{j+1} y M
$$

so $\operatorname{Meas}\left(\left\{x \in[0, M]: \psi(x+i y) \geq \frac{1}{4^{j} y}\right\}\right) \leq 4^{j} 2 y M$, and

$$
\begin{aligned}
\int_{0}^{M} \psi & (x+i y)^{k / 2} d x \\
\leq & \sum_{j=1}^{\left[-\log _{4} y\right]} \operatorname{Meas}\left(\left\{x \in[0, M]: \frac{1}{4^{j} y} \leq \psi(x+i y) \leq \frac{1}{4^{j-1} y}\right\}\right)\left(\frac{1}{4^{j-1} y}\right)^{k / 2} \\
& +4^{k / 2} \operatorname{Meas}(\{x \in[0, M]: \psi(x+i y) \leq 4\}) \\
\leq & M 4^{k / 2}+\sum_{j=1}^{\left[-\log _{4} y\right]} 4^{j} 2 y M\left(\frac{1}{4^{j-1} y}\right)^{k / 2} \\
= & M 4^{k / 2}\left(1+2 \sum_{j=1}^{\left[-\log _{4} y\right]} y^{1-k / 2} 4^{j(1-k / 2)}\right) .
\end{aligned}
$$

When $k \geq 3$, let $y=1 / M n$. As $\sum_{j=1}^{\left[-\log _{4} y\right]} 4^{j(1-k / 2)}$ converges, we get $a_{n}(f)=$ $O\left(n^{k-1}\right)$. When $k=2$, it is obvious. For $k=1, \sum_{j=1}^{\left[-\log _{4} y\right]} y^{1-k / 2} 4^{j(1-k / 2)}<$ $2-y^{1 / 2}<2$, then we get the result.

Remark. (i) $L(f, s)=\sum_{n \neq 0} a_{n}(f) n^{-s}$ converges for $\operatorname{Re}(s) \gg 0$.
(ii) If Γ is a congruence subgroup, $f \in \mathrm{~S}_{k}(\Gamma)$, Deligne showed that

$$
a_{n}(f)=O\left(n^{(k-1) / 2+\varepsilon}\right), \quad \forall \varepsilon>0
$$

in the same theorem mentioned above.
Question: What about the noncongruence subgroups?

3.1.2 Dirichlet series and Mellin transform

Definition 3.1.2. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence in \mathbb{C}, the Dirichlet series of $\left(a_{n}\right)$ is $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.

Lemma 3.1.3. If $D\left(s_{0}\right)$ converges, then $D(s)$ converges uniformly on compact subsets of $\operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)$.

Proof. One can assume $s_{0}=0$, then use Abel's summation.
Corollary 3.1.4. There exists a maximal half plane of convergence (resp. absolute convergence).

Remark. (i) if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, then the maximal open disc of convergence of f is the maximal open disc of absolute converge, and also is the maximal open disc of center 0 on which f can be extended analytically.
(ii) Let $a_{n}=(-1)^{n-1}$, then $D(s)=\left(1-2^{1-s}\right) \zeta(s)$, which converges for $\operatorname{Re}(s)>0$, absolutely converges $\operatorname{Re}(s)>1$ and can be extended analytically to \mathbb{C}.
(iii) In general you can't extend $D(s)$ outside its half plane of absolute convergence, but for $D(s)$ coming from number theory, it seems that you can always extend meromorphically to \mathbb{C} (Langlands program).

We review some basic facts about Mellin transform:
Proposition 3.1.5. (i) Let $\varphi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{C}$ be in \mathcal{C}^{r}, and suppose there exist $A>B$ satisfying, for $0 \leq i \leq n$,

$$
\varphi^{(i)}(t)= \begin{cases}O\left(t^{A-i}\right) & \text { near } 0 \\ O\left(t^{B-i}\right) & \text { near } \infty\end{cases}
$$

Let

$$
\operatorname{Mel}(\varphi, s):=\int_{0}^{\infty} \varphi(t) t^{s} \frac{d t}{t}
$$

Then it is holomorphic on $-A<\operatorname{Re}(s)<-B$, and $O\left(|s|^{-r}\right)$ on $-A<a \leq$ $\operatorname{Re}(s) \leq b<-B$.
(ii) If $r \geq 2, \varphi(x)=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \operatorname{Mel}(\varphi, s) x^{-s} d s$, for any C with $-a<C<$ $-B$.

Proof. (i) The first assertion is clear. For the second, use

$$
\operatorname{Mel}(\varphi, s)=(-1)^{r} \frac{1}{s(s+1) \cdots(s+r-1)} \operatorname{Mel}\left(\varphi^{(r)}, s+r\right)
$$

(ii) $\operatorname{Mel}(\varphi, C+i t)=\hat{\psi}_{C}(t)$, where $\psi_{C}(x)=\varphi\left(e^{x}\right) e^{C x}$, and $\hat{\psi}_{C}$ is the Fourier transform of ψ_{C}. Then use Fourier inversion formula.

3.1.3 Modular forms and L-functions

For $f=\sum_{n=0}^{\infty} a_{n}(f) q^{n} \in \mathrm{M}_{2 k}(1)$, define

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}(f)}{n^{s}}, \quad \Lambda(f, s)=\frac{\Gamma(s)}{(2 \pi)^{s}} L(f, s)
$$

Example 3.1.6. Take $f=G_{2 k}$, we get

$$
\begin{aligned}
L\left(G_{2 k}, s\right) & =\sum_{n=1}^{\infty} \frac{\sigma_{2 k-1}(n)}{n^{s}}=\sum_{n=1}^{\infty}\left(\sum_{a d=n} d^{2 k-1}\right)(a d)^{-s} \\
& =\left(\sum_{a=1}^{\infty} a^{-s}\right)\left(\sum_{d=1}^{\infty} d^{2 k-1-s}\right)=\zeta(s) \zeta(s-2 k+1)
\end{aligned}
$$

Theorem 3.1.7. (i) $L(f, s)$ absolutely converges for $\operatorname{Re}(s)>2 k$;
(ii) (a) $\Lambda(f, s)$ has a meromorphic continuation to \mathbb{C};
(b) $\Lambda(f, s)$ is holomorphic except for simple poles at $s=0$ of residue $a_{0}(f)$ and $2 k$ of residue $(-1)^{k} a_{0}(f)$;
(c) $\Lambda(f, 2 k-s)=(-1)^{k} \Lambda(f, s)$;
(d) $\Lambda(f, s)$ goes to zero at ∞ in each vertical strip.

Proof. (i) The result follows from $a_{n}(f)=O\left(n^{2 k-1}\right)$.
(ii) Let $\varphi(t)=f(i t)-a_{0}(f)$, then φ is C^{∞} on \mathbb{R}_{+}^{*}, and $\varphi(t)=O\left(e^{-2 \pi t}\right)$ at $\infty . f \in \mathrm{M}_{2 k}(1)$ implies

$$
\varphi\left(t^{-1}\right)=(-1)^{k} t^{2 k} \varphi(t)+(-1)^{k} a_{0}(f) t^{2 k}-a_{0}(f)
$$

For $\operatorname{Re}(s)>0$, we have $\int_{0}^{+\infty} e^{-2 \pi n t} t^{s} \frac{d t}{t}=\frac{\Gamma(s)}{(2 \pi n)^{s}}$. Then for $\operatorname{Re}(s)>k$,

$$
\begin{align*}
\Lambda(f, s) & =\sum_{n=1}^{\infty} a_{n}(f) \frac{\Gamma(s)}{(2 \pi n)^{s}} \\
& =\int_{0}^{+\infty} \varphi(t) t^{s} \frac{d t}{t} \\
& =\int_{1}^{+\infty} \varphi(t) t^{s} \frac{d t}{t}+\int_{1}^{+\infty} \varphi\left(t^{-1}\right) t^{-s} \frac{d t}{t} \\
& =\int_{1}^{+\infty} \varphi(t)\left(t^{s}+(-1)^{k} t^{2 k-s}\right) \frac{d t}{t}-a_{0}(f)\left(\frac{(-1)^{k}}{2 k-s}+\frac{1}{s}\right) \tag{*}
\end{align*}
$$

since the first term is holomorphic for all $s \in \mathbb{C}$, this gives (a) and (b). Replacing s by $2 k-s$ in (*), we get (c). (d) follows from integration by part.

Theorem 3.1.8 (Hecke's converse theorem). Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} such that $L(s)=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}$ converges for $\operatorname{Re}(s)>A$, and $\Lambda(s)=\frac{\Gamma(s)}{(2 \pi)^{s}} L(s)$ satisfy $(i i)(a)-(d)$ of previous theorem, then

$$
f(z):=\sum_{n=0}^{\infty} c_{n} q^{n} \in \mathrm{M}_{2 k}(1)
$$

Proof. Since $f(z)$ converges if $|q|<1$, it is holomorphic on \mathcal{H}. Obviously $f(z+1)=f(z)$, we just have to verify

$$
g(z)=f\left(-\frac{1}{z}\right)-z^{2 k} f(z)=0 \quad \text { on } \mathcal{H}
$$

It suffices to prove that $g(i t)=0$ for $t>0$. Let

$$
\varphi(t)=f(i t)-c_{0}=\sum_{n=1}^{\infty} c_{n} e^{-2 \pi n t}
$$

one can check that $\Lambda(s)=\operatorname{Mel}(\varphi, s)$. Take $c>A$, then

$$
\begin{aligned}
\varphi(t) & -\frac{(-1)^{k}}{t^{2 k}} \varphi\left(t^{-1}\right) \\
& =\frac{1}{2 \pi i}\left(\int_{c-i \infty}^{c+i \infty} \Lambda(s) t^{-s} d s-(-1)^{k} \int_{c-i \infty}^{c+i \infty} \Lambda(s) t^{s-2 k} d s\right) \\
& =\frac{1}{2 \pi i}\left(\int_{c-i \infty}^{c+i \infty} \Lambda(s) t^{-s} d s-\int_{c-i \infty}^{c+i \infty} \Lambda(2 k-s) t^{s-2 k} d s\right) \\
& =\frac{1}{2 \pi i}\left(\int_{c-i \infty}^{c+i \infty} \Lambda(s) t^{-s} d s-\int_{2 k-c-i \infty}^{2 k-i \infty} \Lambda(s) t^{-s} d s\right) .
\end{aligned}
$$

Consider the integral of the function $\Lambda(s) t^{-s}$ around the closed path γ. Since $\Lambda(s) \rightarrow 0$ on vertical strips, by Cauchy formula,

$$
\begin{aligned}
\lim _{R \rightarrow+\infty} \int_{\gamma_{R}} \Lambda(s) t^{-s} d s & =\int_{c-i \infty}^{c+i \infty} \Lambda(s) t^{-s} d s-\int_{2 k-c-i \infty}^{2 k-c+i \infty} \Lambda(s) t^{-s} d s \\
& =2 \pi i\left(\operatorname{res}_{s=0}\left(\Lambda(s) t^{-s}\right)+\operatorname{res}_{s=2 k}\left(\Lambda(s) t^{-s}\right)\right) \\
& =2 \pi i\left(-c_{0}+(-1)^{k} c_{0} t^{-2 k}\right)
\end{aligned}
$$

So

$$
\varphi(t)-\frac{(-1)^{k}}{t^{2 k}} \varphi\left(t^{-1}\right)-\left(-c_{0}+(-1)^{k} c_{0} t^{-2 k}\right)=0
$$

by an easy computation, the left hand is just $\frac{(-1)^{k}}{t^{2 k}}(-g(i t))$, then we get $g(i t)=0$, which completes the proof.

3.1.4 Euler products

Theorem 3.1.9. If $f=\sum_{n=0}^{\infty} a_{n}(f) q^{n} \in \mathrm{M}_{2 k}(1)$ is primitive, then

$$
L(f, s)=\prod_{p} \frac{1}{1-a_{p}(f) p^{-s}+p^{2 k-1-2 s}}
$$

Proof. By Theorem 2.6.2, $a_{n m}(f)=a_{n}(f) a_{m}(f)$ whenever $(n, m)=1$, so

$$
L(f, s)=\prod_{p}\left(\sum_{r=0}^{\infty} a_{p^{r}}(f) p^{-r s}\right)
$$

Since,

$$
a_{p^{r+1}}-a_{p} a_{p^{r}}+p^{2 k-1} a_{p^{r-1}}=0
$$

multiplying by $p^{-(r+1) s}$, and summing over r from 1 to $+\infty$, we get

$$
\sum_{r=2}^{\infty} a_{p^{r}} p^{-r s}-a_{p} p^{-s} \sum_{r=1}^{\infty} a_{p^{r}} p^{-r s}+p^{2 k-1-2 s} \sum_{r=0}^{\infty} a_{p^{r}} p^{-r s}=0
$$

Using the fact that $a_{1}=1$, the result follows.

3.2 Higher level modular forms

3.2.1 Summary of the results

For $N \geq 2$, define

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \quad(\bmod N)\right\}
$$

and write $\mathrm{S}_{k}\left(\Gamma_{0}(N)\right)=\mathrm{S}_{k}(N)$.
Exercise. If $D M \mid N, f \in \mathrm{~S}_{k}(M)$, let $f_{D}(z)=f(D z)$, then $f_{D} \in \mathrm{~S}_{k}(N)$. Such a form is said to be old if $M \neq N$.

Definition 3.2.1. $\mathrm{S}_{k}^{\text {new }}(N)=\left\{f \in \mathrm{~S}_{k}(N):\langle f, g\rangle=0, \forall g\right.$ "old" $\}$.
On $\mathrm{S}_{k}(N)$, we have the Hecke operators $T_{n},(n, N)=1$,

$$
f_{\mid k} T_{n}=n^{k-1} \sum_{\substack{a d=n, a>1 \\ b \bmod d}} d^{-k} f\left(\frac{a z+b}{d}\right)
$$

and for $p \mid n$, the operator

$$
f_{\mid k} U_{p}=\frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{z+i}{p}\right)
$$

We also have a involution w_{N} given by

$$
f_{\mid k} w_{N}=N^{-\frac{k}{2}} z^{-k} f\left(-\frac{1}{N z}\right)
$$

Definition 3.2.2. $f \in \mathrm{~S}_{k}(N)$ is called primitive if $f \in \mathrm{~S}_{k}^{\mathrm{new}}(N), a_{1}(f)=1$ and $f_{\mid k} T_{n}=a_{n}(f) f$, whenever $(n, N)=1$.

Theorem 3.2.3. (i) The primitive forms are a basis of $\mathrm{S}_{k}^{\mathrm{new}}(N)$.
(ii) If f is primitive, then $\mathbb{Q}\left(\left\{a_{n}(f)\right\}, n \in \mathbb{N}\right)$ is a totally real number field, $a_{n}(f)$ are integers, and f^{σ} is primitive for all $\sigma \in \operatorname{Aut}(\mathbb{C})$.
(iii) If f is primitive, then
(a) $a_{n m}(f)=a_{n}(f) a_{m}(f)$ if $(n, m)=1,(n m, N)=1$;
(b) For $p \nmid N, a_{p^{r+1}}-a_{p}(f) a_{p^{r}(f)}+p^{k-1} a_{p^{r-1}}(f)=0$.
(c) $f_{\mid k} U_{p}=a_{p}(f) f$, and this implies $a_{p^{r}}(f)=\left(a_{p}(f)\right)^{r}$ for $p \mid N$;
(d) There exists $\varepsilon_{f}= \pm 1$, such that $f_{\mid k} w_{N}=\varepsilon_{f} f$.

Theorem 3.2.4. Suppose $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in \mathrm{~S}_{k}(N)$ is primitive. Define

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad \Lambda(f, s)=\Gamma(s)\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} L(f, s)
$$

Then
(i) $L(f, s)=\prod_{p \mid N} \frac{1}{1-a_{p} p^{-s}} \prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+p^{k-1-2 s}}$;
(ii) $\Lambda(s)$ has an analytic continuation to \mathbb{C}. And

$$
\Lambda(f, s)=i^{-k} \varepsilon_{f} \Lambda(f, k-s)
$$

(iii) More generally, if $(D, N)=1, \chi:(\mathbb{Z} / D \mathbb{Z})^{*} \rightarrow \mathbb{C}$ is a character of conductor D. Then
(a) $f \otimes \chi=\sum_{n=1}^{\infty} a_{n} \chi(n) q^{n} \in \mathrm{~S}_{k}\left(N D^{2}, \chi^{2}\right) ;$
(b) $L(f \otimes \chi, s)=\prod_{p \mid N} \frac{1}{1-\chi(p) a_{p} p^{-s}} \prod_{p \nmid N} \frac{1}{1-\chi(p) a_{p} p^{-s}+\chi^{2}(p) p^{k-1-2 s}}$;
(c) $\Lambda(f \otimes \chi, s)=\Gamma(s)\left(\frac{D \sqrt{N}}{2 \pi}\right)^{s} L(f \otimes \chi, s)$ has a analytic continuation to \mathbb{C} and

$$
\chi(-N) \frac{\Lambda(f \otimes \chi, s)}{G(x)}=i^{-k} \varepsilon_{f} \frac{\Lambda\left(f \otimes \chi^{-1}, s\right)}{G\left(\chi^{-1}\right)}
$$

where $G(\chi)$ is the Gauss sum

$$
G(\chi)=\sum_{x \in(\mathbb{Z} / D \mathbb{Z})^{*}} \chi(x) e^{\frac{2 \pi i x}{D}}
$$

Theorem 3.2.5 (Weil's Converse Theorem). Conversely, if $\left(a_{m}\right)_{m \geq 1}$ satisfy (b) and (c) of condition (iii) of the above theorem for all χ of conductor $D,(D, N)=1$, then $\sum_{m=1}^{\infty} a_{m} q^{m} \in S_{k}(N)$ and is primitive.

3.2.2 Taniyama-Weil Conjecture

Let Λ be a finitely generated \mathbb{Z}-algebra. Define its Hasse-Weil zeta function $\zeta_{\Lambda}(s)$ by

$$
\zeta_{\Lambda}(s)=\prod_{\wp \text { prime in } \Lambda} \frac{1}{\left(1-|\Lambda / \wp|^{-s}\right)} .
$$

Conjecture 3.2.6 (Hasse-Weil). ζ_{Λ} has a meromorphic continuation to \mathbb{C}.

Let $E: y^{2}=x^{3}+a x^{2}+b x+c, a, b, c \in \mathbb{Q}$ be an elliptic curve, $\Lambda_{E}=$ $\mathbb{Z}[x, y] /\left(y^{2}-x^{3}-a x^{2}-b x-c\right)$ be its coordinate ring, which is a finitely generated algebra over \mathbb{Z}.
Theorem 3.2.7 (Wiles, Breuil-Conrad-Diamond-Taylor). There exists a unique N_{E} and $f_{E} \in \mathrm{~S}_{2}\left(N_{E}\right)$ which is primitive, such that

$$
\zeta_{\Lambda_{E}} \sim \frac{\zeta(s-1)}{L\left(f_{E}, s\right)}
$$

while \sim means up to multiplication by a finite numbers of Euler factors.
Remark. This proves Hasse-Weil conjecture in this case thanks to theorem 3.2.4.

Theorem 3.2.8 (Mordell-Weil). $E(\mathbb{Q}) \cup\{\infty\} \simeq \mathbb{Z}^{r(E)} \oplus$ finite group.
Conjecture 3.2.9 (Birch,Swinnerton-Dyer). $\operatorname{ord}_{s=1} L\left(f_{E}, s\right)=r(E)$.

3.3 Algebraicity of special values of L-functions

3.3.1 Modular symbols.

Let $N \geq 1, f \in \mathrm{~S}_{k}(N), P \in A[x]^{(k-2)}$ (polynomials of degree $\leq k-2$) with $A \subset \mathbb{C}$ a subring. For $r \in \mathbb{Q}$, the integral $\int_{r}^{i \infty} f(z) P(z) d z$ converges because f is exponentially small around $i \infty$ and r. These integrals are called modular symbols.

For $0 \leq j \leq k-2$, define

$$
r_{j}(f)=\int_{0}^{i \infty} f(z) z^{j} d z=\frac{\Gamma(j+1)}{(-2 \pi i)^{j+1}} L(f, j+1)
$$

Let L_{f} be the \mathbb{Z}-module generated by $r_{j}\left(f_{\mid k} \delta\right), 1 \leq j \leq k-2$ and $\delta \in$ $\Gamma_{0}(N) \backslash \mathrm{SL}_{2}(\mathbb{Z})$. Then L_{f} is finitely generated.

Theorem 3.3.1. If $P \in A[x]^{(k-2)}$, $r \in \mathbb{Q}$, then $\int_{r}^{i \infty} f(z) P(z) d z \in \mathbb{A} \cdot L_{f} \subset \mathbb{C}$.
Proof. For $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
\begin{aligned}
\int_{\gamma(0)}^{\gamma(i \infty)} f(z) P(z) d z & =\int_{0}^{i \infty} f(\gamma z) P(\gamma z) d(\gamma z) \\
& =\int_{0}^{i \infty} f_{\mid k} \gamma(z) P_{\mid 2-k} \gamma(z) d z
\end{aligned}
$$

where $P_{\mid 2-k} \gamma(z)=(c z+d)^{k-2} P\left(\frac{a z+b}{c z+d}\right) \in A[x]^{(k-2)}$. Take $r=a / b,(a, b)=$ 1, then there exists $\gamma_{l}=\left(\begin{array}{ll}a_{l-1} & a_{l} \\ b_{l-1} & b_{l}\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$ satisfying $\left(a_{0}, b_{0}\right)=(1,0)$, $\left(a_{n}, b_{n}\right)=(a, b)$.

$$
\begin{aligned}
\int_{r}^{i \infty} f(z) P(z) d z & =\sum_{l=1}^{n} \int_{\frac{a_{l}}{b_{l}}}^{\frac{a_{l-1}}{b_{-1}}} f(z) P(z) d z \\
& =\sum_{l=1}^{n} \int_{\gamma_{l}(0)}^{\gamma_{l}(i \infty)} f(z) P(z) d z \\
& =\sum_{l=1}^{n} \int_{0}^{i \infty} f_{\mid k} \gamma_{l}(z) P_{\mid 2-k} \gamma_{l}(z) d z \in A \cdot L_{f} .
\end{aligned}
$$

Exercise. For $N=1$, let L_{f}^{+}(resp. L_{f}^{-}) be the \mathbb{Z}-module generated by $r_{j}(f)$ for all odd (resp. even) j. For $P \in A[X]^{(k-2)}, r \in \mathbb{Q}, \varepsilon= \pm$, then

$$
\int_{r}^{i \infty} f(z) P(z) d z-\varepsilon \int_{-r}^{i \infty} f(z) P(-z) d z \in A \cdot L_{f}^{\varepsilon}
$$

Corollary 3.3.2. (i) Suppose $f \in \sum_{n=1}^{\infty} a_{n} q^{n}, \phi: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ is constant mod $M \mathbb{Z}$ for some M. Then $L(f, \phi, s)=\sum_{n=1}^{\infty} \phi(n) \frac{a_{n}}{n^{s}}$ has an analytic continuation to \mathbb{C} and

$$
\Lambda(f, \phi, j)=\frac{\Gamma(j)}{(-2 \pi i)^{j}} L(f, \phi, j) \in \overline{\mathbb{Q}} \cdot L_{f}
$$

if $1 \leq j \leq k-1$.
(ii) If $N=1$ and $\phi(-x)=\varepsilon(-1)^{j} \phi(x)$, then $\Lambda(f, \phi, j) \in \overline{\mathbb{Q}} \cdot L_{f}^{\varepsilon}$, if $1 \leq j \leq k-1$.

Proof. we may assume $\phi(n)=e^{2 \pi i \frac{n u}{M}}$ for some $0 \leq u \leq M-1$ because such functions form a basis, then

$$
\begin{aligned}
\frac{\Gamma(s)}{(2 \pi)^{s}} L(f, \phi, s) & =\int_{0}^{+\infty} \sum_{n=1}^{\infty} a_{n} e^{2 \pi i \frac{n u}{M}} e^{-2 \pi n y} y^{s} \frac{d y}{y} \\
& =\int_{0}^{+\infty} f\left(\frac{u}{M}+i y\right) y^{s} \frac{d y}{y}
\end{aligned}
$$

this proves the first assertion of (i) as f is exponentially small around $i \infty$ and $\frac{u}{M}$.

$$
\begin{aligned}
\Lambda(f, \phi, j) & =\int_{0}^{+\infty} f\left(\frac{u}{M}+i y\right)(i y)^{j} \frac{d(i y)}{i y} \\
& =\int_{\frac{u}{M}}^{i \infty} f(z)\left(z-\frac{u}{M}\right)^{j-1} d z \\
& \in \mathbb{Q} \cdot L_{f} .
\end{aligned}
$$

For (ii), we may assume $\phi(n)=e^{2 \pi i \frac{n u}{M}}+\varepsilon(-1)^{j} e^{-2 \pi i \frac{n u}{M}}$, and similarly,

$$
\begin{aligned}
\Lambda(f, \phi, j) & =\int_{\frac{u}{M}}^{i \infty} f(z)\left(z-\frac{u}{M}\right)^{j-1} d z+\varepsilon(-1)^{j} \int_{-\frac{u}{M}}^{i \infty} f(z)\left(z+\frac{u}{M}\right)^{j-1} d z \\
& =\int_{\frac{u}{M}}^{i \infty} f(z)\left(z-\frac{u}{M}\right)^{j-1} d z-\varepsilon \int_{-\frac{u}{M}}^{i \infty} f(z)\left(-z-\frac{u}{M}\right)^{j-1} d z,
\end{aligned}
$$

then one uses the exercise.

3.3.2 The results

Theorem 3.3.3. If f is primitive, then there exist Ω_{f}^{+}and $\Omega_{f}^{-} \in \mathbb{C}$, if

$$
\phi: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}(\bmod M \mathbb{Z}), 1 \leq j \leq k-1, \phi(x)=\varepsilon(-1)^{j} \phi(-x),
$$

then $\Lambda(f, \phi, j) \in \overline{\mathbb{Q}} \cdot \Omega_{f}^{\varepsilon}$.
Proof. We prove the case $N=1, \varepsilon=1$.
We shall prove that

$$
\begin{equation*}
r_{k-2}(f) r_{l}(f) \in \overline{\mathbb{Q}}\langle f, f\rangle, \text { for } l \text { odd. } \tag{3.1}
\end{equation*}
$$

This implies

$$
\Omega_{f}^{+} \sim \frac{\langle f, f\rangle}{r_{k-2}(f)} \sim \frac{\langle f, f\rangle}{L(f, k-1)} \pi^{k-2}
$$

where \sim stands for equality up to multiplication by an algebraic number. The method to show (3.1) is the Rankin's method in the following section.

3.3.3 Rankin's method

Assume $k=l+j$ for $k, l, j \in \mathbb{N}$. Suppose $\chi_{1}, \chi_{2}:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$are multiplicative characters. Let

$$
f=\sum_{n=1}^{+\infty} a_{n} q^{n} \in S_{k}\left(N, \chi_{1}^{-1}\right), \quad g=\sum_{n=0}^{+\infty} b_{n} q^{n} \in M_{l}\left(N, \chi_{2}\right) .
$$

So

$$
f(\gamma z)=\chi_{1}^{-1}(d)(c z+d)^{k} f(z), \quad g(\gamma z)=\chi_{2}(d)(c z+d)^{l} g(z)
$$

Let

$$
\begin{aligned}
G_{j, \chi_{1} \chi_{2}, s}(z) & =\frac{1}{2} \cdot \frac{\Gamma(j)}{(-2 \pi i)^{j}} \cdot \sum_{\substack{N \mid m \\
(N, n)=1}}^{\prime} \frac{\chi_{1} \chi_{2}(n) y^{s+1-k}}{(m z+n)^{j}|m z+n|^{2(s+1-k)}} \\
& =\frac{\Gamma(j)}{(-2 \pi i)^{j}} L\left(\chi_{1} \chi_{2}, j+2(s+1-k)\right) \cdot \sum_{\gamma=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \frac{\chi_{1} \chi_{2}(d)}{(c z+d)^{j}} \cdot \operatorname{Im}(\gamma z)^{s+1-k} .
\end{aligned}
$$

We have

Proposition 3.3.4.

$$
\begin{aligned}
D(f, g, s) & =L\left(\chi_{1} \chi_{2}, j+2(s+1-k)\right) \sum_{n=1}^{+\infty} \frac{\bar{a}_{n} b_{n}}{n^{s}} \\
& =\frac{(4 \pi)^{s}}{\Gamma(s)} \frac{(-2 \pi i)^{j}}{\Gamma(j)} \cdot\left\langle f, g G_{j}, \chi_{1} \chi_{2}, s\right\rangle \cdot\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]
\end{aligned}
$$

Proof. Using the Fourier expansion, then

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \frac{\bar{a}_{n} b_{n}}{n^{s}} & =\frac{\Gamma(s)}{(4 \pi)^{s}} \int_{0}^{+\infty} \int_{0}^{1} \overline{f(z)} g(z) d x \cdot y^{s} \frac{d y}{y} \\
& =\frac{\Gamma(s)}{(4 \pi)^{s}} \int_{\Gamma_{\infty} \backslash \mathcal{H}} \overline{f(z)} g(z) y^{s+1} \frac{d x d y}{y^{2}} \\
& =\frac{\Gamma(s)}{(4 \pi)^{s}} \int_{\Gamma_{0}(N) \backslash \mathcal{H}} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)}\left(\overline{f(\gamma z)} g(\gamma z) \operatorname{Im}(\gamma z)^{s+1}\right) \frac{d x d y}{y^{2}} \\
& =\frac{\Gamma(s)}{(4 \pi)^{s}} \int_{\Gamma_{0}(N) \backslash \mathcal{H}} \overline{f(z)}\left(g(z) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \frac{\chi_{1} \chi_{2}(d)}{(c z+d)^{j}} \operatorname{Im}(\gamma z)^{s+1-k}\right) y^{k} \frac{d x d y}{y^{2}},
\end{aligned}
$$

this implies the Proposition.

Theorem 3.3.5. (i) $D(f, g, s)$ admits a meromorphic continuation to \mathbb{C}, which is holomorphic outside a simple pole at $s=k$ if $l=k$ and $\chi_{1} \chi_{2}=1$
(ii) if f is primitive, $g \in M_{l}\left(N, \chi_{2}, \overline{\mathbb{Q}}\right)$, then

$$
D(f, g, k-1) \in \overline{\mathbb{Q}} \cdot \pi^{j+k-1}\langle f, f\rangle .
$$

Proof. As $D(f, g, s)=\left\langle f, g G_{s}\right\rangle$,
(i) we have to prove the same statement for G_{s}, which can be done by computing its Fourier extension. The pole comes from the constant Fourier coefficients.
(ii) For the case $N=1, \chi_{1}=\chi_{2}=1$ and $j \geq 3$, then $G_{j, \chi_{1} \chi_{2}, k-1}=G_{j}$, we are reduced to prove

$$
\left\langle f, g G_{j}\right\rangle \in \overline{\mathbb{Q}}\langle f, f\rangle .
$$

Let $f_{i}, i \in I$ be a basis of $S_{k}(1)$ of primitive forms, with $f_{1}=f$. As $g G_{j} \in M_{k}(1, \mathbb{Q})$, we can write $g G_{j}=\lambda_{0} G_{k}+\sum_{i} \lambda_{i} f_{i}$, with $\lambda_{i} \in \mathbb{Q}$. Since

$$
\left\langle G_{k}, f\right\rangle=0, \quad\left\langle f, f_{j}\right\rangle=0, \text { if } j \neq 1,
$$

Then $\left\langle f, g G_{j}\right\rangle=\lambda_{1}\langle f, f\rangle$.

Remark. The general case can be treated in the same way, once we prove that

$$
G_{j, \chi_{1} \chi_{2}, k-1} \in M_{j}\left(N, \chi_{1} \chi_{2}, \overline{\mathbb{Q}}\right)\left(\text { if } j \neq 2 \text { or } \chi_{1} \chi_{2} \neq 1\right) .
$$

Proposition 3.3.6. If

$$
\begin{aligned}
& \sum_{n=1}^{+\infty} \frac{\bar{a}_{n}}{n^{s}}=\left(\sum_{n \in \mathbb{Z}\left[\frac{1}{N}\right]^{\times}} \frac{\bar{a}_{n}}{n^{s}}\right) \prod_{p \nmid N} \frac{1}{\left(1-\alpha_{p} p^{-s}\right)\left(1-\beta_{p} p^{-s}\right)}, \alpha_{p} \beta_{p}=\chi_{1}(p) p^{k-1}, \\
& \sum_{n=1}^{+\infty} \frac{b_{n}}{n^{s}}=\left(\sum_{n \in \mathbb{Z}\left[\frac{1}{N}\right]^{\times}} \frac{b_{n}}{n^{s}}\right) \prod_{p \nmid N} \frac{1}{\left(1-\gamma_{p} p^{-s}\right)\left(1-\delta_{p} p^{-s}\right)}, \quad \gamma_{p} \delta_{p}=\chi_{2}(p) p^{l-1}
\end{aligned}
$$

then $D(f, g, s)=$

$$
\left(\sum_{n \in \mathbb{Z}\left[\frac{1}{N}\right]^{\times}} \frac{\overline{a_{n}} b_{n}}{n^{s}}\right) \prod_{p \nmid N} \frac{1}{\left(1-\alpha_{p} \gamma_{p} p^{-s}\right)\left(1-\beta_{p} \gamma_{p} p^{-s}\right)\left(1-\alpha_{p} \delta_{p} p^{-s}\right)\left(1-\beta_{p} \delta_{p} p^{-s}\right)} .
$$

Proof. Exercice, noting that

$$
\bar{a}_{p^{r}}=\frac{\alpha_{p}^{r+1}-\beta_{p}^{r+1}}{\alpha_{p}-\beta_{p}}, \quad b_{p^{r}}=\frac{\gamma_{p}^{r+1}-\delta_{p}^{r+1}}{\gamma_{p}-\delta_{p}}
$$

We give one application here:
Corollary 3.3.7. The claim (3.1) holds, i.e.

$$
r_{k-2}(f) r_{l}(f) \in \overline{\mathbb{Q}}\langle f, f\rangle, \text { for } l \text { odd. }
$$

Proof. Let $f \in S_{k}(1)$ be primitive, k given. For l even, let $g=G_{l}$, then

$$
\sum_{n=1}^{+\infty} \frac{b_{n}}{n^{s}}=\prod_{p} \frac{1}{\left(1-p^{-s}\right)\left(1-p^{l-s-1}\right)}
$$

hence $D\left(f, G_{l}, s\right)=L(f, s) L(f, s-l+1)$. Therefore

$$
L(f, k-1) L(f, k-l) \in \overline{\mathbb{Q}} \cdot \pi^{j+k-1}\langle f, f\rangle
$$

which implies

$$
r_{k-2}(f) r_{k-l-1}(f) \in \overline{\mathbb{Q}}\langle f, f\rangle .
$$

Remark. In the general case,

$$
L\left(G_{j}, \chi_{1} \chi_{2}, k-1, s\right) \sim \zeta(s) L\left(\chi_{1} \chi_{2}, s-l+1\right)
$$

If $f_{1}, f_{2}, \cdots, f_{n}$ are primitive forms $\in S_{k}\left(N_{i}\right)$ for $N_{i} \mid N$. Write

$$
L\left(f_{i}, s\right)=* \prod_{p \nmid N} \frac{1}{\left(1-\alpha_{p, 1}^{(i)} p^{-s}\right)\left(1-\alpha_{p, 2}^{(i)} p^{-s}\right)},
$$

then

$$
L\left(f_{1} \otimes \cdots \otimes f_{n}, s\right)=* \prod_{p \nmid N} \frac{1}{\prod_{j_{1}, j_{2}, \cdots, j_{n} \in\{1,2\}}\left(1-\alpha_{p, j_{1}}^{(1)} \cdots \alpha_{p, j_{n}}^{(n)} p^{-s}\right)} .
$$

One has the following conjecture:
Conjecture 3.3.8 (Part of Langlands Program). $L\left(f_{1} \otimes \cdots \otimes f_{n}, s\right)$ has a meromorphic continuation to \mathbb{C}, and is holomorphic if $f_{i} \neq \bar{f}_{j}$, for all $i \neq j$.
Remark. Rankin's method implies the above conjecture is OK for $n=2$. The case for $n=3$ is due to Paul Garrett. The case for $n \geq 4$ is still open.

$3.4 \quad p$-adic L-functions of modular forms

In the following, we assume $f \in S_{k}(N)$ is primitive.
Definition 3.4.1. $\phi^{+}(x)=\frac{1}{2}(\phi(x)+\phi(-x))$, $\phi^{-}(x)=\frac{1}{2}(\phi(x)-\phi(-x))$.
Then

$$
\tilde{\Lambda}(f, \phi, j)=\frac{\Lambda\left(f, \phi^{+}, j\right)}{\Omega_{f}^{(-1)^{j}}}+\frac{\Lambda\left(f, \phi^{-}, j\right)}{\Omega_{f}^{(-1)^{j+1}}} \in \overline{\mathbb{Q}}
$$

if $\phi: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ and $1 \leq j \leq k-1$.
Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$. The function $L(f, s)$ has an Euler product

$$
L(f, s)=\prod_{\ell \text { prime }} \frac{1}{E_{\ell}(s)}, E_{\ell}(s) \in \overline{\mathbb{Q}}\left[\ell^{-s}\right], \operatorname{deg} E_{\ell}(s) \leq 2
$$

Write $E_{p}(s)=\left(1-\alpha p^{-s}\right)\left(1-\beta p^{-s}\right)$ and assume $\alpha \neq 0$. Then $\beta=0$ if and only if $p \mid N$. Set

$$
f_{\alpha}(z)=f(z)-\beta f(p z)
$$

Lemma 3.4.2. $\left.f_{\alpha}\right|_{k} U_{p}=\alpha f_{\alpha}$ in all cases.
Proof. It is clear if $p \mid N$ as in the case $\beta=0$. If $p \nmid N$, then

$$
\alpha+\beta=a_{p}, \quad \alpha \beta=p^{k-1}
$$

and $\left.f\right|_{k} T_{p}=(\alpha+\beta) f$, thus

$$
\begin{aligned}
\left.f_{\alpha}\right|_{k} U_{p}-\alpha f_{\alpha} & =\frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{z+i}{p}\right)-\beta f(z+i)-\alpha f(z)+\alpha \beta f(p z) \\
& =-(\alpha+\beta) f(z)+f_{k} T_{p}=0
\end{aligned}
$$

If we write $f_{\alpha}=\sum_{n=1}^{+\infty} b_{n} q^{n}$, the above lemma implies that $b_{n p}=\alpha b_{n}$ for all n. Define b_{n} for $n \in \mathbb{Z}\left[\frac{1}{p}\right]$ as

$$
b_{n}=\alpha^{-r} b_{p^{r} n}, r \gg 0 .
$$

Take $\phi \in L C_{c}\left(\mathbb{Q}_{p}, \overline{\mathbb{Q}}\right)$ a locally constant function with compact support and let

$$
L(f, \phi, s)=\sum_{n \in \mathbb{Z}\left[\frac{1}{p}\right]} \phi(n) \frac{a_{n}}{n^{s}}
$$

If ϕ has support in $p^{-r} \mathbb{Z}_{p}$, then $\phi(x)=\phi_{0}\left(p^{r} x\right)$ for $\phi_{0}: \mathbb{Z} \rightarrow \overline{\mathbb{Q}}$ constant mod $p^{m} \mathbb{Z}$ for some m. Then

$$
L(f, \phi, s)=\alpha^{-r} p^{r s} L\left(f, \phi_{0}, s\right)
$$

which implies

$$
\tilde{\Lambda}(f, \phi, j) \in \overline{\mathbb{Q}} \subset \overline{\mathbb{Q}}_{p}, \text { for all } \phi \in L C_{c}\left(\mathbb{Q}_{p}, \overline{\mathbb{Q}}\right)
$$

Definition 3.4.3. Assume $\phi \in L C_{c}\left(\mathbb{Q}_{p}, \overline{\mathbb{Q}}\right)$ and ϕ is constant modulo $p^{n} \mathbb{Z}$. The discrete Fourier transform of ϕ is

$$
\hat{\phi}(x)=p^{-m} \sum_{y \bmod p^{m}} \phi(y) e^{-2 \pi i x y}
$$

for $m \geq n-v_{p}(x)$, where $x y \in \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$. This definition does not depend on the choice of $m \geq n-v_{p}(x)$.

Exercise. (i) $\hat{\phi}$ is constant $\bmod p^{m} \mathbb{Z}_{p}$ if and only if ϕ has support in $p^{-m} \mathbb{Z}_{p}$.
(ii) $\hat{\hat{\phi}}(x)=\phi(-x)$.
(iii) For $a \in \mathbb{Q}_{p}$, let $\phi_{a}(x)=\phi(a x)$, then $\widehat{\phi}_{a}(x)=p^{v_{p}(a)} \hat{\phi}\left(\frac{x}{a}\right)$.

Theorem 3.4.4. (i) There exists a unique $\mu_{f, \alpha}: L P^{[0, k-2]}\left(\mathbb{Z}_{p}, \overline{\mathbb{Q}}_{p}\right) \rightarrow \overline{\mathbb{Q}}_{p}$, such that for all $\phi \in L C\left(\mathbb{Z}_{p}, \overline{\mathbb{Q}}\right)$,

$$
\int_{\mathbb{Z}_{p}} \phi(x) x^{j-1} \mu_{f, \alpha}=\tilde{\Lambda}\left(f_{\alpha}, \hat{\phi}, j\right), 1 \leq j \leq k-1
$$

Moreover, $\psi\left(\mu_{f, \alpha}\right)=\frac{1}{\alpha} \mu_{f, \alpha}$, or equivalently

$$
\int_{p \mathbb{Z}_{p}} \phi\left(\frac{x}{p}\right) \mu_{f, \alpha}=\frac{1}{\alpha} \int_{\mathbb{Z}_{p}} \phi \mu_{f, \alpha} .
$$

(ii) if $v_{p}(\alpha)<k-1$, then $\mu_{f, \alpha}$ extends uniquely as an element of $\mathcal{D}_{v_{p}(\alpha)}$.

Proof. (i) The existence of $\mu_{f, \alpha}: L P^{[0, k-2]}\left(\mathbb{Z}_{p}, \overline{\mathbb{Q}}_{p}\right) \rightarrow \overline{\mathbb{Q}}_{p}$ is just the linearity of $\phi \rightarrow \hat{\phi}$. The uniqueness is trivial. The second claim follows from

$$
\begin{aligned}
& \int_{p \mathbb{Z}_{p}} \phi\left(\frac{x}{p}\right)\left(\frac{x}{p}\right)^{j-1} \mu_{f, \alpha}=\frac{1}{p^{j-1}} \tilde{\Lambda}\left(f_{\alpha}, p^{-1} \hat{\phi}(p x), j\right) \\
= & \frac{1}{\alpha} \tilde{\Lambda}\left(f_{\alpha}, \hat{\phi}, j\right)=\frac{1}{\alpha} \int_{\mathbb{Z}_{p}} \phi(x) x^{j-1} \mu_{f, \alpha} .
\end{aligned}
$$

(ii) One needs to show there exists a constant C, such that

$$
v_{p}\left(\int_{a+p^{n} \mathbb{Z}_{p}}(x-a)^{j} \mu_{f, \alpha}\right) \geq C+\left(j-v_{p}(\alpha)\right) n
$$

for all $a \in \mathbb{Z}_{p}, n \in \mathbb{N}, j \leq k-2$. Note that

$$
\widehat{1}_{a+p^{n} \mathbb{Z}_{p}}(x)= \begin{cases}p^{-n} e^{-2 \pi i a x}, & \text { if } x \in p^{-n} \mathbb{Z}_{p},=p^{-n} \phi_{a}\left(p^{n} x\right) \\ 0, & \text { if not. }\end{cases}
$$

for

$$
\phi_{a}(x)= \begin{cases}e^{2 \pi i \frac{a_{x}}{p^{n}}} & x \in \mathbb{Z}_{p} \\ 0, & \text { otherwise } .\end{cases}
$$

Then

$$
\begin{aligned}
\int_{a+p^{n} \mathbb{Z}_{p}}(x-a)^{j} \mu_{f, \alpha} & =\sum_{l=0}^{j}(-a)^{l}\binom{j}{l} p^{-n} \tilde{\Lambda}\left(f_{\alpha}, \phi_{a}\left(p^{n} x\right), l+1\right) \\
& =\alpha^{-n} \sum_{l=0}^{j}(-1)^{l}\binom{j}{l} p^{n l} \tilde{\Lambda}\left(f_{\alpha}, \phi_{a}, l+1\right) .
\end{aligned}
$$

Since

$$
p^{n l} \tilde{\Lambda}\left(f_{\alpha}, \phi_{a}, l+1\right)=p^{n l} \int_{0}^{i \infty} f_{\alpha}\left(z-\frac{a}{p^{n}}\right) z^{l} d z=\int_{-\frac{a}{p^{n}}}^{i \infty} f_{\alpha}(z)\left(p^{n} z+a\right)^{l} d z
$$

we get

$$
\sum_{l=0}^{j}(-1)^{l}\binom{j}{l} \int_{a+p^{n} \mathbb{Z}_{p}}(x-a)^{j} \mu_{f, \alpha}=\alpha^{-n} p^{n j} \int_{-\frac{a}{p^{n}}}^{i \infty} f_{\alpha}(z) z^{j} d z \in \alpha^{-n} p^{n j} L_{f_{\alpha}}
$$

We just pick $C=\min \left(v_{p}\left(\tilde{r}_{j}\left(\left.f_{\alpha}\right|_{k} \delta\right)\right)\right)$.

Remark. (i) If $p \mid N$, then $\beta=0$, and $\alpha \neq 0$ implies $v_{p(\alpha)}=\frac{k-2}{2}<k-1$, hence $\mu_{f, \alpha}$ exists by the above Theorem.
(ii) If $p \nmid N$, then $v_{p}(\alpha), v_{p}(\beta) \geq 0$. Since $v_{p}(\alpha)+v_{p}(\beta)=k-1$, at least one of $\mu_{f, \alpha}$ or $\mu_{f, \beta}$ always exists.

In the case $v_{p}(\alpha)=k-1$, then $\alpha+\beta=a_{p}(f)$ is a unit. This case is called the ordinary case. The conditions are not strong enough for the uniqueness of $\mu_{f, \alpha}$, as we can add the $(k-1)$-th derivative of any $\lambda \in \mathcal{D}_{0}$.
(iii) In the case $\alpha=\beta=0$, we do not understand what happens.

Definition 3.4.5. Let $\chi: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{C}_{p}^{*}$ be a continuous character. Set

$$
L_{p, \alpha}(f \otimes \chi, s)=\int_{\mathbb{Z}_{p}^{*}} x^{-1} \chi(x) \mu_{f, \alpha}
$$

In particular, take $\chi(x)=x^{\frac{k}{2}}\langle x\rangle^{s-\frac{k}{2}}$ where $\langle x\rangle^{t}=\exp (t \log x)$. Set

$$
L_{p, \alpha}(f, s)=\int_{\mathbb{Z}_{p}^{*}} x^{\frac{k}{2}-1}\langle x\rangle^{s-\frac{k}{2}} \mu_{f, \alpha}
$$

Proposition 3.4.6. For $1 \leq j \leq k-1$,

$$
L_{p, \alpha}\left(f \otimes \chi^{j}\right)=\left(1-\frac{p^{j-1}}{\alpha}\right)\left(1-\frac{\beta}{p^{j}}\right) \tilde{\Lambda}(f, j) .
$$

Proof. Follows from
(i) $\widehat{1_{\mathbb{Z}_{p}^{*}}}=1_{\mathbb{Z}_{p}}-p^{-1} 1_{p^{-1} \mathbb{Z}_{p}}$,
(ii) $\tilde{\Lambda}\left(f_{\alpha}, 1_{\mathbb{Z}_{p}}, j\right)=\left(1-\frac{\beta}{p^{j}} \tilde{\Lambda}(f, j)\right)$,
(iii) $\psi\left(\mu_{f, \alpha}\right)=\frac{1}{\alpha} \mu_{f, \alpha}$.

Remark. (i) As $\Lambda(f, s)=\Lambda(f, k-s)$ and $\alpha \beta=p^{k-1}$ if $p \nmid N$, then

$$
\left(1-\frac{p^{j-1}}{\alpha}\right)=1-\frac{\beta}{p^{k-j}} .
$$

Note $E_{p}(f, s)=\left(1-\alpha p^{-s}\right)\left(1-\beta p^{-s}\right)$. Then the Euler factor of the p-adic L function is actually the product of one part of the Euler factor for $L(f, s)$ and one part of the Euler factor for $L(f, k-s)$. This is a general phenomenon.
(ii) If $p \mid N, \alpha \neq 0$, the $v_{p}(\alpha)=\frac{k-2}{2}$. It can happen that $\alpha=p^{\frac{k-2}{2}}$, which means $L_{p, \alpha}\left(f, \frac{k}{2}\right)=0$. In this case

Conjecture 3.4.7 (Mazur-Tate-Teitelbaum Conjecture).

$$
L_{p, \alpha}^{\prime}\left(f, \frac{k}{2}\right)=\mathcal{L}_{\text {Font. }}(f) \tilde{\Lambda}\left(f, \frac{k}{2}\right) .
$$

Here the p-adic L-function is related to 2-dimensional (φ, N)-filtered modules D with $N \neq 0$ and $\operatorname{Fil}^{0} D=D$, $\operatorname{Fil}^{1} D \neq D$. For the pair (λ, α) as in Fontaine's course, where λ is the eigenvalue of φ and α is the parameter associated to the filtration, λ is our α and α is our $\mathcal{L}_{\text {Font. }}$.

The conjecture is proved by Kato-Kurihara-Tsuji, Perrin-Riou, and Stevens, Orton, Emerton with other definitions of the \mathcal{L}-invariant.
(iii) Mazur, Tate and Teitelbaum have also formulated a p-adic analog of the BSD conjecture. For E / \mathbb{Q} an elliptic curve, by Taniyama-Weil, it is associated to a primitive form $f \in S_{2}(N)$. Set $L_{p, \alpha}(E, s)=L_{p, \alpha}(f, s)$ if it exists, which is the case if E has either good reduction (hence $p \nmid N$) or multiplicative reduction (hence $p \mid N, p^{2} \nmid N$) $\bmod p$.

Conjecture 3.4.8 (p-adic BSD Conjecture).

$$
\operatorname{ord}_{s=1} L_{p, \alpha}(E, s)= \begin{cases}\operatorname{rank} E(\mathbb{Q}), & \text { if } p \nmid N \text { or } \alpha \neq 1 ; \\ \operatorname{rank} E(\mathbb{Q})+1, & \text { if } p \mid N \text { and } \alpha=1 .\end{cases}
$$

Kato showed that

$$
\operatorname{ord}_{s=1} L_{p, \alpha}(E, s) \geq \begin{cases}\operatorname{rank} E(\mathbb{Q}), & \text { if } p \nmid N \text { or } \alpha \neq 1 ; \\ \operatorname{rank} E(\mathbb{Q})+1, & \text { if } p \mid N \text { and } \alpha=1 .\end{cases}
$$

(iv) To prove Kato or Kato-Kurihara-Tsuji, we need another construction of p-adic L-functions via Iwasawa theory and (φ, Γ)-modules; this construction is the subject of the next part of the course and is based on ideas of Perrin-Riou.

Part II

Fontaine's rings and Iwasawa theory

Chapter 4

Preliminaries

4.1 Some of Fontaine's rings

This section is a review of notations and results from Fontaine's course. For details, see Fontaine's notes.

4.1.1 Rings of characteristic p

(1) \mathbb{C}_{p} is the completion of $\overline{\mathbb{Q}_{p}}$ for the valuation v_{p} with $v_{p}(p)=1$.

$$
\mathfrak{a}=\left\{x \in \mathbb{C}_{p}, v_{p}(x) \geqslant \frac{1}{p}\right\} .
$$

(2) \tilde{E}^{+}is the ring R in Fontaine's course. By definition

$$
\tilde{E}^{+}:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \mid x_{n} \in \mathbb{C}_{p} / \mathfrak{a}, x_{n+1}^{p}=x_{n}, \forall n\right\}
$$

is a ring of characteristic p with an action of $G_{\mathbb{Q}_{p}}$. For $x=\left(x_{n}\right) \in \tilde{E^{+}}$, for every x_{n}, pick a lifting $\hat{x}_{n} \in \mathcal{O}_{\mathbb{C}_{p}}$, then

$$
\lim _{k \rightarrow+\infty}\left(\hat{x}_{n+k}\right)^{p^{k}}:=x^{(n)} \in \mathcal{O}_{\mathbb{C}_{p}}
$$

is a canonical lifting of x_{n} such that

$$
\tilde{E}^{+}=\left\{x=\left(x^{(n)}\right)_{n \in \mathbb{N}} \mid x^{(n)} \in \mathcal{O}_{\mathbb{C}_{p}},\left(x^{(n+1)}\right)^{p}=x^{(n)}, \forall n\right\}
$$

with the addition and multiplication by

$$
(x+y)^{(n)}=\lim _{k \rightarrow+\infty}\left(x^{(n+k)}+y^{(n+k)}\right)^{p^{k}}, \quad(x y)^{(n)}=x^{(n)} y^{(n)} .
$$

\tilde{E}^{+}is a valuation ring with valuation

$$
v_{E}(x)=v_{p}\left(x^{(0)}\right)
$$

and maximal ideal

$$
\mathfrak{m}_{\tilde{E}^{+}}=\left\{x \in \tilde{E}^{+}, v_{E}(x)>0\right\} .
$$

(3) Choose once for all

$$
\varepsilon=\left(1, \varepsilon^{(1)}, \cdots\right) \in \tilde{E}^{+}, \quad \varepsilon^{(1)} \neq 1
$$

Then $\varepsilon^{(n)}$ is a primitive p^{n}-th root of 1 for all n. Set

$$
\bar{\pi}=\varepsilon-1 \in \tilde{E}^{+}
$$

We know that $v_{E}(\bar{\pi})=\frac{p}{p-1}>0$.
From now on, $\chi: G_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z}_{p}^{*}$ will be the cyclotomic character. The action of $G_{\mathbb{Q}_{p}}$ on ε is given by

$$
g(\varepsilon)=\varepsilon^{\chi(g)}=\sum_{k=0}^{+\infty}\binom{\chi(g)}{k} \bar{\pi}^{k}
$$

(4) In the following, without further specification, $K \subseteq \mathbb{Q}_{p}$ will be a finite extension of \mathbb{Q}_{p}. Denote by $k=k_{K}$ its residue field. Set

$$
K_{n}=K\left(\varepsilon^{(n)}\right), \quad K_{\infty}=\bigcup_{n \in \mathbb{N}} K_{n}
$$

Set

$$
\begin{aligned}
& F \subseteq K=\text { the maximal unramified extension of } \mathbb{Q}_{p} \text { inside } K, \\
& F^{\prime} \subseteq K_{\infty}=\text { the maximal unramified extension of } \mathbb{Q}_{p} \text { inside } K_{\infty} .
\end{aligned}
$$

Set

$$
G_{K}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / K\right), \quad H_{K}=\operatorname{Ker} \chi=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / K_{\infty}\right),
$$

and

$$
\Gamma_{K}=G_{K} / H_{K}=\operatorname{Gal}\left(K_{\infty} / K\right) \stackrel{\chi}{\hookrightarrow} \mathbb{Z}_{p}^{*}
$$

(5) For every K, let
$\tilde{E}_{K}^{+}:=\left\{x=\left(x_{n}\right) \in \tilde{E}^{+}, x_{n} \in \mathcal{O}_{K_{\infty}} / \mathfrak{a}, \forall n\right\}=\left(\tilde{E}^{+}\right)^{H_{K}}$ (by Ax-Sen-Tate's Theorem),
$E_{K}^{+}:=\left\{x=\left(x_{n}\right) \in \tilde{E}^{+}, x_{n} \in \mathcal{O}_{K_{n}} / \mathfrak{a}, \forall n \geq n(K)\right\}$.

Then

$$
\bar{\pi} \in E_{K}^{+} \subseteq \tilde{E}_{K}^{+} \subseteq \tilde{E}^{+}, \quad \forall K
$$

We set

$$
E_{K}:=E_{K}^{+}\left[\bar{\pi}^{-1}\right] \subseteq \tilde{E}_{K}:=\tilde{E}_{K}^{+}\left[\bar{\pi}^{-1}\right] \subseteq \tilde{E}=\tilde{E}^{+}\left[\bar{\pi}^{-1}\right]=\operatorname{Fr} R
$$

with valuation

$$
v_{E}\left(\bar{\pi}^{-k} x\right)=v_{E}(x)-k v_{E}(\bar{\pi}) .
$$

The following Theorem is the topics in the last section of Chapter 2 of Fontaine's Notes.

Theorem 4.1.1. (i) \tilde{E} is a field complete for v_{E} with residue field $\overline{\mathbb{F}}_{p}$, ring of integers \tilde{E}^{+}and $G_{\mathbb{Q}_{p}}$ acts continuously with respect to v_{E}.
(ii) $E_{F}=k_{F}((\bar{\pi}))$ if F / \mathbb{Q}_{p} is unramified.

In general, E_{K} is a totally ramified extension of $E_{F^{\prime}}$ of degree $\left[K_{\infty}: F_{\infty}^{\prime}\right]$, thus a local field of characteristic p, with ring of integers E_{K}^{+}and residue field $k_{F^{\prime}}$.
(iii) $E=\bigcup_{\left[K: \mathbb{Q}_{p}\right]<+\infty} E_{K}$ is a separable closure of $E_{\mathbb{Q}_{p}}$, is stable under $G_{\mathbb{Q}_{p}}$ and $\operatorname{Gal}\left(E / E_{K}\right)=H_{K}$. So $H_{\mathbb{Q}_{p}}$ acts continuously on E for the discrete topology.
(iv) \tilde{E} (resp. \tilde{E}_{K}) is the completion of the radical closure of E (resp. \tilde{E}_{K}), i.e., $\bigcup_{n \in \mathbb{N}} E^{p-n}$ (resp. $\bigcup_{n \in \mathbb{N}} E_{K}^{p-n}$). In particular, \tilde{E} is algebraically closed.

4.1.2 Rings of characteristic 0

(6) Set

$$
\tilde{A}^{+}:=W\left(\tilde{E}^{+}\right)=W(R), \quad \tilde{A}:=W(\tilde{E})=W(\operatorname{Fr} R)
$$

Every element $x \in \tilde{A}$ can be written as

$$
x=\sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right]
$$

while $x_{k} \in \tilde{E}$ and $\left[x_{k}\right]$ is its Teichmüller representative.
As we know from the construction of Witt rings, there are bijections

$$
\tilde{A}^{+} \cong\left(\tilde{E}^{+}\right)^{\mathbb{N}}, \quad \tilde{A} \cong(\tilde{E})^{\mathbb{N}}
$$

There are two topologies in \tilde{A}^{+}and \tilde{A} :
(i) Strong topology or p-adic topology: topology by using the above bijection and the discrete topology on \tilde{E}^{+}or \tilde{E}. A basis of neighborhoods of 0 are the $p^{k} \tilde{A}, k \in \mathbb{N}$.
(ii) Weak topology: topology defined by v_{E}. A basis of neighborhoods of 0 are the $p^{k} \tilde{A}+\left[\bar{\pi}^{n}\right] A^{+}, k, n \in \mathbb{N}$.

The commuting actions of $G_{\mathbb{Q}_{p}}$ and φ on \tilde{A} are given by

$$
g\left(\sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right]\right)=\sum_{k=0}^{+\infty} p^{k}\left[g\left(x_{k}\right)\right], \quad \varphi\left(\sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right]\right)=\sum_{k=0}^{+\infty} p^{k}\left[x_{k}^{p}\right] .
$$

(7) $\tilde{B}:=\tilde{A}\left[\frac{1}{p}\right]$ is the fraction field of \tilde{A}. \tilde{B} is complete for the valuation v_{p}, its ring of integers is \tilde{A} and its residue field is \tilde{E}.

For the $G_{\mathbb{Q}_{p}}$ and φ-actions,

$$
\begin{array}{ll}
\tilde{A}^{\varphi=1}=\mathbb{Z}_{p}, & \tilde{B}^{\varphi=1}=\mathbb{Q}_{p} \\
\tilde{A}^{H_{K}}=W\left(\tilde{E}_{K}\right):=\tilde{A}_{K}, & \tilde{B}^{H_{K}}=\tilde{A}_{K}\left[\frac{1}{p}\right]:=\tilde{B}_{K} .
\end{array}
$$

(8) Set

$$
\pi=[\varepsilon]-1, \quad t=\log [\varepsilon]=\log (1+\pi) .
$$

The element $[\varepsilon]$ is the p-adic analogue of $e^{2 \pi i}$. The $G_{\mathbb{Q}_{p}}$ and φ - actions are given by

$$
\varphi(\pi+1)=(\pi+1)^{p}, \quad \varphi(\pi+1)=(\pi+1)^{\chi(g)}
$$

(9) Set

$$
A_{\mathbb{Q}_{p}}^{+}:=\mathbb{Z}_{p}[[\pi]] \hookrightarrow \tilde{A}^{+}
$$

which is stable under φ and $G_{\mathbb{Q}_{p}}$. Set

$$
A_{\mathbb{Q}_{p}}:=\widehat{\mathbb{Z}_{p}[[\pi]]\left[\frac{1}{\pi}\right]} \hookrightarrow \tilde{A}
$$

while^stands for completion under the strong topology, thus

$$
A_{\mathbb{Q}_{p}}=\left\{\sum_{k \in \mathbb{Z}} a_{k} \pi^{-k} \mid a_{k} \in \mathbb{Z}_{p}, \lim _{k \rightarrow-\infty} v_{p}\left(a_{k}\right)=+\infty\right\} .
$$

Set $B_{\mathbb{Q}_{p}}:=A_{\mathbb{Q}_{p}}\left[\frac{1}{p}\right]$, then $B_{\mathbb{Q}_{p}}$ is a field complete for the valuation v_{p}, with ring of integers $A_{\mathbb{Q}_{p}}$ and residue field $E_{\mathbb{Q}_{p}}$.

Moreover, if $\left[K: \mathbb{Q}_{p}\right]<+\infty, \tilde{B}$ contains a unique extension B_{K} of $B_{\mathbb{Q}_{p}}$ whose residue field is E_{K}, and $A_{K}=B_{K} \cap \tilde{A}$ is the ring of integers. By uniqueness, B_{K} is stable under φ and G_{K} acting through Γ_{K}.

The field

$$
\mathcal{E}^{u r}=\bigcup_{\left[K: \mathbb{Q}_{p}\right]<+\infty} B_{K}
$$

is the maximal unramified extension of $B_{\mathbb{Q}_{p}}=\mathcal{E}$. Set

$$
B=\widehat{\mathcal{E}^{u r}}
$$

be the closure of $\bigcup_{\left[K: \mathbb{Q}_{p}\right]<+\infty} B_{K}$ in \tilde{B} for the strong topology. Then $A=B \cap \tilde{A}$ is the ring of integers $\mathcal{O}_{\widehat{\mathcal{E}}}$ ar and the residue field of B is $A / p A=E$. By Ax-Sen-Tate,

$$
B^{H_{K}}=B_{K}, \quad A^{H_{K}}=A_{K} .
$$

Remark. If $\bar{\pi}_{K}$ is a uniformising parameter of E_{K}, let $\pi_{K} \in A_{K}$ be any lifting. Then

$$
A_{K}=\left\{\sum_{k \in \mathbb{Z}} a_{k} \pi_{K}^{k} \mid a_{k} \in \mathcal{O}_{F^{\prime}}, \lim _{k \rightarrow-\infty} v_{p}\left(a_{k}\right)=+\infty\right\} .
$$

Remark. In the above construction, the correspondence $\Lambda \longrightarrow \tilde{\Lambda}$ is obtained by making φ bijective and then complete, where $\Lambda=\left(E_{K}, E, A_{K}, A, B_{K}, B\right)$.

$4.2(\varphi, \Gamma)$-modules and Galois representations.

Let K be a fixed finite extension over \mathbb{Q}_{p}, let $\Gamma=\Gamma_{K}$.
Definition 4.2.1. (i) A (φ, Γ)-module over A_{K} is a finitely generated $A_{K^{-}}$ module with semi-linear continuous (for the weak topology) and commuting actions of φ and Γ.

A (φ, Γ)-module over B_{K} is a finite dimensional B_{K}-vector space with semi-linear continuous (for the weak topology) and commuting actions of φ and Γ.
(ii) A (φ, Γ)-module D / A_{K} is étale (or of slope 0) if $\varphi(D)$ generates D as an A_{K}-module.

A (φ, Γ)-module D / B_{K} is étale (or of slope 0) if it has an A_{K}-lattice which is étale, equivalently, there exists a basis $\left\{e_{1}, \cdots, e_{d}\right\}$ over B_{K}, such that the matrix of $\varphi\left(e_{1}\right), \cdots, \varphi\left(e_{d}\right)$ in e_{1}, \cdots, e_{d} is inside $\mathrm{GL}_{d}\left(A_{K}\right)$.

The following theorem is similar to Theorem 1.5.9 in §1.5.4 of Fontaine's Notes.

Theorem 4.2.2. The correspondence

$$
V \longmapsto D(V):=\left(A \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}}
$$

is an equivalence of \otimes categories from the category of \mathbb{Z}_{p}-representations (resp. \mathbb{Q}_{p}-resp) of G_{K} to the category of étale (φ, Γ)-modules over A_{K} (resp. $\left.B_{K}\right)$, and the Inverse functor is

$$
D \longmapsto V(D)=\left(A \otimes_{A_{K}} D\right)^{\varphi=1} .
$$

Remark. (i) Γ_{K} is essentially pro-cyclic, so a (φ, Γ)-module is given by two operators and commuting relations between them. For example, if D / A_{K} is free of rank d, let U be the matrix of γ for $\overline{\langle\gamma\rangle}=\Gamma_{K}$, let P be the matrix of φ, then

$$
U \gamma(P)=P \varphi(U), U, P \in \mathrm{GL}_{d}\left(A_{K}\right)
$$

(ii) We want to recover from $D(V)$ the known invariants of V :

- $H^{i}\left(G_{K}, V\right)$; we shall do so in the coming lectures. We will also recover the Iwasawa modules attached to V and thus give another construction of p-adic L-functions.
- $D_{d R}(V), D_{c r i s}(V), D_{s t}(V)$.

Chapter 5

(φ, Γ)-modules and Galois cohomology

5.1 Galois Cohomology

Let M be a topological \mathbb{Z}_{p}-module (e.g. a finite module with discrete topology or a finitely generated \mathbb{Z}_{p}-module with p-adic topology, or a Fontaine's ring $\left.B_{d R}^{+} \cdots\right)$, with a continuous action of G_{K}.

Let $H^{i}\left(G_{K}, M\right)$ be the i-th cohomology groups of M of continuous cohomology. Then:

$$
\begin{aligned}
& H^{0}\left(G_{K}, M\right)=M^{G_{K}}=\left\{x \in M:(g-1) x=0 \forall g \in G_{K}\right\} ; \\
& H^{1}\left(G_{K}, M\right)=\frac{\left\{c: G_{K} \rightarrow M \text { continuous, } g_{1} c_{g_{2}}-c_{g_{1} g_{2}}+c_{g_{1}}=0, \forall g_{1}, g_{2} \in G_{K}\right\}}{\{c: g \rightarrow(g-1) x, \text { for some } x \in M\}}
\end{aligned}
$$

To a 1-cocycle c, we associate a G_{K} module E_{c} such that

$$
0 \rightarrow M \rightarrow E_{c} \rightarrow N \rightarrow 0
$$

where $E_{c} \simeq \mathbb{Z}_{p} \times M$ as a \mathbb{Z}_{p}-module and G_{K} acts on E_{c} by

$$
g(a, m)=\left(a, g m+c_{g}\right) .
$$

One can check easily

$$
g_{1}\left(g_{2}(a, m)\right)=g_{1}\left(a, g_{2} m+c_{g_{2}}\right)=\left(a, g_{1} g_{2} m+g_{1} c_{g_{2}}+c_{g_{1}}\right)=g_{1} g_{2}(a, m)
$$

E_{c} is trivial if and only if there exists $\hat{1} \in E_{c}$, such that $g \hat{1}=\hat{1}$ for all g, i.e. $\hat{1}=(1, x), g \hat{1}-\hat{1}=\left(0, g x-x+c_{g}\right)=0$, that is, $c_{g}=(1-g) x$ is a coboundary.

Theorem 5.1.1 (Tate's Local Duality Theorem). Suppose K is a finite extension of \mathbb{Q}_{p}. Let M be a $\mathbb{Z}_{p}\left[G_{K}\right]$-module of finite length. Then:
(i) $H^{i}\left(G_{K}, M\right)=0$ for $i \geq 3 ; H^{i}\left(G_{K}, M\right)$ is finite if $i \leq 2$.
(ii) $\prod_{i=0}^{2}\left|H^{i}\left(G_{K}, M\right)\right|^{(-1)^{i}}=|M|^{-\left[K: \mathbb{Q}_{p}\right]}$;
(iii) $H^{2-i}\left(G_{K}, \operatorname{Hom}\left(M, \boldsymbol{\mu}_{p^{\infty}}\right)\right) \simeq \operatorname{Hom}\left(H^{i}\left(G_{K}, M\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.

We will give a proof using (φ, Γ)-module (Herr's thesis).
Remark. (i) If M is a finitely generated \mathbb{Z}_{p}-module with p-adic topology, then $M \simeq \lim M / p^{n} M$, and $H^{i}\left(G_{K}, M\right) \simeq \lim H^{i}\left(G_{K}, M / p^{n} M\right)$.

Z! Not tautological, the proof uses finiteness of (i) to ensure Mittag-Leffler conditions.
(ii) If V is a \mathbb{Q}_{p}-representation of G_{K}, let $T \subset V$ be a \mathbb{Z}_{p}-lattice stable by G_{K}. Then $H^{i}\left(G_{K}, V\right) \simeq \mathbb{Q}_{p} \otimes H^{i}\left(G_{K}, T\right)$.

Corollary 5.1.2. If V is a \mathbb{Q}_{p}-representation of G_{K}. Then:
(i) $\sum_{i=0}^{2}(-1)^{i} \operatorname{dim}_{\mathbb{Q}_{p}} H^{i}\left(G_{K}, V\right)=-\left[K: \mathbb{Q}_{p}\right] \operatorname{dim}_{\mathbb{Q}_{p}} V$;
(ii) $H^{2}\left(G_{K}, V\right)=H^{0}\left(G_{K}, V^{*}(1)\right)^{*}$.

5.2 The complex $C_{\varphi, \gamma}(K, V)$

Assume that Γ_{K} is pro-cyclic $\left(\Gamma_{\mathbb{Q}_{p}} \simeq \mathbb{Z}_{p}^{*}\right), \gamma$ is a topological generator of Γ_{K}. This assumption is automatic if $p \geq 3$, or if $K \supset \mathbb{Q}\left(\mu_{4}\right)$ when $p=2$. Let V be a $\mathbb{Z}_{p^{-}}$or \mathbb{Q}_{p}-representation of G_{K}. Set

$$
D(V)=\left(A \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}}
$$

Definition 5.2.1. The complex $C_{\varphi, \gamma}^{\bullet}(K, V)=C_{\varphi, \gamma}(K, V)$ is

$$
0 \rightarrow D(V) \xrightarrow{(\varphi-1, \gamma-1)} D(V) \oplus D(V) \xrightarrow{(\gamma-1) \mathrm{pr}_{1}-(\varphi-1) \mathrm{pr}_{2}} D(V) \rightarrow 0 .
$$

It is easy to see $C_{\varphi, \gamma}(K, V)$ is really a complex (as φ, γ commute to each other). We shall denote the complex by $C^{\bullet}(V)$ if no confusion is caused. We
have

$$
\begin{aligned}
H^{0}\left(C^{\bullet}(V)\right) & =\{x \in D(V), \gamma(x)=x, \varphi(x)=x\}, \\
H^{1}\left(C^{\bullet}(V)\right) & =\frac{\{(x, y):(\gamma-1) x=(\varphi-1) y\}}{\{((\varphi-1) z,(\gamma-1) z): z \in D(V)\}}, \\
H^{2}\left(C^{\bullet}(V)\right) & =\frac{D(V)}{(\gamma-1, \varphi-1)}, \\
H^{i}\left(C^{\bullet}(V)\right) & =0, \text { for } i \geq 3 .
\end{aligned}
$$

Theorem 5.2.2. $H^{i}\left(C_{\varphi, \gamma}(K, V)\right) \simeq H^{i}\left(G_{K}, V\right)$ for all i in \mathbb{N}.
Proof. We have the following exact sequence (which can be proved by reducing $\bmod p$):

$$
0 \rightarrow \mathbb{Z}_{p} \rightarrow A \xrightarrow{\varphi-1} A \rightarrow 0
$$

here $A=\mathcal{O}_{\widehat{\mathcal{E} u r}}$ in Fontaine's course.
(1) $i=0$: For $x \in D(V)^{\varphi=1}$, since $D(V)=\left(A \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}}$, we have $D(V)^{\varphi=1}=\left(A^{\varphi=1} \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}}=V^{H_{K}}$, and $\left(V^{H_{K}}\right)^{\gamma=1}=V^{G_{K}}$.
(2) $i=1$: Let (x, y) satisfy the condition $(\gamma-1) x=(\varphi-1) y$. Choose $b \in\left(A \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}},(\varphi-1) b=x$. We define the map:

$$
g \in G_{K} \rightarrow c_{x, y}(g)=\frac{g-1}{\gamma-1} y-(g-1) b .
$$

while the meaning of $\frac{g-1}{\gamma-1} y$ is: as $\chi(g)=\lim _{i \rightarrow+\infty} \chi(\gamma)^{n_{i}}, y$ is fixed by H_{K}, we let

$$
\frac{g-1}{\gamma-1} y=\lim _{i \rightarrow+\infty}\left(1+\gamma+\cdots+\gamma^{n_{i}-1}\right) y
$$

This is a cocycle with values in V, because $g \mapsto(g-1)\left(\frac{y}{\gamma-1}-b\right)$ is a cocycle, and $(\varphi-1) c_{x y}(g)=(g-1) x-(\varphi-1)(g-1) b=0$, which implies that $c_{x y}(g) \in D(V)^{\varphi=1}=V$.

Injectivity: If $c_{x y}=0$ in $H^{1}\left(G_{K}, V\right)$, then there exists $z \in V, c_{x y}(g)=$ $(g-1) z$ for all $g \in G_{K}$, that is, $\frac{g-1}{\gamma-1} y=(g-1)(b-z)$ for all g. Now $b-z \in D(V)$, because it is fixed by $g \in H_{K}$. Then we have: $y=(\gamma-1)(b-z)$ and $x=(\varphi-1)(b-z)$, hence (x, y) equal to 0 in $H^{1}\left(C^{\bullet}(V)\right)$.

Surjectivity: If $c \in H^{1}\left(G_{K}, V\right)$, we have:

$$
0 \rightarrow V \longrightarrow E_{c} \longrightarrow \mathbb{Z}_{p} \rightarrow 0
$$

here $E_{c}=\mathbb{Z}_{p} \times V, e \in E_{c} \mapsto 1 \in \mathbb{Z}_{p}$ and $g e=e+c_{g}$ for $g \mapsto c_{g}$ representing c. We have:

$$
0 \rightarrow D(V) \longrightarrow D\left(E_{c}\right) \longrightarrow A_{K} \rightarrow 0
$$

here $D\left(E_{c}\right) \subset A \otimes E_{c}$ and $\tilde{e} \in D\left(E_{c}\right) \mapsto 1 \in A_{K}$. Let

$$
x=(\varphi-1) \tilde{e}, \quad y=(\gamma-1) \tilde{e}
$$

they are both in $D(V)$ and satisfy $(\gamma-1) x=(\varphi-1) y$. Let $b=\tilde{e}-e \in$ $A \otimes_{\mathbb{Z}_{p}} E_{c}$. Then $c_{x, y}(g)=\frac{g-1}{\gamma-1} y-(g-1) b=c_{g}$ and $(\varphi-1)(b)=x$.
(3) i general: from the exact sequence:

$$
0 \rightarrow \mathbb{Z}_{p} \rightarrow A \xrightarrow{\varphi-1} A \rightarrow 0,
$$

tensoring with V and taking the cohomology $H^{i}\left(H_{K},-\right)$, we get

$$
0 \rightarrow V^{H_{K}} \rightarrow D(V) \xrightarrow{\varphi-1} D(V) \rightarrow H^{1}\left(H_{K}, V\right) \rightarrow 0
$$

because $A \otimes V \simeq \oplus\left(A / p^{i}\right)$ as H_{K}-modules and $H^{i}\left(H_{K}, E\right)=0$, if $i \geq 1$, so $H^{i}\left(H_{K}, A \otimes V\right)=0$ for all $i \geq 1$. Hence $H^{i}\left(H_{K}, V\right)=0$ for all $i \geq 1$.

By the Hochschild-Serre Spectral Sequence for

$$
1 \rightarrow H_{K} \rightarrow G_{K} \rightarrow \Gamma_{K} \rightarrow 1,
$$

we have $H^{i}\left(\Gamma_{K}, H^{j}\left(H_{K}, V\right)\right) \Rightarrow H^{i+j}\left(G_{K}, V\right)$. When j or $i \geq 2$, the cohomology vanishes. So we have:

$$
\begin{aligned}
& H^{q}\left(G_{K}, V\right)=0, \text { if } q \geq 3 \\
& H^{2}\left(G_{K}, V\right) \simeq H^{1}\left(\Gamma_{K}, H^{1}\left(H_{K}, V\right)\right) .
\end{aligned}
$$

Since $H^{1}\left(H_{K}, V\right)=\frac{D(V)}{\varphi-1}$, we get

$$
H^{2}\left(G_{K}, V\right) \simeq \frac{D(V)}{\varphi-1} /(\gamma-1) \frac{D(V)}{\varphi-1}=\frac{D(V)}{(\varphi-1, \gamma-1)}
$$

Remark. (1) The inflation-restriction exact sequence becomes the commutative diagram

where the map $H^{1}\left(C_{\varphi, \gamma}(K, V)\right) \rightarrow\left(\frac{D(V)}{\varphi-1}\right)^{\Gamma_{K}}$ is given by sending (x, y) to the image of x.
(2) Let γ^{\prime} be another generator of Γ_{K}, we have $\frac{\gamma-1}{\gamma^{\prime}-1} \in\left(\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]\right)^{*}$ and a commutative diagram:

It induces a commutative diagram

where $l_{K}(\gamma)=\frac{\log \chi(\gamma)}{p^{r(K)}}$ for $\log \chi\left(\Gamma_{K}\right) \simeq p^{r(K)} \mathbb{Z}_{p}$. So $l_{K}(\gamma) c_{, \varphi \gamma}$ "does not depend on the choice of $\gamma^{\prime \prime}$.

5.3 Tate's Euler-Poincaré formula.

5.3.1 The operator ψ.

Lemma 5.3.1. (i) $\left\{1, \varepsilon, \cdots, \varepsilon^{p-1}\right\}$ is a basis of $E_{\mathbb{Q}_{p}}$ over $\varphi\left(E_{\mathbb{Q}_{p}}\right)$;
(ii) $\left\{1, \varepsilon, \cdots, \varepsilon^{p-1}\right\}$ is a basis of E_{K} over $\varphi\left(E_{K}\right)$, for all $\left[K: \mathbb{Q}_{p}\right]<+\infty$;
(iii) $\left\{1, \varepsilon, \cdots, \varepsilon^{p-1}\right\}$ is a basis of E over $\varphi(E)$;
(iv) $\left\{1,[\varepsilon], \cdots,[\varepsilon]^{p-1}\right\}$ is a basis of A over $\varphi(A)$.

Proof. (i) Since $E_{\mathbb{Q}_{p}}=\mathbb{F}_{p}((\bar{\pi}))$ with $\bar{\pi}=\varepsilon-1$, we have $\varphi\left(E_{\mathbb{Q}_{p}}\right)=\mathbb{F}_{p}\left(\left(\bar{\pi}^{p}\right)\right)$;
(ii) Use the following diagram of fields, note that $E_{\mathbb{Q}_{p}} / \varphi\left(E_{\mathbb{Q}_{p}}\right)$ is purely inseparable and $\varphi\left(E_{K}\right) / \varphi\left(E_{\mathbb{Q}_{p}}\right)$ is separable:

(iii) Because $E=\cup E_{K}$.
(iv) To show that

$$
\left(x_{0}, x_{1}, \cdots, x_{p-1}\right) \in A^{p} \stackrel{\sim}{\longmapsto} \sum_{i=0}^{p-1}[\varepsilon]^{i} \varphi\left(x_{i}\right) \in A
$$

is a bijection, it suffices to check it $\bmod p$ and use (iii).
Definition 5.3.2. The operator $\psi: A \rightarrow A$ is defined by

$$
\psi\left(\sum_{i=0}^{p-1}[\varepsilon]^{i} \varphi\left(x_{i}\right)\right)=x_{0} .
$$

Proposition 5.3.3. (i) $\psi \varphi=\mathrm{Id}$;
(ii) ψ commutes with $G_{\mathbb{Q}_{p}}$.

Proof. (i) The first statement is obvious.
(ii) Note that

$$
g\left(\sum_{i=0}^{p-1}[\varepsilon]^{i} \varphi\left(x_{i}\right)\right)=\sum_{i=0}^{p-1}[\varepsilon]^{i \chi(g)} \varphi\left(g\left(x_{i}\right)\right) .
$$

If for $1 \leq i \leq p-1$, write $i \chi(g)=i_{g}+p j_{g}$ with $1 \leq i_{g} \leq p-1$, then

$$
\psi\left(\sum_{i=0}^{p-1}[\varepsilon]^{i \chi(g)} \varphi\left(g\left(x_{i}\right)\right)\right)=\psi\left(\varphi\left(g\left(x_{0}\right)\right)+\sum_{i=1}^{p-1}[\varepsilon]^{i_{g}} \varphi\left([\varepsilon]^{j_{g}} g\left(x_{i}\right)\right)\right)=g\left(x_{0}\right) .
$$

Corollary 5.3.4. (i) If V is a \mathbb{Z}_{p}-representation of G_{K}, there exists a unique operator $\psi: D(V) \rightarrow D(V)$ with

$$
\psi(\varphi(a) x)=a \psi(x), \quad \psi(a \varphi(x))=\psi(a) x
$$

if $a \in A_{K}, x \in D(V)$ and moreover ψ commute with Γ_{K}.
(ii) If D is an étale (φ, Γ)-module over A_{K} or B_{K}, there exists a unique operator $\psi: D \rightarrow D$ with as in (i). Moreover, for any $x \in D$,

$$
x=\sum_{i=0}^{p^{n}-1}[\varepsilon]^{i} \varphi^{n}\left(x_{i}\right)
$$

where $x_{i}=\psi^{n}\left([\varepsilon]^{-i} x\right)$.

Proof. (i) The uniqueness follows from $A_{K} \otimes_{\varphi\left(A_{K}\right)} \varphi(D)=D$. For the existence, use ψ on $A \otimes V \supset D(V) . D(V)$ is stable under ψ because ψ commutes with H_{K}, ψ commutes with Γ_{K} since ψ commutes with G_{K}.
(ii) $D=D(V(D))$, thus we have existence and uniqueness of ψ. The rest is by induction on n.

Example 5.3.5. Let $D=A_{\mathbb{Q}_{p}} \supset A_{\mathbb{Q}_{p}}^{+}=\mathbb{Z}_{p}[[\pi]]$ be the trivial (φ, Γ)-module, here $[\varepsilon]=(1+\pi)$. Then for $x=F(\pi) \in A_{\mathbb{Q}_{p}}^{+}, \varphi(x)=F\left((1+\pi)^{p}-1\right)$. Write

$$
F(\pi)=\sum_{i=0}^{p-1}(1+\pi)^{i} F_{i}\left((1+\pi)^{p}-1\right)
$$

then $\psi(F(\pi))=F_{0}(\pi)$. It is easy to see if $F(\pi)$ belongs to $\mathbb{Z}_{p}[[\pi]], F_{i}(\pi)$ belongs to $\mathbb{Z}_{p}[[\pi]]$ for all i. Then $\psi\left(E_{\mathbb{Q}_{p}}^{+}\right) \subset E_{\mathbb{Q}_{p}}^{+}=F_{p}[[\pi]]$. Hence $\psi\left(A_{\mathbb{Q}_{p}}^{+}\right) \subset$ $A_{\mathbb{Q}_{p}}^{+}$. Consequently, ψ is continuous for the weak topology.

Moreover, we have:

$$
\begin{aligned}
\varphi(\psi(F)) & =F_{0}\left((1+\pi)^{p}-1\right)=\frac{1}{p} \sum_{z^{p}=1} \sum_{i=0}^{p-1}(z(1+\pi))^{i} F_{i}\left((z(1+\pi))^{p}-1\right) \\
& =\frac{1}{p} \sum_{z^{p}=1} F(z(1+\pi)-1)
\end{aligned}
$$

Recall $\mathcal{D}_{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \simeq B_{\mathbb{Q}_{p}}^{+}=\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} A_{\mathbb{Q}_{p}}^{+}$by $\mu \mapsto A_{\mu}(\pi)=\int_{\mathbb{Z}_{p}}[\varepsilon]^{x} \mu$. Recall that $\psi(\mu)$ is defined by

$$
\int_{\mathbb{Z}_{p}} \phi(x) \psi(\mu)=\int_{p \mathbb{Z}_{p}} \phi\left(\frac{x}{p}\right) \mu .
$$

From the above formula, we get, using formulas for Amice transforms,

$$
A_{\psi(\mu)}(\pi)=\psi\left(A_{\mu}\right)(\pi)
$$

Proposition 5.3.6. If D is an étale φ-module over A_{K}, then ψ is continuous for the weak topology.

Proof. As A_{K} is a free $A_{\mathbb{Q}_{p}}$-module of $\operatorname{rank}\left[K_{\infty}: \mathbb{Q}_{p}\left(\boldsymbol{\mu}_{p \infty}\right)\right]$, we can assume $K=\mathbb{Q}_{p}$. Choose $e_{1}, e_{2}, \cdots, e_{d}$ in D, such that

$$
D=\oplus\left(A_{\mathbb{Q}_{p}} / p^{n_{i}}\right) e_{i}, \quad n_{i} \in \mathbb{N} \cup\{\infty\}
$$

Since D is étale, we have $D=\oplus\left(A_{\mathbb{Q}_{p}} / p^{n_{i}}\right) \varphi\left(e_{i}\right)$. Then we have the following diagram:

Now $x \mapsto \psi(x)$ is continuous in $A_{\mathbb{Q}_{p}}$, hence ψ is continuous in D.

5.3.2 $\quad D^{\psi=1}$ and $D /(\psi-1)$

Lemma 5.3.7. If D is an étale φ-module over $E_{\mathbb{Q}_{p}}$, then:
(i) $D^{\psi=1}$ is compact;
(ii) $\operatorname{dim}_{\mathbb{F}_{p}}(D /(\psi-1))<+\infty$.

Proof. (i) choose a basis $\left\{e_{1}, \cdots, e_{d}\right\}$, then $\left\{\varphi\left(e_{1}\right), \cdots, \varphi\left(e_{d}\right)\right\}$ is still a basis. Set $v_{E}(x)=\inf _{i} v_{E}\left(x_{i}\right)$ if $x=\sum_{i} x_{i} \varphi\left(e_{i}\right), x_{i} \in E_{\mathbb{Q}_{p}}^{+}$. We have

$$
\psi(x)=\sum_{i} \psi\left(x_{i}\right) e_{i} \text { and } e_{i}=\sum_{i=1}^{d} a_{i, j} \varphi\left(e_{j}\right) .
$$

Let $c=\inf _{i, j} v_{E}\left(a_{i, j}\right)$, then we have

$$
\begin{equation*}
v_{E}(\psi(x)) \geq c+\inf _{i} v_{E}\left(\psi\left(x_{i}\right)\right) . \tag{5.1}
\end{equation*}
$$

From $\psi\left(E_{\mathbb{Q}_{p}}^{+}\right) \subset E_{\mathbb{Q}_{p}}^{+}$and $\psi\left(\bar{\pi}^{p^{k}} x\right)=\bar{\pi}^{k} \psi(x)$, we get $v_{E}(\psi(x)) \geq\left[\frac{v_{E}(x)}{p}\right]$. So

$$
v_{E}(\psi(x)) \geq c+\inf _{i}\left[\frac{v_{E}\left(x_{i}\right)}{p}\right] \geq c+\left[\frac{v_{E}(x)}{p}\right]
$$

If $v_{E}(x)<\frac{p(c-1)}{p-1}$, then $v_{E}(\psi(x))>v_{E}(x)$. Now $D^{\psi=1}$ is closed since ψ is continuous, and is a subset of the compact set

$$
M:=\left\{x: v_{E}(x) \geq \frac{p(c-1)}{p-1}\right\} \subseteq \sum_{i=1}^{d} \bar{\pi}^{k} \mathbb{F}_{p}[[\bar{\pi}]] \cdot \varphi\left(e_{i}\right)
$$

Hence $D^{\psi=1}$ is also compact.
(ii) $\psi-1$ is bijective on D / M from the proof of (i). We only need to prove that $M /((\psi-1) D \cap M)$ is finite, equivalently, that $(\psi-1) D$ contains $\left\{x: v_{E}(x) \geq c^{\prime}\right\}$ for some c^{\prime}.
$\varphi\left(x_{i}\right)$ can be written uniquely as $\varphi\left(x_{i}\right)=\sum_{j=1}^{d} b_{i, j} e_{j}$. Let $c_{0}=\inf _{i, j} v_{E}\left(b_{i, j}\right)$, then

$$
x=\sum_{i=1}^{d} x_{i} \varphi\left(e_{i}\right)=\sum_{i=1}^{d} x_{i} \sum_{j=1}^{d} b_{i, j} e_{j}=\sum_{j=1}^{d}\left(\sum_{i=1}^{d} x_{i} b_{i, j}\right) e_{j} .
$$

Let $y_{j}=\sum_{i=1}^{d} x_{i} b_{i, j}$, then $x=\sum_{j=1}^{d} y_{j} e_{j}$, and

$$
v_{E}\left(y_{j}\right) \geq c_{0}+v_{E}(x)
$$

From $\varphi(x)=\sum_{j=1}^{d} \varphi\left(y_{j}\right) \varphi\left(e_{j}\right)$, we get

$$
v_{E}(\varphi(x))=\inf v_{E}\left(\varphi\left(y_{j}\right)\right)=p \inf v_{E}\left(y_{j}\right) \geq p v_{E}(x)+p c_{0}
$$

So, if $v_{E}(x) \geq \frac{-p c_{0}}{p-1}+1$, then $v_{E}\left(\varphi^{n}(x)\right) \geq p^{n}$. It implies $y=\sum_{i=1}^{+\infty} \varphi^{i}(x)$ converges in D. Now

$$
(\psi-1) y=\sum_{i=0}^{+\infty} \varphi^{i}(x)-\sum_{i=1}^{+\infty} \varphi^{i}(x)=x
$$

implies that $(\psi-1) D$ contains $\left\{x \left\lvert\, v_{E}(x) \geq \frac{-p c_{0}}{p-1}+1\right.\right\}$.
Proposition 5.3.8. If D is an étale φ-module over $A_{K}\left(\right.$ resp. over $\left.B_{K}\right)$, then:
(i) $D^{\psi=1}$ is compact (resp. locally compact);
(ii) $D /(\psi-1)$ is finitely generated over $\mathbb{Z}_{p}\left(\right.$ resp. over $\left.\mathbb{Q}_{p}\right)$.

Proof. We can reduce to $K=\mathbb{Q}_{p}$. B_{K} follows from A_{K} by $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}}$. So we consider D over $A_{\mathbb{Q}_{p}}$.
(i) Note that $D^{\psi=1}=\lim _{\leftrightarrows}\left(D / p^{n} D\right)^{\psi=1}$. From the previous lemma we have $D / p^{n} D$ is compact by easy induction on n. So $D^{\psi=1}$ is compact.
(ii) The quotient $(D /(\psi-1)) / p \simeq(D / p) / \psi-1$ is finite dimensional over \mathbb{F}_{p}. We have to check that
if $x=(\psi-1) y_{n}+p^{n} \mathbb{Z}_{p}$ for all n, then $x \in(\psi-1) D$.
If $m \geq n, y_{m}-y_{n} \in\left(D / p^{n}\right)^{\psi=1}$, which is compact, we can extract a sequence converging $\bmod p^{n}$. Thus we can diagonally extract a sequence converging $\bmod p^{n}$ for all n. Then y_{n} converges to y in D and $x=(\psi-1) y$.

5.3.3 The Γ-module $D^{\psi=0}$.

If $p \neq 2$, we let $\Gamma_{0}=\Gamma_{\mathbb{Q}_{p}} \simeq \mathbb{Z}_{p}^{*}$. Let $\Gamma_{n} \subseteq \Gamma_{0}$ and $\Gamma_{n} \simeq 1+p^{n} \mathbb{Z}_{p}$ if $n \geq 1$. Then $\Gamma_{0}=\triangle \times \Gamma_{1}$ where $\triangle=\boldsymbol{\mu}_{p-1}$, and $\Gamma_{n}=\underset{m}{\lim _{m}} \Gamma_{n} / \Gamma_{n+m}$. We define

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]=\lim _{\rightleftarrows} \mathbb{Z}_{p}\left[\Gamma_{n} / \Gamma_{n+m}\right]=\mathcal{D}\left(\Gamma_{n}, \mathbb{Z}_{p}\right) .
$$

If $n \geq 1$, let γ_{n} be a topological generator of Γ_{n}. So $\Gamma_{n}=\gamma_{n}^{\mathbb{Z}_{p}}$. The correspondence

$$
\begin{aligned}
& \mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right] \stackrel{\sim}{\sim} \mathbb{Z}_{p}[[T]] \stackrel{\sim}{\sim} A_{\mathbb{Q}_{p}}^{+} \\
& \gamma_{n}-1 \longleftrightarrow T \longmapsto
\end{aligned}
$$

is just the Amice transform. Then

$$
\begin{aligned}
& \mathbb{Z}_{p}\left[\left[\Gamma_{0}\right]\right]=\mathbb{Z}_{p}[\triangle] \otimes \mathbb{Z}_{p}\left[\left[\Gamma_{1}\right]\right], \\
& \mathbb{Z}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}:=\left(\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]\left[\left(\gamma_{n}-1\right)^{-1}\right]\right)^{\wedge} \simeq A_{\mathbb{Q}_{p}} \text { (as a ring) }, \\
& \mathbb{Z}_{p}\left\{\left\{\Gamma_{0}\right\}\right\}=\mathbb{Z}_{p}[\triangle] \otimes \mathbb{Z}_{p}\left\{\left\{\Gamma_{1}\right\}\right\} .
\end{aligned}
$$

Modulo p, we get $\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\} \simeq E_{\mathbb{Q}_{p}}$ as a ring.
Remark. $\mathbb{Z}_{p}\left[\left[\Gamma_{0}\right]\right] \simeq \mathcal{D}_{0}\left(\Gamma_{0}, \mathbb{Z}_{p}\right) \simeq \mathcal{D}_{0}\left(\mathbb{Z}_{p}^{*}, \mathbb{Z}_{p}\right) \simeq\left(A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0}$. So $\left(A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0}$ is a free $\mathbb{Z}_{p}\left[\left[\Gamma_{0}\right]\right]$-module of rank 1. This a special case of a general theorem which will come up later on.

Lemma 5.3.9. (i) If M is a topological \mathbb{Z}_{p}-module ($M=\lim M / M_{i}$) with a continuous action of Γ_{n} (i.e. for all i, there exists k, such that Γ_{n+k} acts trivially on $\left.M / M_{i}\right)$, then $\mathbb{Z}_{p}\left[\left[\Gamma_{n}\right]\right]$ acts continuously on M;
(ii) If $\gamma_{n}-1$ has a continuous inverse, then $\mathbb{Z}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}$ also acts continuously on M.

Lemma 5.3.10. (i) If $n \geq 1, v_{E}\left(\gamma_{n}(\bar{\pi})-\bar{\pi}\right)=p^{n} v_{E}(\bar{\pi})$;
(ii) For all x in $E_{\mathbb{Q}_{p}}$, we have $v_{E}\left(\gamma_{n}(x)-x\right) \geq v_{E}(x)+\left(p^{n}-1\right) v_{E}(\bar{\pi})$.

Proof. Since $\chi(\gamma)=1+p^{n} u, u \in \mathbb{Z}_{p}^{*}$, we have

$$
\begin{aligned}
\gamma_{n}(\bar{\pi})-\bar{\pi} & =\gamma_{n}(1+\bar{\pi})-(1+\bar{\pi})=(1+\bar{\pi})\left((1+\bar{\pi})^{p^{n} u}-1\right) \\
& =(1+\bar{\pi})\left((1+\bar{\pi})^{u}-1\right)^{p^{n}}
\end{aligned}
$$

Then we get (i).
In general, for $x=\sum_{k=k_{0}}^{+\infty} a_{k} \bar{\pi}^{k}$, then $v_{E}(x)=k_{0} v_{E}(\bar{\pi})$. Now

$$
\frac{\gamma_{n}(x)-x}{\gamma_{n}(\bar{\pi})-\bar{\pi}}=\sum_{k=k_{0}}^{+\infty} a_{k} \frac{\gamma_{n}(\bar{\pi})^{k}-\bar{\pi}^{k}}{\gamma_{n}(\bar{\pi})-\bar{\pi}},
$$

and

$$
v_{E}\left(\frac{\gamma_{n}(\bar{\pi})^{k}-\bar{\pi}^{k}}{\gamma_{n}(\bar{\pi})-\bar{\pi}}\right) \geq(k-1) v_{E}(\bar{\pi}) .
$$

Proposition 5.3.11. Let D be an étale (φ, Γ)-module of dimension d over $E_{\mathbb{Q}_{p}}$. Assume $n \geq 1,(i, p)=1$. Then
(i) $\gamma \in \Gamma$ induces $\varepsilon^{i} \varphi^{n}(D) \simeq \varepsilon^{\chi(\gamma) i} \varphi^{n}(D)$;
(ii) $\gamma_{n}-1$ admits a continuous inverse on $\varepsilon^{i} \varphi^{n}(D)$. Moreover if $\left\{e_{1}, \cdots, e_{d}\right\}$ is a basis of D, then:

$$
\begin{aligned}
\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}^{d} & \sim \varphi^{n}(D) \\
\left(\lambda_{1}, \cdots, \lambda_{d}\right) & \longmapsto \lambda_{1} * \varepsilon^{i} \varphi^{n}\left(e_{1}\right)+\cdots+\lambda_{d} * \varepsilon^{i} \varphi^{n}\left(e_{d}\right)
\end{aligned}
$$

is a topological isomorphism.
Proof. (i) is obvious. Now, remark that (ii) is true for $n+1$ implies (ii) is true for n, since

$$
\varepsilon^{i} \varphi^{n}(D)=\varepsilon^{i} \varphi^{n}\left(\oplus_{j=0}^{p-1} \varepsilon^{j} \varphi(D)\right)=\oplus_{j=0}^{p-1} \varepsilon^{i+p^{n} j} \varphi^{n+1}(D),
$$

and for $n>1, \gamma_{n+1}=\gamma_{n}^{p}$, so $\frac{1}{\gamma_{n}-1}=\frac{1}{\gamma_{n+1}-1}\left(1+\gamma_{n}+\cdots+\gamma_{n}^{p-1}\right)$, and

$$
\mathbb{F}_{p}\left\{\left\{\Gamma_{n}\right\}\right\}=\mathbb{F}_{p}\left\{\left\{\Gamma_{n+1}\right\}\right\}+\cdots+\gamma_{n}^{p-1} \mathbb{F}_{p}\left\{\left\{\Gamma_{n+1}\right\}\right\} .
$$

So we can assume n big enough.
Recall $v_{E}(x)=\inf _{i} v_{E}\left(x_{i}\right)$ if $x=\sum_{i} x_{i} e_{i}$. We can, in particular, assume $v_{E}\left(\gamma_{n}\left(e_{i}\right)-e_{i}\right) \geq 2 v_{E}(\bar{\pi})$, it implies $v_{E}\left(\gamma_{n}(x)-x\right) \geq v_{E}(x)+2 v_{E}(\bar{\pi})$ for all $x \in D\left(\operatorname{as} v_{E}\left(\gamma_{n}(x)-x\right) \geq v_{E}(x)+\left(p^{n}-1\right) v_{E}(\bar{\pi})\right.$ for all $\left.x \in E_{\mathbb{Q}_{p}}\right)$. Now

$$
\chi\left(\gamma_{n}\right)=1+p^{n} u, u \in \mathbb{Z}_{p}^{*}
$$

so

$$
\gamma_{n}\left(\varepsilon^{i} \varphi^{n}(x)\right)-\varepsilon^{i} \varphi^{n}(x)=\varepsilon^{i}\left(\varepsilon^{i p^{n} u} \varphi^{n}\left(\gamma_{n}(x)\right)-\varphi^{n}(x)\right)=\varepsilon^{i} \varphi^{n}\left(\varepsilon^{i u} \gamma_{n}(x)-x\right)
$$

So we have to prove $x \mapsto f(x)=\varepsilon^{i u} \gamma_{n}(x)-x$ has a continuous inverse on D, and D is a $\mathbb{F}_{p}\{\{f\}\}$-module with basis $\left\{e_{1}, \cdots, e_{d}\right\}$. Let $\alpha=\varepsilon^{i u}-1 ; i u \in \mathbb{Z}_{p}^{*}$, so $v_{E}(\alpha)=v_{E}(\bar{\pi})$. Then $v_{E}\left(\frac{f}{\alpha}(x)-x\right) \geq v_{E}(x)+v_{E}(\bar{\pi})$. It implies $\frac{f}{\alpha}$ has an inverse

$$
g=\sum_{n=0}^{+\infty}\left(1-\frac{f}{\alpha}\right)^{n} \text { and } v_{E}(g(x)-x) \geq v_{E}(x)+v_{E}(\bar{\pi})
$$

So f has an inverse $f^{-1}(x)=g\left(\frac{x}{\alpha}\right)$ and $v_{E}\left(f^{-1}(x)-\frac{x}{\alpha}\right) \geq v_{E}(x)$.
By induction, for all k in \mathbb{Z}, we have

$$
v_{E}\left(f^{k}(x)-\alpha^{k} x\right) \geq v_{E}(x)+(k+1) v_{E}(\bar{\pi})
$$

Let $M=E_{\mathbb{Q}_{p}}^{+} e_{1} \oplus \cdots \oplus E_{\mathbb{Q}_{p}}^{+} e_{d}$, then f^{k} induces

$$
M / \bar{\pi} M \simeq \alpha^{k} M / \alpha^{k+1} M \simeq \bar{\pi}^{k} M / \bar{\pi}^{k+1} M
$$

So $f^{k} \mathbb{F}_{p}[[f]] e_{1} \oplus \cdots \oplus f^{k} \mathbb{F}_{p}[[f]] e_{d}$ is dense in $\bar{\pi}^{k} M$ and is equal by compactness.

Corollary 5.3.12. $\gamma-1$ has a continuous inverse on $D^{\psi=0}$, and $D^{\psi=0}$ is a free $\mathbb{F}_{p}\left\{\left\{\Gamma_{0}\right\}\right\}$-module with basis $\left\{\varepsilon \varphi\left(e_{1}\right), \cdots, \varepsilon \varphi\left(e_{d}\right)\right\}$.

Proof. Copy the proof that (ii) for $n+1$ implies (ii) for n in the previous proposition, using $\gamma_{1}=\gamma_{0}^{p-1}$.

Proposition 5.3.13. If D is an étale (φ, Γ)-module over A_{K} or B_{K}, then $\gamma-1$ has a continuous inverse on $D^{\psi=0}$.

Proof. B_{K} follows from A_{K} by $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}}$; and we can reduce A_{K} to $A_{\mathbb{Q}_{p}}$.
Since $D^{\psi=0} \rightarrow(D / p)^{\psi=0}$ is surjective, $\left(\sum_{i=1}^{p-1} \varepsilon^{i} \varphi\left(x_{i}\right)\right.$ can be lifted to $\left.\sum_{i=1}^{p-1}[\varepsilon]^{i} \varphi\left(\hat{x}_{i}\right)\right)$, so we have the following exact sequence:

$$
0 \longrightarrow(p D)^{\psi=0} \longrightarrow D^{\psi=0} \longrightarrow(D / p)^{\psi=0} \longrightarrow 0
$$

Everything is complete for the p-adic topology, so we just have to verify the result $\bmod p$, which is in corollary 5.3.12.

5.3.4 Computation of Galois chomology groups

Proposition 5.3.14. Let $C_{\psi, \gamma}$ be the complex

$$
0 \rightarrow D(V) \xrightarrow{(\psi-1, \gamma-1)} D(V) \oplus D(V) \xrightarrow{(\gamma-1) \mathrm{pr}_{1}-(\psi-1) \mathrm{pr}_{2}} D(V) \rightarrow 0
$$

Then we have a commutative diagram of complexes

which induces an isomorphism on cohomology.
Proof. Since $(-\psi)(\varphi-1)=\psi-1$ and ψ commutes with γ (i.e. $\psi \gamma=\gamma \psi$), the diagram commutes. ψ is surjective, hence the cokernel complex is 0 . The kernel is nothing but

$$
0 \longrightarrow 0 \longrightarrow D(V)^{\psi=0} \xrightarrow{\gamma-1} D(V)^{\psi=0} \longrightarrow 0,
$$

it has no cohomology by Proposition 5.3.13.
Theorem 5.3.15. If V is a \mathbb{Z}_{p} or a \mathbb{Q}_{p}-representation of G_{K}, then $C_{\psi, \gamma}(K, V)$ computes the Galois cohomology of V :
(i) $H^{0}\left(G_{K}, V\right)=D(V)^{\psi=1, \gamma=1}=D(V)^{\varphi=1, \gamma=1}$.
(ii) $H^{2}\left(G_{K}, V\right) \simeq \frac{D(V)}{(\psi-1, \gamma-1)}$.
(iii) One has an exact sequence

$$
\begin{aligned}
0 \longrightarrow \frac{D(V)^{\psi=1}}{\gamma-1} \longrightarrow H^{1}\left(G_{K}, V\right) & \longrightarrow\left(\frac{D(V)}{\psi-1}\right)^{\gamma=1} \longrightarrow 0 \\
(x, y) & \longmapsto x
\end{aligned}
$$

Let $\mathcal{C}(V)=(\varphi-1) D^{\psi-1} \subset D^{\psi=0}$, the exact sequence

$$
0 \longrightarrow D(V)^{\varphi=1} \longrightarrow D(V)^{\psi=1} \longrightarrow \mathcal{C}(V) \longrightarrow 0
$$

induces an exact sequence

$$
0 \longrightarrow \frac{D(V)^{\varphi=1}}{\gamma-1} \longrightarrow \frac{D(V)^{\psi=1}}{\gamma-1} \longrightarrow \frac{\mathcal{C}(V)}{\gamma-1} \longrightarrow 0
$$

since $\mathcal{C}(V)^{\gamma=1} \subset\left(D^{\psi=0}\right)^{\gamma=1}=0$.
Proposition 5.3.16. If D is an étale (φ, Γ)-module of dimension d over $E_{\mathbb{Q}_{p}}$, then $\mathcal{C}=(\varphi-1) D^{\psi=1}$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{0}\right]\right]$-module of rank d.

Proof. We know:

- $\mathcal{C} \subset D^{\psi=0}$, it implies \mathcal{C} is a $\mathbb{F}_{p}\left[\left[\Gamma_{0}\right]\right]$-module of rank less than d;
- \mathcal{C} is compact, because $D^{\psi=1}$ is compact;
- So we just have to prove (see proposition 5.3 .11 and corollary 5.3.12) that \mathcal{C} contains $\left\{\varepsilon \varphi\left(e_{1}\right), \cdots, \varepsilon \varphi\left(e_{d}\right)\right\}$, where $\left\{e_{1}, \cdots, e_{d}\right\}$ is any basis of D over $E_{\mathbb{Q}_{p}}$.

Let $\left\{f_{1}, \cdots, f_{d}\right\}$ be any basis. Then $\varphi^{n}\left(\bar{\pi}^{k} f_{i}\right)$ goes to 0 when n goes to $+\infty$ if $k \gg 0$. Let $g_{i}=\sum_{n=0}^{+\infty} \varphi^{n}\left(\varepsilon \varphi\left(\bar{\pi}^{k} f_{i}\right)\right)$. Then we have:

- $\psi\left(g_{i}\right)=g_{i}$, because $\psi\left(\varepsilon \varphi\left(\bar{\pi}^{k} f_{i}\right)\right)=0$;
- $(\varphi-1) g_{i}=-\varepsilon \varphi\left(\bar{\pi}^{k} f_{i}\right) \in \mathcal{C}$.

We can take $e_{i}=\bar{\pi}^{k} f_{i}$.

5.3.5 The Euler-Poincaré formula.

Theorem 5.3.17. If V is a finite \mathbb{Z}_{p}-representation of G_{K}, then

$$
\chi(V)=\prod_{i=0}^{2}\left|H^{i}\left(G_{K}, V\right)\right|^{(-1)^{i}}=|V|^{-\left[K: \mathbb{Q}_{P}\right]} .
$$

Proof. From Shapiro's lemma, we have

$$
H^{i}\left(G_{K}, V\right) \simeq H^{i}\left(G_{\mathbb{Q}_{p}}, \operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}_{p}}} V\right)
$$

Since $\left|\operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}_{p}}} V\right|=|V|^{\left[K: \mathbb{Q}_{p}\right]}$, we can assume $K=\mathbb{Q}_{p}$. Given an exact sequence

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

then $\chi(V)=\chi\left(V_{1}\right) \chi\left(V_{2}\right)$ and $|V|=\left|V_{1}\right|\left|V_{2}\right|$ from the long exact sequence in Galois Cohomology, thus we can reduce to the case that V is a $\mathbb{F}_{p^{-}}$ representation of G_{K}. Then we have:

$$
\begin{aligned}
\left|H^{0}\right| & =\left|D(V)^{\varphi=1, \gamma=1}\right| \\
\left|H^{1}\right| & =\left|\frac{D(V)^{\varphi=1}}{\gamma-1}\right| \cdot\left|\frac{\mathcal{C}(V)}{\gamma-1}\right| \cdot\left|\left(\frac{D(V)}{\psi-1}\right)^{\gamma=1}\right| \\
\left|H^{2}\right| & =\left|\frac{D(V)}{(\psi-1, \gamma-1)}\right| .
\end{aligned}
$$

So $\left|H^{0}\right|\left|H^{2}\right|\left|H^{1}\right|^{-1}=\left|\frac{\mathcal{C}(V)}{\gamma-1}\right|^{-1}$, because $D(V)^{\varphi=1}$ and $\frac{D(V)}{\psi-1}$ are finite groups, and for a finite group M, the exact sequence:

$$
0 \longrightarrow M^{\gamma=1} \longrightarrow M \xrightarrow{\gamma-1} M \longrightarrow \frac{M}{\gamma-1} \longrightarrow 0
$$

implies that $\left|M^{\gamma=1}\right|=\left|\frac{M}{\gamma-1}\right|$. Now $\frac{\mathcal{C}(V)}{\gamma-1}$ is a $\left(\mathbb{F}_{p}\left[\left[\Gamma_{0}\right]\right] /(\gamma-1)\right)=\mathbb{F}_{p}$-module of rank $\operatorname{dim}_{E_{\mathbb{Q}_{p}}} D(V)=\operatorname{dim}_{\mathbb{F}_{p}} V$. Hence $\left|\frac{\mathcal{C}(V)}{\gamma-1}\right|=|V|$.

5.4 Tate's duality and residues

Let M be a finite \mathbb{Z}_{p} module. We want to construct a perfect pairing

$$
H^{i}\left(G_{K}, M\right) \times H^{2-i}\left(G_{K}, M^{\wedge}(1)\right) \longrightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

By using Shapiro's lemma, we may assume $K=\mathbb{Q}_{p}$.
Definition 5.4.1. Let $x=\sum_{k \in \mathbb{Z}} a_{k} \pi^{k} \in B_{\mathbb{Q}_{p}}$, define

$$
\operatorname{res}(x \mathrm{~d} \pi)=a_{-1} .
$$

The residue of x, denoted by $\operatorname{Res}(x)$ is defined as

$$
\operatorname{Res}(x)=\operatorname{res}\left(x \frac{\mathrm{~d} \pi}{1+\pi}\right)
$$

The map Res : $B_{\mathbb{Q}_{p}} \rightarrow \mathbb{Q}_{p}$ maps $A_{\mathbb{Q}_{p}}$ to \mathbb{Z}_{p}, thus it induced a natural $\operatorname{map} B_{\mathbb{Q}_{p}} / A_{\mathbb{Q}_{p}} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$.

Proposition 5.4.2.

$$
\begin{aligned}
& \operatorname{Res}(\psi(x))=\operatorname{Res}(x) \\
& \operatorname{Res}(\gamma(x))=\chi(\gamma)^{-1} \operatorname{Res}(x)
\end{aligned}
$$

Proof. Exercise.
Let D be an étale (φ, Γ)-module over $A_{\mathbb{Q}_{p}}$, denote $D^{\vee}=\operatorname{Hom}_{A_{\mathbb{Q}_{p}}}\left(D, B_{\mathbb{Q}_{p}} / A_{\mathbb{Q}_{p}}\right)$, let $x \in D^{\vee}, y \in D$, denote

$$
\langle x, y\rangle=x(y) \in B_{\mathbb{Q}_{p}} / A_{\mathbb{Q}_{p}} .
$$

Then

$$
\begin{aligned}
& \langle\gamma(x), \gamma(y)\rangle=\gamma(\langle x, y\rangle) \\
& \langle\varphi(x), \varphi(y)\rangle=\varphi(\langle x, y\rangle)
\end{aligned}
$$

determines the (φ, Γ)-module structure on D^{\vee}. Set

$$
[x, y]:=\operatorname{Res}(\langle x, y\rangle) \in \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

The main step is following proposition.
Proposition 5.4.3. (i) The map $x \mapsto(y \mapsto[x, y])$ gives an isomorphism from D^{\vee} to $D^{\wedge}(V)=\operatorname{Hom}_{\text {cont }}\left(D, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.
(ii) The following formulas hold:

$$
\begin{aligned}
& {[x, \varphi(y)]=[\psi(x), y]} \\
& {[\gamma(x), y]=\chi(\gamma)^{-1}\left[x, \gamma^{-1}(y)\right]}
\end{aligned}
$$

Corollary 5.4.4. Let $V^{\wedge}(1)=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(V,\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)(1)\right)$, then $D\left(V^{\wedge}(1)\right)=$ $D^{\vee}(1)$.

Now the two complexes

$$
\begin{aligned}
C_{\varphi, \gamma}\left(\mathbb{Q}_{p}, V\right): & D(V) \stackrel{d_{1}}{\longrightarrow} D(V) \oplus D(V) \stackrel{d_{2}}{\longleftrightarrow} D(V) \\
& D^{\vee}(V) \ll^{d_{2}^{\prime}} D^{\vee}(1) \oplus D^{\vee}(1)<{ }^{d^{\prime}{ }_{1}} D^{\vee}(1): C_{\psi, \gamma^{-1}}\left(\mathbb{Q}_{p}, V^{\wedge}(1)\right)
\end{aligned}
$$

are in duality, where $d_{1} z=((\varphi-1) z,(\gamma-1) z), d_{2}(x, y)=(\gamma-1) x-(\varphi-1) y$, $d^{\prime}{ }_{1} z^{\prime}=\left((\psi-1) z^{\prime},\left(\gamma^{-1}-1\right) z^{\prime}\right), d_{2}{ }^{\prime}\left(x^{\prime}, y^{\prime}\right)=\left(\gamma^{-1}-1\right) x^{\prime}-(\psi-1) y^{\prime}$, and the duality map in the middle given by $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=\left[x^{\prime}, x\right]-\left[y^{\prime}, y\right]$.

One can check that the images are closed. Therefore their cohomology are in duality. For details, see Herr's paper in Math Annalen (2001?).

Chapter 6

(φ, Γ)-modules and Iwasawa theory

6.1 Iwasawa modules $H_{\mathrm{Iw}}^{i}(K, V)$

6.1.1 Projective limits of cohomology groups

In this chapter we assume that K is a finite extension of \mathbb{Q}_{p} and G_{K} is the Galois group of \bar{K} / K. Then $K_{n}=K\left(\boldsymbol{\mu}_{p^{n}}\right)$ and $\Gamma_{n}=\operatorname{Gal}\left(K_{\infty} / K_{n}\right)=\gamma_{n}^{\mathbb{Z}_{p}}$ if $n \geq 1(n \geq 2$ if $p=2)$ where γ_{n} is a topological generator of Γ_{n}. We choose γ_{n} such that $\gamma_{n}=\gamma_{1}^{p^{n-1}}$. The Iwasawa algebra $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$ is isomorphic to $\mathbb{Z}_{p}[[T]]$ with the (p, T)-adic topology by sending T to $\gamma-1$. We have

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] /\left(\gamma_{n}-1\right)=\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] .
$$

Furthermore $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$ is a G_{K}-module: let $g \in G_{K}$ and $x \in \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$, then $g x=\bar{g} x$, where \bar{g} is the image of g in Γ_{K}. By the same way, G_{K} acts on $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right]$.

Using Shapiro's Lemma, we get, for M a $\mathbb{Z}_{p}\left[G_{K}\right]$-module,

$$
H^{i}\left(G_{K_{n}}, M\right) \xrightarrow{\sim} H^{i}\left(G_{K}, \mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] \otimes M\right),
$$

with the inverse map given by
$\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto \sum_{g \in \operatorname{Gal}\left(K_{n} / K\right)} g \otimes C_{g}\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \longmapsto\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto C_{\mathrm{id}}\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right)$.

Thus we have a commutative diagram:

One can check that the second vertical arrow is just induced by the natural map $\operatorname{Gal}\left(K_{n+1} / K\right) \rightarrow \operatorname{Gal}\left(K_{n} / K\right)$.

Definition 6.1.1. (i) If V is a \mathbb{Z}_{p}-representation of G_{K}, define

$$
H_{\mathrm{Iw}}^{i}(K, V)={\underset{چ}{\mathrm{lim}}}_{\lim ^{i}} H^{i}\left(G_{K_{n}}, V\right)
$$

while the transition maps are the corestriction maps.
(ii) If V is a \mathbb{Q}_{p}-representation, choose T a stable \mathbb{Z}_{p}-lattice in V, then define

$$
H_{\mathrm{Iw}}^{i}(K, V)=\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} H_{\mathrm{Iw}}^{i}(K, T)
$$

6.1.2 Reinterpretation in terms of measures

Proposition 6.1.2. $H^{i}\left(G_{K}, \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V\right) \cong H_{\mathrm{Iw}}^{i}(K, V)$.
Proof. The case of \mathbb{Q}_{p} follows from the case of \mathbb{Z}_{p} by using $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}}$. Now assume that V is a \mathbb{Z}_{p}-representation of G_{K}. By definition,

$$
\Lambda=\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]=\lim _{\leftrightarrows} \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] /\left(\gamma_{n}-1\right),
$$

it induces the map θ :

The surjectivity is general abstract nonsense.
The injectivity of α implies the injectivity of θ; to prove that of α, it is enough to verify the Mittag-Leffler conditions of H^{i-1}, which are automatic, because of the Finiteness Theorem: $\Lambda /\left(p^{n}, \gamma_{n}-1\right) \otimes V$ is a finite module, so $H^{i-1}\left(G_{K}, \Lambda /\left(p^{n}, \gamma_{n}-1\right) \otimes V\right)$ is a finite group.

Remark. (i) Recall that $\mathcal{D}_{0}\left(\Gamma_{K}, V\right)$ is the set of p-adic measures from Γ_{K} to V :

$$
\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V \cong \mathcal{D}_{0}\left(\Gamma_{K}, V\right), \quad \gamma \otimes v \mapsto \delta_{\gamma} \otimes v
$$

where δ_{γ} is the Dirac measure at γ. Let $g \in G_{K}, \mu \in \mathcal{D}_{0}\left(\Gamma_{K}, V\right)$; the action of G_{K} on $\mathcal{D}_{0}\left(\Gamma_{K}, V\right)$ is as follow:

$$
\int_{\Gamma_{K}} \phi(x)(g \mu)=g\left(\int_{\Gamma_{K}} \phi(\bar{g} x) \mu\right) .
$$

Hence, for any $n \in \mathbb{N}$, the map $H^{i}\left(G_{K}, \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V\right) \rightarrow H^{i}\left(G_{K_{n}}, V\right)$ (translation of Shapiro's lemma) can be written in the following concrete way:

$$
\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto \mu\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \longmapsto\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto \int_{\Gamma_{K}} 1_{\Gamma_{K_{n}}} \cdot \mu\left(\sigma_{1}, \ldots, \sigma_{i}\right) \in V\right)_{n \in \mathbb{N}}
$$

(ii) Let $g \in G_{K}, \lambda, \mu \in \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right], x \in V$, then

$$
g(\lambda \mu \otimes v)=\bar{g} \lambda \mu \otimes g v=\lambda \bar{g} \mu \otimes g v=\lambda g(\mu \otimes \mu)
$$

So λ and g commutes, it implies that $H_{\mathrm{Iw}}^{i}(K, V)$ are $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$-modules.

6.1.3 Twist by a character (à la Soulé)

Let $\eta: \Gamma_{K} \rightarrow \mathbb{Q}_{p}^{*}$ be a continuous character. It induces a transform

$$
\mathcal{D}_{0}\left(\Gamma_{K}, V\right) \rightarrow \mathcal{D}_{0}\left(\Gamma_{K}, V\right), \quad \mu \mapsto \eta \cdot \mu .
$$

For $\lambda \in \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$, we have

$$
\eta \cdot(\lambda \mu)=(\eta \cdot \lambda)(\eta \cdot \mu)
$$

Indeed, it is enough to check it on Dirac measures. In this case

$$
\eta \cdot\left(\delta_{\lambda_{1}} \delta_{\lambda_{2}} \otimes v\right)=\eta\left(\lambda_{1} \lambda_{2}\right) \delta_{\lambda_{1}} \delta_{\lambda_{2}} \otimes v=\left(\eta \cdot \delta_{\lambda_{1}}\right)\left(\eta \cdot \delta_{\lambda_{2}}\right) \otimes v .
$$

Recall that $\mathbb{Z}_{p}(\eta)=\mathbb{Z}_{p} \cdot e_{\eta}$, where, if $g \in G_{K}$, then $g e_{\eta}=\eta(\bar{g}) e_{\eta}$. Define $V(\eta)=V \otimes \mathbb{Z}_{p}(\eta)$.

Exercise. The map $\mu \in \mathcal{D}_{0}\left(\Gamma_{K}, V\right) \mapsto(\eta \cdot \mu) \otimes e_{\eta} \in \mathcal{D}_{0}\left(\Gamma_{K}, V\right)$ is an isomorphism of $\mathbb{Z}_{p}\left[G_{K}\right]$-modules.

By the above exercise, we have a commutative diagram:

So i_{η} is an isomorphism of cohomology groups. It can be written in a concrete way
$i_{\eta}: \quad\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto \mu\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \longmapsto\left(\left(\sigma_{1}, \ldots, \sigma_{i}\right) \mapsto \int_{\Gamma_{K}} 1_{\Gamma_{K_{n}}} \eta \cdot \mu\left(\sigma_{1}, \ldots, \sigma_{i}\right) \otimes e_{\eta}\right)_{n \in \mathbb{N}}$.
It is an isomorphism of \mathbb{Z}_{p}-modules.
Warning: i_{η} is not an isomorphism of $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$-modules, because $i_{\eta}(\lambda x)=$ $(\eta \cdot \lambda) i_{\eta}(x)$: there is a twist.

6.2 Description of H_{Iw}^{i} in terms of $D(V)$

Lemma 6.2.1. Let $\tau_{n}=\frac{\gamma_{n}-1}{\gamma_{n-1}-1}=1+\gamma_{n-1}+, \ldots,+\gamma_{n-1}^{p-1} \in \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$, the diagram

is commutative and induces corestrictions on cohomology via

$$
H^{i}\left(C_{\psi, \gamma_{n}}\left(K_{n}, V\right)\right) \xrightarrow{\sim} H^{i}\left(G_{K_{n}}, V\right) .
$$

Proof. τ_{n} is a cohomological functor and induces $\operatorname{Tr}_{K_{n} / K_{n-1}}$ on H^{0}, so it induces corestrictions on H^{i}.

Theorem 6.2.2. If V is a \mathbb{Z}_{p} or \mathbb{Q}_{p} representation of G_{K}, then we have:
(i) $H_{\mathrm{Iw}}^{i}(K, V)=0$, if $i \neq 1,2$.
(ii) $H_{\mathrm{IW}}^{1}(K, V) \cong D(V)^{\psi=1}, H_{\mathrm{Iw}}^{2}(K, V) \cong \frac{D(V)}{\psi-1}$, and the isomorphisms are canonical.

Remark. (i) The isomorphism

$$
\operatorname{Exp}^{*}: H_{\mathrm{Iw}}^{1}(K, V) \rightarrow D(V)^{\psi=1}
$$

is the map that will produce p-adic L-functions. Let's describe $\left(\operatorname{Exp}^{*}\right)^{-1}$. Let $y \in D(V)^{\psi-1}$, then $(\varphi-1) y \in D(V)^{\psi=0}$. There exists unique $x_{n} \in D(V)^{\psi=0}$ satisfying that $\left(\gamma_{n}-1\right) x_{n}=y_{n}$, then we can find $b_{n} \in A \otimes V$ such that $(\varphi-1) b_{n}=x_{n}$. Then

$$
g \mapsto \frac{\log \chi\left(\gamma_{n}\right)}{p^{n}}\left(\frac{(g-1)}{\left(\gamma_{n}-1\right)} y-(g-1) b_{n}\right)
$$

gives a cocycle on $G_{K_{n}}$ with values in V, and $\frac{\log \chi\left(\gamma_{n}\right)}{p^{n}}$ does not depend on n. Denote by $\iota_{\psi, n}(y) \in H^{1}\left(G_{K_{n}}, V\right)$ the image of this cocycle, then

$$
\left(\operatorname{Exp}^{*}\right)^{-1}: y \longmapsto\left(\cdots, \iota_{\psi, n}(y), \cdots\right)_{n \in \mathbb{N}} \in H_{\mathrm{Iw}}^{1}(K, V)
$$

doesn't depend on the choice of γ_{n}.
(ii) We see that $\frac{D(V)}{\psi-1}$ is dual to $D\left(V^{\wedge}(1)\right)^{\psi=1}=V^{\wedge}(1)^{H_{K}}$, so $H_{\mathrm{Iw}}^{2}(K, V)=$ $\frac{D(V)}{\psi-1}=\left(V^{\wedge}(1)^{H_{K}}\right)^{\wedge}$.

Before proving the theorem, we introduce a lemma.
Lemma 6.2.3. If M is compact with continuous action of Γ_{K}, then

$$
M \simeq{\underset{n}{n}}_{\lim _{n}}\left(M / \gamma_{n}-1\right) .
$$

Proof. We have a natural map from M to $\lim _{n}\left(M / \gamma_{n}-1\right)$.
Injectivity: let V be an open neighborhood of 0 . For all $x \in M$, there exists $n_{x} \in \mathbb{N}$ and $U_{x} \ni x$, an open neighborhood of x such that $(\gamma-1) x^{\prime} \in V$ for $\gamma \in \Gamma_{K_{n_{x}}}$ and $x^{\prime} \in U_{x}$. By compactness, $M=\bigcup_{i \in I} U_{x_{i}}$, where I is a finite set. Let $n=\max _{i \in I} n_{x_{i}}$. It implies that $(\gamma-1) M \subset V$, if $\gamma \in \Gamma_{n}$, then $\bigcap_{n \in \mathbb{N}}\left(\gamma_{n}-1\right) M=0$, this shows the injectivity.

Surjectivity: Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in \lim _{{ }_{n}}\left(M / \gamma_{n}-1\right)$. From the proof of injectivity, we know that x_{n} is a Cauchy-sequence. Because M is compact, there exists $x=\lim x_{n}$. We have $x_{n+k}-x_{n}=\left(\gamma_{n}-1\right) y_{k}$ for all $k \geq 0$, as M is compact, there exists a subsequence of y_{k} converging to y, passing to the limit, we get $x-x_{n}=\left(\gamma_{n}-1\right) y$. This shows the surjectivity.

Proof of Theorem 6.2.2. $H_{\mathrm{Iw}}^{i}(K, V)$ is trivial if $i \geq 3$ and the case of \mathbb{Q}_{p} follows from \mathbb{Z}_{p} by $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}}$.

For $i=0$,

$$
H_{\mathrm{IW}}^{0}(K, V)={\underset{\overleftarrow{T r}}{ }}_{\lim _{\mathrm{Tr}}} V^{G_{K_{n}}} .
$$

$V^{G_{K_{n}}}$ is increasing and $\subset V$, as V is a finite dimensional \mathbb{Z}_{p}-module, the sequence is stationary for $n \geq n_{0}$. Then $\operatorname{Tr}_{K_{n+1} / K_{n}}$ is just multiplication by p for $n \geq n_{0}$, but V does not contain p-divisible elements. This shows that $\lim _{\mathrm{Tr}} V^{G_{K_{n}}}=0$.

For $i=2: H^{2}\left(G_{K_{n}}, V\right)=\frac{D(V)}{\left(\psi-1, \gamma_{n}-1\right)}$. The corestriction map is induced by Id on $D(V)$, thus

$$
H_{\mathrm{Iw}}^{2}(K, V)=\lim _{\rightleftarrows} \frac{D(V)}{\psi-1} /\left(\gamma_{n}-1\right)=\frac{D(V)}{\psi-1}
$$

by Lemma 6.2.3, as $\frac{D(V)}{\psi-1}$ is compact (and even finitely generated over \mathbb{Z}_{p}).
For $i=1$: we have commutative diagrams:

where $p_{1}(\bar{y})=\bar{y}, p_{2}((\bar{x}, \bar{y}))=\bar{x}$, for any $x, y \in D(V)$. Using the functor ${\underset{\mathrm{lim}}{\longleftrightarrow}}$, we get:

$$
0 \longrightarrow \lim _{\rightleftarrows} \frac{D(V)^{\psi=1}}{\gamma_{n}-1} \longrightarrow \lim _{\rightleftarrows} H^{1}\left(G_{K_{n}}, V\right) \longrightarrow \lim _{\rightleftarrows}\left(\frac{D(V)}{\psi-1}\right)^{\gamma_{n}=1}
$$

Because $D(V)^{\psi=1}$ is compact, by Lemma 6.2.3 we have $D(V)^{\psi=1} \simeq \lim _{\longleftarrow} \frac{D(V)^{\psi=1}}{\gamma_{n}-1}$. By definition, $H_{\mathrm{Iw}}^{1}(K, V)=\lim ^{1} H^{1}\left(G_{K_{n}}, V\right)$. The same argument for showing $H_{\mathrm{Iw}}^{0}(K, V)=0$ shows that $\lim _{\rightleftarrows}\left(\frac{D(V)}{\psi-1}\right)^{\gamma_{n}=1}=0$. So we get

$$
D(V)^{\psi=1} \xrightarrow{\sim} H_{\mathrm{Iw}}^{1}(K, V) .
$$

6.3 Structure of $H_{\mathrm{Iw}}^{1}(K, V)$

Recall that we proved that if D is an étale (φ, Γ)-module of $\operatorname{dim} d$ over $E_{\mathbb{Q}_{p}}$, then $\mathcal{C}=(\varphi-1) D^{\psi=1}$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right]$-module of rank d. The same proof shows that if $n \geq 1, i \in \mathbb{Z}_{p}^{*}, \mathcal{C} \cap \varepsilon \varphi^{n}(D)$ is free of rank d over $\mathbb{F}_{p}\left[\left[\Gamma_{n}\right]\right]$.

Corollary 6.3.1. If D is an étale (φ, Γ)-module of dimension d over E_{K}, then \mathcal{C} is a free $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$-module of rank $d \cdot\left[K: \mathbb{Q}_{p}\right]$.

Proof. Exercise. Hint: D is of dimension $d \cdot\left[H_{\mathbb{Q}_{p}}: H_{K}\right]$ over $E_{\mathbb{Q}_{p}}$ and $[K:$ $\left.\mathbb{Q}_{p}\right]=\left[G_{\mathbb{Q}_{p}}: G_{K}\right]=\left[\Gamma_{\mathbb{Q}_{p}}: \Gamma_{K}\right]\left[H_{\mathbb{Q}_{p}}: H_{K}\right]$.

Proposition 6.3.2. If V is a free \mathbb{Z}_{p} or \mathbb{Q}_{p} representation of rank d of G_{K}, then
(i) $D(V)^{\varphi=1}$ is the torsion sub- $\mathbb{Z}_{p}\left[\left[\Gamma_{K} \cap \Gamma_{1}\right]\right]$-module of $D(V)^{\psi=1}$.
(ii) We have exact sequences:

$$
0 \longrightarrow D(V)^{\varphi=1} \longrightarrow D(V)^{\psi=1} \xrightarrow{\varphi-1} \mathcal{C}(V) \longrightarrow 0
$$

and $\mathcal{C}(V)$ is free of rank d $\cdot\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$ (or over $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$).
Corollary 6.3.3. If V is a free \mathbb{Z}_{p} representation of rank d of G_{K}, then the torsion $\mathbb{Z}_{p}\left[\left[\Gamma_{K} \cap \Gamma_{1}\right]\right]$-module of $H_{\mathrm{Iw}}^{1}(K, V)$ is $D(V)^{\varphi=1}=V^{H_{K}}$, and $H_{\mathrm{Iw}}^{1}(K, V) / V^{H_{K}}$ is free of rank $d \cdot\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right]$.

Proof of Proposition 6.3.2. $D(V)^{\varphi=1}=V^{H_{K}}$ is torsion because it is finitely generated over \mathbb{Z}_{p}, so (ii) implies (i). To prove (ii), we have to prove $\mathcal{C}(V) / p \mathcal{C}(V)$ is free of rank $d \cdot\left[K: \mathbb{Q}_{p}\right]$ over $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$.

Consider the following commutative diagram with exact rows

Using the exact sequence

$$
0 \rightarrow p V \rightarrow V \rightarrow V / p \rightarrow 0
$$

and apply the snake lemma to the vertical rows of the diagram above, we have the cokernel complex is

$$
p-\text { torsion of } \frac{D(V)}{(\varphi-1)} \rightarrow p-\text { torsion of } \frac{D(V)}{(\psi-1)} \rightarrow \frac{\mathcal{C}(V / p)}{\mathcal{C}(V) / p \mathcal{C}(V)} \rightarrow 0
$$

Note that the p-torsion of $\frac{D(V)}{(\psi-1)}$ is a finite dimensional \mathbb{F}_{p}-vector space, thus $\frac{\mathcal{C}(V / p)}{\mathcal{C}(V) / p \mathcal{C}(V)}$ is also a finite dimensional \mathbb{F}_{p}-vector space, hence $\mathcal{C}(V) / p \mathcal{C}(V)$ is a $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$-lattice of $\mathcal{C}(V / p)$, but $\mathcal{C}(V / p)$ is a free $\mathbb{F}_{p}\left[\left[\Gamma_{K}\right]\right]$-module of rank $d \cdot\left[K: \mathbb{Q}_{p}\right]$ by Corollary 6.3.1.

Remark. (i) The sequence

$$
0 \rightarrow D(V)^{\varphi=1} \rightarrow D(V)^{\psi=1} \rightarrow \mathcal{C}(V) \rightarrow 0
$$

is just the inflation-restriction exact sequence

$$
0 \rightarrow H^{1}\left(\Gamma_{K}, \Lambda \otimes V^{H_{K}}\right) \rightarrow H^{1}\left(G_{K}, \Lambda \otimes V\right) \rightarrow H^{1}\left(H_{K}, \Lambda \otimes V\right)^{\Gamma_{K}} \rightarrow 0
$$

(ii) Let $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ be an exact sequence, then the exact sequence

$$
0 \rightarrow D\left(V_{1}\right) \rightarrow D(V) \rightarrow D\left(V_{2}\right) \rightarrow 0
$$

and the snake lemma induces

$$
0 \rightarrow D\left(V_{1}\right)^{\psi=1} \rightarrow D(V)^{\psi=1} \rightarrow D\left(V_{2}\right)^{\psi=1} \rightarrow \frac{D\left(V_{1}\right)}{\psi-1} \rightarrow \frac{D(V)}{\psi-1} \rightarrow \frac{D\left(V_{2}\right)}{\psi-1} \rightarrow 0
$$

By Theorem 6.2.2, this is just

$$
\begin{aligned}
0 \rightarrow H_{\mathrm{Iw}}^{1}\left(K, V_{1}\right) & \rightarrow H_{\mathrm{Iw}}^{1}(K, V) \rightarrow H_{\mathrm{Iw}}^{1}\left(K, V_{2}\right) \\
& \rightarrow H_{\mathrm{Iw}}^{2}\left(K, V_{1}\right) \rightarrow H_{\mathrm{Iw}}^{2}(K, V) \rightarrow H_{\mathrm{Iw}}^{2}\left(K, V_{2}\right) \rightarrow 0
\end{aligned}
$$

It can also be obtained from the longer exact sequence in continuous cohomology from the exact sequence

$$
0 \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V_{1} \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V \rightarrow \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V_{2} \rightarrow 0
$$

Chapter 7

$\mathbb{Z}_{p}(1)$ and Kubota-Leopoldt zeta function

7.1 The module $D\left(\mathbb{Z}_{p}(1)\right)^{\psi=1}$

The module $\mathbb{Z}_{p}(1)$ is just \mathbb{Z}_{p} with the action of $G_{\mathbb{Q}_{p}}$ by $g \in G_{\mathbb{Q}_{p}}, x \in \mathbb{Z}_{p}(1)$, $g(x)=\chi(g) x$. We shall study the exponential map

$$
\operatorname{Exp}^{*}: H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}(1)\right) \rightarrow D\left(\mathbb{Z}_{p}(1)\right)^{\psi=1}
$$

Note that $D\left(\mathbb{Z}_{p}(1)\right)=\left(A \otimes \mathbb{Z}_{p}(1)\right)^{H_{\mathbb{Q}_{p}}}=A_{\mathbb{Q}_{p}}(1)$, with usual actions of φ and ψ, and for $\gamma \in \Gamma, \gamma(f(\pi))=\chi(\gamma) f\left((1+\pi)^{\chi(\gamma)}-1\right)$, for all $f(\pi) \in A_{\mathbb{Q}_{p}}(1)$.

Proposition 7.1.1. (i) $A_{\mathbb{Q}_{p}}^{\psi=1}=\mathbb{Z}_{p} \cdot \frac{1}{\pi} \oplus\left(A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=1}$.
(ii) We have an exact sequence:

$$
0 \longrightarrow \mathbb{Z}_{p} \longrightarrow\left(A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=1} \xrightarrow{\varphi-1}\left(\pi A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0} \longrightarrow 0 .
$$

Remark. Under the map $\mu \mapsto \int_{\mathbb{Z}_{p}}[\varepsilon]^{x} \mu,\left(\pi A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0}$ is the image of measures with support in $\mathbb{Z}_{p}^{*}(\psi=0)$ and $\int_{\mathbb{Z}_{p}^{*}} \mu=0$

$$
\left(\pi A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0}=\mathcal{C}\left(\mathbb{Z}_{p}\right)=(\gamma-1) \mathbb{Z}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right] .
$$

$\mathbb{Z}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right]$ can be viewed as measures on $\Gamma_{\mathbb{Q}_{p}} \cong \mathbb{Z}_{p}^{*}$, and $\mu \in(\gamma-1) \mathbb{Z}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right]$ means $\int_{\mathbb{Z}_{p}} \mu=0$. It implies that $\mathcal{C}\left(\mathbb{Z}_{p}\right)$ is free of rank 1 over $\mathbb{Z}_{p}\left[\left[\Gamma_{\mathbb{Q}_{p}}\right]\right]$ which is a special case of what we have proved.

118CHAPTER 7. $\mathbb{Z}_{P}(1)$ AND KUBOTA-LEOPOLDT ZETA FUNCTION

Proof. (i) We have proved

$$
\begin{aligned}
\psi\left(A_{\mathbb{Q}_{p}}^{+}\right) \subset A_{\mathbb{Q}_{p}}^{+}, & \psi\left(\frac{1}{\pi}\right)=\frac{1}{\pi}, \\
v_{E}(\psi(x)) \geq\left[\frac{v_{E} x}{p}\right], & \text { if } x \in E_{\mathbb{Q}_{p}} .
\end{aligned}
$$

These facts imply that $\psi-1$ is bijective on $E_{\mathbb{Q}_{p}} / \bar{\pi}^{-1} E_{\mathbb{Q}_{p}}^{+}$and hence it is also bijective on $A_{\mathbb{Q}_{p}} / \pi^{-1} A_{\mathbb{Q}_{p}}^{+}$. So

$$
\psi(x)=x \Rightarrow x \in \pi^{-1} A_{\mathbb{Q}_{p}}^{+} .
$$

(ii) We know that $(\varphi-1) A_{\mathbb{Q}_{p}}^{+} \subset \pi A_{\mathbb{Q}_{p}}^{+}$For $x \in\left(\pi A_{\mathbb{Q}_{p}}^{+}\right)^{\psi=0}$, then

$$
\varphi^{n}(x) \in \varphi^{n}(\pi) A_{\mathbb{Q}_{p}}^{+} \rightarrow 0 \text { if } n \rightarrow \infty
$$

Hence $y=\sum_{n=0}^{+\infty} \varphi^{n}(x)$ converges, and one check that $\psi(y)=y,(\varphi-1) y=-x$. This implies the surjectivity of $\varphi-1$.

7.2 Kummer theory

Recall that

$$
\varepsilon=\left(1, \varepsilon^{(1)}, \varepsilon^{(2)}, \ldots, \varepsilon^{(n)}, \ldots\right) \in E_{\mathbb{Q}_{p}}^{+} \subset \tilde{E}^{+}=R, \varepsilon^{(1)} \neq 1
$$

Let $\pi_{n}=\varepsilon^{(n)}-1, F_{n}=\mathbb{Q}_{p}\left(\pi_{n}\right)$ for $n \geq 1$. Then π_{n} is a uniforming parameter of F_{n}, and

$$
\mathrm{N}_{F_{n+1} / F_{n}}\left(\pi_{n+1}\right)=\pi_{n}, \quad \mathcal{O}_{F_{n+1}}=\mathcal{O}_{F_{n}}\left[\pi_{n+1}\right] /\left(\left(1+\pi_{n+1}\right)^{p}=1+\pi_{n}\right) .
$$

For an element $a \in F_{n}^{*}$, choose $x=\left(a, x^{(1)}, \ldots\right) \in \tilde{E}$. This x is unique up to ε^{u} with $u \in \mathbb{Z}_{p}$. So if $g \in G_{F_{n}}$, then

$$
\frac{g(x)}{x}=\varepsilon^{c(g)}, \quad c(g) \in \mathbb{Z}_{p}
$$

gives a 1-cocycle c on $G_{F_{n}}$ with values in $\mathbb{Z}_{p}(1)$. This defines the Kummer map:

$$
\begin{aligned}
\kappa: F_{n}^{*} & \longrightarrow H^{1}\left(G_{F_{n}}, \mathbb{Z}_{p}(1)\right) \\
a & \longmapsto \kappa(a) .
\end{aligned}
$$

By Kummer theory, we have $H^{1}\left(G_{F_{n}}, \mathbb{Z}_{p}(1)\right)=\mathbb{Z}_{p} \cdot \kappa\left(\pi_{n}\right) \oplus \kappa\left(\mathcal{O}_{F_{n}}^{*}\right)$. The diagram

is commutative, we have a map:

$$
\kappa: \varliminf_{\rightleftarrows} F_{n}^{*} \rightarrow H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}(1)\right)
$$

and

$$
H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}(1)\right)=\mathbb{Z}_{p} \cdot \kappa\left(\pi_{n}\right) \oplus \kappa\left(\lim _{\leftrightarrows} \mathcal{O}_{F_{n}}^{*}\right) .
$$

7.3 Coleman's power series

Theorem 7.3.1 (Coleman's power series). Let $u=\left(u_{n}\right)_{n \geq 1} \in \lim _{\rightleftarrows}\left(\mathcal{O}_{F_{n}}\right)-$ $\{0\}$ (pour les applications $\mathrm{N}_{F_{n+1} / F_{n}}$), then there exists a unique power series $f_{u} \in \mathbb{Z}_{p}[[T]]$ such that $f_{u}\left(\pi_{n}\right)=u_{n}$ for all $n \geq 1$.

Lemma 7.3.2. (i) If $x \in \mathcal{O}_{F_{n}}, \gamma \in \operatorname{Gal}\left(F_{n+1} / F_{n}\right)$, then $\gamma(x)-x \in \pi_{1} \mathcal{O}_{F_{n+1}}$.
(ii) $\mathrm{N}_{F_{n+1} / F_{n}} x-x^{p} \in \pi_{1} \mathcal{O}_{F_{n+1}}$.

Proof. It is easy to see that (i) implies (ii) since $\left[F_{n+1}: F_{n}\right]=p$. Write $\chi(\gamma)=1+p^{n} u$ for $u \in \mathbb{Z}_{p}$. Let $x=\sum_{i=0}^{p-1} x_{i}\left(1+\pi_{n+1}\right)^{i}$, where $x_{i} \in \mathcal{O}_{F_{n}}$. Then

$$
\gamma(x)-x=\sum_{i=0}^{p-1} x_{i}\left(1+\pi_{n+1}\right)^{i}\left(\left(1+\pi_{1}\right)^{i u}-1\right) \in \pi_{1} \mathcal{O}_{F_{n+1}} .
$$

Corollary 7.3.3. $\bar{u}=\left(\bar{u}_{1}^{p}, \bar{u}_{1}, \ldots, \bar{u}_{n}, \ldots\right) \in E_{\mathbb{Q}_{p}}^{+}$, where \bar{u}_{n} is the image of $u_{n} \bmod \pi_{1}$.

Definition 7.3.4. Let $\mathrm{N}: \mathcal{O}_{F_{1}}[[T]] \rightarrow \mathcal{O}_{F_{1}}[[T]]$ such that

$$
\mathrm{N}(f)\left((1+T)^{p}-1\right)=\prod_{z^{p}=1} f((1+T) z-1)
$$

Lemma 7.3.5. (i) $\mathrm{N}(f)\left(\pi_{n}\right)=\mathrm{N}_{F_{n+1} / F_{n}}\left(f\left(\pi_{n+1}\right)\right)$,
(ii) $\mathrm{N}\left(\mathbb{Z}_{p}[[T]]\right) \subset \mathbb{Z}_{p}[[T]]$,
(iii) $\mathrm{N}(f)-f \in \pi_{1} \mathcal{O}_{F_{1}}[[T]]$,
(iv) If $f \in \mathcal{O}_{F_{1}}[[T]]^{*}, k \geq 1$, if $(f-g) \in \pi_{1}^{k} \mathcal{O}_{F_{1}}[[T]]$, then

$$
\mathrm{N}(f)-\mathrm{N}(g) \in \pi_{1}^{k+1} \mathcal{O}_{F_{1}}[[T]] .
$$

Proof. (i) The conjugates of π_{n+1} under $\operatorname{Gal}\left(F_{n+1} / F_{n}\right)$ are those $\left(1+\pi_{n}\right) z-1$ for $z^{p}=1$, this implies (i).
(ii) Obvious, is just Galois theory.
(iii) Look $\bmod \pi_{1}$, because $z=1 \bmod \pi_{1}$, we have $\mathrm{N}(f)\left(T^{p}\right)=f(T)^{p}$.
(iv) We have $\mathrm{N}\left(\frac{f}{g}\right)=\frac{\mathrm{N}(f)}{\mathrm{N}(g)}$, so we can reduce to $f=1$ and $g=1+\pi_{1}^{k} h$. Then

$$
\mathrm{N}(g)\left((1+T)^{p}-1\right)=1+\pi_{1}^{k} \sum_{z^{p}=1} h((1+T) z-1) \bmod \pi_{1}^{k+1}
$$

and $\sum_{z^{p}=1} h((1+T) z-1)$ is divisible by p.
Corollary 7.3.6. (i) If $\bar{u} \in E_{\mathbb{Q}_{p}}^{+}$and $v_{E}(\bar{u})=0$, then there exists a unique $g_{u} \in \mathbb{Z}_{p}[[T]]$ such that $\mathrm{N}\left(g_{u}\right)=g_{u}$ and $g_{u}(\bar{\pi})=\bar{u}$.
(ii) If $x \in 1+\pi_{1}^{k} \mathcal{O}_{F_{n+1}}$, then $\mathrm{N}_{F_{n+1} / F_{n}}(x) \in 1+\pi_{1}^{k+1} \mathcal{O}_{F_{n}}$.

Proof. (i) Take any $g \in \mathbb{Z}_{p}[[T]]$ such that $g(\bar{\pi})=\bar{u}$, then $g \in \mathbb{Z}_{p}[[T]]^{*}$, by (iv) of Lemma 7.3.5, $\mathrm{N}^{k}(g)$ converges in $g+\pi_{1} \mathbb{Z}_{p}[[T]]$ and g_{u} is the limit.
(ii) There exists $f \in 1+\pi_{1}^{k} \mathcal{O}_{F_{1}}[T]$ such that $x=f\left(\pi_{n+1}\right)$. Then use (i) and (iv) of Lemma 7.3.5.

Proof of Theorem 7.3.1. The uniqueness follows from the fact that $0 \neq f \in$ $\mathbb{Z}_{p}[[T]]$ has only many finitely zeros in $\mathfrak{m}_{\mathbb{C}_{p}}$ (Newton polygons).

Existence: let $u=\left(u_{n}\right)$, write $u_{n}=\pi_{n}^{k} \alpha u_{n}^{\prime}$, where $k \in \mathbb{Z}$ and $\alpha \in \mu_{p-1}$ do not depend on n, and $u_{n}^{\prime} \in 1+\mathfrak{m}_{F_{n}}$. Then $\mathrm{N}_{F_{n+1} / F_{n}} u_{n+1}^{\prime}=u_{n}^{\prime}$. If for all $n, f_{u^{\prime}}\left(\pi_{n}\right)=u_{n}^{\prime}$, let $f_{u}=T^{k} \alpha f_{u^{\prime}}$, then $f_{u}\left(\pi_{n}\right)=u_{n}$. Thus we are reduced to the case that $u_{n} \in 1+\mathfrak{m}_{F_{n}}$ for all n.

By (i) of Corollary 7.3.6, we can find $g_{u} \in \mathbb{Z}_{p}[[T]]$ for \bar{u}. We have to check that $g_{u}\left(\pi_{n}\right)=u_{n}$ for all $n \neq 1$. Write $v_{n}=g_{u}\left(\pi_{n}\right)$. Then $\mathrm{N}\left(g_{u}\right)=g_{u}$, by (i) of Lemma 7.3.5, implies that $\mathrm{N}_{F_{n+1} / F_{n}}\left(v_{n+1}\right)=v_{n}$; and $g_{u}(\bar{\pi})=\bar{u}$ implies that $v_{n}=u_{n} \bmod \pi_{1}$ for all n. Let $w_{n}=\frac{v_{n}}{u_{n}}$, then we have

$$
\mathrm{N}_{F_{n+1} / F_{n}}\left(w_{n+1}\right)=w_{n} \text { and } w_{n} \in 1+\pi_{1} \mathcal{O}_{F_{n}}
$$

By (ii) of Corollary 7.3.6, we have

$$
w_{n}=\mathrm{N}_{F_{n+k} / F_{n}}\left(w_{n+k}\right) \in 1+\pi_{1}^{k} \mathcal{O}_{F_{n}} \text { for all } k,
$$

then $w_{n}=1$. This completes the proof.

Corollary 7.3.7.

$$
\mathrm{N}\left(f_{u}\right)=f_{u}, \quad \psi\left(\frac{\partial f_{u}}{f_{u}}\right)=\frac{\partial f_{u}}{f_{u}}
$$

where $\partial=(1+T) \frac{d}{d T}$.
Proof. By (i) of Lemma 7.3.5, we have $\mathrm{N}\left(f_{u}\right)\left(\pi_{n}\right)=\mathrm{N}_{F_{n+1} / F_{n}}\left(f_{u}\left(\pi_{n+1}\right)\right)=$ $f_{u}\left(\pi_{n}\right)$, for all n, thus $N\left(f_{u}\right)=f_{u}$.

Using the formula $\psi(\partial \log f)=\partial(\log \mathrm{N}(f))$, we immediately get the result for ψ. As for the proof of this last formula, we know that

$$
\begin{aligned}
& \varphi(\mathrm{N}(f)(T))=\mathrm{N}(f)\left((1+T)^{p}-1\right)=\prod_{z^{p}=1} f((1+T) z-1) \\
& \psi(f)\left((1+T)^{p}-1\right)=\frac{1}{p} \sum_{z^{p}=1} f((1+T) z-1)
\end{aligned}
$$

Then we have two ways to write $\partial(\log \varphi(\mathrm{N}(f)))$

$$
\begin{aligned}
\partial(\log \varphi(\mathrm{N}(f))) & =p \varphi(\partial \log \mathrm{~N}(f))(\partial \circ \varphi=p \varphi \circ \partial) \\
& =p \varphi\left(\frac{\partial \mathrm{~N}(f)}{\mathrm{N}(f)}\right)=p\left(\frac{\partial \mathrm{~N}(f)}{\mathrm{N}(f)}\right)\left((1+T)^{p}-1\right) \\
& =p(\partial \log \mathrm{~N}(f))\left((1+T)^{p}-1\right), \\
\partial(\log \varphi(\mathrm{N}(f)))= & \partial\left(\log \prod_{z^{p}=1} f((1+T) z-1)\right) \\
= & \sum_{z^{p}=1} \frac{(1+T) z f^{\prime}((1+T) z-1)}{f((1+T) z-1)} \\
= & \sum_{z^{p}=1} \frac{\partial f}{f}((1+T) z-1)=p \psi\left(\frac{\partial f}{f}\right)\left((1+T)^{p}-1\right) \\
= & p(\psi(\partial \log f))\left((1+T)^{p}-1\right),
\end{aligned}
$$

hence the formula.

7.4 An explicit reciprocity law

Theorem 7.4.1. The diagram

is commutative.
Remark. (i) The proof is typical of invariants defined via Fontaine's rings: easy to define and hard to compute.
(ii) For another example, let X / K be a smooth and projective variety, then

$$
D_{d R}\left(H_{e t t}^{i}\left(X \times \bar{K}, \mathbb{Q}_{p}\right)\right)=H_{d R}^{i}(X / K)
$$

The proof is very hard and is due to Faltings and Tsuji.
(iii) Let $a \in \mathbb{Z}$ such that $a \neq 1,(a, p)=1$. The element

$$
u_{n}=\frac{e^{-a \frac{2 \pi i}{p^{n}}}-1}{e^{-\frac{2 p^{n}}{p^{n}}}-1} \in \mathbb{Q}\left(\mu_{p^{n}}\right)
$$

is a cyclotomic unit in $\mathcal{O}_{\mathbb{Q}\left(\mu_{p^{n}}\right)}$ (whose units are called global units). Then

$$
u_{n} \in F_{n}=\mathbb{Q}_{p}\left(\mu_{p^{n}}\right), \quad u_{n}=\frac{\gamma_{-a}\left(\pi_{n}\right)}{\gamma_{-1}\left(\pi_{n}\right)},
$$

where $\gamma_{b} \in \Gamma_{\mathbb{Q}_{p}}$ such that $\chi\left(\gamma_{b}\right)=b$. From $N_{F_{n+1} / F_{n}}\left(\pi_{n+1}\right)=\pi_{n}$, one gets $\mathrm{N}_{F_{n+1} / F_{n}}\left(u_{n+1}\right)=u_{n}(\gamma$ commutes with norm $)$, thus

$$
u=\left(u_{n}\right) \in \lim _{\rightleftarrows} \mathcal{O}_{F_{n}} .
$$

Obviously the Coleman power series

$$
f_{u}=\frac{(1+T)^{-a}-1}{(1+T)^{-1}-1}, \quad \frac{\partial f_{u}}{f_{u}}=\frac{a}{(1+T)^{a}-1}-\frac{1}{T} .
$$

So $\frac{\partial f_{u}}{f_{u}}$ is nothing but the Amice transform of μ_{a} that was used to construct p-adic zeta function. S o Exp* produces Kubota-Leopoldt zeta function from the system of cyclotomic units.
(iv) The example in (iii) is part of a big conjectural picture. For V a fixed representation of $G_{\mathbb{Q}}$, then conjecturally

$$
\begin{aligned}
& \text { \{compatible system of global elements of } V\} \longrightarrow H_{\mathrm{Iw}}^{1}(\mathbb{Q}, V) \\
& \longrightarrow H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, V\right) \xrightarrow{\text { Exp }^{*}} D(V)^{\psi=1} \xrightarrow[\text { transform }]{\text { Amice }} p \text {-adic } L \text {-functions. }
\end{aligned}
$$

At present there are very few examples representation of $G_{\mathbb{Q}}$ for which this picture is known to work. The Amice transform works well for $\mathbb{Z}_{p}(1)$, because ψ improves denominators in π, and $A_{\mathbb{Q}_{p}}^{\psi=1} \subset \frac{1}{\pi} A_{\mathbb{Q}_{p}}^{+}$can be viewed as measures. In general, to use the properties of ψ, we will have to introduce overconvergent (φ, Γ)-modules.

7.5 Proof of the explicit reciprocity law

7.5.1 Strategy of proof of Theorem 7.4.1

Let $u \in \lim \mathcal{O}_{F_{n}}$, and $g \mapsto C_{n}(g)$ be the cocycle on $G_{F_{n}}$ by Kummer theory, i.e the image of u under the composition of

$$
\underset{\rightleftarrows}{\lim }\left(\mathcal{O}_{F_{n}}-\{0\}\right) \xrightarrow{\kappa} H_{\mathrm{IW}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}(1)\right) \longrightarrow H^{1}\left(G_{F_{n}}, \mathbb{Z}_{p}(1)\right) .
$$

Let $y \in D\left(\mathbb{Z}_{p}(1)\right)^{\psi=1}=A_{\mathbb{Q}_{p}}^{\psi=1}(1)$, let $g \mapsto C_{n}^{\prime}(g)$ be the image of y under the composition of

$$
D\left(\mathbb{Z}_{p}(1)\right)^{\psi=1}=A_{\mathbb{Q}_{p}}^{\psi=1}(1) \xrightarrow{\left(\operatorname{Exp}^{*}\right)^{-1}} H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}(1)\right) \longrightarrow H^{1}\left(G_{F_{n}}, \mathbb{Z}_{p}(1)\right)
$$

We need to prove that $C_{n}=C_{n}^{\prime}$ for all n implies $y=\frac{\partial f_{u}}{f_{u}}(\pi)$.
For C_{n}^{\prime}, we have

$$
C_{n}^{\prime}(g)=\frac{\log \chi\left(\gamma_{n}\right)}{p^{n}}\left(\frac{\chi(g)-1}{\chi\left(\gamma_{n}\right)-1} y-(\chi(g) g-1) b_{n}\right),
$$

where $b_{n} \in A$ is a solution of $(\varphi-1) b_{n}=\left(\chi\left(\gamma_{n}\right) \gamma_{n}-1\right)^{-1}(\varphi-1) y$, we know that $(\varphi-1) y \in A_{\mathbb{Q}_{p}}^{\psi=0}$. The exact value of b_{n} is not important.

For C_{n}, choose $x_{n}=\left(x_{n}^{(0)}, \ldots, x_{n}^{(k)}, \ldots\right) \in \tilde{E}^{+}$such that $x_{n}^{(0)}=u_{n}$. Let $\tilde{u}_{n}=\left[x_{n}\right]$, then

$$
\frac{g\left(\tilde{u}_{n}\right)}{\tilde{u}_{n}}=[\varepsilon]^{C_{n}(g)} .
$$

Proposition 7.5.1. Assume $n \geq 1$.
(i) There exists $k \in \mathbb{Z}$, $b_{n}^{\prime} \in \mathcal{O}_{\mathbb{C}_{p}} / p^{n}$ such that

$$
p^{2} C_{n}^{\prime}(g)=p^{2} \frac{\log \chi\left(\gamma_{n}\right)}{p^{n}} \cdot \frac{g-1}{\gamma_{n}-1} y\left(\pi_{n+k}\right)+(g-1) b_{n}^{\prime}
$$

in $\mathcal{O}_{\mathbb{C}_{p}} / p^{n}$.
(ii) There exists $k \in \mathbb{Z}, b_{n}^{\prime \prime} \in \mathcal{O}_{\mathbb{C}_{p}} / p^{n}$ such that

$$
p^{2} C_{n}(g)=p^{2} \frac{\log \chi(g)}{p^{n}} \frac{\partial f_{u}}{f_{u}} y\left(\pi_{n}\right)+(g-1) b_{n}^{\prime \prime}
$$

in $\mathcal{O}_{\mathbb{C}_{p}} / p^{n}$.
Proposition 7.5.2. There exists a constant $c \in \mathbb{N}$, such that for all n and for all k, if $x \in \mathcal{O}_{F_{n+k}}, b \in \mathcal{O}_{\mathbb{C}_{p}}$ satisfy

$$
v_{p}\left(\frac{g-1}{\gamma_{n}-1} x+(g-1) b\right) \geq n, \forall g \in G_{F_{n}}
$$

then

$$
p^{-k} \operatorname{Tr}_{F_{n+k} / F_{n}} x \in p^{n-c} \mathcal{O}_{F_{n}}
$$

We shall prove Proposition 7.5.1 in the next n°, and Proposition 7.5.2 in the third n°. We first explain how the above two propositions imply the theorem:

If $h(\pi)=\psi(h(\pi))$, then $h\left(\pi_{n}\right)=p^{-1} \operatorname{Tr}_{F_{n+1} / F_{n}}\left(h\left(\pi_{n+1}\right)\right)$. By hypothesis, $\psi(y)=y$, we get

$$
p^{-k} \operatorname{Tr}_{F_{n+k} / F_{n}}\left(y\left(\pi_{n+k}\right)\right)=y\left(\pi_{n}\right), \forall n, \forall k \quad(*)
$$

Let

$$
x=p^{2} \frac{\log \chi\left(\gamma_{n}\right)}{p^{n}}\left(y\left(\pi_{n+k}\right)-\frac{\partial f_{u}}{f_{u}}\left(\pi_{n}\right)\right), \quad b=b_{n}^{\prime}-b_{n}^{\prime \prime} .
$$

By Proposition 7.5.1, and the hypothesis $C_{n}(g)=C_{n}^{\prime}(g)$, we get

$$
\frac{g-1}{\gamma_{n}-1} x+(g-1) b=p^{2}\left(C_{n}^{\prime}(g)-C_{n}(g)\right)=0
$$

The first equality is because for every $x \in F_{n}, \frac{g-1}{\gamma_{n}-1} x=\frac{\log \chi(g)}{\log \chi\left(\gamma_{n}\right)} x$. Using Proposition 7.5.2, we get

$$
p^{2} \frac{\log \left(\chi\left(\gamma_{n}\right)\right)}{p^{n}}\left(y\left(\pi_{n}\right)-\frac{\partial f_{u}}{f_{u}}\left(\pi_{n}\right)\right) \in p^{n-c} \mathcal{O}_{F_{n}}
$$

then for every n,

$$
y\left(\pi_{n}\right)-\frac{\partial f_{u}}{f_{u}}\left(\pi_{n}\right) \in p^{n-c-2} \mathcal{O}_{F_{n}} .
$$

Let $h=y-\frac{\partial f_{u}}{f_{u}}$, then $\psi(h)=h$ and $h\left(\pi_{n}\right) \in p^{n-c-2} \mathcal{O}_{F_{n}}$. Using the fact $p^{-k} \operatorname{Tr}_{F_{n+k} / F_{n}} \mathcal{O}_{F_{n+k}} \subset \mathcal{O}_{F_{n}}$ and the formula $\left(^{*}\right)$, then for every $i \in \mathbb{N}, n \geq i$,

$$
h\left(\pi_{i}\right)=p^{-(n-i)} \operatorname{Tr}_{F_{n} / F_{i}}\left(h\left(\pi_{n}\right)\right) \in p^{n-c-2} \mathcal{O}_{F_{i}}
$$

thus $h\left(\pi_{i}\right)=0$ for every $i \in \mathbb{N}$, hence $h=0$.

7.5.2 Explicit formulas for cocyles

This n° is devoted to the proof of Proposition 7.5.1
(i) Recall that $\pi=[\varepsilon]-1, \theta\left(\sum p^{m}\left[x_{m}\right]\right)=\sum p^{m} x_{m}^{(0)}$ and $\theta(\pi)=1-1=$ 0 . Let $\tilde{\pi}_{n}=\varphi^{-n}(\pi) \in \tilde{A}^{+}$, then $\tilde{\pi}_{n}=\left[\varepsilon^{1 / p^{n}}\right]-1, \theta\left(\tilde{\pi}_{n}\right)=\pi_{n}$. Write $b_{n}=\sum_{l=0}^{+\infty} p^{l}\left[z_{l}\right]$, where $z_{l} \in \tilde{E}$. As $C_{n}^{\prime}(g) \in \mathbb{Z}_{p}$, we have

$$
\varphi^{-(n+k)} C_{n}^{\prime}(g)=C_{n}^{\prime}(g), \quad \text { for all } n \text { and } k
$$

As

$$
v_{E}\left(\varphi^{-k}\left(z_{l}\right)\right)=\frac{1}{p^{k}} v_{E}\left(z_{l}\right)
$$

we can find k such that

$$
v_{E}\left(\varphi^{-(n+k)}\left(z_{l}\right)\right) \geq-1, \quad \text { for all } l \leqslant n-1
$$

Let $\tilde{p}=(p, \ldots) \in \tilde{E}^{+}$, then for every $l \leqslant n-1, \tilde{p} \cdot \varphi^{-(n+k)}\left(z_{l}\right) \in \tilde{E}^{+}$. We have

$$
[\tilde{p}] C_{n}^{\prime}(g)=\frac{\log \chi\left(\gamma_{n}\right)}{p^{n}}[\tilde{p}] \cdot \frac{\chi(g) g-1}{\chi\left(\gamma_{n}\right) \gamma_{n}-1} y\left(\tilde{\pi}_{n+k}\right)+[\tilde{p}](\chi(g) g-1) \varphi^{-(n+k)}\left(b_{n}\right)
$$

Both sides live in $\tilde{A}^{+}+p^{n} \tilde{A}$, reduce $\bmod p^{n}$ and use $\theta: \tilde{A}^{+} / p^{n} \rightarrow \mathcal{O}_{\mathbb{C}_{p}} / p^{n}$, then $[\tilde{p}] \mapsto p$ and

$$
p C_{n}^{\prime}(g)=p \frac{\log \chi\left(\gamma_{n}\right)}{p^{n}} p \cdot \frac{g-1}{\gamma_{n}-1} y\left(\pi_{n+k}\right)+(g-1) b_{n}^{\prime}
$$

where $b_{n}^{\prime}=\theta\left([\tilde{p}] \varphi^{-(n+k)}\left(b_{n}\right)\right)$.
(ii) Write $u=\left(\pi_{n}^{k}\right)\left(v_{n}\right)$, where v_{n} are units $\in \mathcal{O}_{F_{n}}^{*}$. So we just have to prove the formula for $\left(\pi_{n}\right)$ and $\left(v_{n}\right)$. Thus we can assume $v_{p}\left(u_{n}\right) \leqslant 1$.

Let

$$
H: 1+t B_{d R}^{+} \rightarrow \mathbb{C}_{p}, \quad x \mapsto \theta\left(\frac{x-1}{\pi}\right)=\theta\left(\frac{x-1}{t}\right),
$$

recall that $t=\log (1+\pi)$. We have
$H\left(\left(1+\pi x^{\prime}\right)\left(1+\pi y^{\prime}\right)\right)=H\left(1+\pi\left(x^{\prime}+y^{\prime}\right)+\pi^{2} x^{\prime} y^{\prime}\right)=\theta\left(x^{\prime}+y^{\prime}\right)=H\left(1+\pi x^{\prime}\right)+H\left(1+\pi y^{\prime}\right)$,
thus $H(x y)=H(x)+H(y)$.
Write $\tilde{u}_{n}=\left[\left(u_{n}, u_{n}^{\frac{1}{p}}, \ldots\right)\right]$, we have $\frac{g\left(\tilde{u}_{n}\right)}{\frac{u_{n}}{n}}=[\varepsilon]^{C_{n}(g)}=1+C_{n}(g) \pi+\cdots$, thus

$$
C_{n}(g)=H\left(\frac{g\left(\tilde{u}_{n}\right)}{\tilde{u}_{n}}\right) .
$$

We know $u_{n}=f_{u}\left(\pi_{n}\right)$ and $\theta\left(\tilde{u}_{n}\right)=u_{n}$, then

$$
\theta\left(f_{u}\left(\tilde{\pi}_{n}\right)\right)=f_{u}\left(\theta\left(\tilde{\pi}_{n}\right)\right)=f_{u}\left(\pi_{n}\right)=u_{n}=\theta\left(\tilde{u}_{n}\right) .
$$

So, if we set $a_{n}=\frac{f_{u}\left(\tilde{\pi}_{n}\right)}{\tilde{u}_{n}}$, then $\theta\left(a_{n}\right)=1$.
We know that $[\tilde{p}] a_{n} \in \tilde{A}^{+}$since $v_{p}\left(u_{n}\right) \leq 1$. Then we get $H\left(a_{n}\right) \in \frac{1}{p \pi_{1}} \mathcal{O}_{\mathbb{C}_{p}}$ because of the following identity

$$
H\left(a_{n}\right)=\theta\left(\frac{[\tilde{p}] a_{n}-[\tilde{p}]}{[\tilde{p}] \pi}\right)=\theta\left(\frac{[\tilde{p}] a_{n}-[\tilde{p}]}{\omega}\right) \cdot \theta\left(\frac{1}{[\tilde{p}] \tilde{\pi}_{1}}\right),
$$

and because $\omega=\frac{\pi}{\tilde{\pi}_{1}}$ is a generator of $\operatorname{Ker} \theta$ in \tilde{A}^{+}as $\omega \in \operatorname{Ker} \theta$, and

$$
\bar{\omega}=\frac{\varepsilon-1}{\varepsilon^{1 / p}-1}, \text { so } v_{E}(\bar{\omega})=\left(1-\frac{1}{p}\right) v_{E}(\varepsilon-1)=1 \text {. }
$$

Then we have

$$
\begin{aligned}
\frac{g\left(f_{u}\left(\tilde{\pi}_{n}\right)\right)}{f_{u}\left(\tilde{\pi}_{n}\right)} & =\frac{f_{u}\left(\left(1+\tilde{\pi}_{n}\right)^{\chi(g)}-1\right)}{f_{u}\left(\tilde{\pi}_{n}\right)} \\
& =\frac{f_{u}\left(\left(1+\tilde{\pi}_{n}\right)(1+\pi)^{\frac{\chi(g)-1}{p^{n}}}-1\right)}{f_{u}\left(\tilde{\pi}_{n}\right)} \\
& =1+\frac{\partial f_{u}}{f_{u}}\left(\tilde{\pi}_{n}\right) \cdot \frac{\chi(g)-1}{p^{n}} \pi+\text { terms of higher degree in } \pi
\end{aligned}
$$

hence

$$
H\left(\frac{g\left(f_{u}\left(\tilde{\pi}_{n}\right)\right)}{f_{u}\left(\tilde{\pi}_{n}\right)}\right)=\frac{\chi(g)-1}{p^{n}} \cdot \frac{\partial f_{u}}{f_{u}}\left(\pi_{n}\right) .
$$

Using formula $f_{u}\left(\tilde{\pi}_{n}\right)=\tilde{u}_{n} a_{n}$, we get

$$
\begin{aligned}
C_{n}(g)=H\left(\frac{g\left(\tilde{u}_{n}\right)}{\tilde{u}_{n}}\right) & =H\left(\frac{g\left(f_{u}\left(\tilde{\pi}_{n}\right)\right)}{f_{u}\left(\tilde{\pi}_{n}\right)}\right)-H\left(\frac{g\left(a_{n}\right)}{a_{n}}\right) \\
& =\frac{\chi(g)-1}{p^{n}} \cdot \frac{\partial f_{u}}{f_{u}}\left(\pi_{n}\right)-(\chi(g) g-1) H\left(a_{n}\right) .
\end{aligned}
$$

We conclude the proof by multiplying p^{2}, noticing that $\chi(g)=1 \bmod p^{n}$, so

$$
\frac{\chi(g)-1}{p^{n}}=\frac{\exp (\log \chi(g))-1}{p^{n}}=\frac{\log \chi(g)}{p^{n}} \bmod p^{n}
$$

set $b_{n}^{\prime \prime}=-p^{2} H\left(a_{n}\right)$, we get the result.

7.5.3 Tate's normalized trace maps

Let $\pi_{n}=\varepsilon^{(n)}-1, F_{n}=\mathbb{Q}_{p}\left(\pi_{n}\right), F_{\infty}=\bigcup_{n} F_{n}$.
Lemma 7.5.3. If $n \geq 1, x \in F_{\infty}$, then $p^{-k} \operatorname{Tr}_{F_{n+k} / F_{n}} x$ does not depend on k such that $x \in F_{n+k}$.

Proof. Use the transitive properties of the trace map and the fact $\left[F_{n+k}\right.$: $\left.F_{n}\right]=p^{k}$.

Let $R_{n}: F_{\infty} \longrightarrow F_{n}$ be the above map. Denote

$$
Y_{i}=\left\{x \in F_{i}, \operatorname{Tr}_{F_{i} / F_{i-1}} x=0\right\}
$$

Lemma 7.5.4. (i) R_{n} commutes with $\Gamma_{\mathbb{Q}_{p}}$, is F_{n} linear and $R_{n} \circ R_{n+k}=R_{n}$.
(ii) Let $x \in F_{\infty}$, then $x=R_{n}(x)+\sum_{i=1}^{+\infty} R_{n+i}^{*}(x)$, where $R_{n+i}^{*}(x)=R_{n+i}(x)-$ $R_{n+i-1}(x) \in Y_{n+i}$ and is 0 if $i \gg 0$.
(iii) Let $k \in \mathbb{Z}$, then $v_{p}(x) \geqslant k v_{p}\left(\pi_{n}\right)$ if and only if $v_{p}\left(R_{n}(x)\right) \geqslant k v_{p}\left(\pi_{n}\right)$ and $v_{p}\left(R_{n+i}^{*}(x)\right) \geqslant k v_{p}\left(\pi_{n}\right)$ for every $i \in \mathbb{N}$.

Proof. (i) is obvious.
(ii) is also obvious, since $R_{n+i-1}\left(R_{n+i}^{*}(x)\right)=0 \Rightarrow R_{n+i}^{*}(x) \in Y_{n+i}$.
(iii) \Leftarrow is obvious. For \Rightarrow, let $x \in \mathcal{O}_{F_{n+k}}$, then

$$
x=\sum_{j=0}^{p^{k}-1} a_{j}\left(1+\pi_{n+k}\right)^{j}, \quad a_{j} \in \mathcal{O}_{F_{n}} .
$$

Write $j=p^{k-i} j^{\prime}$ with $\left(j^{\prime}, p\right)=1$, then

$$
R_{n}(x)=a_{0}, \quad R_{n+i}^{*}(x)=\sum_{\left(j^{\prime}, p\right)=1} a_{p^{n-i} j^{\prime}}\left(1+\pi_{n+i}\right)^{j^{\prime}}
$$

since

$$
p^{-1} \operatorname{Tr}_{F_{n+i} / F_{n+i-1}}\left(1+\pi_{n+i}\right)^{j}= \begin{cases}\left(1+\pi_{n+i}\right)^{j}, & \text { if } p \mid j \\ 0, & \text { if }(j, p)=1\end{cases}
$$

Thus

$$
v_{p}(x) \geqslant 0 \Rightarrow v_{p}\left(R_{n}(x)\right) \geqslant 0 \text { and } v_{p}\left(R_{n+i}^{*}(x)\right) \geqslant 0
$$

By F_{n}-linearity we get the result.
Remark. In the whole theory, the following objects play similar roles:

$$
\begin{aligned}
& \psi \longleftrightarrow p^{-1} \operatorname{Tr}_{F_{n+1} / F_{n}} \\
& \psi=0 \longleftrightarrow Y_{i} .
\end{aligned}
$$

Lemma 7.5.5. Assume that $j \leqslant i-1$ and $j \geq 2$. and assume γ_{j} is a generator of Γ_{j}. Let $u \in \mathbb{Q}_{p}^{*}$. If $v_{p}(u-1)>v_{p}\left(\pi_{1}\right)$, then $u \gamma_{j}-1$ is invertible on Y_{i}. Moreover if $x \in Y_{i}, v_{p}(x) \geqslant k v_{p}\left(\pi_{n}\right)$, then $v_{p}\left(\left(u \gamma_{j}-1\right)^{-1} x\right) \geqslant k v_{p}\left(\pi_{n}\right)-$ $v_{p}\left(\pi_{1}\right)$.
Proof. If $\gamma_{i-1}=\gamma_{j}^{p^{i-j-1}}$, then

$$
\left(u \gamma_{j}-1\right)^{-1}=\left(u^{p^{i-j-1}} \gamma_{i-1}-1\right)^{-1}\left(1+u \gamma_{j}+\cdots+\left(u \gamma_{j}\right)^{p^{i-j-1}-1}\right),
$$

so it is enough to treat the case $j=i-1$.
Let $x \in \mathcal{O}_{F_{i}} \cap Y_{i}$, write

$$
x=\sum_{a=1}^{p-1} x_{a}\left(1+\pi_{i}\right)^{a}, \quad x_{a} \in \mathcal{O}_{F_{i-1}},
$$

write $\chi\left(\gamma_{i-1}\right)=1+p^{i-1} v$ with $v \in \mathbb{Z}_{p}^{*}$, then

$$
\left(u \gamma_{i-1}-1\right) x=\sum_{a=1}^{p-1} x_{a}\left(1+\pi_{i}\right)^{a}\left(u\left(1+\pi_{1}\right)^{a v}-1\right)
$$

We can check directly

$$
\left(u \gamma_{i-1}-1\right)^{-1} x=\sum_{a=1}^{p-1} \frac{x_{a}}{\left(u\left(1+\pi_{1}\right)^{a v}-1\right)}\left(1+\pi_{i}\right)^{a} .
$$

Moreover, if $v_{p}(x) \geq 0$, then $v_{p}\left(\left(u \gamma_{j}-1\right)^{-1} x\right) \geqslant-v_{p}\left(\pi_{1}\right)$.
Proposition 7.5.6. Assume $n \geqslant 1, u \in \mathbb{Q}_{p}^{*}$ and $v_{p}(u-1)>v_{p}\left(\pi_{1}\right)$, then
(i) $x \in F_{\infty}$ can be written uniquely as $x=R_{n}(x)+\left(u \gamma_{n}-1\right) y$ with $R_{n}(y)=0$, and we have

$$
v_{p}\left(R_{n}(x)\right)>v_{p}(x)-v_{p}\left(\pi_{n}\right), \quad v_{p}(y)>v_{p}(x)-v_{p}\left(\pi_{n}\right)-v_{p}\left(\pi_{1}\right) .
$$

(ii) R_{n} extends by continuity to \hat{F}_{∞}, and let $X_{n}=\left\{x \in \hat{F}_{\infty}, R_{n}(x)=0\right\}$. Then every $x \in \hat{F}_{\infty}$ can be written uniquely as $x=R_{n}(x)+\left(u \gamma_{n}-1\right) y$ with $y \in X_{n}$ and $R_{n}(x) \in F_{n}$, and with the same inequalities

$$
v_{p}\left(R_{n}(x)\right) \geqslant v_{p}(x)-v_{p}\left(\pi_{n}\right), \quad v_{p}(y) \geqslant v_{p}(x)-v_{p}\left(\pi_{n}\right)-v_{p}\left(\pi_{1}\right)
$$

Proof. (i) As

$$
x=R_{n}(x)+\sum_{i=1}^{+\infty}\left(u \gamma_{n}-1\right)\left(\left(u \gamma_{n}-1\right)^{-1} R_{n+i}^{*}(x)\right)
$$

we just let $y=\sum_{i=1}^{+\infty}\left(u \gamma_{n}-1\right)^{-1} R_{n+i}^{*}(x)$.
(ii) By (i), we have $v_{p}\left(R_{n}(x)\right) \geqslant v_{p}(x)-C$, so R_{n} extends by continuity to \hat{F}_{∞}; the rest follows by continuity.

Remark. (i) The maps $R_{n}: \hat{F}_{\infty} \longrightarrow F_{n}$ are Tate's normalized trace maps.
(ii) they commutes with $\Gamma_{\mathbb{Q}_{p}}$ (or $G_{\mathbb{Q}_{p}}$).
(iii) $R_{n}(x)=x$ if $x \in F_{\infty}$ and $n \gg 0$, hence $R_{n}(x) \rightarrow x$ if $x \in \hat{F}_{\infty}$ and $n \rightarrow \infty$.

7.5.4 Applications to Galois cohomology

Proposition 7.5.7. (i) The map

$$
x \in F_{n} \longmapsto(\gamma \mapsto x \log \chi(\gamma)) \in H^{1}\left(\Gamma_{F_{n}}, F_{n}\right)
$$

induces isomorphism

$$
F_{n} \xrightarrow{\sim} H^{1}\left(\Gamma_{F_{n}}, F_{n}\right) \xrightarrow{\sim} H^{1}\left(\Gamma_{F_{n}}, \hat{F}_{\infty}\right) .
$$

(ii) If $\eta: \Gamma_{F_{n}} \longrightarrow \mathbb{Q}_{p}^{*}$ is of infinite order, then $H^{1}\left(\Gamma_{F_{n}}, \hat{F}_{\infty}(\eta)\right)=0$.

Proof. If $n \gg 0$ so that $v_{p}\left(\eta\left(\gamma_{n}\right)-1\right)>v_{p}\left(\pi_{1}\right)$. Using the above proposition (let $u=\eta\left(\gamma_{n}\right)$), we get

$$
H^{1}\left(\Gamma_{F_{n}}, \hat{F}_{\infty}(\eta)\right)=\frac{\hat{F}_{\infty}}{\left(u \gamma_{n}-1\right)}=\frac{F_{n} \bigoplus X_{n}}{\left(u \gamma_{n}-1\right)}=\frac{F_{n}}{u \gamma_{n}-1}
$$

If $u=1$, we get $\left(\gamma_{n}-1\right) F_{n}=0$. If $u \neq 1$, we get $F_{n} /(u-1) F_{n}=0$.
For n small, using inflation and restriction sequence, as $\operatorname{Gal}\left(F_{n+k} / F_{n}\right)$ is finite, and $\hat{F}_{\infty}(\eta)$ is a \mathbb{Q}_{p}-vector space, we have

$$
H^{1}\left(\operatorname{Gal}\left(F_{n+k} / F_{n}\right), \hat{F}_{\infty}(\eta)^{\Gamma_{F_{n+k}}}\right)=0, \quad H^{2}=0
$$

then we get an isomorphism

$$
H^{1}\left(\Gamma_{F_{n}}, \hat{F}_{\infty}(\eta)\right) \xrightarrow{\sim} H^{1}\left(\Gamma_{F_{n+k}}, \hat{F}_{\infty}(\eta)\right)^{\operatorname{Gal}\left(F_{n+k} / F_{n}\right)} .
$$

From the case of $n \gg 0$, we immediately get the result.
Recall that the following result is the main step in Ax's proof of the Ax-Sen-Tate theorem (cf. Fontaine's course).

Proposition 7.5.8. There exists a constant $C \in \mathbb{N}$, such that if $x \in \mathbb{C}_{p}$, if $H \subset G_{\mathbb{Q}_{p}}$ is a closed subgroup, if for all $g \in H, v_{p}((g-1) x) \geqslant$ a for some a, then there exists $y \in \mathbb{C}_{p}^{H}$ such that $v_{p}(x-y) \geqslant a-C$.

The following corollary is Proposition 7.5.2 in the previous section.
Corollary 7.5.9. For $x \in \mathcal{O}_{\hat{F}_{\infty}}$, if there exists $c \in \mathcal{O}_{\mathbb{C}_{p}}$ such that

$$
v_{p}\left(\frac{g-1}{\gamma_{n}-1} x-(g-1) c\right) \geqslant n, \text { for all } g \in G_{F_{n}}
$$

Then we have

$$
v_{p}\left(R_{n}(x)\right) \geqslant n-C-1(\text { or } 2) .
$$

Proof. By assumption, we get

$$
v_{p}((g-1) c) \geqslant n, \forall g \in H_{\mathbb{Q}_{p}}=\operatorname{Ker} \chi
$$

then by $\mathbf{A} \mathbf{x}$, there exists $c^{\prime} \in \hat{F}_{\infty}$ such that

$$
v_{p}\left(c-c^{\prime}\right) \geqslant n-C .
$$

Take $g=\gamma_{n}$, then $v_{p}\left(x-\left(\gamma_{n}-1\right) c^{\prime}\right) \geqslant n-C$. As $R_{n} \gamma_{n}=\gamma_{n} R_{n}=R_{n}$, we get

$$
v_{p}\left(R_{n}(x)\right)=v_{p}\left(R_{n}\left(x-\left(\gamma_{n}-1\right) c^{\prime}\right)\right) \geqslant n-C-v_{p}\left(\pi_{1}\right)-v_{p}\left(\pi_{n}\right),
$$

hence the result.

7.5.5 No $2 \pi i$ in \mathbb{C}_{p} !

Theorem 7.5.10. (i) \mathbb{C}_{p} does not contain $\log 2 \pi i$, i.e. there exists no $x \in \mathbb{C}_{p}$ satisfies that $g(x)=x+\log \chi(g)$ for all $g \in G_{K}$, where K is a finite extension of \mathbb{Q}_{p}.
(ii) $\mathbb{C}_{p}(k)=0$, if $k \neq 0$.

Proof. (i) If $K=\mathbb{Q}_{p}$, if there exists such an x, by Ax-Sen-Tate, we get $x \in \hat{F}_{\infty}=\mathbb{C}_{p}^{H_{\mathbb{Q}_{p}}}$. Then we have:

$$
R_{n}(g(x))=g\left(R_{n}(x)\right)=R_{n}(x)+\log \chi(g)
$$

Because $R_{n}(x) \in F_{n}$, it has only finite number of conjugates but $\log \chi(g)$ has infinitely many values, contradiction!

Now for K general, we can assume K / \mathbb{Q}_{p} is Galois, let

$$
y=\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} \sigma(x)
$$

where S are representatives of $G_{\mathbb{Q}_{p}} / G_{K}$. For $g \in G_{\mathbb{Q}_{p}}$, we can write $g \sigma=\sigma_{\sigma}^{\prime} h_{\sigma}$ for $h_{\sigma} \in G_{K}$ and $\sigma_{\sigma}^{\prime} \in S$. From this we get

$$
\sum_{\sigma \in S} \log \chi\left(h_{\sigma}\right)=\left[K: \mathbb{Q}_{p}\right] \log \chi(g)
$$

Then we have

$$
\begin{aligned}
g(y) & =\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} g \sigma(x)=\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} \sigma_{\sigma}^{\prime} h_{\sigma} x \\
& =\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} \sigma_{\sigma}^{\prime}\left(x+\log \chi\left(h_{\sigma}\right)\right) \\
& =\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} \sigma(x)+\frac{1}{\left[K: \mathbb{Q}_{p}\right]} \sum_{\sigma \in S} \log \chi\left(h_{\sigma}\right) \\
& =y+\log \chi(g) .
\end{aligned}
$$

Then by the case $K=\mathbb{Q}_{p}$, we get the result.
(ii) If $0 \neq x \in \mathbb{C}_{p}(k)$, then $g(x)=\chi(g)^{-k} x$. Let $y=\frac{\log x}{-k}$, then we have $g(y)=y+\log \chi(g)$, which is a contradiction by (i).

Chapter 8

(φ, Γ)-modules and p-adic L-functions

8.1 Tate-Sen's conditions

8.1.1 The conditions (TS1), (TS2) and (TS3)

Let G_{0} be a profinite group and $\chi: G_{0} \rightarrow \mathbb{Z}_{p}^{*}$ be a continuous group homomorphism with open image. Set $v(g)=v_{p}(\log \chi(g))$ and $H_{0}=\operatorname{Ker} \chi$.

Suppose $\tilde{\Lambda}$ is a \mathbb{Z}_{p}-algebra and

$$
v: \tilde{\Lambda} \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

satisfies the following conditions:
(i) $v(x)=+\infty$ if and only if $x=0$;
(ii) $v(x y) \geqslant v(x)+v(y)$;
(iii) $v(x+y) \geqslant \inf (v(x), v(y))$;
(iv) $v(p)>0, v(p x)=v(p)+v(x)$.

Assume $\tilde{\Lambda}$ is complete for v, and G_{0} acts continuously on $\tilde{\Lambda}$ such that $v(g(x))=v(x)$ for all $g \in G_{0}$ and $x \in \tilde{\Lambda}$.
Definition 8.1.1. The Tate-Sen's conditions for the quadruple $\left(G_{0}, \chi, \tilde{\Lambda}, v\right)$ are the following three conditions TS1-TS3.
(TS1). For all $C_{1}>0$, for all $H_{1} \subset H_{2} \subset H_{0}$ open subgroups, there exists an $\alpha \in \tilde{\Lambda}^{H_{1}}$ with

$$
v(\alpha)>-C_{1} \text { and } \sum_{\tau \in H_{2} / H_{1}} \tau(\alpha)=1
$$

(In Faltings' terminology, $\tilde{\Lambda} / \tilde{\Lambda}^{H_{0}}$ is called almost étale.)
(TS2). Tate's normalized trace maps: there exists $C_{2}>0$ such that for all open subgroups $H \subset H_{0}$, there exist $n(H) \in \mathbb{N}$ and $\left(\Lambda_{H, n}\right)_{n \geq n(H)}$, an increasing sequence of sub \mathbb{Z}_{p}-algebras of $\tilde{\Lambda}^{H}$ and maps

$$
R_{H, n}: \tilde{\Lambda}^{H} \longrightarrow \Lambda_{H, n}
$$

satisfying the following conditions:
(a) if $H_{1} \subset H_{2}$, then $\Lambda_{H_{2}, n}=\left(\Lambda_{H_{1}, n}\right)^{H_{2}}$, and $R_{H_{1}, n}=R_{H_{2}, n}$ on $\tilde{\Lambda}^{H_{2}}$;
(b) for all $g \in G_{0}$,

$$
g\left(\Lambda_{H, n}\right)=\Lambda_{g H g^{-1}, n} \quad g \circ R_{H, n}=R_{g g^{-1}, n} \circ g ;
$$

(c) $R_{H, n}$ is $\Lambda_{H, n}$-linear and is equal to Id on $\Lambda_{H, n}$;
(d) $v\left(R_{H, n}(x)\right) \geqslant v(x)-C_{2}$ if $n \geqslant n(H)$ and $x \in \tilde{\Lambda}^{H}$;
(e) $\lim _{n \rightarrow+\infty} R_{H, n}(x)=x$.
(TS3). There exists C_{3}, such that for all open subgroups $G \subset G_{0}, H=$ $G \cap H_{0}$, there exists $n(G) \geqslant n(H)$ such that if $n \geqslant n(G), \gamma \in G / H$ and $v(\gamma)=v_{p}(\log \chi(\gamma)) \leqslant n$, then $\gamma-1$ is invertible on $X_{H, n}=\left(R_{H, n}-1\right) \tilde{\Lambda}$ and

$$
v\left((\gamma-1)^{-1} x\right) \geqslant v(x)-C_{3}
$$

for $x \in X_{H, n}$.
Remark. $R_{H, n} \circ R_{H, n}=R_{H, n}$, so $\tilde{\Lambda}^{H}=\Lambda_{H, n} \oplus X_{H, n}$.

8.1.2 Example : the field \mathbb{C}_{p}

Theorem 8.1.2. The quadruple $\left(\tilde{\Lambda}=\mathbb{C}_{p}, v=v_{p}, G_{0}=G_{\mathbb{Q}_{p}}\right.$ and $\chi=$ the cyclotomic character) satisfies (TS1), (TS2), (TS3).

Proof. (TS1): In Fontaine's course, we know that for any $\mathbb{Q}_{p} \subset K \subset L$ such that $\left[L: \mathbb{Q}_{p}\right]<+\infty$, then

$$
v_{p}\left(\mathfrak{d}_{L_{n} / K_{n}}\right) \rightarrow 0 \text { as } n \rightarrow+\infty .
$$

The proof showed that $v_{p}\left(\gamma\left(\pi_{n}\right)-\pi_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$, where π_{n} is a uniformizer of L_{n} and $\gamma \in \operatorname{Gal}\left(L_{n} / K_{n}\right)=\operatorname{Gal}\left(L_{\infty} / K_{\infty}\right)$ when $n \gg 0$. We also have

$$
\operatorname{Tr}_{L_{\infty} / K_{\infty}}=\operatorname{Tr}_{L_{n} / K_{n}}
$$

on L_{n} if $n \gg 0$ and

$$
\operatorname{Tr}_{L_{n} / K_{n}}\left(\mathcal{O}_{L_{n}}\right) \supset \mathfrak{d}_{L_{n} / K_{n}} \bigcap \mathcal{O}_{K_{n}}
$$

thus $\operatorname{Tr}_{L_{\infty} / K_{\infty}}\left(\mathcal{O}_{L_{\infty}}\right)$ contains elements with v_{p} as small as we want. Take $x \in \mathcal{O}_{L_{\infty}}$ and let $\alpha=\frac{x}{\operatorname{Tr}_{L_{\infty} / K_{\infty}}(x)}$, then

$$
\sum_{\tau \in H_{K} / H_{L}} \tau(\alpha)=\operatorname{Tr}_{L_{\infty} / K_{\infty}}(\alpha)=1
$$

Then for all $C_{1}>0$, we can find $x \in \mathcal{O}_{L_{\infty}}$ such that $v_{p}\left(\operatorname{Tr}_{L_{\infty} / K_{\infty}}(x)\right)$ is small enough, thus $v_{p}(\alpha)>-C_{1}$.
(TS2) and (TS3): By Ax-Sen-Tate, $\mathbb{C}_{p}^{H_{K}}=\hat{K}_{\infty}$, let $\Lambda_{H_{K}, n}=K_{n}$, and $R_{H_{K}, n}=p^{-k} \operatorname{Tr}_{K_{n+k} / K_{n}}$ on K_{n+k}.

If $K=\mathbb{Q}_{p}, R_{H_{K}, n}=R_{n}$, that's what we did in last chapter. We are going to use what we know about R_{n}.

For $G=G_{K}$, then $H=H_{K}$, choose m big enough such that for any $n \geqslant m, v_{p}\left(\mathfrak{d}_{K_{n} / F_{n}}\right)$ is small and $\left[K_{\infty}: F_{\infty}\right]=\left[K_{n}: F_{n}\right]=d$. Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be a basis of $\mathcal{O}_{K_{n}}$ over $\mathcal{O}_{F_{n}}$ and $\left\{e_{1}^{*}, \ldots, e_{d}^{*}\right\}$ be the dual basis of K_{n} over F_{n} for the trace map $(x, y) \mapsto \operatorname{Tr}_{K_{n} / F_{n}}(x y)$. This implies that $\left\{e_{1}^{*}, \ldots, e_{d}^{*}\right\}$ is a basis of $\mathfrak{d}_{K_{n} / F_{n}}^{-1}$ and $v_{p}\left(e_{i}^{*}\right) \geqslant-v_{p}\left(\mathfrak{d}_{K_{n} / F_{n}}\right)$ are small. Any $x \in K_{\infty}$ can be written as

$$
x=\sum_{i=1}^{d} \operatorname{Tr}_{K_{\infty} / K}\left(x e_{i}\right) e_{i}^{*},
$$

then

$$
\inf _{i} v_{p}\left(\operatorname{Tr}_{K_{\infty} / F_{\infty}}\left(x e_{i}\right)\right) \geq v_{p}(x) \geq \inf _{i} v_{p}\left(\operatorname{Tr}_{K_{\infty} / F_{\infty}}\left(x e_{i}\right)\right)-v_{p}\left(\mathfrak{d}_{K_{n} / F_{n}}\right),
$$

and

$$
R_{H_{K}, n}(x)=\sum_{i=1}^{d} R_{n}\left(\operatorname{Tr}_{K_{\infty} / F_{\infty}}\left(x e_{i}\right)\right) e_{i}^{*}, \quad n \geqslant m
$$

So use what we know about R_{n} to conclude.
Remark. By the same method as Corollary 7.5.7, we get
(i) $H^{1}\left(\Gamma, \hat{K}_{\infty}\right) \cong K$, where the isomorphism is given by $x \in K \longmapsto(\gamma \mapsto$ $x \log \chi(\gamma))$.
(ii) $H^{1}\left(\Gamma, \hat{K}_{\infty}(\eta)\right)=0$ if η is of infinite order.

8.2 Sen's method

Proposition 8.2.1. Assume $\tilde{\Lambda}$ verifying (TS1), (TS2) and (TS3). Let $\sigma \mapsto$ U_{σ} be a continuous cocycle from G_{0} to $\mathrm{GL}_{d}(\tilde{\Lambda})$. If $G \subset G_{0}$ is an open normal subgroup of G_{0} such that $v\left(U_{\sigma}-1\right)>2 C_{2}+2 C_{3}$ for any $\sigma \in G$. Set $H=G \cap H_{0}$, then there exists $M \in \mathrm{GL}_{d}(\tilde{\Lambda})$ with $v(M-1)>C_{2}+C_{3}$ such that

$$
\sigma \longmapsto V_{\sigma}=M^{-1} U_{\sigma} \sigma(M)
$$

satisfies $V_{\sigma} \in \mathrm{GL}_{d}\left(\Lambda_{H, n(G)}\right)$ and $V_{\sigma}=1$ if $\sigma \in H$.
Example 8.2.2. Example of Sen: For the case $\tilde{\Lambda}=\mathbb{C}_{p}$, for U_{σ} a 1-cocycle on G_{K} with values in $\mathrm{GL}_{d}\left(\mathbb{C}_{p}\right)$, there exists $[L: K]<\infty$, such that U_{σ} is cohomologous to a cocycle that which is trivial on H_{L} and with values in $\mathrm{GL}_{d}\left(L_{n}\right)$ for some n.

The proof of Proposition 8.2.1 needs three Lemmas below. It is technical, but the techniques come over again and again.

8.2.1 Almost étale descent

Lemma 8.2.3. If $\tilde{\Lambda}$ satisfies (TS1), $a>0$, and $\sigma \mapsto U_{\sigma}$ is a 1-cocycle on H open in H_{0} and

$$
v\left(U_{\sigma}-1\right) \geqslant a \text { for any } \sigma \in H
$$

then there exists $M \in \mathrm{GL}_{d}(\tilde{\Lambda})$ such that

$$
v(M-1) \geqslant \frac{a}{2}, \quad v\left(M^{-1} U_{\sigma} \sigma(M)-1\right) \geqslant a+1
$$

Proof. The proof is approximating Hilbert's Theorem 90.
Fix $H_{1} \subset H$ open and normal such that $v\left(U_{\sigma}-1\right) \geqslant a+1+a / 2$ for $\sigma \in H_{1}$, which is possible by continuity. Because $\tilde{\Lambda}$ satisfies (TS1), we can find $\alpha \in \tilde{\Lambda}^{H_{1}}$ such that

$$
v(\alpha) \geqslant-a / 2, \quad \sum_{\tau \in H / H_{1}} \tau(\alpha)=1 .
$$

Let $S \subset H$ be a set of representatives of H / H_{1}, denote $M_{S}=\sum_{\sigma \in S} \sigma(\alpha) U_{\sigma}$, we have $M_{S}-1=\sum_{\sigma \in S} \sigma(\alpha)\left(U_{\sigma}-1\right)$, this implies $v\left(M_{S}-1\right) \geqslant a / 2$ and moreover

$$
M_{S}^{-1}=\sum_{n=0}^{+\infty}\left(1-M_{S}\right)^{n}
$$

so we have $v\left(M_{S}^{-1}\right) \geqslant 0$ and $M_{S} \in \mathrm{GL}_{d}(\tilde{\Lambda})$.
If $\tau \in H_{1}$, then $U_{\sigma \tau}-U_{\sigma}=U_{\sigma}\left(\sigma\left(U_{\tau}\right)-1\right)$. Let $S^{\prime} \subset H$ be another set of representatives of H / H_{1}, so for any $\sigma^{\prime} \in S^{\prime}$, there exists $\tau \in H_{1}$ and $\sigma \in S$ such that $\sigma^{\prime}=\sigma \tau$, so we get

$$
M_{S}-M_{S^{\prime}}=\sum_{\sigma \in S} \sigma(\alpha)\left(U_{\sigma}-U_{\sigma \tau}\right)=\sum_{\sigma \in S} \sigma(\alpha) U_{\sigma}\left(1-\sigma\left(U_{\tau}\right)\right),
$$

thus

$$
v\left(M_{S}-M_{S^{\prime}}\right) \geqslant a+1+a / 2-a / 2=a+1
$$

For any $\tau \in H$,

$$
U_{\tau} \tau\left(M_{S}\right)=\sum_{\sigma \in S} \tau \sigma(\alpha) U_{\tau} \tau\left(U_{\sigma}\right)=M_{\tau S}
$$

Then

$$
M_{S}^{-1} U_{\tau} \tau\left(M_{S}\right)=1+M_{S}^{-1}\left(M_{\tau S}-M_{S}\right)
$$

with $v\left(M_{S}^{-1}\left(M_{\tau S}-M_{S}\right)\right) \geq a+1$. Take $M=M_{S}$ for any S, we get the result.

Corollary 8.2.4. Under the same hypotheses as the above lemma, there exists $M \in \operatorname{GL}_{d}(\tilde{\Lambda})$ such that

$$
v(M-1) \geqslant a / 2, \quad M^{-1} U_{\sigma} \sigma(M)=1, \forall \sigma \in H
$$

Proof. Repeat the lemma ($a \mapsto a+1 \mapsto a+2 \mapsto \cdots$), and take the limits.
Exercise. Assume $\tilde{\Lambda}$ satisfies (TS1), denote by $\tilde{\Lambda}^{+}=\{x \in \tilde{\Lambda} \mid v(x) \geqslant 0\}$. Let M be a finitely generated $\tilde{\Lambda}^{+}$-module with semi-linear action of H, an open subgroup of H_{0}. Then $H^{i}(H, M)$ is killed by any $x \in \tilde{\Lambda}^{H}$ with $v(x)>0$.

Hint: Adapt the proof that if L / K is finite Galois and M is a L-module with semi-linear action of $\operatorname{Gal}(L / K)$, then $H^{i}(\operatorname{Gal}(L / K), L)=0$ for all $i \geqslant 1$. Let $\alpha \in L$ such that $\operatorname{Tr}_{L / K}(\alpha)=1$. For any $c\left(g_{1}, \cdots, g_{n}\right)$ an n-cocycle, let

$$
c^{\prime}\left(g_{1}, \cdots, g_{n-1}\right)=\sum_{h \in \operatorname{Gal}(L / K)} g_{1} \cdots g_{n-1} h(\alpha) c\left(g_{1}, \cdots, g_{n-1}, h\right),
$$

then $d c^{\prime}=c$.

Theorem 8.2.5. (i) The map $x \longmapsto(g \mapsto x \log \chi(g))$ gives an isomorphism $K \xrightarrow{\sim} H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$.
(ii) If $\eta: G_{K} \rightarrow \Gamma_{K} \rightarrow \mathbb{Q}_{p}^{*}$ is of infinite order, then $H^{1}\left(G_{K}, \mathbb{C}_{p}(\eta)\right)=0$.

Proof. Using the inflation and restriction exact sequence

$$
0 \longrightarrow H^{1}\left(\Gamma_{K}, \mathbb{C}_{p}(\eta)^{H_{K}}\right) \xrightarrow{\text { inf }} H^{1}\left(G_{K}, \mathbb{C}_{p}(\eta)\right) \xrightarrow{\text { res }} H^{1}\left(H_{K}, \mathbb{C}_{p}(\eta)\right)^{\Gamma_{K}} .
$$

by the above exercise, $H^{1}\left(H_{K}, \mathbb{C}_{p}(\eta)\right)^{\Gamma_{K}}=0$, then the inflation map is actually an isomorphism. We have $\mathbb{C}_{p}(\eta)^{H_{K}}=\hat{K}_{\infty}(\eta)$, and use Corollary 7.5.7. In fact

$$
K=H^{1}\left(\Gamma_{K}, \hat{K}_{\infty}\right)=H^{1}\left(\Gamma_{K}, K\right)=\operatorname{Hom}(\Gamma, K)=K \cdot \log \chi
$$

the last equality is because Γ_{K} is pro-cyclic.

8.2.2 Decompletion

Now recall that we have the continuous character: $G_{0} \xrightarrow{\chi} \mathbb{Z}_{p}^{*}, H_{0}=\operatorname{Ker} \chi . \widetilde{\Lambda}$ is complete for v, with continuous action of $G_{0} . H$ is an open subgroup of H_{0}, and we have the maps: $R_{H, n}: \widetilde{\Lambda}^{H} \rightarrow \Lambda_{H, n}$. By (TS2), $v\left(R_{H, n}(x)\right) \geq v(x)-C_{2}$; and by (TS3), $v\left((\gamma-1)^{-1} x\right) \geq v(x)-C_{3}$, if $R_{H, n}(x)=0$ and $v_{p}(\log \chi(\gamma)) \leq n$. We can use these properties to reduce to something reasonable.

Lemma 8.2.6. Assume given $\delta>0, b \geq 2 C_{2}+2 C_{3}+\delta$, and $H \subset H_{0}$ is open. Suppose $n \geq n(H), \gamma \in G / H$ with $n(\gamma) \leq n, U=1+U_{1}+U_{2}$ with

$$
\begin{aligned}
& U_{1} \in \mathrm{M}_{d}\left(\Lambda_{H, n}\right), v\left(U_{1}\right) \geq b-C_{2}-C_{3} \\
& U_{2} \in \mathrm{M}_{d}\left(\widetilde{\Lambda}^{H}\right), v\left(U_{2}\right) \geq b .
\end{aligned}
$$

Then, there exists $M \in \mathrm{GL}_{d}\left(\widetilde{\Lambda}^{H}\right), v(M-1) \geq b-C_{2}-C_{3}$ such that

$$
M^{-1} U \gamma(M)=1+V_{1}+V_{2}
$$

with

$$
\begin{aligned}
& \left.V_{1} \in \mathrm{M}_{d}\left(\Lambda_{H, n}\right), v\left(V_{1}\right) \geq b-C_{2}-C_{3}\right), \\
& V_{2} \in \mathrm{M}_{d}\left(\widetilde{\Lambda}^{H}\right), v\left(V_{2}\right) \geq b+\delta
\end{aligned}
$$

Proof. Using (TS2) and (TS3), one gets $U_{2}=R_{H, n}\left(U_{2}\right)+(1-\gamma) V$, with

$$
v\left(R_{H, n}\left(U_{2}\right)\right) \geq v\left(U_{2}\right)-C_{2}, \quad v(V) \geq v\left(U_{2}\right)-C_{2}-C_{3} .
$$

Thus,

$$
\begin{aligned}
(1+V)^{-1} U \gamma(1+V) & =\left(1-V+V^{2}-\cdots\right)\left(1+U_{1}+U_{2}\right)(1+\gamma(V)) \\
& =1+U_{1}+(\gamma-1) V+U_{2}+(\text { terms of degree } \geq 2)
\end{aligned}
$$

Let $V_{1}=U_{1}+R_{H, n}\left(U_{2}\right) \in \mathrm{M}_{d}\left(\Lambda_{H, n}\right)$ and W be the terms of degree ≥ 2. Thus $v(W) \geq 2\left(b-C_{2}-C_{3}\right) \geq b+\delta$. So we can take $M=1+V, V_{2}=W$.

Corollary 8.2.7. Keep the same hypotheses as in Lemma 8.2.6. Then there exists $M \in \operatorname{GL}_{d}\left(\widetilde{\Lambda}^{H}\right), v(M-1) \geq b-C_{2}-C_{3}$ such that $M^{-1} U \gamma(M) \in$ $\operatorname{GL}_{d}\left(\Lambda_{H, n}\right)$.

Proof. Repeat the lemma ($b \mapsto b+\delta \mapsto b+2 \delta \mapsto \cdots$), and take the limit.
Lemma 8.2.8. Suppose $H \subset H_{0}$ is an open subgroup, $i \geq n(H), \gamma \in G / H$, $n(\gamma) \geq i$ and $B \in \mathrm{GL}_{d}\left(\widetilde{\Lambda}^{H}\right)$. If there exist $V_{1}, V_{2} \in \mathrm{GL}_{d}\left(\Lambda_{H, i}\right)$ such that

$$
v\left(V_{1}-1\right)>C_{3}, \quad v\left(V_{2}-1\right)>C_{3}, \quad \gamma(B)=V_{1} B V_{2},
$$

then $B \in \operatorname{GL}_{d}\left(\Lambda_{H, i}\right)$.
Proof. Take $C=B-R_{H, i}(B)$. We have to prove $C=0$. Note that C has coefficients in $X_{H, i}=\left(1-R_{H, i}\right) \widetilde{\Lambda}^{H}$, and $R_{H, i}$ is $\Lambda_{H, i}$-linear and commutes with γ. Thus,

$$
\gamma(C)-C=V_{1} C V_{2}-C=\left(V_{1}-1\right) C V_{2}+V_{1} C\left(V_{2}-1\right)-\left(V_{1}-1\right) C\left(V_{2}-1\right)
$$

Hence, $v(\gamma(C)-C)>v(C)+C_{3}$. By (TS3), this implies $v(C)=+\infty$, i.e. $C=0$.

Proof of Proposition 8.2.1. Let $\sigma \mapsto U_{\sigma}$ be a continuous 1-cocycle on G_{0} with values in $\mathrm{GL}_{d}(\widetilde{\Lambda})$. Choose an open normal subgroup G of G_{0} such that

$$
\inf _{\sigma \in G} v\left(U_{\sigma}-1\right)>2\left(C_{2}+C_{3}\right) .
$$

By Lemma 8.2.3, there exists $M_{1} \in \mathrm{GL}_{d}(\widetilde{\Lambda}), v\left(M_{1}-1\right)>2\left(C_{2}+C_{3}\right)$ such that $\sigma \mapsto U_{\sigma}^{\prime}=M_{1}^{-1} U_{\sigma} \sigma\left(M_{1}\right)$ is trivial in $H=G \cap H_{0}$ (In particular, it has values in $\left.\mathrm{GL}_{d}\left(\widetilde{\Lambda}^{H}\right)\right)$.

Now we pick $\gamma \in G / H$ with $n(\gamma)=n(G)$. In particular, we want $n(G)$ big enough so that γ is in the center of G_{0} / H. Indeed, the center is open, since in the exact sequence:

$$
1 \rightarrow H_{0} / H \rightarrow G_{0} / H \rightarrow G / H \rightarrow 1
$$

$G / H \simeq \mathbb{Z}_{p} \times$ (finite), and H_{0} / H is finite. So we are able to choose such a $n(G)$.

Then we have $v\left(U_{\gamma}^{\prime}\right)>2\left(C_{2}+C_{3}\right)$, and by Corollary 8.2.7, there exists $M_{2} \in \mathrm{GL}_{d}\left(\widetilde{\Lambda}^{H}\right)$ satisfying

$$
v\left(M_{2}-1\right)>C_{2}+C_{3} \text { and } M_{2}^{-1} U_{\gamma}^{\prime} \gamma\left(M_{2}\right) \in \mathrm{GL}_{d}\left(\Lambda_{H, n(G)}\right)
$$

Take $M=M_{1} \cdot M_{2}$, then the cocycle

$$
\sigma \mapsto V_{\sigma}=M^{-1} U_{\sigma} \sigma(M)
$$

a cocycle trivial on H with values in $\mathrm{GL}_{d}\left(\widetilde{\Lambda}^{H}\right)$, and we have

$$
v\left(V_{\gamma}-1\right)>C_{2}+C_{3} \text { and } V_{\gamma} \in \mathrm{GL}_{d}\left(\Lambda_{H, n(G)}\right)
$$

This implies V_{σ} comes by inflation from a cocycle on G_{0} / H.
The last thing we want to prove is $V_{\tau} \in \mathrm{GL}_{d}\left(\Lambda_{H, n(G)}\right)$ for any $\tau \in G_{0} / H$. Note that $\gamma \tau=\tau \gamma$ as γ is in the center, so

$$
V_{\tau} \tau\left(V_{\gamma}\right)=V_{\tau \gamma}=V_{\gamma \tau}=V_{\gamma} \gamma\left(V_{\tau}\right)
$$

which implies $\gamma\left(V_{\tau}\right)=V_{\gamma}^{-1} V_{\tau} \tau\left(V_{\gamma}\right)$. Apply Lemma 8.2.8 with $V_{1}=V_{\gamma}^{-1}, V_{2}=$ $\tau\left(V_{\gamma}\right)$, then we obtain what we want.

8.2.3 Applications to p-adic representations

Proposition 8.2.9. Let T be a free \mathbb{Z}_{p}-representation of $G_{0}, k \in \mathbb{N}$, $v\left(p^{k}\right)>$ $2 C_{2}+2 C_{3}$, and suppose $G \subset G_{0}$ is an open normal subgroup acting trivially on $T / p^{k} T$, and $H=G \cap H_{0}$. Let $n \in \mathbb{N}, n \geq n(G)$. Then there exists a unique $D_{H, n}(T) \subset \widetilde{\Lambda} \otimes T$, a free $\Lambda_{H, n}$-module of rank d, such that:
(i) $D_{H, n}(T)$ is fixed by H, and stable by G;
(ii) $\widetilde{\Lambda} \otimes_{\Lambda_{H, n}} D_{H, n}(T) \xrightarrow{\sim} \widetilde{\Lambda} \otimes T$;
(iii) there exists a basis $\left\{e_{1}, \ldots, e_{d}\right\}$ of $D_{H, n}$ over $\Lambda_{H, n}$ such that if $\gamma \in$ G / H, then $v\left(V_{\gamma}-1\right)>C_{3}, V_{\gamma}$ being the matrix of γ.

Proof. Translation of Proposition 8.2.1, by the correspondence

$$
\widetilde{\Lambda} \text {-representations of } G_{0} \longleftrightarrow H^{1}\left(G_{0}, \mathrm{GL}_{d}(\widetilde{\Lambda})\right)
$$

For the uniqueness, one uses Lemma 8.2.8.
Remark. H_{0} acts through H_{0} / H (which is finite) on $D_{H, n}(T)$. If $\Lambda_{H, n}$ is étale over $\Lambda_{H_{0}, n}$ (the case in applications), and then $D_{H_{0}, n}(T)=D_{H, n}(T)^{\left(H_{0} / H\right)}$, is locally free over $\Lambda_{H_{0}, n}$ (in most cases it is free), and

$$
\Lambda_{H, n} \bigotimes_{\Lambda_{H_{0}, n}} D_{H_{0}, n}(T) \xrightarrow{\sim} D_{H, n}(T) .
$$

Example 8.2.10. For $\widetilde{\Lambda}=\mathbb{C}_{p}$, let V be a \mathbb{Q}_{p}-representation of G_{K} for $\left[K: \mathbb{Q}_{p}\right]<+\infty, T \subset V$ be a stable lattice. Then

$$
D_{S e n, n}(V):=D_{H_{K}, n}(T)
$$

is a K_{n}-vector space of dimension $d=\operatorname{dim}_{\mathbb{Q}_{p}} V$ with a linear action of $\Gamma_{K_{n}}$. Sen's operator is defined as follows:

$$
\Theta_{S e n}=\frac{\log \gamma}{\log \chi(\gamma)}, \text { where } \gamma \in \Gamma_{K_{n}}, \log \chi(\gamma) \neq 0
$$

It is easy to see:
Proposition 8.2.11. V is Hodge-Tate if and only if $\Theta_{\text {Sen }}$ is semi-simple, and the eigenvalues lie in \mathbb{Z}. These eigenvalues are the Hodge-Tate weights of V.

Remark. For general V, the eigenvalues of $\Theta_{\text {Sen }}$ are the generalized HodgeTate weights of V.

8.3 Overconvergent (φ, Γ)-modules

8.3.1 Overconvergent elements

Definition 8.3.1. (i) For $x=\sum_{i=0}^{+\infty} p^{i}\left[x_{i}\right] \in \widetilde{A}, x_{i} \in \widetilde{E}=\operatorname{Fr} R, k \in \mathbb{N}$, define $w_{k}(x):=\inf _{i \leq k} v_{E}\left(x_{i}\right)$ (One checks easily that $w_{k}(x) \geq v_{E}(\alpha), \alpha \in \widetilde{E}$, if and only if $\left.[\alpha] x \in \widetilde{A}^{+}+p^{k+1} \widetilde{A}\right)$.
(ii) For a real number $r>0$, define

$$
v^{(0, r]}(x):=\inf _{k \in \mathbb{N}} w_{k}(x)+\frac{k}{r}=\inf _{k \in \mathbb{N}} v_{E}\left(x_{k}\right)+\frac{k}{r} \in \mathbb{R} \cup\{ \pm \infty\} .
$$

(iii) $\widetilde{A}^{(0, r]}:=\left\{x \in \widetilde{A}: \lim _{k \rightarrow+\infty}\left(v_{E}\left(x_{k}\right)+\frac{k}{r}\right)=\lim _{k \rightarrow+\infty}\left(w_{E}\left(x_{k}\right)+\frac{k}{r}\right)=+\infty\right\}$.

Proposition 8.3.2. $\widetilde{A}^{(0, r]}$ is a ring and $v=v^{(0, r]}$ satisfies the following properties:
(i) $v(x)=+\infty \Leftrightarrow x=0$;
(ii) $v(x y) \geq v(x)+v(y)$;
(iii) $v(x+y) \geq \inf (v(x), v(y))$;
(iv) $v(p x)=v(x)+\frac{1}{r}$;
(v) $v([\alpha] x)=v_{E}(\alpha)+v(x)$ if $\alpha \in \widetilde{E}$;
(vi) $v(g(x))=v(x)$ if $g \in G_{\mathbb{Q}_{p}}$;
(vii) $v^{\left(0, p^{-1} r\right]}(\varphi(x))=p v^{(0, r]}(x)$.

Proof. Exercise.
Lemma 8.3.3. Given $x \in \sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right] \in \widetilde{A}$, the following conditions are equivalent:
(i) $\sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right]$ converges in $B_{d R}^{+}$;
(ii) $\sum_{k=0}^{+\infty} p^{k} x_{k}^{(0)}$ converges in \mathbb{C}_{p};
(iii) $\lim _{k \rightarrow+\infty}\left(k+v_{E}\left(x_{k}\right)\right)=+\infty$;
(iv) $x \in \widetilde{A}^{(0,1]}$.

Proof. (iii) \Leftrightarrow (iv) is by definition of $\widetilde{A}^{(0, r]}$. (ii) \Leftrightarrow (iii) is by definition of v_{E}. (i) \Rightarrow (ii) is by the continuity of $\theta: B_{d R}^{+} \rightarrow \mathbb{C}_{p}$. So it remains to show (ii) \Rightarrow (i).

Write $\widetilde{p}=\left(p, p^{1 / p}, \cdots\right) \in \widetilde{E}^{+}$, then $\xi=[\widetilde{p}]-p$ is a generator of $\operatorname{Ker} \theta \cap \tilde{A}^{+}$. We know

$$
a_{k}=k+\left[v_{E}\left(x_{k}\right)\right] \rightarrow+\infty \text { if } k \rightarrow+\infty .
$$

Write $x_{k}=\widetilde{p}^{k-a_{k}} y_{k}$, then $y_{k} \in \widetilde{E}^{+}$. We have

$$
p^{k}\left[x_{k}\right]=\left(\frac{p}{\widetilde{p}}\right)^{k}[\widetilde{p}]^{a_{k}}\left[y_{k}\right]=p^{a_{k}}\left(1+\frac{\xi}{p}\right)^{a_{k}-k}\left[y_{k}\right] .
$$

Note that $p^{k}\left(1+\frac{\xi}{p}\right)^{a_{k}-k} \in p^{a_{k}-m} \widetilde{A}^{+}+(\operatorname{Ker} \theta)^{m+1}$ for all m. Thus, $a_{k} \rightarrow+\infty$ implies that $p^{k}\left[x_{k}\right] \rightarrow 0 \in B_{d R}^{+} /(\operatorname{Ker} \theta)^{m+1}$ for every m, and therefore also in $B_{d R}^{+}$by the definition of the topology of $B_{d R}^{+}$.
Remark. We just proved $\widetilde{A}^{(0,1]}:=B_{d R}^{+} \cap \widetilde{A}$, and we can use

$$
\varphi^{-n}: \widetilde{A}^{\left(0, p^{-n}\right]} \xrightarrow{\sim} \widetilde{A}^{(0,1]}
$$

to embed $\widetilde{A}^{(0, r]}$ in $B_{d R}^{+}$, for $r \geq p^{-n}$.
Define

$$
\widetilde{A}^{\dagger}:=\bigcup_{r>0} \widetilde{A}^{(0, r]}=\left\{x \in \widetilde{A}: \varphi^{-n}(x) \text { converges in } B_{d R}^{+} \text {for } n \gg 0\right\} .
$$

Lemma 8.3.4. $x \in \sum_{k=0}^{+\infty} p^{k}\left[x_{k}\right]$ is a unit in $\widetilde{A}^{(0, r]}$ if and only if $x_{0} \neq 0$ and $v_{E}\left(\frac{x_{k}}{x_{0}}\right)>-\frac{k}{r}$ for all $k \geq 1$.
Proof. Exercise. Just adapt the proof of Gauss Lemma.
Set

$$
\widetilde{B}^{(0, r]}=\widetilde{A}^{(0, r]}\left[\frac{1}{p}\right]=\bigcup_{n \in \mathbb{N}} p^{-n} \widetilde{A}^{(0, r]}
$$

endowed with the topology of inductive limit, and

$$
\widetilde{B}^{\dagger}=\bigcup_{r>0} \widetilde{B}^{(0, r]}
$$

again with the topology of inductive limit.
Theorem 8.3.5. \widetilde{B}^{\dagger} is a subfield of \widetilde{B}, stable by φ and $G_{\mathbb{Q}_{p}}$, both acting continuously.
\widetilde{B}^{\dagger} is called the field of overconvergent elements. We are going to prove elements of $D(V)^{\psi=1}$ are overconvergent.
Definition 8.3.6. (i) $B^{\dagger}=\widetilde{B}^{\dagger} \cap B, A^{\dagger}=\widetilde{A}^{\dagger} \cap B$ (so B^{\dagger} is a subfield of B stable by φ and $\left.G_{\mathbb{Q}_{p}}\right), A^{(0, r]}=\widetilde{A}^{(0, r]} \cap B$.
(ii) If K / \mathbb{Q}_{p} is a finite extension and $\Lambda \in\left\{\widetilde{A}^{\dagger}, \widetilde{B}^{\dagger}, A^{\dagger}, B^{\dagger}, A^{(0, r]}, B^{(0, r]}\right\}$, define $\Lambda_{K}=\Lambda^{H_{K}}$. For example $A_{K}^{(0, r]}=\widetilde{A}^{(0, r]} \cap A_{K}$.
(iii) If $\Lambda \in\left\{A, B, A^{\dagger}, B^{\dagger}, A^{(0, r]}, B^{(0, r]}\right\}$, and $n \in \mathbb{N}$, define $\Lambda_{K, n}=\varphi^{-n}\left(\Lambda_{K}\right) \subset$ \widetilde{B}.

We now want to make $A_{K}^{(0, r]}$ more concrete. Let $F^{\prime} \subset K_{\infty}$ be the maximal unramified extension of $\mathbb{Q}_{p}, \bar{\pi}_{K}$ be a uniformizer of $E_{K}=k_{F^{\prime}}\left(\left(\bar{\pi}_{K}\right)\right), \bar{P}_{K} \in$ $E_{F^{\prime}}[X]$ be a minimal polynomial of $\bar{\pi}_{K}$. Let $P_{K} \in A_{F^{\prime}}^{+}[X]$ (note that $A_{F^{\prime}}^{+}=$ $\left.\mathcal{O}_{F^{\prime}}[[\pi]]\right)$ be a lifting of \bar{P}_{K}. By Hensel's lemma, there exists a unique $\pi_{K} \in$ A_{K} such that $P_{K}\left(\pi_{K}\right)=0$ and $\bar{\pi}_{K}=\pi_{K} \bmod p$. If $K=F^{\prime}$, we take $\pi_{K}=\pi$.

Lemma 8.3.7. If we define

$$
r_{K}=\left\{\begin{array}{lc}
1, & \text { if } E_{K} / E_{\mathbb{Q}_{p}} \text { is unramified }, \\
\left(2 v_{E}\left(\mathfrak{d}_{E_{K} / E_{\mathbb{Q}_{p}}}\right)\right)^{-1}, & \text { otherwise }
\end{array}\right.
$$

then π_{K} and $P_{K}^{\prime}\left(\pi_{K}\right)$ are units in $A_{K}^{(0, r]}$ for all $0<r<r_{K}$.
Proof. The proof is technical but not difficult and is left to the readers.
Proposition 8.3.8. (i) $A_{K}=\left\{\sum_{n \in \mathbb{N}} a_{n} \pi_{K}^{n}: a_{n} \in \mathcal{O}_{F^{\prime}}, \lim _{n \rightarrow-\infty} v_{p}\left(a_{n}\right)=+\infty\right\}$;
(ii) $A_{K}^{(0, r]}=\left\{\sum_{n \in \mathbb{N}} a_{n} \pi_{K}^{n}: a_{n} \in \mathcal{O}_{F^{\prime}}, \lim _{n \rightarrow-\infty}\left(v_{p}\left(a_{n}\right)+r n v_{E}\left(\bar{\pi}_{K}\right)\right)=+\infty\right\}$.

So $f \mapsto f\left(\pi_{K}\right)$ is an isomorphism from bounded analytic functions on the annulus $0<v_{p}(T) \leq r v_{E}\left(\bar{\pi}_{K}\right)$ to the ring $B_{K}^{(0, r]}$.

Proof. The technical but not difficult proof is again left as an exercise. See Cherbonnier-Colmez Invent. Math. 1998.

Corollary 8.3.9. (i) $A_{K}^{(0, r]}$ is a principal ideal domain;
(ii) If L / K is a finite Galois extension, then $A_{L}^{(0, r]}$ is an étale extension of $A_{K}^{(0, r]}$ if $r<r_{L}$, and the Galois group is nothing but H_{K} / H_{L}.

Define $\widetilde{\pi}_{n}=\varphi^{-n}(\pi), \widetilde{\pi}_{K, n}=\varphi^{-n}\left(\pi_{K, n}\right)$.
Proposition 8.3.10. (i) If $p^{n} r_{K} \geq 1, \theta\left(\widetilde{\pi}_{K, n}\right)$ is a uniformizer of K_{n};
(ii) $\widetilde{\pi}_{K, n} \in K_{n}[[t]] \subset B_{d R}^{+}$.

Proof. First by definition

$$
\widetilde{\pi}_{n}=\left[\varepsilon^{1 / p^{n}}\right]-1=\varepsilon^{(n)} e^{t / p}-1 \in F_{n}[[t]] \subset B_{d R}^{+}
$$

(for $\left[\varepsilon^{1 / p^{n}}\right]=\varepsilon^{(n)} e^{t / p^{n}}$: the θ value of both sides is $\varepsilon^{(n)}$, and the p^{n}-th power of both side is $[\varepsilon]=e^{t}($ recall $\left.t=\log [\varepsilon])\right)$. This implies the proposition in the unramified case.

For the ramified case, we proceed as follows.
By the definition of $E_{K}, \pi_{K, n}=\theta\left(\widetilde{\pi}_{K, n}\right)$ is a uniformizer of $K_{n} \bmod \mathfrak{a}=$ $\left\{x: v_{p}(x) \geq \frac{1}{p}\right\}$. Write ω_{n} be the image of $\pi_{K, n}$ in $K_{n} \bmod \mathfrak{a}$. So we just have to prove $\pi_{K, n} \in K_{n}$.

Write

$$
P_{K}(x)=\sum_{i=0}^{d} a_{i}(\pi) x^{i}, a_{i}(\pi) \in \mathcal{O}_{F^{\prime}}[[\pi]] .
$$

Define

$$
P_{K, n}(x)=\sum_{i=0}^{d} a_{i}^{\varphi^{-n}}\left(\pi_{n}\right) x_{i}
$$

then $P_{K, n}\left(\pi_{K, n}\right)=\theta\left(\varphi\left(P_{K}\left(\pi_{K}\right)\right)\right)=0$. Then we have $v_{p}\left(P_{K, n}\left(\omega_{n}\right)\right) \geq \frac{1}{p}$ and

$$
v_{p}\left(P_{K, n}^{\prime}\left(\omega_{n}\right)\right)=\frac{1}{p^{n}} v_{E}\left(P_{K}^{\prime}\left(\bar{\pi}_{K}\right)\right)=\frac{1}{p^{n}} v_{E}\left(\mathfrak{d}_{E_{K} / E_{\mathbb{Q}_{p}}}\right)<\frac{1}{2 p} \text { if } p^{n} r_{K}>1
$$

Then one concludes by Hensel's Lemma that $\pi_{K, n} \in K_{n}$.
For (ii), one uses Hensel's Lemma in $K_{n}[[t]]$ to conclude $\widetilde{\pi}_{K, n} \in K_{n}[[t]]$.

Corollary 8.3.11. If $0<r<r_{K}$ and $p^{n} r \geq 1, \varphi^{-n}\left(A_{K}^{(0, r]}\right) \subset K_{n}[[t]] \subset B_{d R}^{+}$.

8.3.2 Overconvergent representations

Suppose V is a free \mathbb{Z}_{p} representation of rank d of G_{K}. Let

$$
D^{(0, r]}:=\left(A^{(0, r]} \otimes_{\mathbb{Z}_{p}} V\right)^{H_{K}} \subset D(V) .
$$

This is a $A_{K}^{(0, r]}$-module stable by Γ_{K}. As for φ, we have

$$
\varphi: D^{(0, r]}(V) \longrightarrow D^{\left(0, p^{-1} r\right]}(V)
$$

Definition 8.3.12. V is overconvergent if there exists an $r_{V}>0, r_{V} \leq r_{K}$ such that

$$
A_{K} \bigotimes_{A_{K}^{\left(0, r_{V}\right]}} D^{\left(0, r_{V}\right]}(V) \xrightarrow{\sim} D(V) .
$$

By definition, it is easy to see for all $0<r<r_{V}$,

$$
D^{(0, r]}(V)=A_{K}^{(0, r]} \bigotimes_{A_{K}^{\left(0, r_{V}\right]}} D^{\left(0, r_{V]}\right]}(V)
$$

Proposition 8.3.13. If V is overconvergent, then there exists a C_{V} such that if $\gamma \in \Gamma_{K}, n(\gamma)=v_{p}(\log (\chi(\gamma)))$ and $r<\inf \left\{p^{-1} r_{V}, p^{-n(\gamma)}\right\}$, then $\gamma-1$ is invertible in $D^{(0, r]}(V)^{\psi=0}$ and

$$
v^{(0, r]}\left((\gamma-1)^{-1} x\right) \geq v^{(0, r]}(x)-C_{V}-p^{n(\gamma)} v_{E}(\bar{\pi})
$$

Proof. Write $x=\sum_{i=1}^{p-1}[\varepsilon]^{i} \varphi\left(x_{i}\right)$ and adapt the proof of the same statement as in the characteristic p case. One has to use the fact that $[\varepsilon]^{i p^{n}-1}$ is a unit in $A_{K}^{(0, r]}$ if $r<p^{-n}$ and $i \in \mathbb{Z}_{p}^{*}$.

Remark. This applies to $\left(A_{K}^{(0, r]}\right)^{\psi=0}$.
Theorem 8.3.14 (Main Theorem). (i) All (free \mathbb{Z}_{p} or \mathbb{Q}_{p}) representations of G_{K} are overconvergent.
(ii) $D(V)^{\psi=1} \subset D^{\left(0, r_{V}\right]}(V)$.

Sketch of Proof. (ii) is just because ψ improves convergence.
(i) follows from Sen's method applied to

$$
\widetilde{\Lambda}=\widetilde{A}^{(0,1]}, v=v^{(0,1]}, G_{0}=G_{K}, \Lambda_{H_{K, n}}=\varphi^{-n}\left(A_{K}^{(0,1]}\right)
$$

Now we show how to check the three conditions.
(TS1). Let $L \supset K \supset \mathbb{Q}_{p}$ be finite extensions, for $\alpha=\left[\bar{\pi}_{L}\right]\left(\sum_{\tau \in H_{K} / H_{L}} \tau\left(\left[\bar{\pi}_{L}\right]\right)\right)^{-1}$, then for all n,

$$
\sum_{\tau \in H_{K} / H_{L}} \tau\left(\varphi^{-n}(\alpha)\right)=1
$$

and

$$
\lim _{n \rightarrow+\infty} v^{(0,1]}\left(\varphi^{-n}(\alpha)\right)=0
$$

(TS2). First $\Lambda_{H_{K, n}}=A_{K, n}^{(0,1]}$. Suppose $p^{n} r_{K} \geq 1$. We can define $R_{K, n}$ by the following commutative diagram:

One verifies that $\varphi^{-n} \circ \psi^{n+k} \circ \varphi^{n+k}$ does not depend on the choice of k, using the fact $\psi \varphi=\mathrm{Id}$. Then the proof is entirely parallel to that for \mathbb{C}_{p} with ψ in the role of $p^{-1} \operatorname{Tr}_{F_{n+1} / F_{n}}$ and $\widetilde{\pi}_{n+k}$ in the role of π_{n+k}.
(TS3). For an element x such that $R_{K, n}(x)=0$, write

$$
x=\sum_{i=0}^{+\infty} R_{K, n}^{*}(x), \text { where } R_{K, n}^{*}(x) \in \varphi^{-(n+i+1)}\left(\left(A_{K}^{\left(0, p^{-(n+i+1)}\right]}\right)^{\psi=0}\right)
$$

Then just apply Proposition 8.3.13 on $\left(A_{K}^{\left(0, p^{-(n+i+1)}\right]}\right)^{\psi=0}$.
Now Sen's method implies that there exists an n and a $A_{K, n}^{(0,1]}$-module $D_{K, n}^{(0,1]} \subset \widetilde{A}^{(0,1]} \otimes V$ such that

$$
\widetilde{A}^{(0,1]} \otimes_{A_{K, n}^{(0,1]}} D_{K, n}^{(0,1]} \xrightarrow{\sim} \widetilde{A}^{(0,1]} \otimes V .
$$

Play with (TS3) just like Lemma 8.2.8, one concludes that $D_{K, n}^{(0,1]} \subset \varphi^{-n}(D(V))$ and $\varphi^{n}\left(D_{K, n}^{(0,1]}\right) \subset D^{\left(0, p^{-n}\right.}(V)$. We can just take $r_{V}=n$.

8.3.3 p-adic Hodge theory and (φ, Γ)-modules

Suppose we are given a representation $V, 0<r<r_{V}$ and n such that $p^{n} r>1$. Then we have

$$
\varphi^{-n}\left(D^{(0, r]}(V)\right) \hookrightarrow B_{d R}^{+} \otimes V \xrightarrow{\theta} \mathbb{C}_{p} \otimes V
$$

and

$$
\varphi^{-n}\left(A_{K}^{(0, r]}\right) \hookrightarrow K_{n}[[t]] \xrightarrow{\theta} K_{n} .
$$

So we get the maps

$$
\begin{equation*}
\theta \circ \varphi^{-n}: K_{n} \otimes_{A_{K}^{(0,1]}} D^{(0, r]}(V) \longrightarrow \mathbb{C}_{p} \otimes V \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{-n}: t^{i} K_{n}[[t]] \otimes_{A_{K}^{(0, r]}} D^{(0, r]}(V) \longrightarrow t^{i} B_{d R}^{+} \otimes V, \forall i \in \mathbb{Z} . \tag{8.2}
\end{equation*}
$$

Theorem 8.3.15. There exists an $n(V) \in \mathbb{N}$ such that if $n \geq n(V)$, then we have
(i) the image of $\theta \circ \varphi^{-n}$ in (8.1) is exactly $D_{\text {Sen,n }}(V)$;
(ii) $\mathrm{Fil}^{i} D_{d R}(V)=\left(\operatorname{Im} \varphi^{-n}\right)^{\Gamma_{K}}$ in (8.2) for all i;
(iii) $D_{d R}(V)=\left(K_{n}((t)) \bigotimes_{A_{K}^{(0, r]}} D^{(0, r]}(V)\right)^{\Gamma_{K}}$.

Let K / \mathbb{Q}_{p} be a finite extension, and define
$B_{K}^{\dagger}=\left\{F\left(\pi_{K}\right): F\right.$ is a bounded analytic function on $\left.0<v_{p}(t) \leq r(F), r(F)>0\right\}$,
$B_{\text {rig }, K}^{\dagger}=\left\{F\left(\pi_{K}\right): F\right.$ is an analytic function on $\left.0<v_{p}(t) \leq r(F), r(F)>0\right\}$
(this last ring is the Robba ring in the variable π_{K}), and

$$
B_{\log , K}^{\dagger}=B_{\mathrm{rig}, K}^{\dagger}\left[\log \pi_{K}\right] .
$$

Extend φ, Γ_{K} by continuity on $B_{\mathrm{rig}, K}^{\dagger}$, and set

$$
\begin{aligned}
& \varphi\left(\log \pi_{K}\right)=p \log \pi_{K}+\log \frac{\varphi\left(\pi_{K}\right)}{\pi_{K}^{p}} \\
& \gamma\left(\log \pi_{K}\right)=\log \pi_{K}+\log \frac{\gamma\left(\pi_{K}\right)}{\pi_{K}}
\end{aligned}
$$

where $\log \frac{\varphi\left(\pi_{K}\right)}{\pi_{K}^{p}} \in B_{K}^{\dagger}$ and $\log \frac{\gamma\left(\pi_{K}\right)}{\pi_{K}} \in B_{\mathrm{rig}, K}^{\dagger}$. Let

$$
N=-\frac{1}{v_{E}\left(\bar{\pi}_{K}\right)} \cdot \frac{d}{d \log \pi_{K}} .
$$

Theorem 8.3.16 (Berger). For

$$
D^{\dagger}(V)=\left(B^{\dagger} \otimes V\right)^{H_{K}}=\bigcup_{r>0} D^{(0, r]}(V),
$$

if V is semi-stable, then

$$
B_{\log , K}^{\dagger}\left[\frac{1}{t}\right] \otimes_{K_{0}} D_{s t}(V)=B_{\log , K}^{\dagger}\left[\frac{1}{t}\right] \otimes_{B_{K}^{\dagger}} D^{\dagger}(V)
$$

is an isomorphism of $\left(\varphi, N, \Gamma_{K}\right)$-modules. This implies that $D_{s t}(V)$ is the invariant under Γ_{K}.

8.3.4 A map of the land of the rings

The following nice picture outlines most of the objects that we have discussed till now and that we shall have to discover more about in the future.

where

$$
\tilde{B}_{\mathrm{rig}}^{+}=\bigcap_{n} \varphi^{n}\left(B_{c r i s}^{+}\right), \quad \tilde{B}_{\mathrm{log}}^{+}=\bigcap_{n} \varphi^{n}\left(B_{s t}^{+}\right) .
$$

Note that most arrows from (φ, Γ)-modules to p-adic Hodge theory are in the wrong direction, but overconvergence and Berger's theorem allow us to go backwards.

8.4 Explicit reciprocity laws and p-adic L-functions

8.4.1 Galois cohomology of $B_{d R}$

Suppose K is a finite extension of \mathbb{Q}_{p}. Recall that we have the following:
Proposition 8.4.1. For $k \in \mathbb{Z}$, then
(i) if $k \neq 0$, then $H^{i}\left(G_{K}, \mathbb{C}_{p}(k)\right)=0$ for all i
(ii) if $k=0$, then $H^{i}\left(G_{K}, \mathbb{C}_{p}\right)=0$ for $i \geq 2, H^{0}\left(G_{K}, \mathbb{C}_{p}\right)=K$, and $H^{1}\left(G_{K}, \mathbb{C}_{p}\right)$ is a 1-dimensional K-vector space generated by $\log \chi \in$ $H^{1}\left(G_{K}, \mathbb{Q}_{p}\right)$. (i.e, the cup product $x \mapsto x \cup \log \chi$ gives an isomorphism $\left.H^{0}\left(G_{K}, \mathbb{C}_{p}\right) \simeq H^{1}\left(G_{K}, \mathbb{C}_{p}\right)\right)$.

Remark. This has been proved for $i \leq 1$. For $i \geq 2, H^{i}\left(H_{K}, \mathbb{C}_{p}(k)\right)=0$ by using the same method as for H^{1}. Then just use the exact sequence

$$
1 \longrightarrow H_{K} \longrightarrow G_{K} \longrightarrow \Gamma_{K} \longrightarrow 1
$$

and Hochschild-Serre spectral sequence to conclude.
Proposition 8.4.2. Suppose $i<j \in \mathbb{Z} \cup\{ \pm \infty\}$, then if $i \geq 1$ or $j \leq 0$,

$$
H^{1}\left(G_{K}, t^{i} B_{d R}^{+} / t^{j} B_{d R}^{+}\right)=0 ;
$$

if $i \leq 0$ and $j>0$, then $x \mapsto x \cup \log \chi$ gives an isomorphism

$$
H^{0}\left(G_{K}, t^{i} B_{d R}^{+} / t^{j} B_{d R}^{+}\right)(\simeq K) \xrightarrow{\simeq} H^{1}\left(G_{K}, t^{i} B_{d R}^{+} / t^{j} B_{d R}^{+}\right) .
$$

Proof. Use the long exact sequence in continuous cohomology attached to the exact sequence

$$
0 \longrightarrow t^{i+n} \mathbb{C}_{p}\left(\simeq \mathbb{C}_{p}(i+n)\right) \longrightarrow t^{i} B_{d R}^{+} / t^{n+i+1} B_{d R}^{+} \longrightarrow t^{i} B_{d R}^{+} / t^{i+n} B_{d R}^{+} \longrightarrow 0,
$$

and use induction on $j-i$ (note that in the base step $j=i+1, t^{i} B_{d R}^{+} / t^{j} B_{d R}^{+} \cong$ $\mathbb{C}_{p}(i)$), and Proposition 8.4.1 to do the computation. This concludes for the case where i, j are finite. For the general case, one proves it by taking limits.

8.4.2 Bloch-Kato's dual exponential maps

Let V be a de Rham representation of G_{K}, we have

$$
B_{d R} \otimes_{\mathbb{Q}_{p}} V \cong B_{d R} \otimes_{K} D_{d R}(V)=H^{0}\left(G_{K}, B_{d R} \otimes V\right)
$$

and
$H^{1}\left(G_{K}, B_{d R} \otimes V\right)=H^{1}\left(G_{K}, B_{d R} \otimes_{K} D_{d R}(V)\right)=H^{1}\left(G_{K}, B_{d R}\right) \otimes_{K} D_{d R}(V)$.
So we get an isomorphism

$$
D_{d R}(V) \xrightarrow{\sim} H^{1}\left(G_{K}, B_{d R} \otimes V\right) ; \quad x \mapsto x \cup \log \chi .
$$

Definition 8.4.3. The exponential map exp* is defined through the commutative diagram:

Proposition 8.4.4. (i) The image of exp* lies in $\mathrm{Fil}^{0} D_{d R}(V)$.
(ii) For $c \in H^{1}\left(G_{K}, V\right)$, $\exp ^{*}(c)=0$ if and only if the extension E_{c}

$$
0 \longrightarrow V \longrightarrow E_{c} \longrightarrow \mathbb{Q}_{p} \longrightarrow 0
$$

is de Rham as a representation of G_{K}.
Proof. (ii) is just by the definition of de Rham. For (i), $c \in H^{1}\left(G_{K}, V\right)$ implies $c=0 \in H^{1}\left(G_{K},\left(B_{d R} / B_{d R}^{+}\right) \otimes V\right)$. But $x \mapsto x \cup \log \chi$ gives an isomorphism
$\left.D_{d R}(V) / \operatorname{Fil}^{0}\left(D_{d R}(V)\right)\left(=H^{0}\left(G_{K},\left(B_{d R} / B_{d R}^{+}\right) \otimes V\right)\right) \longrightarrow H^{1}\left(G_{K},\left(B_{d R} / B_{d R}^{+}\right) \otimes V\right)\right)$.
So $\exp ^{*}(c)=0\left(\bmod \mathrm{Fil}^{0}\right)$
Remark. exp* * is a very useful tool to prove the non-triviality of cohomology classes.

Now suppose $k \in \mathbb{Z}, L$ is a finite extension of K. Then $V(k)$ is still de Rham as a representation of G_{L}. Define

$$
D_{d R, L}(V(k)):=H^{0}\left(G_{L}, B_{d R} \otimes V(k)\right)=t^{-k} L \otimes_{K} D_{d R}(V)
$$

by an easy computation. Thus,

$$
\operatorname{Fil}^{0}\left(D_{d R, L}(V(k))\right)=t^{-k} \otimes_{K} \operatorname{Fil}^{k} D_{d R}(V)
$$

and this is 0 if $k \gg 0$. So for every $k \in \mathbb{Z}$, for L / K finite,

$$
\exp ^{*}: H^{1}\left(G_{L}, V(k)\right) \longrightarrow t^{-k} L \otimes_{K} D_{d R}(V)
$$

is identically 0 for $k \gg 0$.

8.4.3 The explicit reciprocity law

Recall that

$$
H_{\mathrm{Iw}}^{1}(K, V) \xrightarrow{\sim} H^{1}\left(G_{K}, \mathbb{Z}_{p}\left[\left[\Gamma_{K}\right]\right] \otimes V\right)=H^{1}\left(G_{K}, \mathcal{D}_{0}\left(\Gamma_{K}, V\right)\right) .
$$

If $\eta: \Gamma_{K} \rightarrow \mathbb{Q}_{p}^{*}$ is a continuous character, for $n \in \mathbb{N}$,

$$
\mu \in H^{1}\left(G_{K}, \mathcal{D}_{0}\left(\Gamma_{K}, V\right)\right) \longmapsto \int_{\Gamma_{K_{n}}} \eta \mu \in H^{1}\left(G_{K_{n}}, V \otimes \eta\right)
$$

where we write $V \otimes \eta$, not as $V(\eta)$ to distinguish from $V(k)=V \otimes \chi^{k}$. Then

$$
\exp ^{*}\left(\int_{\Gamma_{K_{n}}} \chi^{k} \mu\right) \in t^{-k} K_{n} \otimes_{K} D_{d R}(V)
$$

and is 0 if $k \gg 0$.
Recall also that we have the isomorphism $\operatorname{Exp}^{*}: H^{1}(K, V) \xrightarrow{\sim} D(V)^{\psi=1}$, that $D(V)^{\psi=1} \subset D^{\left(0, r_{V}\right]}(V)$ and that there exists $n(V)$ such that

$$
\varphi^{-n}\left(D^{\left(0, r_{V}\right]}(V)\right) \subset K_{n}((t)) \otimes_{K} D_{d R}(V), \text { for all } n \geq n(V)
$$

Now denote by
$\operatorname{Tr}_{K_{n+k} / K_{n}}=\operatorname{Tr}_{K_{n+k}((t)) / K_{n}((t))} \otimes \operatorname{Id}: K_{n+k}((t)) \otimes D_{d R}(V) \rightarrow K_{n}((t)) \otimes D_{d R}(V)$.
Theorem 8.4.5 (Explicit Reciprocity Law). Let V be a de Rham representation of G_{K} and $\mu \in H_{\mathrm{Iw}}^{1}(K, V)$.
(i) If $n \geq n(V)$, then

$$
p^{-n} \varphi^{-n}\left(\operatorname{Exp}^{*}(\mu)\right)=\sum_{k \in \mathbb{Z}} \exp ^{*}\left(\int_{\Gamma_{K_{n}}} \chi^{k} \mu\right)
$$

(ii) For $n \in \mathbb{N}, n+i \geq n(V)$, then

$$
\operatorname{Exp}_{K_{n}}^{*}(\mu):=\operatorname{Tr}_{K_{n+i} / K_{n}}\left(p^{-(n+i)} \varphi^{-(n+i)}\left(\operatorname{Exp}^{*}(\mu)\right)\right)
$$

does not depend on i, and $\operatorname{Exp}_{K_{n}}(\mu)=\sum_{k \in \mathbb{Z}} \exp ^{*}\left(\int_{\Gamma_{K_{n}}} \chi^{k} \mu\right)$.

Proof. (ii) follows from (i) and from the commutative diagram:

$$
\begin{array}{ll}
H^{1}\left(G_{L_{2}, V}\right) & \xrightarrow{\exp ^{*}} L_{2} \otimes_{K} D_{d R}(V) \\
\quad \text { cor } \downarrow & \quad \downarrow^{\operatorname{Tr}_{L_{2} / L_{1}} \otimes_{K} \mathrm{Id}} \\
H^{1}\left(G_{L_{1}, V}\right) \xrightarrow{\exp ^{*}} L_{1} \otimes_{K} D_{d R}(V)
\end{array}
$$

where $L_{1} \subset L_{2}$ are two finite extensions of K.
For (i), suppose $y=\operatorname{Exp}^{*}(\mu), x \in D(V)$, and $x(k)$ is the image of x in $D(V(k))=D(V)(k)$ (Thus, $\varphi(x(k))=\varphi(x)(k)$ and $\left.\gamma(x(k))=\chi(\gamma)^{k} \gamma(x)(k)\right)$.

The integral $\int_{\Gamma_{K_{n}}} \chi^{k} \mu$ is represented by the cocycle:

$$
g \mapsto c_{g}=\frac{\log \chi\left(\gamma_{n}\right)}{p^{n}} \cdot\left(\frac{g-1}{\gamma_{n}-1} y(k)-(g-1) b\right)
$$

where $b \in A \otimes V$ is the solution of

$$
(\varphi-1) b=\left(\gamma_{n}-1\right)^{-1}((\varphi-1)(y)(k)) .
$$

From $y \in D^{\left(0, r_{V}\right]}(V)^{\psi=1}$ one gets

$$
(\varphi-1) y \in D^{\left(0, p^{-1} r_{V}\right]}(V)^{\psi=0}
$$

and then

$$
\left(\gamma_{n}-1\right)^{-1}(\varphi-1) y \in D^{\left(0, p^{-n}\right]}(V)^{\psi=0} .
$$

Thus $b \in A^{\left(0, p^{1-n}\right]} \otimes V$. This implies that $\varphi^{-n}(b)$ and $\varphi^{-n}(y)$ both converge in $B_{d R}^{+} \otimes V$. Then $c_{g}=\varphi^{-n}\left(c_{g}\right)$ differs from

$$
c_{g}^{\prime}=\frac{\log \chi\left(\gamma_{n}\right)}{p^{n}} \cdot \frac{g-1}{\gamma_{n}-1} \cdot \varphi^{-n}(y)(k)
$$

by the coboundary $(g-1)\left(\varphi^{-n}(b)\right)$. Therefore, they have the same image in $H^{1}\left(G_{K_{n}} B_{d R}^{+} \otimes V(k)\right)$. Write

$$
p^{-n} \varphi^{-n}(y)=\sum_{i \geq i_{0}} y_{i} t^{i}, \quad y_{i} \in K_{n} \otimes_{K} D_{d R}(V)
$$

then

$$
\begin{aligned}
c_{g}^{\prime} & =\log \chi(g) y_{-k} t^{-k}+\sum_{i \neq-k} \frac{\chi(g)^{i+k}-1}{\chi\left(\gamma_{n}\right)^{i+k}-1} \cdot y_{i} t^{i} \\
& =\log \chi(g) y_{-k} t^{-k}+(g-1) \sum_{i \neq-k} \frac{y_{i} t^{i}}{\left(\chi\left(\gamma_{n}\right)^{i+k}-1\right)} .
\end{aligned}
$$

So we get $\exp ^{*}\left(\int_{\Gamma_{K_{n}}} \chi^{k} \mu\right)=y_{-k} t^{-k}$.

8.4.4 Cyclotomic elements and Coates-Wiles morphisms.

Let $K=\mathbb{Q}_{p}, V=\mathbb{Q}_{p}(1), u=\left(\frac{\pi_{n}}{1+\pi_{n}}\right)_{n \geq 1} \in \lim _{\rightleftarrows} \mathcal{O}_{F_{n}}, \kappa(u) \in H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Q}_{p}(1)\right)$, the Coleman power series $f_{u}=\frac{T}{1+T}$. Then we have

$$
\operatorname{Exp}^{*}(\kappa(u))=(1+T) \frac{d f_{u}}{d T}(\pi)=\frac{1}{\pi}
$$

Note that

$$
\varphi^{-1}(\pi)^{-1}=\left(\left[\varepsilon^{1 / p}\right]-1\right)^{-1}=\frac{1}{\left(1+\pi_{1}\right) e^{t / p}-1},
$$

then

$$
\begin{aligned}
\operatorname{Exp}^{*} \mathbb{Q}_{p}(\kappa(u)) & =\frac{1}{p} \operatorname{Tr}_{\mathbb{Q}_{p}\left(\pi_{1}\right) / \mathbb{Q}_{p}} \varphi^{-1}(\pi)^{-1}=\frac{1}{p} \sum_{z^{p}=1, z \neq 1} \frac{1}{e^{t / p}-1} \\
& =\frac{1}{e^{t}-1}-\frac{1}{p} \cdot \frac{1}{e^{t / p}-1}=\frac{1}{t} \cdot\left(\frac{t}{e^{t}-1}-\frac{t / p}{e^{t / p}-1}\right) \\
& =\sum_{n=1}^{+\infty}\left(1-p^{-n}\right) \zeta(1-n) \frac{(-t)^{n-1}}{(n-1)!} .
\end{aligned}
$$

So

$$
\exp ^{*}\left(\int_{\Gamma_{\mathbb{Q}_{p}}} \chi^{k} \kappa(\mu)\right)= \begin{cases}0, & \text { if } k \geq 0 \\ \left(1-p^{k}\right) \zeta(1+k) \frac{(-t))^{-k-1}}{(-k-1)!}, & \text { if } k \leq-1\end{cases}
$$

Remark. (i) The map

$$
\lim _{\rightleftarrows} \mathcal{O}_{F_{n}}-\{0\} \longrightarrow H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, \mathbb{Q}_{p}(1)\right) \longrightarrow \mathbb{Q}_{p}, \quad u \mapsto t^{k+1} \exp ^{*}\left(\int_{\Gamma_{\mathbb{Q}_{p}}} \chi^{k} \kappa(u)\right)
$$

is the Coates-Wiles homomorphism.
(ii) Since $\zeta(1+k) \neq 0$ if $k \leq-1$ is even, the above formula implies that the extensions of \mathbb{Q}_{p} by $\mathbb{Q}_{p}(k+1)$ constructed via cyclotomic elements are non-trivial and are even not de Rham.
(iii) $\operatorname{dim}_{\mathbb{Q}_{p}} H^{1}\left(G_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}(k)\right)=1$ if $k \neq 0,1$.

Corollary 8.4.6. Non-trivial extensions of \mathbb{Q}_{p} by $\mathbb{Q}_{p}(k)$ are not de Rham if $k \leq 0$ is odd.

Exercise. (i) Prove that this is also true for $k \leq-1$ even by taking a general element of $D\left(\mathbb{Q}_{p}(1)\right)^{\psi=1}$.
(ii) For $\left[K: \mathbb{Q}_{p}\right]<\infty$, prove the same statement.

8.4.5 Kato's elements and p-adic L-functions of modular forms.

Now we come to see the relations with modular forms. Suppose

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}(N), k \geq 2
$$

is primitive. So $\mathbb{Q}(f)=\mathbb{Q}\left(a_{1}, \cdots, a_{n}, \cdots\right)$ is a finite extension of \mathbb{Q}, and $\mathbb{Q}_{p}(f)=\mathbb{Q}_{p}\left(a_{1}, \ldots, a_{n}, \ldots\right)$ is a finite extension of \mathbb{Q}_{p}.

Theorem 8.4.7 (Deligne). There exists a representation V_{f} of $G_{\mathbb{Q}}$ of dimension 2 over $\mathbb{Q}_{p}(f)$, non-ramified outside $N p$, such that if $\ell \nmid N p$, for φ_{ℓ} the arithmetic Frobenius at $\ell\left(\varphi_{\ell}\left(e^{\frac{2 \pi i}{p^{n}}}\right)=e^{\frac{2 \pi i \ell}{p^{n}}}\right)$, then

$$
\operatorname{det}\left(1-X \varphi_{\ell}^{-1}\right)=1-a_{\ell} X+\ell^{k-1} X^{2}
$$

Remark. A $\mathbb{Q}_{p}(f)$-representation V of dimension d is equivalent to a \mathbb{Q}_{p} representation of dimension $d \cdot\left[\mathbb{Q}_{p}(f): \mathbb{Q}_{p}\right]$ endowed with a homomorphism $\mathbb{Q}_{p}(f) \hookrightarrow \operatorname{End}(V)$ commuting with $G_{\mathbb{Q}}$. Therefore, $D_{\text {cris }}(V), D_{s t}(V), D_{d R}(V)$ are all $\mathbb{Q}_{p}(f)$-vector spaces.

Theorem 8.4.8 (Faltings-Tsuji-Saito). (i) V_{f} is a de Rham representation of $G_{\mathbb{Q}_{p}}$ with Hodge-Tate weights 0 and $1-k$, the 2 -dimensional $\mathbb{Q}_{p}(f)$ vector space $D_{d R}\left(V_{f}\right)$ contains naturally f, and

$$
D_{d R}^{0}\left(V_{f}\right)=D_{d R}\left(V_{f}\right), D_{d R}^{k}\left(V_{f}\right)=0, D_{d R}^{i}\left(V_{f}\right)=\mathbb{Q}_{p}(f) f \text { if } 1 \leq i \leq k-1
$$

(ii) If $p \nmid N$, then V_{f} is crystalline and

$$
\operatorname{det}(X-\varphi)=X^{2}-a_{p} X+p^{k-1}
$$

If $p \mid N$ but $a_{p} \neq 0$, then V_{f} is semi-stable but not crystalline and a_{p} is the eigenvalue of φ on $D_{\text {cris }}(V)$; if $a_{p}=0$, then V_{f} is potentially crystalline.
Remark. If V is a representation of $G_{K}, \mu \in H_{\mathrm{Iw}}^{1}(K, V)$,

$$
\int_{\Gamma_{K_{n}}} \chi^{k} \mu \in H^{1}\left(G_{K_{n}}, V(k)\right)
$$

then this is also true for $\int_{a \Gamma_{K_{n}}} \chi^{k} \mu$ for all $a \in \Gamma_{K}$ and for $\int_{\Gamma_{K}} \phi(x) \chi^{k} \mu$, with $\phi: \Gamma_{K} \rightarrow \mathbb{Z}_{p}$ being constant modulo $\Gamma_{K_{n}}$.

Theorem 8.4.9 (Kato). There exists a unique element $z_{\text {Kato }} \in H_{\mathrm{Iw}}^{1}\left(\mathbb{Q}_{p}, V_{f}\right)$ (obtained by global methods using Siegel units on modular curves), such that if $0 \leq j \leq k-2$, ϕ is locally constant on $\mathbb{Z}_{p}^{*} \cong \Gamma_{\mathbb{Q}_{p}}$ with values in $\mathbb{Q}(f)$, then

$$
\exp ^{*}\left(\int_{\mathbb{Z} *_{p}} \phi(x) x^{k-1-j} \cdot z_{\text {Kato }}\right)=\frac{1}{j!} \widetilde{\Lambda}(f, \phi, j+1) \cdot \frac{f}{t^{k-1-j}}
$$

where

$$
\widetilde{\Lambda}(f, \phi, j+1) \in \mathbb{Q}\left(f, \mu_{p^{n}}\right), \quad \frac{f}{t^{k-1-j}} \in \operatorname{Fil}^{0}\left(D_{d R}\left(V_{f}(k-1-j)\right)\right)
$$

Our goal is to recover $L_{p, \alpha}(f, s)$ from $z_{\text {Kato }}$ (recall $L_{p, \alpha}$ is obtained from $\mu_{f, \alpha} \in \mathcal{D}_{v_{p}(\alpha)}\left(\mathbb{Z}_{p}\right)$ before $)$. We have $\operatorname{Exp}^{*}\left(z_{\text {Kato }}\right) \in D\left(V_{f}\right)^{\psi=1}$, but the question is how to relate this to $D_{\text {cris }}\left(V_{f}\right), D_{s t}\left(V_{f}\right)$.

If $p \mid N$, let α be a root of $X^{2}-a_{p} X+p^{k-1}$ with $v_{p}(\alpha)<k-1$; if $p \nmid N$, let $\alpha=a_{p} \neq 0$ (in this case $p \alpha^{2}=p^{k-1}$). In both cases, take $\beta=p^{k-1} \alpha^{-1}$. Thus, α, β are eigenvalues of φ on $D_{s t}\left(V_{f}\right)$.

Assume $\alpha \neq \beta$ (which should be the case for modular forms by a conjecture). Define $\Pi_{\beta}=\frac{\varphi-\alpha}{\beta-\alpha}$ to be the projection on the β-eigenspace in $D_{s t}\left(V_{f}\right)$ and extend it by $B_{\log , K}^{\dagger}$-linearity to

$$
B_{\log , K}^{\dagger}\left[\frac{1}{t}\right] \otimes_{K_{0}} D_{s t}\left(V_{f}\right) \longrightarrow B_{\log , K}^{\dagger} \otimes_{B_{K}^{\dagger}} D^{\dagger}\left(V_{f}\right)
$$

Theorem 8.4.10. (i) $\Pi_{\beta}(f) \neq 0$;

$$
\begin{equation*}
\Pi_{\beta}\left(\operatorname{Exp}^{*}\left(z_{\text {Kato }}\right)\right)=\left(\int_{\mathbb{Z}_{p}}[\varepsilon]^{x} \mu_{f, \alpha}\right) \frac{\Pi_{\beta}(f)}{t^{k-1}} . \tag{ii}
\end{equation*}
$$

Remark. $\mu_{f, \alpha}$ exists up to now only in the semi-stable case, but $z_{\text {Kato }}$ exists all the time. So a big question is:

How to use it for p-adic L-function?

