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These are notes from a course given at Tsinghua University during the
fall of 2004. The aim of the course was to explain how to construct p-adic L-
functions using the theory of (ϕ,Γ)-modules of Fontaine. This construction
is an adaptation of an idea of Perrin-Riou. The content of the course is
well reflected in the table of contents which is almost the only thing that I
modified from the notes taken and typed by the students Wang Shanwen,
Chen Miaofen, Hu Yongquan, Yin Gang, Li Yan and Hu Yong, under the
supervision of Ouyang Yi, all of whom I thank heartily. The course runs in
parallel to a course given by Fontaine in which the theory of (ϕ,Γ)-modules
was explained as well as some topics from p-adic Hodge theory which are used
freely in these notes, which means that they are not entirely self-contained.
Also, as time runs short at the end, the last chapter is more a survey than a
course. For a bibliography and further reading, the reader is referred to my
Bourbaki talk of June 2003 published in Astérisque 294.
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Classical p-adic L-functions:
zeta functions and modular

forms
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Chapter 1

The p-adic zeta function of
Kubota-Leopoldt

1.1 The Riemann zeta function at negative

integers

We first recall the definitions of Riemann zeta function and the classical
Gamma function:

ζ(s) =
+∞∑
n=1

n−s =
∏
p

(1− p−s)−1, if Re (s) > 1.

Γ(s) =

∫ +∞

0

e−tts
dt

t
, if Re (s) > 0.

The Γ-function has the following properties:

(i) Γ(s+1) = sΓ(s), which implies that Γ has a meromorphic continuation
to C with simple poles at negative integers and 0.

(ii) Γ(n) = (n− 1)! if n ≥ 1.

(iii) Γ(s)Γ(1 − s) = π
sin(πs)

, which implies that 1
Γ(s)

is an entire(or holo-

morphic) function on C with simple zeros at −n for n ∈ N.

(iv) Γ(1
2
) =
√
π.

3



4CHAPTER 1. THE P -ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

Then we have the following formulas:

n−s =
1

Γ(s)

∫ +∞

0

e−ntts
dt

t
,

ζ(s) =
1

Γ(s)

∫ +∞

0

+∞∑
n=1

e−ntts
dt

t
=

1

Γ(s)

∫ +∞

0

1

et − 1
ts
dt

t
.

Lemma 1.1.1. If f : R+ → C is a C∞-function on R+, rapidly decreasing
(i.e., tnf(t)→ 0 when t→ +∞ for all n ∈ N), then

L(f, s) =
1

Γ(s)

∫ +∞

0

f(t)ts
dt

t
, Re(s) > 0

has an analytic continuation to C, and

L(f,−n) = (−1)nf (n)(0).

Proof. Choose a C∞-function φ on R+, such that φ(t) = 1 for t ∈ [0, 1] and
φ(t) = 0 for t ≥ 2.

Let f = f1 + f2, where f1 = φf , f2 = (1 − φ)f . Then
∫∞

0
f2(t)t

s dt
t

is
holomorphic on C, hence L(f2, s) is also holomorphic and L(f2,−n) = 0 =

f
(−n)
2 (0). Since, for Re (s) > 0,

L(f1, s) =
1

Γ(s)
[f1(t)

ts

s
]|+∞0 − 1

sΓ(s)

∫ +∞

0

f ′1(t)t
s+1dt

t

= −L(f ′1(t), s+ 1) = (−1)nL(f
(n)
1 , s+ n),

we get analytic continuation for f1 and hence for f , moreover,

L(f,−n) = L(f1,−n) = (−1)n+1L(f
(n+1)
1 , 1)

= (−1)n+1

∫ +∞

0

f
(n+1)
1 (t)dt = (−1)nf

(n)
1 (0) = (−1)nf (n)(0).

We now apply the above lemma to the function f(t) = t
et−1

. Note that

f(t) =
∞∑
0

Bn
tn

n!
,
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where Bn ∈ Q is the n-th Bernoulli number with value:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0 · · ·

Since f(t)− f(−t) = −t, we have B2k+1 = 0 if k ≥ 1. Now :

ζ(s) =
1

Γ(s)

∫ +∞

0

f(t)ts−1dt

t
=

1

s− 1
L(f, s− 1),

so we obtain the following result.

Theorem 1.1.2. (i) ζ has a meromorphic continuation to C. It is holomor-
phic except for a simple pole at s = 1 with residue L(f, 0) = B0 = 1.

(ii) If n ∈ N, then

ζ(−n) =
−1

n+ 1
L(f,−n− 1) =

(−1)n

n+ 1
f (n+1)(0)

= (−1)n
Bn+1

n+ 1
∈ Q(

= −Bn+1

n+ 1
if n ≥ 2

)
.

Theorem 1.1.3 (Kummer). If p does not divide the numerators of ζ(−3),
ζ(−5), · · · , ζ(2− p), then the class number of Q(up) is prime to p.

Remark. This theorem and a lot of extra work implies Fermat’s Last The-
orem for these regular primes. We will not prove it in these notes, but we
will focus on the following result, also discovered by Kummer, which plays
an important role in the proof.

Theorem 1.1.4 (Kummer’s congruences). Let a ≥ 2 be prime to p. Let
k ≥ 1. If n1, n2 ≥ k such that n1 ≡ n2 mod (p− 1)pk−1, then

(1− a1+n1)ζ(−n1) ≡ (1− a1+n2)ζ(−n2) mod pk.

1.2 p-adic Banach spaces

Definition 1.2.1. A p-adic Banach space B is a Qp-vector space with a
lattice B0(Zp-module) separated and complete for the p-adic topology, i.e.,

B0 ' lim←−
n∈N

B0/pnB0.



6CHAPTER 1. THE P -ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

For all x ∈ B, there exists n ∈ Z, such that x ∈ pnB0. Define

vB(x) = sup
n∈N∪{+∞}

{n : x ∈ pnB0}.

It satisfies the following properties:

vB(x+ y) ≥ min(vB(x), vB(y)),

vB(λx) = vp(λ) + vB(x), if λ ∈ Qp.

Then ‖ x ‖B= p−vB(x) defines a norm on B, such that B is complete for ‖‖B
and B0 is the unit ball.

Example 1.2.2. (i) B = Cp = Q̂p, B
0 = OCp , vB(x) = [vp(x)] ∈ Z;

(ii) The space B = C0(Zp,Qp) of continuous functions on Zp. B0 =
C0(Zp,Zp) is a lattice, and vB(f) = inf

x∈Z
vp(f(x)) 6= −∞ because Zp is com-

pact.
(iii) Let B = C0(Zp,Cp), B

0 = C0(Zp,OCp); vB(f) = inf
x∈Z

[vp(f(x))].

Definition 1.2.3. A Banach basis of a p-adic Banach space B is a family
(ei)i∈I of elements of B, satisfying the following conditions:

(i) For every x ∈ B, x =
∑
i∈I
xiei, xi ∈ Qp in a unique way with xi → 0

when i→∞; equivalently for any C, the set {i | vp(xi) ≤ C} is a finite set.
(ii) vB(x) = inf

i∈I
vp(xi).

Theorem 1.2.4. A family (ei)i∈I of elements of B is a Banach basis if and
only if

(i) ei ∈ B0 for all i;
(ii) the set (ēi)i∈I form a basis of B0/pB0 as a Fp-vector space.

Proof. We leave the proof of the theorem as an exercise.

Let B and B′ be two p-adic Banach spaces with Banach basis (ei)i∈I and

(fj)j∈J respectively, then B
⊗̂
B′ is a p-adic Banach space with Banach basis

(ei ⊗ fj)(i,j)∈I×J . Thus for all x ∈ B
⊗̂
B′,

x =
∑
i,j

xi,jei ⊗ fj (xi,j ∈ Qp, xi,j → 0 as (i, j)→∞)

=
∑
j

yj ⊗ fj (yj ∈ B, yj → 0 as j →∞)

=
∑
i

ei ⊗ zi (zi ∈ B′, zi → 0 as i→∞).
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Exercise. C0(Zp,Cp) = Cp

⊗̂
C0(Zp,Qp).

1.3 Continuous functions on Zp

1.3.1 Mahler’s coefficients

We have the binomial function:(
x

n

)
=

1, if n = 0,
x(x− 1) · · · (x− n+ 1)

n!
, if n ≥ 1.

Lemma 1.3.1. vC0(
(
x
n

)
) = 0.

Proof. Since
(
n
n

)
= 1, vC0(

(
x
n

)
) ≤ 0.

If x ∈ N, then
(
x
n

)
∈ N implies vp(

(
x
n

)
) ≥ 0. Hence for all x ∈ Zp,

vp(
(
x
n

)
) ≥ 0 because N is dense in Zp.

For all f ∈ C0(Zp,Qp), we write

f [0] = f, f [k−1](x) = f [k](x+ 1)− f [k](x)

and write the Mahler’s coefficient

an(f) = f [n](0).

Hence:

f [n](x) =
n∑
i=0

(−1)i
(
n

i

)
f(x+ n− i),

an(f) =
n∑
i=0

(−1)i
(
n

i

)
f(n− i).

Theorem 1.3.2 (Mahler). If f ∈ C0(Zp,Qp), then
(i) lim

n→∞
vp(an(f)) = +∞,

(ii) For all x ∈ Zp, f(x) =
∞∑
n=0

an(f)
(
x
n

)
,

(iii) vC0(f) = inf vp(an(f)).
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Proof. Let `∞ = {a = (an)n∈N : an ∈ Qp bounded}, v`∞(a) = infn∈N vp(an).
Then

• f 7→ a(f) = (an(f))n∈N is a continuous map from C0(Zp,Qp) to `∞.
and v`∞(a(f)) ≥ vC0(f).

• The space `0∞ = {(an)n∈N : an → 0, as n→∞} is a closed subspace of
`∞ and B = {f : a(f) ∈ `0∞} is a close subspace of C0(Zp,Qp).

• For all a ∈ `0∞,

fa =
+∞∑
n=0

an

(
x

n

)
∈ C0(Zp,Qp)

because the series converges uniformly. Moreover, vC0(fa) ≥ v`∞(a)
and as

(
x+1
n+1

)
−

(
x

n+1

)
=

(
x
n

)
,

f [k]
a =

+∞∑
n=0

an+k

(
x

n

)
.

Hence we have: ak(f) = f [k](0) = ak, which implies a(fa) = a.

• f 7→ a(f) is injective. Since a(f) = 0 implies f(n) = 0 for all n ∈ N.
Hence f = 0 by the density of N in Zp.

Now for f ∈ B, a(f) ∈ `0∞ implies f − fa(f) = 0 because a(f − fa(f)) =
a(f) − a(f) = 0 and a is injective. So f ∈ B implies that f satisfies (ii).
Moreover, since

v`∞(a(f)) ≥ vC0(f) = vC0(fa(f)) ≥ v`∞(a(f)),

(iii) is also true. It remains to show that:

Claim: B = C0(Zp,Qp).

(a) First proof. We have a lemma:

Lemma 1.3.3. If f ∈ C0(Zp,Qp), then there exists k ∈ N such that

vC0(f [pk]) ≥ vC0(f) + 1.



1.3. CONTINUOUS FUNCTIONS ON ZP 9

Proof. We have

f [pk](x) = f(x+ pk)− f(x)+

pk−1∑
i=1

(−1)i
(
pk

i

)
f(x+ pk− i)+ (1+ (−1)p

k

)f(x).

Now vp(
(
pk

i

)
) ≥ 1, if 1 ≤ i ≤ pk−1 et vp(1+(−1)p

k
) ≥ 1. Since Zp is compact,

f is uniformly continuous. For every c, there exists N , when vp(x− y) ≥ N ,
we have vp(f(x)− f(y)) ≥ c. It gives the result for k = N .

First proof of the Claim. Repeat the lemma: for every c = vC0(f) + k, there
exists an N , such that vC0(f [N ]) ≥ c. Hence, for all n ≥ N , vp(an(f)) ≥ c.

1.3.2 Locally constant functions.

Choose a z ∈ Cp, such that vp(z − 1) > 0. Then

fz(x) =
+∞∑
n=0

(
x

n

)
(z − 1)n ∈ C0(Zp,Cp).

Note k ∈ N, fz(k) = zk. So we write, fz(x) = zx and we have zx+y = zxzy.

Example 1.3.4. (i) z
1
2 =

+∞∑
n=0

( 1
2
n

)
(z − 1)n. z = 16

9
, z − 1 = 7

9
, the series

converges in R to 4
3
, and converges in Q7 to −4

3
.

(ii) If z is a primitive pn-th root of 1, then

vp(z − 1) =
1

(p− 1)pn−1
> 0.

Note that zx+p
n

= zx for all x, then zx is locally constant( constant mod pnZp).
The characteristic function of i+ pnZp is given by

1i+pnZp(x) =
1

pn

∑
zpn=1

z−izx

since ∑
zpn=1

zx =

{
pn if x ∈ pnZp;

0 if not.
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Lemma 1.3.5. The set of locally constant functions LC(Zp,Qp) ⊂ B.

Proof. By compactness of Zp, a locally constant function is a linear combi-
nation of 1i+pnZpz

x, z ∈ µp∞ , thus a linear combination of zx. But an(z
x) =

(z − 1)n goes to 0, when n goes to ∞, hence zx ∈ B.

Lemma 1.3.6. LC(Zp,Qp) is dense in C0(Zp,Qp).

Proof. For every f ∈ C0(Zp,Qp), let

fk =

pk−1∑
i=0

f(i)1i+pkZp .

Then fk → f in C0 because f is uniformly continuous.

Second proof of the Claim. By the above two lemmas, LC(Zp,Qp) ⊂ B ⊂
C0(Zp,Qp), B is closed and LC(Zp,Qp) is dense in C0(Zp,Qp), hence B =
C0(Zp,Qp).

1.4 Measures on Zp

1.4.1 The Amice transform

Definition 1.4.1. A measure µ on Zp with values in a p-adic Banach space
B is a continuous linear map f 7→

∫
Zp f(x)µ =

∫
Zp f(x)µ(x) from C0(Zp,Qp)

to B.

Remark. (i) If L ⊂ Cp is a closed subfield and B is an L-vector space, then

µ extends by continuity and L-linearity to C0(Zp, L) = L
⊗̂
C0(Zp,Qp).

(ii) We denote D0(Zp, B) the set of the measure on Zp with values in B,

then D0(Zp, B) = D0(Zp,Qp)
⊗̂
B.

Definition 1.4.2. The Amice transform of a measure µ is defined to be the
map:

µ 7→ Aµ(T ) =

∫
Zp

(1 + T )xµ(x) =
+∞∑
n=0

T n
∫

Zp

(
x

n

)
µ.

Lemma 1.4.3. If vp(z − 1) > 0, Aµ(z − 1) =
∫

Zp z
xµ(x).
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Proof. Since zx =
+∞∑
n=0

(z−1)n
(
x
n

)
with normal convergence in C0(Zp,Qp), one

can exchange
∑

and
∫

.

Definition 1.4.4. The valuation on D0 is

vD0(µ) = inf
f 6=0

(vp(

∫
Zp
fµ)− vC0(f)).

Theorem 1.4.5. The map µ 7→ Aµ is an isometry from D0(Zp,Qp) to the

set {
+∞∑
n=0

bnT
n, bn bounded, and bn ∈ Qp} with the valuation v(

+∞∑
n=0

bnT
n) =

infn∈N vp(bn).

Proof. On one hand, for all µ ∈ D0(Zp,Qp), write Aµ(T ) =
+∞∑
n=0

bn(µ)T n, then

bn(µ) =
∫

Zp

(
x
n

)
µ. Since vC0(

(
x
n

)
) = 0 by Lemma 1.3.1,

vp(bn(µ)) ≥ vD0(µ) + vC0(

(
x

n

)
) ≥ vD0(µ)

for all n, hence v(Aµ) ≥ vD0(µ).

On the other hand, if (bn)n∈N is bounded, f 7→
+∞∑
n=0

bnan(f)(by Mahler’s

theorem, an(f)→ 0) gives a measure µb whose Amice transform is

Aµb(T ) =
+∞∑
n=0

T n
∫

Zp

(
x

n

)
µb =

+∞∑
n=0

T n(
+∞∑
i=0

biai(

(
x

n

)
)) =

+∞∑
n=0

bnT
n

since

an(

(
x

i

)
) =

{
1 if i = n,

0 otherwise.

Hence

vp(
+∞∑
n=0

bnan(f)) ≥ min
n

(vp(bn) + vp(an(f)))

≥ min
n

(vp(bn)) + min
n

(an(f))

= v(
∑

bnT
n) + vC0(f)

= v(Aµ) + vC0(f).

Thus vD0(µb) ≥ v(Aµ). Then we have v(Aµ) = vD0(µ).
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By Lemma 1.3.6, we know that locally constant functions are dense in
C0(Zp,Qp). Explicitly, for all f ∈ C0(Zp,Qp), the locally constant functions

fn =
pn−1∑
i=0

f(i)1i+pnZp → f in C0.

Now if µ ∈ D0(Zp,Qp), set µ(i + pnZp) =
∫

Zp 1i+pnZpµ. Then
∫

Zp f µ is

given by the following “Riemann sums”∫
Zp
fµ = lim

n→∞

pn−1∑
i=0

f(i)µ(i+ pnZp) (1.1)

Note that vp(µ(i+ pnZp)) ≥ vD0(µ).

Theorem 1.4.6. If µ is an additive bounded function on compact open sub-
sets of Zp (by compactness of Zp is a finite disjoint union of i + pnZp for
some n), then µ extends uniquely as a measure on Zp via (1.1).

Proof. Since µ is an additive function on compact open subsets, µ is linear
on locally constant functions. And µ is bounded, hence µ is continuous for
vC0 . As the locally constant functions are dense in C0(Zp,Qp), we have µ as
a measure on Zp.

1.4.2 examples of measures on Zp and of operations on
measures.

Example 1.4.7. Haar measure: µ(Zp) = 1 and µ is invariant by translation.
We must have µ(i + pnZp) = 1

pn
which is not bounded. Hence, there exists

no Haar measure on Zp.

Example 1.4.8. Dirac measure: For a ∈ Zp, we define δa by
∫

Zp f(x)δa =

f(a). The Amice transform of δa is Aδa(T ) = (1 + T )a.

Example 1.4.9. Multiplication of a measure by a continuous function. For
µ ∈ D0, f ∈ C0, we define the measure fµ by∫

Zp
g · fµ =

∫
Zp
f(x)g(x)µ

for all g ∈ C0.
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(i) Let f(x) = x, since

x

(
x

n

)
= (x− n+ n)

(
x

n

)
= (n+ 1)

(
x

n+ 1

)
+ n

(
x

n

)
,

the Amice transform is

Axµ =
+∞∑
n=0

T n
∫

Zp

(
x

n

)
xµ

=
+∞∑
n=0

T n

[
(n+ 1)

∫
Zp

(
x

n+ 1

)
µ+ n

∫
Zp

(
x

n

)
µ

]
= (1 + T )

d

dT
Aµ.

(ii) Let f(x) = zx, vp(z − 1) > 0. For any y, vp(y − 1) > 0, then∫
Zp
yx(zxµ) =

∫
Zp

(yz)xµ = Aµ(yz − 1)

which implies that
Azxµ(T ) = Aµ((1 + T )z − 1).

(iii) The restriction to a compact open set X of Zp: it is nothing but the
multiplication by 1X . If X = i + pnZp, then 1i+pnZp(x) = p−n

∑
zp
n
=1

z−izx,

hence
AResi+pnZp µ

(T ) = p−n
∑
zp
n=1

z−iAµ((1 + T )z − 1).

Example 1.4.10. Actions of ϕ and ψ. For µ ∈ D0, we define the action of
ϕ on µ by ∫

Zp
f(x)ϕ(µ) =

∫
Zp
f(px)µ.

Hence

Aϕ(µ)(T ) =
+∞∑
n=0

T n
∫

Zp

(
px

n

)
µ = Aµ((1 + T )p − 1) = ϕ(Aµ(T ))

where ϕ : T 7→ (1+T )p− 1 (compare this formula with (ϕ,Γ)-modules). We
define the action of ψ by∫

Zp
f(x)ψ(µ) =

∫
Zp
f(
x

p
)µ.
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Then Aψ(µ) = ψ(Aµ) where

ψ(F )((1 + T )p − 1) =
1

p

∑
zp=1

F ((1 + T )z − 1).

The actions ϕ and ψ satisfy the following properties:

(i) ψ ◦ ϕ = Id;

(ii) ψ(µ) = 0⇔ µ has a support in Z∗
p;

(iii) ResZ∗p(µ) = (1− ϕψ)µ.

The map ψ is very important in the theory of (ϕ,Γ)-modules.

Example 1.4.11. Action of Γ. Let Γ = Gal(Qp(µp∞)/Qp). Let χ : Γ
∼→ Z∗

p

be the cyclotomic character. For γ ∈ Γ and µ ∈ D0, we let γµ be given by∫
Zp
f(x)γµ =

∫
Zp
f(χ(γ)x)µ.

One can verify that Aγµ(T ) = Aµ((1 + T )χ(γ) − 1) = γ(Aµ(T )) for γ(T ) =
(1 + T )χ(γ) − 1. (Compare this formula with (ϕ,Γ)-modules.)

For all γ ∈ Γ, γ commutes with φ and ψ.

Example 1.4.12. Convolution λ ∗ µ. Let λ, µ be two measures, their con-
volution λ ∗ µ is defined by∫

Zp
f(x)λ ∗ µ =

∫
Zp

(

∫
Zp
f(x+ y)µ(x))λ(y).

Here we have to verify y 7→
∫

Zp f(x + y)µ(x) ∈ C0, which is a direct conse-

quence of the fact f is uniformly continuous.
Let f(x) = zx, vp(z − 1) > 0, then∫

Zp
zxλ ∗ µ =

∫
Zp
zxµ(x)

∫
Zp
zyλ(y),

thus Aλ∗µ = AλAµ.
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1.5 The p-adic zeta function

1.5.1 Kummer’s congruences.

Lemma 1.5.1. For a ∈ Z∗
p, there exists a measure λa ∈ D0 such that

Aλa =

∫
Zp

(1 + T )xλa =
1

T
− a

(1 + T )a − 1
.

Proof. This follows from Theorem 1.4.5 and the fact

a

(1 + T )a − 1
=

a∑∞
n=1

(
a
n

)
T n

=
1

T
· 1

1 +
∑∞

n=2 a
−1

(
a
n

)
T n−1

∈ 1

T
+ Zp[[T ]]

since a−1
(
a
n

)
∈ Zp. Moreover, we have vD0(λa) = 0.

Proposition 1.5.2. For every n ∈ N,
∫

Zp x
nλa = (−1)n(1− a1+n)ζ(−n).

Proof. For a ∈ R∗
+, for T = et − 1, let

fa(t) = Aλa(T ) =
1

et − 1
− a

eat − 1
,

then fa is in C∞ on R+ and rapidly decreasing. Hence

L(fa, s) =
1

Γ(s)

∫ +∞

0

fa(t)t
sdt

t
= (1− a1−s)ζ(s)

fna (0) = (−1)nL(fa,−n) = (−1)n(1− a1+n)ζ(−n)

The identity fna (0) = (−1)n(1 − a1+n)ζ(−n) is algebric, so is true for all a,
hence even on Z∗

p. Thus∫
Zp
xnλa = (

d

dt
)n(

∫
Zp
etxλa)|t=0 = (

d

dt
)nAλa(e

t − 1)|t=0 = f (n)
a (0).

Corollary 1.5.3. For a ∈ Z∗
p, k ≥ 1 (k ≥ 2 if p = 2), n1, n2 ≥ k, n1 ≡

n2 mod (p− 1)pk−1, then

vp((1− a1+n1)ζ(−n1)− (1− a1+n2)ζ(−n2)) ≥ k.
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Proof. The left hand side LHS = vp((1−a1+n1)ζ(−n1)− (1−a1+n2)ζ(−n2))
is

vp(

∫
Zp

(xn1 − xn2)λa) ≥ vD0(λa) + vC0(xn1 − xn2).

From the proof of Lemma 1.5.1, vD0(λa) = 0, thus LHS ≥ vC0(xn1 − xn2). It
suffices to show vC0(xn1 − xn2) ≥ k. There are two cases:

If x ∈ pZp, then vp(x
n1) ≥ k and vp(x

n2) ≥ k since n1, n2 ≥ k.
If x ∈ Z∗

p, vp(x
n1 − xn2) ≥ k because (Z/pkZ)∗ has order (p− 1)pk−1 and

n1 − n2 is divisible by (p− 1)pk−1.

Remark. The statement is not clean because of x ∈ pZp.

1.5.2 Restriction to Z∗p.

Lemma 1.5.4. ψ( 1
T
) = 1

T
.

Proof. Let F (T ) = ψ( 1
T
), then

F ((1 + T )p − 1) =
1

p

∑
zp=1

1

(1 + T )z − 1

=
−1

p

∑
zp=1

+∞∑
n=0

((1 + T )z)n

=−
+∞∑
n=0

(1 + T )pn =
1

(1 + T )p − 1
.

Proposition 1.5.5. ψ(λa) = λa.

Proof. We only need to show the same thing on the Amice transform, but

Aλa(T ) =
1

T
− a

(1 + T )a − 1
=

1

T
− a · γa(

1

T
)

where γa ∈ Γ is the inverse of a by χ : Γ→ Z∗
p, i.e., χ(γa) = a. Since ψ and

γa commutes and ψ( 1
T
) = 1

T
, we have

ψ(Aλa) =
1

T
− aγa(

1

T
) = Aλa .
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Corollary 1.5.6. (i) ResZ∗p(λa) = (1− φψ)λa = (1− φ)λa,

(ii)
∫

Z∗p
xnλa =

∫
Zp x

n(1− φ)λa = (−1)n(1− an+1)(1− pn)ζ(−n).

Remark. The factor (1− pn) is the Euler factor of the zeta function at p.

Theorem 1.5.7. For i ∈ Z/(p − 1)Z (or i ∈ Z/2Z if p = 2), there exists a
unique function ζp,i, analytic on Zp if i 6= 1, and (s− 1)ζp,1(s) is analytic on
Zp, such that ζp,i(−n) = (1− pn)ζ(−n) if n ≡ −imod p− 1 and n ∈ N.

Remark. (i) If i ≡ 0 mod 2, then ζp,i = 0 since ζ(−n) = 0 for n even and
≥ 2;

(ii) To get p-adic continuity, one has to modify ζ by some “Euler factor
at p”.

(iii) Uniqueness is trivial because N is infinite and Zp is compact.
(iv) The existence is kind of a miracle. Its proof relies on Leopoldt’s

Γ-transform.

1.5.3 Leopoldt’s Γ-transform.

Lemma 1.5.8. (i) Every x ∈ Z∗
p can be written uniquely as x = ω(x)〈x〉,

with

ω(x) ∈ µ(Qp) =

{
{±1} if p = 2,

µp−1, if p 6= 2
and 〈x〉 ∈ 1 + 2pZp.

(ii) ω(xy) = ω(x)ω(y), 〈xy〉 = 〈x〉〈y〉.

Proof. If p = 2, it is obvious.
If p 6= 2, ω(x) = lim

n→∞
xp

n
= [x̄].

Remark. (i) ω is the so-called Teichmüller character ;
(ii) 〈x〉 = exp(log(x));
(iii) xn = ω(x)n〈x〉n, here 〈x〉n is the restriction to N of 〈x〉s which is

continuous in s, ω(x)n is periodic of period p − 1, which is not p-adically
continuous.

Proposition 1.5.9. If λ is a measure on Z∗
p, u = 1 + 2p, then there exists a

measure Γ
(i)
λ on Zp (Leopoldt’s transform) such that∫

Z∗p
ω(x)i〈x〉sλ(x) =

∫
Zp
usyΓ

(i)
λ (y) = A

Γ
(i)
λ

(us − 1).
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Proof. We have∫
Z∗p
ω(x)i〈x〉sλ(x) =

∑
ε∈µ(Qp)

ω(ε)i
∫
ε+2pZp〈x〉

sλ(x)

=
∑

ε∈µ(Qp)
ω(ε)i

∫
1+2pZp〈xε〉

sγε−1 · λ(x),

where γε ∈ Γ is such that χ(γε) = ε. We have a isomorphism

α : 1 + 2pZp ' Zp

x 7→ y =
log(x)

log(u)
.

Then ∫
Zp
f(y)α∗(γε−1λ) =

∫
1+2pZp

f(α(x))γε−1λ.

Now 〈x〉s = exp(s log x) = exp(s log uy) = usy and hence∑
ε∈µ(Qp)

ω(ε)i
∫

1+2pZp
〈xε〉sλ(x) =

∑
ε∈µ(Qp)

ω(ε)i
∫

Zp
usyα∗(γε−1 · λ),

we just set Γ
(i)
λ =

∑
ε∈µ(Qp)

ω(ε)iα∗(γε−1 · λ).

Definition 1.5.10.

ζp,i(s) =
−1

1− ω(a)1−i〈a〉1−s

∫
Z∗p
ω(x)−i〈x〉−sλa(x).

Proof of Theorem 1.5.7. If n ≡ −imod p− 1, then

ζp,i(−n) =
1

1− ω(a)1−i〈a〉1+n

∫
Z∗p
ω(x)−i〈x〉nλa(x)

=
1

1− ω(a)1+n〈a〉1+n

∫
Z∗p
ω(x)n〈x〉nλa(x)

= (1− p−n)ζ(−n).

The function ζp,i is analytic if ω(a)1−i 6= 1, which can be achieved if i 6= 1.
If i = 1, there is a pole at s = 1.
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Remark. (i) A theorem of Mazur and Wiles (originally the Main conjecture
of Iwasawa theory) describes the zeros of ζp,i(s) in terms of ideal class groups
of Qp(µpn), n ∈ N.

(ii) Main open question: For i ≡ 1 mod 2, can ζp,i(k) = 0, if k > 1 and
k ∈ N?

The case k = 1 is known. In this case, ζp,i(1) is a linear combination
with coefficients in Q̄× of log of algebraic numbers, hence by transcendental
number theory (Baker’s theorem), ζp,i(1) 6= 0.

1.6 Ck functions

1.6.1 Definition.

Let f : Zp → Qp be a given function. We define

f {0}(x) = f(x)

f {i}(x, h1, · · · , hi)

=
1

hi
(f {i−1}(x+ hi, h1, · · · , hi−1)− f {i−1}(x, h1, · · · , hi−1))

=
1

h1 · · ·hi
(

∑
I⊂{1,··· ,i}

(−1)i−|I|f(x+
∑
j∈I

hj))

One notes that f {i} is the analogue of the usual derivation in C(R,C). In
fact, if f : R→ C is in Ck and i ≤ k, define f {i} by the above formula, then

f {i}(x, h1, · · · , hi) =

∫
[0,1]i

f (i)(x+ t1h1 + · · ·+ tihi)dt1 · · · dti,

hence f {i} is continuous and f {i}(x, 0, · · · , 0) = f (i)(x).

Definition 1.6.1. A function f : Zp → Qp(or Cp) is in Ck if f {i} can be
extended as a continuous function on Zi+1

p for all i ≤ k.

Remark. If f ∈ C0 and h1, · · · , hi 6= 0, then we have:

vp(f
{i}(x, h1, · · · , hi)) ≥ vC0(f)−

i∑
j=1

vp(hj).
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Example 1.6.2. The definition of Ck here is different than the usual case.

Here is an example. For all x in Zp, x =
+∞∑
n=0

pnan(x) with an(x) ∈ {0, 1, · · · , p−

1}. Let f(x) =
+∞∑
n=0

p2nan(x), then vp(f(x) − f(y)) = 2vp(x − y). Hence

f ′(x) = 0 for all x ∈ Zp, thus f is in C∞ in the usual sense. But f is not C2

in our case. In fact, let (x, h1, h2) = (0, pn, pn) and ((p − 1)pn, pn, pn), here
p 6= 2, we have:

f {2}(0, pn, pn) = 0;

f {2}((p− 1)pn, pn, pn) = p− p2.

We define a valuation on Ck functions by:

v
′

Ck(f) = min
0≤i≤k

inf
(x,h1,··· ,hi)∈Zi+1

p

vp(f
{i}(x, h1, · · · , hi)).

Let L(n, k) = max{
i∑

j=1

vp(nj), i ≤ k,
∑
nj = n, nj ≥ 1}

Theorem 1.6.3 (Barsky). pL(n,k)

(
x

n

)
is a Banach basis of Ck.

Exercise. there exists a Ck, such that for all n ≥ 1,

k
log n

log p
− Ck ≤ L(n, k) ≤ k

log n

log p
.

Corollary 1.6.4. The following three conditions are equivalent:

(i)
+∞∑
n=0

an
(
x
n

)
∈ Ck,

(ii) lim
n→+∞

vp(an)− k logn
log p

= +∞,

(iii) lim
n→+∞

nk|an| = 0.

Definition 1.6.5. If r ≥ 0, f : Zp → Qp is in Cr if

f =
+∞∑
n=0

an(f)

(
x

n

)
and

nr|an(f)| → 0 when n→ +∞.
Cr becomes a Banach space with the valuation:

vCr(f) = inf
n∈N
{vp(an)− r

log(1 + n)

log p
}.
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1.6.2 Mahler’s coefficients of Cr-functions.

We need Mähler’s Theorem in several variables to prove Barsky’s theorem.
Let g(x0, x1, · · · , xi) be a function defined on Zi+1

p . We define the action

α
[k]
j on g by the following formula:

α
[1]
j g(x0, · · · , xi) = g(x0, · · · , xj + 1, · · · , xi)− g(x0, · · · , xi),

α
[k]
j = α

[1]
j ◦ α

[1]
j ◦ · · · ◦ α

[1]
j , k times .

We set
ak0,··· ,ki(g) = α

[k0]
0 · · ·α[ki]

i g(0, · · · , 0).

Recall that

C0(Zi+1
p ,Qp) = C0(Zp,Qp)

⊗̂
· · ·

⊗̂
C0(Zp,Qp).

Theorem 1.6.6 (Mähler). If g is continuous on Zi+1
p , then ak0,··· ,ki(g)→ 0

when (k0, · · · , ki)→∞ and we have the following identity:

g(x0, · · · , xi) =
∑

k0,··· ,ki∈N

ak0,··· ,ki(g)

(
x0

k0

)
· · ·

(
xi
ki

)
(1.2)

Conversely, if ak0,··· ,ki → 0, then the function g via equation (1.2) is contin-
uous on Zi+1

p , ak0,··· ,ki(g) = ak0,··· ,ki, and

vC0(g) = inf vp(ak0,··· ,ki).

Proof of Theorem 1.6.3. Let gT (x) = (1 + T )x, then we have:

g
{i}
T (x, h1, · · · , hi) =

1

h1 · · ·hi
(

∑
I⊂{1,··· ,i}

(−1)i−|I|gT (x+
∑
j∈I

hj))

= (1 + T )x
i∏

j=1

(1 + T )hj − 1

hj

Let Pn =
(
x
n

)
. Since 1

x

(
x
n

)
= 1

n

(
x−1
n−1

)
and g

{i}
T (x, h1, · · · , hi) =

∞∑
n=0

P
{i}
n (x, h1, · · · , hi)T n,

we have the following formulas:

P {i}
n (x0, h1, · · · , hi) =

∑
n0+n1+···+ni=n,

n1,··· ,ni≥1

1

n1 · · ·ni

(
x0

n0

)(
h1 − 1

n1 − 1

)
· · ·

(
hi − 1

ni − 1

)
.
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Let

Qn,i(x0, · · · , xi) = P {i}
n (x0, x1 + 1, · · · , xi + 1)

=
∑

n0+n1+···+ni=n,
n1,··· ,ni≥1

1

n1 · · ·ni

(
x0

n0

)(
x1

n1 − 1

)
· · ·

(
xi

ni − 1

)
.

For all f ∈ C0(Zp,Qp), we have f(x) =
+∞∑
n=0

an(f)
(
x
n

)
. We denote

gi(x0, · · · , xi) =
+∞∑
n=0

an(f)Qn,i(x0, · · · , xi)

if xj + 1 6= 0, j ≥ 1. We have:

an0,n1−1,··· ,ni−1(gi) =
+∞∑
n=0

an(f)an0,n1−1,··· ,ni−1(Qn,i)

where

an0,n1−1,··· ,ni−1(Qn,i) =


0 if n 6=

i∑
j=0

nj,

1
n1···ni if n =

i∑
j=0

nj.

If f is in Ck, i ≤ k, then gi is continuous on Zi+1
p , thus

an0+n1+···+ni(f)

n1 · · ·ni
→ 0.

Conversely, if
an0+n1+···+ni(f)

n1 · · ·ni
→ 0, then

+∞∑
n=0

+∞∑
n0+n1+···+ni=n

an0,n1,··· ,ni(f)

n1 · · ·ni

(
x0

n0

)(
x1

n1 − 1

)
· · ·

(
xi

ni − 1

)

defines a continuous functions Gi on Zi+1
p . But Gi = gi on Ni+1, hence

Gi = gi, xj + 1 6= 0, for all j ≥ 1,hence f is in Ck.
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1.7 locally analytic functions

1.7.1 Analytic functions on a closed disk.

Lemma 1.7.1. Let (an)n∈N with an in Cp be a sequence such that vp(an)→∞

when n→∞, let f =
+∞∑
n=0

anT
n. Then:

(i) If x0 ∈ OCp, then f (k)(x0) converges for all k and

lim
n→∞

vp(
f (k)

k!
(x0)) =∞.

(ii) If x0, x1 are in OCp, then

f(x1) =
+∞∑
n=0

f (n)(x0)

n!
(x1 − x0)

n

and

inf
n∈N

vp(
f (n)(x0)

n!
) = inf

n∈N
vp(an);

(iii) inf
n∈N

vp(an) = inf
x∈OCp

vp(f(x)) and vp(f(x)) = inf
n
vp(an) almost every-

where (i.e.,outside a finite number of xi + mCp).

Proof. (i) f (k)

k!
=

+∞∑
n=0

an+k

(
n+k
k

)
T n. Let T = x0; since vp(

(
n+k
k

)
) ≥ 0, vp(x

n
0 ) ≥

0, we get (1) and also

vp(
f (k)(x0)

k!
) ≥ inf

n∈N
vp(an) = inf

n∈N
vp(

f (n)(0)

n!
).

(ii)

f(x1) =
+∞∑
n=0

anx
n
1 =

+∞∑
n=0

an(
+∞∑
k=0

(
n

k

)
(x1 − x0)

kxn−k0 )

=
+∞∑
k=0

(
+∞∑
n=0

an

(
n

k

)
xn−k0 )(x1 − x0)

k =
+∞∑
n=0

f (n)(x0)

n!
(x1 − x0)

n.

So we can exchange the the roles of 0 and x0 to get

inf
n∈N

vp(
f (n)(x0)

n!
) = inf

n∈N
vp(an).
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(iii) That inf
n∈N

vp(an) ≤ inf
x∈OCp

vp(f(x)) is clear. As vp(an) goes to +∞,

vp(an) reaches its infimum at some n0 ∈ N. So we can divide everything by
an0 and we may assume that inf

n∈N
vp(an) = 0. Let f(T ) = f(T ) mod mCp ∈

Fp[T ]. If x ∈ OCp doesn’t reduce mod mCp to a root of f , then f(x) 6= 0,
equivalently, vp(f(x)) = 0.

Corollary 1.7.2. Let f =
+∞∑
n=0

anT
n, g =

+∞∑
n=0

bnT
n, then fg =

+∞∑
n=0

cnT
n,

where cn =
n∑
i=0

aibn−i. Suppose that vp(an) and vp(bn) go to infinity when n

goes to infinity, then vp(cn) goes to infinity and inf
n
vp(cn) = inf

n
(an)+inf

n
(bn).

Definition 1.7.3. For x0 ∈ Cp, r ∈ R, we define

D(x0, r) = {x ∈ Cp, vp(x− x0) ≥ r}.

Definition 1.7.4. A function f : D(x0, r)→ Cp is analytic if it is sum of its
Taylor expansion at x0 or equivalently, if

lim
n→+∞

(vp(
f (n)(x0)

n!
) + nr) = +∞.

We define v
{r}
x0 (f) = infn(vp(

f (n)(x0)
n!

) + nr).

Proposition 1.7.5. If the function f : D(x0, r)→ Cp is analytic, then
(i) For all k ∈ N, f (k) is analytic on D(x0, r),

v{r}x0
(
f (k)(x0)

k!
) + kr ≥ v{r}x0

(f)

and goes to +∞ if k goes to +∞.
(ii) f is the sum of its Taylor expansion at any x ∈ D(x0, r).

(iii) v
{r}
x0 (f) = inf

x∈D(x0,r)
vp(f(x)).

(iv) v
{r}
x0 (fg) = v

{r}
x0 (f) + v

{r}
x0 (g).

Proof. If r ∈ Q, one can choose α ∈ Cp, such that vp(α) = r. Let F (x) =
f(x0 + αx), x ∈ OCp . Apply the previous lemma, we can get the result.

If r /∈ Q, choose rn decreasing with the limit r, rn ∈ Q. Use D(x0, r) =
∪nD(x0, rn) and the case r ∈ Q, we get the result.
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1.7.2 Locally analytic functions on Zp.

Definition 1.7.6. Let h ∈ N be given. The space LAh(Zp,Qp) is the space of
f whose restriction to x0+p

hZp is the restriction of an analytic function fx0 on
D(x0, h), for all x0 ∈ Zp. The valuation of the space is vLAh = inf

x0∈S
v{h}x0

(fx0),

S be any set of representations of Zp/p
hZp. (Use above proposition to prove

that this does not depend on S.)

Lemma 1.7.7. LAh is a Banach space. Moreover, let

en = 1i+phZp(
x+ i

ph
)m−1, n = mph − i,m ≥ 1, 1 ≤ i ≤ ph,

then en’s are a Banach basis of LAh.

Theorem 1.7.8 (Amice). The functions [ n
ph

]!
(
x
n

)
, n ∈ N are a Banach basis

of LAh.

Proof. The idea is to try to relate the gn = [ n
ph

]!
(
x
n

)
to the en.

(i) First step: For 1 ≤ j ≤ ph, we denote

gn,j(x) = gn(−j + phx) = [
n

ph
]!

1

n!

n−1∏
k=0

(−j − k + phx).

If vp(j + k) < h, then vp(−j − k + phx) = vp(j + k), for all x in OCp . If

vp(j + k) ≥ h, then vp(−j − k + phx) ≥ h with equality if x /∈ Fp ⊂ Fp. So,
we get

v
{0}
0 (gn,j) = vp([

n

ph
]!)−vp(n!)+

n−1∑
k=0

inf(vp(j+k), h) =
∞∑
i=1

#{k : vp(k) ≥ i, 1 ≤ k ≤ n}.

Since vp(n!) =
n∑
k=1

vp(k) =
+∞∑
i=1

[ n
pi

], we have

vp(n!)− vp([
n

ph
]!) =

h∑
i=1

#{k : vp(k) ≥ i, 1 ≤ k ≤ n} =
n∑
k=1

inf(vp(k), h).

Thus,

v
{0}
0 (gn,j) =

n∑
k=1

[inf(vp(j + k − 1), h)− inf(vp(k), h)]

=
h∑
l=1

([
n+ j − 1

pl
]− [

j − 1

pl
]− [

n

pl
]).



26CHAPTER 1. THE P -ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT

As [x+ y] ≥ [x] + [y], we have v
{0}
0 (gn,j) ≥ 0, for all 1 ≤ j ≤ ph. So, we have

vLAh(gn) ≥ 0.
(ii) Second step: we need a lemma

Lemma 1.7.9. Let n = mph − i, gn,j ∈ Fp[x], then:
(i) gn,j = 0, if j > i,
(ii) deg gn,j = m− 1, if j = i,
(iii) deg gn,j ≤ m− 1 if j < i.

The lemma implies the theorem: gn can be written in terms of the en,
multiplying by an invertible upper triangular matrix. Now use the fact that
xn is a Banach basis if and only if xn is a basis of LA0

h/pLA
0
h over Fp.

Proof of Lemma 1.7.9. (i) If j > i, then j − 1 ≥ i. Since

[
n+ j − 1

ph
]− [

j − 1

ph
]− [

n

ph
] = m− (m− 1) = 1,

we have v
{0}
0 (gn,j) ≥ 1, then gn,j = 0.

(ii) and (iii):If j ≤ i, write

gn,j(x) =
n∑
k=0

akx
k, ak ∈ Zp.

The zeros of gn,j are the j+k
ph
, 0 ≤ k ≤ n− 1 and

#{zeros in Zp} = #{k : vp(j + k) ≥ h} = [
n+ j − 1

ph
]− [

j − 1

ph
] = m− 1.

Let {αi : 1 ≤ i ≤ m− 1} be the set of the roots with α1, · · · , αm−1 in Zp and
αm, · · · , αn not in Zp. Then

gn,j = c
m−1∏
l=1

(x− αl)
n∏

l=m

(1− α−1
l x), (c is a constant ).

Since vp(α
−1
l ) > 0 when l ≥ m, then vp(am−1) = vp(c) = v

{0}
0 (gn,j). It implies

c ∈ Zp. Hence

gn,j = c

m−1∏
l=1

(x− αl).
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It remains to prove v
{0}
0 (gn,i) = 0. Since

v
{0}
0 (gn,i) =

h∑
l=1

([
mph − 1

pl
]− [

i− 1

pl
] + [

mph − i
pl

])

and −[−i
a

] = [ i−1
a

] + 1, we get the result.

Let LA = {locally analytic functions on Zp}. Because Zp is compact,
LA = ∪LAh and is an inductive limit of Banach spaces. So

(i) A function ϕ : LA→ B is continuous if and only if ϕ|LAh : LAh → B
is continuous for all h.

(ii) A sequence fn → f converges in LA if and only if there exists h, such
that for all n, fn ∈ LAh and fn → f in LAh.

Since 1
n
vp([

n
ph

]!) ∼ 1
(p−1)ph

, we have the following theorem:

Theorem 1.7.10. The function f =
+∞∑
n=0

an

(
x

n

)
is in LA if and only if there

exists r > 0, such that vp(an)− rn→ +∞ when n→ +∞.

1.8 Distributions on Zp

1.8.1 The Amice transform of a distribution.

Definition 1.8.1. A distribution µ on Zp with values in B is a continuous
linear map f 7→

∫
Zp fµ from LA to B. We denote the set of distributions

from LA to B by D(Zp, B).

Remark. (i) µ|LAh is continuous for all h ∈ N. Set

vLAh(µ) = inf
f∈LAh

(vB(

∫
Zp
fµ)− vLAh(f)).

Then vLAh is a valuation on D(Zp, B) for all h, and D(Zp, B) is complete for
the Fréchet topology defined by vLAh , h ∈ N which means that µn goes to µ
if and only if vLAh(µn − µ)→ +∞ for all h.

(ii) D(Zp, B) = D(Zp,Qp)
⊗̂
B. From now on, we will denote D(Zp,Qp)

by D.
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Let R+ be the ring of analytic functions defined on D(0, 0+) = {x ∈

Cp, vp(x) > 0}. A function f ∈ R+ can be written as f =
+∞∑
n=0

anT
n, an ∈ Qp

for all n ∈ N.
Let vh = 1

(p−1)ph
= vp(ε− 1), where ε is a primitive ph+1 root of 1.

If F (T ) =
+∞∑
n=0

bnT
n ∈ R+, we define v(h)(F ) to be

v(h)(F ) = v
{vh}
0 (F ) = inf

n∈N
vp(bn) + nvh.

Then, for F,G ∈ R+,

v(h)(FG) = v(h)(F ) + v(h)(G).

We put on R+ the Fréchet topology defined by the v(h), h ∈ N.

Definition 1.8.2. The Amice transform of a distribution µ is the function:

Aµ(T ) =
+∞∑
n=0

T n
∫

Zp

(
x

n

)
µ =

∫
Zp

(1 + T )xµ.

Note that the last identity in the above definition is only a formal identity
here. However, we have

Lemma 1.8.3. If vp(z) > 0, then

∫
Zp

(1 + z)xµ = Aµ(z)

Proof. Choose h such that vh < vp(z). Then

vp(
zn

[ n
ph

]!
)→ +∞,

therefore
+∞∑
n=0

zn
(
x
n

)
converges to (1 + z)x in LAh.

Theorem 1.8.4. The map µ 7→ Aµ is an isomorphism of Fréchet spaces
from D to R+. moreover,

v(h)(Aµ) ≥ vLAh(µ) ≥ v(h+1)(Aµ)− 1.
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Proof. Let Aµ(T ) =
+∞∑
n=0

bnT
n. Since bn =

∫
Zp

(
x
n

)
µ and vp(n!) ≤ n

p−1
, then we

have:

vp(bn) = vp(bn)− vLAh(
(
x

n

)
) + vLAh(

(
x

n

)
)

≥ vLAh(µ) + vLAh(

(
x

n

)
) = vLAh(µ)− vp([

n

ph
]!)

≥ vLAh(µ)− n

(p− 1)ph
= vLAh(µ)− nvh.

Hence Aµ ∈ R+ and v(h)(Aµ) ≥ vLAh(µ).

Conversely, for F ∈ R+, F =
+∞∑
n=0

bnT
n, then for all h,

vp([
n

ph
]!bn) = vp(bn) +

n

(p− 1)ph
→∞.

So f 7→
+∞∑
n=0

bnan(f) is a continuous map on LAh. Denote the left hand side

by
∫

Zp fµ, this defines a distribution µ ∈ D. Moreover,

vLAh(µ) = inf
n∈N

vp([
n

ph
]!bn) ≥ inf

n∈N
vp([

n

ph+1
]!bn)

≥ inf
n∈N

(vp(bn) +
n

(p− 1)ph+1
)− 1 = v

(h+1)
LAh

(Aµ)− 1.

1.8.2 Examples of distributions.

(i) Measures are distributions and D0 ⊂ D.
(ii) One can multiply a distribution µ ∈ D by g ∈ LA, and one gets

• Axµ = ∂Aµ, ∂ = (1 + T ) d
dT

;

• Azxµ(T ) = Aµ((1 + T )z − 1);

• AResa+pnZpµ
(T ) = p−n

∑
zpn=1

z−aAµ((1 + T )z − 1)
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(iii) one gets actions ϕ, ψ,Γ with the same formulas than on measures.
(iv) Convolution of distributions: If f ∈ LAh and for all y ∈ y0 + phZp,

f(x+ y) =
+∞∑
n=0

pnhf (n)(x+ y0)

n!
(
y − y0

ph
)n ∈ LAh(x)

⊗̂
LAh(y),

and vLAh(
pnhf (n)(x+y0)

n!
) goes to +∞, when n→ +∞. Hence∫

Zp
(

∫
Zp
f(x+ y)µ(x))λ(y) =

∫
Zp
f λ ∗ µ

is well defined, Aλ∗µ = AλAµ.
(v) The derived distribution: µ 7→ dµ given by

∫
Zp fdµ =

∫
Zp f

′µ. Easy to

check Adµ(T ) = log(1+T )Aµ(T ). µ can’t be integrated because log(1+T ) = 0
if T = ε− 1, ε ∈ µp∞ .

(vi) Division by x, the Amice transform Ax−1µ of x−1µ is a primitive(or
called antiderivative) of (1 + T )−1Aµ, so Ax−1µ is defined up to αδ0, α ∈ Qp

(we have xδ0 = 0).

1.8.3 Residue at s = 1 of the p-adic zeta function.

The Kubota-Leopoldt distribution µKL given by AµKL(T ) = log(1+T )
T

. Then∫
Zp
xnµKL =

(
d

dt

)n

t=0

(

∫
Zp
etxµKL) =

(
d

dt

)n

t=0

AµKL(e
t − 1)

=

(
d

dt

)n

t=0

(
t

et − 1
) = (−1)nnζ(1− n), for all n ∈ N.

Since

ψ(
1

T
) =

1

T
and ϕ(log(1 + T )) = p log(1 + T ),

we get ψ(µKL) = 1
p
µKL and∫

Z∗p
xnµKL = (1− pn−1)

∫
Zp
xnµKL = (−1)nn(1− pn−1)ζ(1− n);

ζp,i(s) =
(−1)i−1

s− 1

∫
Z∗p
ω(x)1−i〈x〉1−sµKL.

The integral is analytic in s by the same argument as for measures.
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Proposition 1.8.5. lims→1(s− 1)ζp,1(s) =
∫

Z∗p
µKL = 1− 1

p
, ( compare with

lims→1(s− 1)ζ(s) = 1).

Proof. It follows from the following lemma.

Lemma 1.8.6.
∫
a+pnZp µKL = p−n, for all n, for all a ∈ Zp (almost a Haar

measure but µ ∗ δa 6= µ).

Proof.∫
a+pnZp

µKL = p−n
∑
zpn=1

z−aAµKL(z − 1) = p−n(1 +
∑

zpn=1,z 6=1

log z

z − 1
),

and log z
z−1

= 0, if zp
n

= 1, z 6= 1.

1.9 Tempered distributions

1.9.1 Analytic functions inside Cr functions

Theorem 1.9.1. For all r ≥ 0, LA ⊂ Cr. Moreover there exists a constant
C(r) depending on r, such that for all h ∈ N and for all f in LAh,

vCr(f) ≥ vLAh(f)− rh− C(r).

Proof. Since vLAh(f) = inf
n

(vp(an(f))− vp([ nph ]!)), we have

vCr(f) = inf
n

(vp(an(f))−r log(1 + n)

log p
) ≥ vLAh(f)+inf

n
(vp([

n

ph
]!)−r log(1 + n)

log p
).

We have a formula for every a:

vp(a!) = [
a

p
] + · · ·+ [

a

ph
] + · · · ≥ a

p− 1
− log(1 + a)

log p
.

Write n = pha+ b, 0 ≤ b ≤ ph − 1, then we have

vCr(f)− vLAh(f) ≥ inf
n

(vp([
n

ph
]!)− r log(1 + n)

log p
)

= inf
a∈N

0≤b≤ph−1

(vp(a!)− r
log(aph + b+ 1)

log p
)

≥ a

p− 1
− (r + 1)

log(a+ 1)

log p
− rh.
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The function − a
p−1

+ (r + 1) log(a+1)
log p

of a is bounded above, we just let C(r)
be its maximum.

Observe that the function log is well defined on Z∗
p. First if vp(x−1) > 0,

let

log x =
+∞∑
n=1

(−1)n+1

n
(x− 1)n;

in general, if x = ω(x)〈x〉, let log x = log〈x〉. If x = p, let log p = 0. By the
formula log xy = log x+ log y, log is well defined in Qp−{0}. This log is the
so-called Iwasawa’s log, or log0.

However, we can define the value at p arbitrarily. For L ∈ Qp, define
logL p = L, then logL x = log0 x+ Lvp(x).

Theorem 1.9.2. Choose a L in Cp. Then there exists a unique logL : C∗
p 7→

Cp satisfying:

(i) logL x =
+∞∑
n=1

(−1)n−1

n
(x− 1)n, here vp(x− 1) > 0,

(ii) logL xy = logL x+ logL y,

(iii) logL = L.

Proposition 1.9.3. If r ≥ 0, j > r, then xj logL x ∈ Cr.

Proof. We have

xj logL x =
+∞∑
n=0

p−1∑
a=1

1pna+pn+1Zpx
j logL x.

Let fn,a = 1pna+pn+1Zpx
j logL x. We have to prove the sum converges in Cr.

On pna+ pn+1Zp, we have

xj logL x = (x− pna+ pna)j logL(pna+ (x− pna))

= pnj(a+ p
x− pna
pn+1

)j(logL p
na+ log0(1 + p

x− pna
pn+1a

)).

So fn,a ∈ LAn+1, vLAn+1(fn,a) ≥ nj. Use the previous theorem, we get
vCr(fn,a) ≥ nj − r(n+ 1)− C(r) and it goes to +∞.
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1.9.2 Distributions of order r

Definition 1.9.4. Let r ≥ 0 and B be a Banach space. A distribution
µ ∈ D(Zp, B) is a distribution of order r if f 7→

∫
Zp fµ is a continuous

map from Cr(Zp,Qp) to B. We denote the set of distributions of order r by
Dr(Zp, B). We define a valuation on Dr(Zp, B) by

v′Dr(µ) = inf
f∈Cr

(vp(

∫
Zp
fµ)− vCr(f)).

Remark. (i) Under the above valuation, Dr(Zp, B) is a p-adic Banach space

and Dr(Zp, B) = Dr(Zp,Qp)
⊗̂
B. We denote Dr(Zp,Qp) by Dr.

(ii) Dtemp = ∪Dr=set of tempered distributions.
(iii) Since LAh ⊂ Cr, and for f ∈ LAh, vCr(f) ≥ vLAh(f)− rh−C(r), we

get, for µ ∈ Dr ⊂ LA∗
h,

vLA∗h(µ) = inf
f∈LAh

(vp(

∫
Zp
fµ)− vLAh(f)) ≥ v′Dr(µ)− rh− C(r).

Theorem 1.9.5. µ ∈ D, the following are equivalent: (i) µ ∈ Dr i.e. µ can
be extended by continuity to Cr.

(ii) There exists a constant C, such that vp(
∫

Zp

(
x
n

)
µ) ≥ C − r log(1+n)

log p
, for

all n.
(iii) There exists a constant C, such that vp(

∫
a+phZp(x−a)

jµ) ≥ C+h(j−
r), for all a ∈ Zp, j ∈ N, h ∈ N.

(iv) There exists a constant C, such that vLAh(µ) ≥ C−rh, for all h ∈ N.

Remark. It follows that

vDr(µ) = inf
a∈Zp

j∈N,n∈N

(vp(

∫
a+phZp

(x− a)jµ)− h(j − r))

is equivalent to v′Dr .

Proof. (i) ⇔ (ii) is just the definition of v′Dr . (iii) ⇔ (iv) is true by the
definition of LAh (with some C). Remains to prove (ii) ⇔ (iv). We have
v(h)(Aµ) ≥ vLAh(µ) ≥ v(h+1)(Aµ)− 1, hence the proof is reduce to the follow-
ing lemma with F = Aµ.
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Lemma 1.9.6. Suppose F ∈ R+, F =
+∞∑
n=0

bnT
n, the following are equivalent:

(i) there exists C, such that v(h)(F ) ≥ C − rh, for all h ∈ N,

(ii) there exists C ′, such that vp(bn) ≥ C
′ − r log(1+n)

log p
for all n.

Proof. Let

C0 = inf
h∈N

(v(h)(F ) + rh) = inf
h∈N

( inf
n∈N

(vp(bn) +
n

(p− 1)ph
) + rh),

C1 = inf
n∈N

(vp(bn) + r
log(1 + n)

log p
).

Let h = [ log(1+n)
log p

], then

vp(bn) ≥ C0 − rh−
n

(p− 1)ph
≥ C0 − r

log(1 + n)

log p
− 2,

which implies C1 ≥ C0 − 2.
Now, if h is fixed, then C1 − r log(1+n)

log p
+ n

(p−1)ph
is minimal for (1 + n) =

(p− 1)phr. Hence,

C1 − r
log(1 + n)

log p
+

n

(p− 1)ph
≥ C1 − rh−

log(p− 1)r

log p
.

Thus, C0 ≥ C1 − r log(p−1)r
log p

.

For N ≥ 0, let LP [0,N ] be the set of the locally polynomial functions of
degree no more than N on Zp.

Theorem 1.9.7. Suppose r ≥ 0, N > r−1. If f 7→
∫

Zp fµ is linear function

from LP [0,N ] to a Banach space B , such that there exists C,

vp(

∫
a+pnZp

(x− a)jµ) ≥ C + (j − r)n

for all a ∈ Zp and n, j ∈ N, then µ extends uniquely to an element of Dr.

Remark. (i) Let r = 0, N = 0, we recover the construction of measures as
bounded additive functions on open compact sets.
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(ii) We define a new valuation on Dr

vDr,N (µ) = inf
a∈Zpn∈N,j∈N

vp(

∫
a+pnZp

(x− a)jµ)− n(j − r),

then vp(
∫

Zp fµ) ≥ vLAh(f) + vDr,N (µ)− rn for all f ∈ LP [0,N ] ∩ LAh;
(iii) The open mapping theorem in Banach spaces implies that vDr,N is

equivalent to vDr .

Proposition 1.9.8. If f ∈ LA, r ≥ 0, N > r − 1, put

fn =

pn−1∑
i=0

1i+pnZp(
N∑
k=0

f (k)(i)

k!
(x− i)k) ∈ LP [0,N ],

then fn → f in Cr. Hence LP [0,N ] is dense in Cr.

Proof. There exists h, such that f ∈ LAh. We assume n ≥ h, then

vLAh(f − fn) = inf
0≤i≤pn−1

inf
k≥N+1

vp(p
nk f

(k)(i)

k!
).

f ∈ LAh implies vp(
phkf (h)(i)

h!
) ≥ vLAh(f). Hence

vLAh(f − fn) ≥ vLAh(f) + (N + 1)(n− h).

Then

vCr(f − fn) ≥ vLAh(f − fn)− rn− C(r)

≥ vLAh(f)− C(r)− (N + 1)h+ (N + 1− r)n→ +∞,

because N + 1− r > 0.

Proof of Theorem 1.9.7. The proposition implies the uniqueness in the
theorem. We only need to prove the existence.

We show that if f ∈ LAh, then limn→∞
∫

Zp fnµ exists:

vp(

∫
Zp

(fn+1 − fn)µ) ≥ vLAn+1(fn − fn+1) + vDr,N (µ)− r(n+ 1)

≥ inf(vLAn+1(f − fn), vLAn+1(f − fn+1)) + vDr,N (µ)− r(n+ 1)

≥ vDr,N (µ) + vLAh(f)− r(h− 1) + (n− h)(N + 1− r)→ +∞.
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Set
∫

Zp fµ = limn→+∞
∫

Zp fnµ, then

vp(

∫
Zp
fµ) ≥ inf(vp(

∫
Zp

fnµ), vp( inf
n≥h

∫
Zp

(fn−1 − fn)µ))

≥ vLAh(f)− rh+ (vDr,N (µ)− r).

This implies that µ ∈ Dr.

1.10 Summary

To summarize what we established:
(i) We have the inclusions:

C0 ⊃ Cr ⊃ LA ⊃ LAh

D0 ⊂ Dr ⊂ D ⊂ LA∗
h.

Now, if f is a function on Zp and µ is a linear form on polynomials, then we
have:

f 7→ an(f) =
n∑
i=0

(−1)i
(
n

i

)
f(n− i)

µ 7→ bn(µ) =

∫
Zp

(
x

n

)
µ

(ii) For f a function,

• f ∈ C0 if only if vp(an(f))→ +∞ and

vC0(f) = inf
x∈Zp

vp(f(x)) = inf
n
vp(an(f)).

• f ∈ Cr if only if vp(an(f))− r log(1+n)
log p

→ +∞ and

vCr(f) = inf
n
vp(an(f)− r log(1 + n)

log p
).

• f ∈ LA if only if there exists r > 0 such that vp(an(f)) − rn → +∞.
LA is not a Banach space; it is a compact inductive limit of Banach
spaces.
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• f ∈ LAh if and only if vp(an(f))− vp([ nph ]!)→ +∞ and

vLAh(f) = inf
x∈Zp

inf
k∈N

vp(
pkhf (k)(x)

h!
) = inf

n
(vp(an(f))− vp([

n

ph
]!)).

(iii) For µ a distribution,

• µ ∈ D0 if and only if vD0(µ) = inf
n
vp(bn(µ)) > −∞.

• µ ∈ Dr if and only if v′Dr(µ) = inf
n
vp(bn(µ)) + r log(1+n)

log p
> −∞.

• µ ∈ D if and only if for all r > 0, inf
n
vp(bn(µ)) + rn > −∞.

(iv) f =
+∞∑
n=0

an(f)
(
x
n

)
and

∫
Zp fµ =

+∞∑
n=0

an(f)bn(µ).
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Chapter 2

Modular forms

2.1 Generalities

2.1.1 The upper half-plane

By SL2 we mean the group of 2× 2 matrices with determinant 1. We write
SL2(A) for those elements of SL2 with entries in a ring A. In practice, the
ring A will be Z,Q,R.
Let γ =

(
a b
c d

)
in SL2(R), z in C− {−d

c
}, let γz = az+b

cz+d
, then

Im(γz) =
(ad− bc)
|cz + d|2

Im(z) =
Imz

|cz + d|2
.

We denote H = {z, Imz > 0} the upper half plane. It is stable under z 7→ γz
and one can verify (γ1γ2)z = γ1(γ2z).

Proposition 2.1.1. The transform action z 7→ γz defines a group action of
SL2(R) on H.

Proposition 2.1.2. dx∧dy
y2

is invariant under SL2(R).

(hint : dx ∧ dy = i
2
dz ∧ dz and z 7→ γz is holomorphic.)

Definition 2.1.3. Let f : H 7→ C be a meromorphic function and γ =(
a b
c d

)
be in SL2(R). If k in Z, we define the weight k action of SL2(R) by

(f |kγ)(z) = (cz + d)−kf(γz).

Exercise. (f |kγ1)|kγ2 = f |kγ1γ2.

39
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2.1.2 Definition of modular forms

Definition 2.1.4. Let Γ be a subgroup of SL2(Z) of finite index, χ is a
finite order character of Γ (i.e. χ(Γ) ⊂ µN). f : H 7→ C is a modular form of
weight k, character χ for Γ, if:

(i) f is holomorphic on H;
(ii) f |kγ = χ(γ)f , if γ ∈ Γ;
(iii) f is slowly increasing at infinity, i.e. for all γ ∈ Γ\SL2(Z), there

exists C(γ) and r(γ) such that | f |kγ(z) |≤ yr(γ), if y ≥ C(γ).

Definition 2.1.5. Γ is a congruence subgroup if Γ ⊃ Γ(N) = Ker (SL2(Z)→
SL2(Z/NZ)) for some N in N.

Example 2.1.6.

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 modN} ⊃ Γ(N).

Any character χ : (Z/NZ)∗ → C∗ extends to a congruence character

χ : Γ0(N)→ C∗ χ(

(
a b
c d

)
)→ χ(d).

Let Mk(Γ, χ) be the set of modular forms of weight k, character χ for Γ.
Then Mk(Γ, χ) is a C-vector space.

Remark. (i) If
( −1 0

0 −1

)
= −I ∈ Γ and χ(−I) 6= (−1)k, then Mk(Γ, χ) = 0;

(ii) f ∈ Mk(Γ, χ), g ∈ SL2(Z), f |kg ∈ Mk(g
−1Γg, χg) where χg(γ) =

χ(gγg−1).

2.1.3 q-expansion of modular forms.

Lemma 2.1.7. If Γ is a subgroup of finite index of SL2(Z) and χ : Γ 7→ C∗

is of finite order, then there exists M in N − {0}, such that
(

1 M
0 1

)
∈ Γ and

χ(
(

1 M
0 1

)
) = 1.

Proof. We can replace Γ by Kerχ and assume χ = 1. There exists n1 6= n2,
such that

(
1 n1
0 1

)
and

(
1 n2
0 1

)
have the same image in Γ\SL2(Z), then M =|

n1 − n2 | satisfy the condition.

For M ∈ N−{0}, let qM(z) = e
2πiz
M . Then z 7→ qM(z) gives a holomorphic

bijection MZ\H ' D∗ = {0 <| qM |< 1}.
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Corollary 2.1.8. If f ∈ Mk(Γ, χ), then there exists M 6= 0, M ∈ N, such
that f(z + M) = f(z). Thus there exists f̃ holomorphic on D∗, such that
f(z) = f̃(qM).

Now f̃ has a Laurent expansion f̃(qM) =
∑
n∈Z

anq
n
M with

an = e
2πny
M · 1

M

∫ M
2

−M
2

f(x+ iy)e
−2πinx
M dx

for all y. If n < 0, when y → ∞, the right hand side goes to 0, so an = 0.
Hence we get the following result.

Proposition 2.1.9. If f is in Mk(Γ, χ), there exists M ∈ N − {0}, and
elements an(f) for each n ∈ 1

M
N, such that

f =
∑
n∈ 1

M
N

an(f)qn, where q(z) = e2πiz,

which is called the q expansion of modular forms.

2.1.4 Cusp forms.

Definition 2.1.10. (i) v∞(f) = inf{n ∈ Q, an(f) 6= 0} ≥ 0 and we say
that f has a zero of order v∞(f) at ∞. We say that f has a zero at ∞ if
v∞(f) > 0.

(ii) A modular form f is a cusp form if f |kγ has a zero at ∞ for all γ
in Γ\SL2(Z). We denote Sk the set of cusp form of weight k. Sk(Γ, χ) ⊂
Mk(Γ, χ).

Remark. If f is a cusp form, then f is rapidly decreasing at ∞ since

| (f |kγ)(z) |= O
(
e−v∞(f |kγ)2πy

)
.

Theorem 2.1.11. Sk(Γ, χ) and Mk(Γ, χ) are finite dimensional C-vector
spaces with explicit formulas for the dimensions( if k ≥ 2).

Remark. ⊕k,χMk(Γ, χ) = M(Γ) is an algebra.

The study of Mk(Γ, χ) for congruence subgroup and congruence charac-
ters (Kerχ congruence subgroup ) can be reduced to the study ofMk(Γ0(N), χ)
for a simple group theoretic reason. From now on, we write

Mk(N,χ) = Mk(Γ0(N), χ), Sk(N,χ) = Sk(Γ0(N), χ).



42 CHAPTER 2. MODULAR FORMS

2.2 The case Γ = SL2(Z)

2.2.1 The generators S and T of SL2(Z).

Let Mk(1) = Mk(SL2(Z), 1), Sk(1) = Sk(SL2(Z), 1). Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

It is easy to verify

T n =

(
1 n
0 1

)
for any n ∈ Z.

So Sz = −1
z
, T nz = z + n.

Proposition 2.2.1. (i) If (a, b) = 1, then there exists n = n(a, b), (a0, b0) =
(1, 0), (a1, b1) = (0, 1), · · · (an, bn) = (a, b), such that(

al al+1

bl bl+1

)
∈ SL2(Z) for any l.

(ii) SL2(Z) = 〈S, T 〉 .

Proof. (i) We prove it by induction on |a|+ |b|.
If |a|+ |b| = 1, one can do it by hand:

I =

(
1 0
0 1

)
, S =

(
0 −1
1 0

)
, S2 =

(
−1 0
0 −1

)
, S3 =

(
0 1
−1 0

)
.

If |a|+ |b| ≥ 2, there exists µ, ν ∈ Z, such that bµ− aν = 1, and |ν| < |b|,
which implies |µ| ≤ |a|. Then we have

(
µ a
ν b

)
∈ SL2(Z) and |µ|+ |ν| < |a|+ |b|.

Therefore the conclusion is obtained by the inductive assumption.
(ii) Let γ =

(
a b
c d

)
∈ SL2(Z), there exists n = n(a, b), (a0, b0) = (1, 0),

(a1, b1) = (0, 1), · · · (an, bn) = (a, b), such that

γl =

(
al al+1

bl bl+1

)
∈ SL2(Z) for any l.

As γ1 = I and

γ−1
l+1γl =

(
nl 1
−1 0

)
= T−nlS3,

then γ =
∏

(γ−1
l+1γl)

−1 ∈ 〈T, S 〉.
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Corollary 2.2.2. Let f =
+∞∑
n=0

anq
n, where q = e2πiz, then f ∈ Mk(1) if and

only if the following two conditions hold:

(i)
+∞∑
n=0

anq
n converges if |q| < 1.

(ii) f(−1
z
) = zkf(z).

2.2.2 Eisenstein series

Proposition 2.2.3. If k ≥ 3, then Gk ∈Mk(1), where

Gk(z) =
1

2

Γ(k)

(−2πi)k

∑
m,n

′ 1

(mz + n)k
∈ Mk(1),

and
∑′ means the summation runs over all pairs of integers (m,n) distinct

from (0, 0).

Proof. As |mz + n| ≥ min(y, y/|z|) sup(|m|, |n|), the series converges uni-
formly on compact subsets of H and is bounded at ∞.

Let γ =
(
a b
c d

)
∈ SL2(Z), since

(cz + d)−k
∑
m,n

′ 1

(maz+b
cz+d

+ n)k
=

∑
m,n

′ 1

((am+ cn)z + (bm+ dn))k
,

and
(m,n) 7→ (am+ cn, bm+ dn)

is a bijection of Z2 − {(0, 0)}, it follows that Gk|kγ = Gk.

Proposition 2.2.4.

Gk(z) =
Γ(k)

(−2πi)k
ζ(k) +

+∞∑
n=1

σk−1(n)qn,

where σs(n) =
∑

d|n, d≥1

ds, and k is even (if k is odd, Mk(1) = 0, since − I ∈

SL2(Z)).

Proof.

Gk(z) =
Γ(k)

(−2πi)k
ζ(k) +

Γ(k)

(−2πi)k

+∞∑
m=1

Ak(mz),
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where

Ak(z) =
∑
n∈Z

1

(z + n)k
=

∑
l∈Z

φ̂(l)ql

for the last identity given by the Poisson summation formula of Fourier trans-
forms, and (by residue computation)

φ̂(l) =

∫ +∞

−∞

e−2πilx

(x+ iy)k
dx =

{
0, if l ≤ 0,
(−2πi)k

(k−1)!
lk−1, if l ≥ 0.

It follows that

Gk(z) =
Γ(k)

(−2πi)k
ζ(k) +

+∞∑
m=1

+∞∑
l=1

lk−1qlm =
Γ(k)

(−2πi)k
ζ(k) +

+∞∑
n=1

σk−1(n)qn.

Remark. (i) G2(z) = Γ(2)
(−2πi)2

ζ(2)+
∑+∞

n=1 σ1(n)qn is not a modular form, but
it is almost one. Let

G∗
2(z) = G2(z) +

1

8πy
=

1

2

Γ(2)

(−2πi)2
lim
s→0

∑
m,n

′ 1

(mz + n)2

ys

|mz + n|2s
,

G∗
2 is not holomorphic, but G∗

2|2γ = G∗
2, for any γ ∈ SL2(Z).

(ii) Let Ek = Gk
a0(Gk)

, so that a0(Ek) = 1.

2.2.3 The fundamental domain for SL2(Z)

Theorem 2.2.5. Let D denotes the shadows in Figure 1.1. Then it is a
fundamental domain for PSL2(Z). Moreover, the stabilizer of z ∈ D is

- {I} if z 6= i, ρ;

- {I, S} if z = i;

- {I, TS, (TS)2} if z = ρ.
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Figure 2.1: The Fundamental Domain.

Proof. Let z0 ∈ H,

γ =

(
a b
c d

)
∈ SL2(Z)

Since Im (γz0) = z0
|cz0+d|2 tends to zero, as (c, d) tends to infinity, there exists

γ0 such that Im (γ0z0) is maximal. There exists a unique n such that:

−1

2
< Re (γ0z0) + n ≤ 1

2
.

Let γ1 = T nγ0, then

Im (γ1z0) = Im (γ0z0) ≥ Im (Sγ1z0) =
Im (γ1z0)

|γ1z0|2

which implies |γ1z0| ≥ 1. Therefore D contains a fundamental domain.
If z1, z2 ∈ D, and there exists γ ∈ SL2(Z), such that z1 = γz2, we

want to show z1 = z2. By symmetry, we may assume Im (z2) ≥ Im (z1). If

γ =
(
a b
c d

)
, Im (z2) ≥ Im (z2)

|cz2+d|2 implies |cz2 + d|2 ≤ 1. As Im (z2) ≥
√

3
2

, we have
c ≤ 1, d ≤ 1. It remains only finite number of cases to check.

If c = 0, then d = ±1, and γ is the translation by ±b. Since

−1

2
< Re (z1), Re (z2) ≤

1

2
,

this implies b = 0, and γ = ± I.
If c = 1, the fact |z2 + d| ≤ 1 implies d = 0 except if z2 = ρ, in which

case we can have d = 0,−1. The case d = 0 gives |z2| ≤ 1, hence |z2| = 1; on
the other hand, γ ∈ SL2(Z) implies b = −1, hence z1 = γz2 = a− 1/z2 ∈ D,
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Figure 2.2: The Route C(M, ε) of Integration.

which implies a = 0, and z1 = z2 = i. The case z2 = ρ, and d = −1 gives
a+ b+ 1 = 0 and z1 = γz2 = a− 1

ρ−1
= a+ ρ ∈ D, which implies a = 0 and

z1 = z2 = ρ.
If c = −1, we have similar argument as c = 1.
This completes the proof of the Theorem.

2.2.4 The k
12 formula.

The following proposition is usually called “the k
12

formula”.

Proposition 2.2.6. Let f ∈ Mk−{0}, then

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
z∈D−{i,ρ}

vz(f) =
k

12
.

Proof. Apply Cauchy residue formula to d log f over the path showed in
Figure 1.2. As M → +∞, and ε→ 0, we have:

1

2πi

∫
C(M,ε)

d log f =
∑

z∈D−{i,ρ}

vz(f),

lim
M→+∞

1

2πi

∫
C∞(M)

d log f = lim
M→+∞

− 1

2πi

∫
|z|=e−2πM

d log
∑

an(f)zn = −v∞(f),

lim
ε→0

1

2πi

∫
C(i,ε)

d log f = −1

2
vi(f),
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lim
ε→0

1

2πi

∫
C(ρ,ε)

d log f = −1

6
vρ(f) = −1

6
vρ2(f) = lim

ε→0

1

2πi

∫
C(ρ2,ε)

d log f

1

2πi
(

∫ i

ρ2
d log f +

∫ ρ

i

d log f) =
1

2πi

∫ i

ρ2
(d log f − d log f(−1

z
))

= − 1

2πi

∫ i

ρ2
(d log f − d log zkf(z))

= − k

2πi

∫ i

ρ2

d z

z
= − k

2πi
(log i− log ρ2) =

k

12
.

Putting all these equations together, we get the required formula.

Corollary 2.2.7. G4 has its only zero on D at z = ρ, G6 has its only zero
on D at z = i.

∆ = ((
G4

a0(G4)
)3 − (

G6

a0(G6)
)2)

1

3a−1
0 (G4)− 2a−1

0 (G6)
= q + · · · ∈ M12(1)

does not vanish on D (v∞(∆) = 1).

Remark. One can prove ∆ = q
+∞∏
n=1

(1− qn)24.

2.2.5 Dimension of spaces of modular forms.

Theorem 2.2.8. (i) Mk(1) = 0, if k is odd or k = 2.
(ii) dim Mk(1) = 1, if k = 0 or k is even and 2 < k ≤ 10. In this case

Mk(1) = C ·Gk (We have G0 = 1).
(iii) Mk+12(1) = C ·Gk+12 ⊕∆ ·Mk(1).

Proof. If f ∈ Mk+12, then

f =
a0(f)

a0(Gk+12)
Gk+12 + ∆ g,

where g ∈ Mk(1), because ∆ does not vanish on H, v∞(∆) = 1 and v∞(f −
a0(f)

a0(Gk+12)
Gk+12) ≥ 1.
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Corollary 2.2.9. If k is even, dimC Mk(1) =

{
[ k
12

], k ≡ 2 mod 12,

[ k
12

] + 1, if not.

Remark. Finite dimensionality of spaces of modular forms has many com-
binatorical applications. For example, let

θ(z) =
∑
n∈Z

q
n2

2 =
∑
n∈Z

eπin
2z,

Γθ = {γ ∈ SL2(Z), γ ≡ I or γ ≡ S mod 2},

χθ : Γθ → {±1}. χθ(γ) =

{
1 if γ ≡ I

−1 if γ ≡ S

One can check that dim M2(Γθ, χθ) ≤ 1, θ4 ∈ M2(Γθ, χθ), and 4G∗
2(2z) −

G∗
2(
z
2
) ∈ M2(Γθ, χθ), so we have

4G∗
2(2z)−G∗

2(
z

2
) =

3ζ(2)Γ(2)

(−2πi)2
θ4,

hence

|{(a, b, c, d) ∈ Z4 : a2 + b2 + c2 + d2 = n}| = 8
∑
d|n,4-d

d,

from which we can deduce that any positive integer can be written as a sum
of 4 squares.

2.2.6 Rationality results.

As M8(1) and M10(1) are of dimension 1, we have

a0(G8)G
2
4 = a0(G4)

2G8, a0(G10)G4G6 = a0(G4)a0(G6)G10. (∗)

Let

α =
Γ(4)

(−2πi)4
ζ(4), β =

Γ(8)

(−2πi)8
ζ(8).

Substituting

G4 = α+ q + 9q2 + · · · , G8 = β + q + 129q2 + · · ·
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in (∗), compare the coefficients of q and q2, we have the following equations:{
2αβ = α2

β(1 + 18α) = 129α2

The solution is: α = 1
240

, β = 1
480

. In particular, α, β ∈ Q, which implies G4

and G8 have rational q-expansions, and ζ(4)
π4 ∈ Q, ζ(8)

π8 ∈ Q.

Exercise. a0(G6) = − 1
504

, which implies ζ(6)
π6 ∈ Q.

Let A be a subring of C, let

Mk(Γ, A) = {f ∈ Mk(Γ), an(f) ∈ A, for all n},

then M(Γ, A) =
∑

k Mk(Γ, A) is an A-algebra.

Theorem 2.2.10. (i) M(SL2(Z),Q)
∼−→ Q[X, Y ], where X = G4, Y = G6.

(ii) M(SL2(Z),C) = C⊗M(SL2(Z),Q).

Proof. If
∑

k fk = 0, where fk ∈ Mk(SL2(Z),C), then for any z, for any(
a b
c d

)
∈ SL2(Z), we have

∑
k

(cz + d)kfk(z) = 0. Therefore
∑
k

(Xz + Y )kfk(z)

is identically zero because it (as a polynomial in X and Y ) has too many
zeros. Hence fk(z) = 0, which implies that

M(SL2(Z),C) =
⊕
k

Mk(SL2(Z),C).

Now if k = 12n, G3n
4 , G

3(n−1)
4 ∆, · · · ,∆n is a basis of Mk(1); if k = 12n+2,

G
3(n−1)+2
4 G6, G

3(n−2)+2
4 G6 ∆, · · · , G2

4G6 ∆n−1 is a basis of Mk(1), and so on,
∆ = aG3

4 + bG2
6, a, b ∈ Q. As G4, G6 ∈ M(SL2(Z),Q), this proves both

results.

Corollary 2.2.11. Let f ∈ Mk(1), σ ∈ Aut(C), then fσ =
∑
an(f)σqn ∈

Mk(1). Moreover, ζ(k)
(−2πi)k

∈ Q if k is even and k ≥ 4.

Proof. The first assertion is a direct consequence of Theorem 2.2.10 (ii). For
any σ ∈ Aut(C), we have

Gσ
k −Gk = a0(Gk)

σ − a0(Gk) ∈ Mk(1).

This implies a0(Gk)
σ = a0(Gk) for any σ ∈ Aut(C), therefore a0(Gk) ∈

Q.
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Remark. When k = 2, we can use

4G∗
2(2z)−G∗

2(
z

2
) ∈ M2(Γθ,Q)

to deduce ζ(2)
π2 ∈ Q.

Remark. (i) The zeta function ζ is a special case of L-functions, and ζ(k)
are special values of L-functions (i.e. values of L-functions at integers).

Siegel used the above method to prove rationality of special values of
L-functions for totally real fields.

(ii) With a lot of extra work, we can prove integrality results. As

Gk(z) =
Γ(k)

(−2πi)k
ζ(k) +

+∞∑
n=1

σk−1(n)qn,

and σk−1(n) =
∫

Zp x
k−1(

∑
d|n
δd), we have all an(Gk) are given by measures on

Zp, therefore a0(Gk) is also given by measures. From which we can deduce
other constructions of Kubota-Leopoldt zeta functions (the work of Serre,
Deligne, Ribet).

2.3 The algebra of all modular forms.

Let A be a subring of C, let

Mk(A) =
⋃

[SL2(Z):Γ]<+∞

Mk(Γ, A) =
{∑

anq
n ∈ Mk(Γ,C), an ∈ A, n ∈ N

}
.

LetM(A) = ⊕Mk(A), then it is an A-algebra. Let

Mcong(A) =
⋃

Γ congruence subgroup

M(Γ, A).

Theorem 2.3.1. (i) If f ∈M(C), and σ ∈ Aut(C), then fσ ∈M(C).
(ii) M(C) = C⊗QM(Q) = C⊗QM(Q).

(iii) Let ΠQ = Aut(M(Q)/M(SL2(Z),Q)), GQ = Gal(Q /Q), then we
have an exact sequence:

1 // SL2(Z)∧ // ΠQ // GQ
ww

// 1



2.3. THE ALGEBRA OF ALL MODULAR FORMS. 51

where G∧ , lim←−
[G:Γ]<∞
Γ normal

(G/Γ), and GQ → ΠQ is induced by the action on Fourier

coefficients.
(iv) Mcong(Qab) is stable by ΠQ, and

Aut(Mcong(Qab)/M(SL2(Z),Q))
∼−→ GL2(Ẑ).

Moreover, we have the following commutative diagram:

1 // SL2(Z)∧

��

// ΠQ //

��

GQ //

��

vv
1

1 // SL2(Ẑ) // GL2(Ẑ) // Ẑ∗
rr

// 1

where GQ → Ẑ∗ is the cyclotomic character, GL2(Ẑ)→ Ẑ∗ is the determinant

map, and Ẑ∗ → GL2(Ẑ) maps u to
(

1 0
0 u

)
.

Remark. (i) SL2(Z)∧ is much bigger than SL2(Ẑ).
(ii) We can get an action of GQ on SL2(Z)∧ by inner conjugation in

ΠQ. This is a powerful way to study GQ (Grothendieck, “esquisse d’un pro-
gramme”).

(iii) There are p-adic representations of GQ attached to modular forms
(by Deligne) for congruence subgroups. They come from the actions of GQ
on H1(SL2(Z)∧,W ), where W = Symk−2Vp ⊗Zp Zp[SL2(Z)/Γ], Vp is Q2

p with
actions of ΠQ through GL2(Zp) and are cut out using Hecke operators on
these spaces.

Proof of Theorem 2.3.1 (i). Let N(Γ, A) denote the set of holomorphic func-
tions f : H → C satisfying the following conditions:

(a) for any γ ∈ Γ, f(γz) = f(z),

(b) for any γ ∈ Γ\ SL2(Z), f ◦ γ =
∑

n≥n0(γ,f)

n∈ 1
M

Z

anq
n, and an ∈ A for any n.

As ∆ ∈ S12(SL2(Z),Q) does not vanish on H, ∆
1
12 ∈ S1(SL2(Z), χ,Q), where

χ : SL2(Z)→ µ12. Let Γ0 = Kerχ. If f ∈ Mk(Γ, A), ∆− k
12 f ∈ N(Γ ∩ Γ0, A).

If f ∈ N(Γ, A), ∆k f ∈ M12k(Γ, A), where k + n0(γ, f) ≥ 0 for any γ ∈
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Γ\ SL2(Z). Therefore knowing N(Γ, A) is equivalent to knowing M(Γ, A). So
it suffices to prove if

f =
∑
n≥n0

anq
n ∈ N (C) =

⋃
Γ

N(Γ,C)

and σ ∈ Aut C, then fσ ∈ N (C).

Let j =
G3

4

a0(G3
4)∆

= q−1 + · · · ∈ N(SL2(Z),Q).

Proposition 2.3.2. (i) N(SL2(Z),Q) = Q[j], N(SL2(Z),C) = C[j].
(ii) j : SL2(Z)\H → C is bijective.

(iii) j(z)− j(α) has a zero at z = α of order e(α) =


3 if α ∈ SL2(Z)ρ

2 if α ∈ SL2(Z)i,

1 otherwise.

(iv) j(i), j(ρ) ∈ Q.

Proof. (i) Note that G3a
4 , G

3(a−1)
4 ∆, · · · ,∆a is a basis of M12a(SL2(Z),Q).

(ii) and (iii): For any β ∈ C, f = (j − β) · ∆ ∈ M12(SL2(Z),C), with
v∞(f) = 0. As D = SL2(Z)\H, and∑

z∈D−{ρ,i}

γz(f) +
1

2
γi(f) +

1

3
(f) = 1,

we can deduce the required results.
(iv) G4(ρ) = 0, G6(i) = 0.

Let f ∈ N(Γ,C),

Pf (X) =
∏

δ∈Γ\ SL2(Z)

(X − f ◦ δ) ∈ N(SL2(Z),C)[X] ⊂ C((q))[X]

Pfσ(X) =
∏

δ∈Γ\ SL2(Z)

(X − (f ◦ δ)σ) ∈ N(SL2(Z),C)[X] ⊂ C((q))[X]

Denote Pf (X) =
n∑
l=0

glX
l, Pfσ(X) =

n∑
l=0

gσl X
l, where gl ∈ N(SL2(Z),C), and

gσl ∈ N(SL2(Z),C) thanks to the Corollary 2.2.11. We give the proof in two
steps.
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Step 1: Prove that fσ is holomorphic on H, by the Proposition 2.3.2. We
have

Pf (X) =
n∑
l=0

Pl(j)X
l, Pfσ(X) =

n∑
l=0

P σ
l (j)X l.

The roots of Pf are the f ◦ δ’s, where δ ∈ Γ\ SL2(Z). They are holomorphic
onH. The roots of Pfσ are multivalued holomorphic functions onH. In order
to prove that are single valued, it suffices to show there is no ramification.
Let α be an arbitrary element in H. we have, around α, n distinct formal
solutions

+∞∑
k=0

al,k(α)(j − j(α))
k

e(α) (1 ≤ l ≤ n)

of Pf (X) = 0 as (j − j(α))
1

e(α) is a local parameter around α by Proposition
2.3.2. Let βσ ∈ H satisfies j(βσ) = j(α)σ, then we have e(βσ) = e(α).
Therefore

+∞∑
k=0

al,k(α)σ(j − j(βσ))
k

e(βσ) , (1 ≤ l ≤ n)

are n distinct formal solutions around βσ. It follows that there is no ramifi-
cation around βσ, for any βσ. Hence the roots of Pfσ are holomorphic on H.
In particular, fσ is holomorphic on H.

Step 2: Prove that there exists Γ′ ⊂ SL2(Z) of finite index, such that fσ ◦γ =
fσ for any γ ∈ Γ. For any γ ∈ SL2(Z),

Pfσ(f
σ ◦ γ) =

n∑
l=0

gσl (f
σ ◦ γ)l =

n∑
l=0

gσl ◦ γ(fσ ◦ γ)l = Pfσ(f
σ) ◦ γ = 0

So fσ ◦ γ belongs to the finite set of roots of Pfσ , which leads to the required
conclusion.

2.4 Hecke operators

2.4.1 Preliminary.

Let Γ ⊂ G be groups (for example, Γ = SL2(Z), G = GL2(Q)+), let x ∈ G,

xΓ = {xγ : γ ∈ Γ}, Γx = {γx : γ ∈ Γ}.
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Let A be a ring, define A[Γ\G/Γ] to be the set of φ : G → A satisfying the
following two conditions:

(i) φ(γx) = φ(xγ) = φ(x), for all x ∈ G, γ ∈ Γ.
(ii) There exists a finite set I such that φ =

∑
i∈I
λi1Γxi .

Remark. (i) We impose xi to be distinct in Γ\G, in this situation, the
decomposition is unique, λi’s are unique.

(ii) For any γ ∈ Γ, 1Γxiγ(x) = 1Γxi(xγ
−1). So φ =

∑
i∈I
λi1Γxi ∈ A[Γ\G/Γ]

implies∑
i∈I

λi1Γxiγ(x) =
∑
i∈I

λi1Γxi(xγ
−1) = φ(xγ−1) = φ(x) =

∑
i∈I

λi1Γxi(x)

Therefore there exists a permutation: σ : I → I, and for any i ∈ I, there
exists γi ∈ Γ, such that λσ(i) = λi, xiγ = γixσ(i).

Proposition 2.4.1. (i) If φ =
∑
i∈I
λi1Γxi, φ

′ =
∑
j∈J

µj1Γyj ∈ A[Γ\G/Γ], then

φ ∗ φ′ =
∑

(i,j)∈I×J

λiµj1Γxiyj ∈ A[Γ\G/Γ],

and it does not depend on the choices.
(ii) (A[Γ\G/Γ],+, ∗) is an associative A-algebra with 1Γ as a unit.
(iii) If M is a right G-module with G action m 7→ m ∗ g, and φ =∑
λi1Γxi ∈ A[Γ\G/Γ], then for any m ∈ MΓ, m ∗ φ =

∑
i∈I
λim ∗ xi does not

depend on the choices of xi. Moreover, m∗φ ∈MΓ, m∗(φ1∗φ2) = (m∗φ1)∗φ2,
m ∗ (φ1 + φ2) = (m ∗ φ1) + (m ∗ φ2).

Proof. Exercise, using the previous remark.

Remark. If Γ = 1, then A[Γ\G/Γ] = A[G] is commutative if and only if G
is commutative.

2.4.2 Definition of Hecke operators: Rn, Tn, n ≥ 1.

Let G = GL2(Q)+, Γ = SL2(Z).

Lemma 2.4.2. Let g ∈ G ∩M2(Z), then there exists a unique pair (a, d) ∈
N− {0}, and b ∈ Z unique mod dZ, such that Γg = Γ

(
a b
0 d

)
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Proof. Let g =
(
α β
γ δ

)
, there exists µ, ν ∈ Z, such that (µ, ν) = 1, and

µα + νγ = 0. And there exists x, y ∈ Z, such that xν − µy = 1, Let
γ0 =

(
x y
µ ν

)
if xα + yγ ≥ 0; γ0 = −

(
x y
µ ν

)
if xα + yγ < 0. Then γ0g =

(
a b
0 d

)
,

where a > 0. Thus completes the proof of existence.
If γ1, γ2 ∈ Γ satisfies

γ1g =

(
a1 b1
0 d1

)
γ2g =

(
a2 b2
0 d2

)
then

(γ1g)(γ2g)
−1 =

(a1

a2

a2b1−a1b2
a2d2

0 d1
d2

)
∈ SL2(Z)

This implies a1 = a2, d1 = d2, b1 − b2 divisible by d1.

Lemma-definition 2.4.3. For any n ≥ 1,

Rn = 1Γ(n0
0
n)
∈ Z[Γ\G/Γ],

Tn = 1{g∈M2(Z),det g=n} ∈ Z[Γ\G/Γ].

Proof. Left and right invariance come from det gg′ = det g det g′. And Lemma 2.4.2
implies Tn =

∑
ad=n,a≥1
bmod d

1Γ(a0
b
d)

, so get the finiteness needed.

Remark. If p is prime, Then Tp = 1Γ( p0
0
1)Γ by elementary divisors for prin-

ciple ideal domains.

Theorem 2.4.4. (i) For any n ≥ 1 and l ≥ 1, RnRl = Rnl = RlRn,
RnTl = TlRn.

(ii) If (l, n) = 1, TlTn = Tln = TnTl.
(iii) If p is prime and r ≥ 1, TprTp = Tpr+1 + pRpTpr−1.
(iv) Let TZ be the subalgebra of Z[Γ\G/Γ] generated by Rn and Tn (n ≥ 1).

It is a commutative algebra.

Proof. (i) It is trivial.
(ii) We have

TnTl =
∑

ad=n,a≥1
bmod d

∑
a′d′=n,a′≥1
b′ mod d′

1
Γ

“
aa′
0
ab′+bd′
dd′

”.
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As (n, l) = 1, (a, a′) = 1, (a, d′) = 1. This implies {aa′ : a|n, a′|l} =
{a′′ : a′′|nl}. Therefore in order to show TnTl = Tnl, it suffices to verify
that {ab′ + bd′} is a set of representatives of Z/(dd′)Z, where b is a set of
representatives of Z/dZ, b′ is a set of representatives of Z/d′Z. It suffices to
show the injectivity under the mod dd′Z map. If

ab′1 + b1d
′ ≡ ab′2 + b2d

′,

then b′1 ≡ b′2 mod d′, so b′1 = b′2, which leads to the required conclusion.
(iii) We have

Tpr =
r∑
i=0

∑
bmod pi

1
Γ

“
pr−i

0
b
pi

”, Tp = 1Γ( p0
0
1)

+
∑
cmod p

1Γ( 1
0
c
p)

Then

TprTp =
r∑
i=0

∑
bmod pi

1
Γ

“
pr+1−i

0
b
pi

” +
r∑
i=0

∑
bmod pi

∑
cmod p

1
Γ

“
pr−i

0
pb+pr−ic
pi+1

”

=Tpr+1 +Rp(
r−1∑
i=0

∑
bmod pi

∑
cmod p

1
Γ

“
pr−1−i

0
b+pr−1−i

pi

”) = Tpr+1 + pRpTpr−1 .

(iv) It follows from (i),(ii),(iii).

2.4.3 Action of Hecke operators on modular forms.

The following two propositions are exercises in group theory.

Proposition 2.4.5. Assume G ⊃ Γ are groups. Then
(i) If [Γ : Γ′] < +∞, then Γ′ contains some Γ′′ which is normal in Γ, and

[Γ : Γ′′] < +∞.
(ii) If [Γ : Γ1] < +∞, [Γ : Γ2] < +∞, then [Γ : Γ1 ∩ Γ2] < +∞.
(iii) If H ′ ⊂ H ⊂ G, [H : H ′] < +∞, then [H ∩ Γ : H ′ ∩ Γ] < +∞.

Proposition 2.4.6. (i) Suppose α ∈ GL2(Q)+, and N ∈ N such that Nα,
Nα−1 ∈ M2(Z), then

α−1 SL2(Z)α ∩ SL2(Z) ⊃ Γ(N2) := SL2(Z) ∩ (1 +N2 M2(Z)).

(ii) If [SL2(Z) : Γ] < +∞, α ∈ GL2(Q)+, then

[SL2(Z) : SL2(Z) ∩ α−1Γα] < +∞.
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Proposition 2.4.7.

Mk(C) =
⋃

[SL2(Z):Γ]<+∞

Mk(Γ,C), Sk(C) =
⋃

[SL2(Z):Γ]<+∞

Sk(Γ,C)

are stable under GL2(Q)+.

Proof. For any γ ∈ Γ, f|kγ = f . For α ∈ GL2(Q)+, we have

(f|kα)|k(α
−1γα) = f|kα,

so f|kα is invariant for the group α−1Γα ∩ SL2(Z).
To verify that f|kα is slowly increasing at ∞, write α = γ

(
a b
0 d

)
for some

γ ∈ SL2(Z), then

(f|kα)(z) = (ad)k−1d−k(f|kγ)

(
az + b

d

)
,

then we get the result.

Let Γ = SL2(Z), G = GL2(Q)+, ϕ =
∑
i∈I
λi1Γγi ∈ Z[Γ\G/Γ], we define

f|kϕ =
∑
i∈I

λif|kγi, for f ∈ Mk(1) =Mk(C)Γ.

The definition is independent of the choice of γi. From the general theory,
we have

(f|kϕ)|kϕ
′(z) = f|k(ϕ ∗ ϕ′)(z).

If f ∈ Mk(1) (resp. Sk(1)), then f|kϕ ∈ Mk(1) (resp. Sk(1)).
Facts: f|kRn = nk−2f , and f|kTn = nk−1

∑
ad=n,a≥1
bmod d

d−kf(az+b
d

).

Proposition 2.4.8. If f =
∞∑
m=0

am(f)qm, then am(f|kTn) =
∑
a≥1,
a|(m,n)

ak−1amn
a2

(f).

Proof. For fixed d|n, d ≥ 1,∑
bmod d

d−kf(az+b
d

) = d−k
∑

bmod d

∞∑
m=0

am(f)e2πim
az+b
d

= d−k
∞∑
m=0

am(f)e2πinaz/d
∑

bmod d

e2πimb/d

= d1−k
∞∑
m=0
d|m

am(f)e2πimaz/d

= d1−k
∞∑
l=0

adl(f)qal.



58 CHAPTER 2. MODULAR FORMS

So

f|kTn = nk−1
∑

ad=n,a≥1

d1−k
∞∑
l=0

adl(f)qal,

summing the coefficients of qm, this gives:

am(f|kTn) = nk−1
∑
a≥1

a|(m,n)

(n/a)1−kamn
a2

(f)

=
∑
a≥1

a|(m,n)

ak−1amn
a2

(f).

Corollary 2.4.9. (i) Mk(Γ,Z) and Mk(Γ,Q) are stable under Tn and Rn.
(ii) a0(f|kTn) =

∑
a|n
ak−1a0(f) = σk−1(n)a0(f).

(iii) a1(f|kTn) = an(f), therefore f is determined by

T 7−→ a1(f|kT ).

2.5 Petersson scalar product.

Lemma 2.5.1.∫
SL2(Z)\H

dxdy

y2
=

∫ 1
2

− 1
2

∫ +∞

√
1−x2

dxdy

y2
=
π

3
<∞.

Corollary 2.5.2. (i) If [SL2(Z) : Γ] < +∞, then∫
Γ\H

dxdy

y2
=
π

3
C(Γ),

where C(Γ) = [PSL2(Z) : Γ̄], Γ̄ is the image of Γ in PSL2(Z).
(ii) If α ∈ GL2(Q)+ such that α−1Γα ⊂ SL2(Z), then C(α−1Γα) = C(Γ).

Proof. (i) Since dxdy
y2

is invariant under the action of Γ, the integral is well

defined. Put {γi} be a family of representatives of Γ\ SL2(Z), then Γ\H =∐
γi(D) up to sets of measure 0 (maybe have overlap in SL2(Z)i∪SL2(Z)ρ).
(ii) Since Γ\H = α

(
α−1Γα\H

)
, the two integrals are the same by the

invariance of dxdy
y2

.
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Let f, g ∈ Sk(C), choose Γ ⊂ SL2(Z) of finite index such that f, g ∈
Sk(Γ,C).

Proposition 2.5.3.

〈f, g〉 :=
1

C(Γ)

∫
Γ\H

f(z)g(z)yk
dxdy

y2

converges and is independent of the choice of Γ.

Proof. For γ ∈ Γ, we have

f(γz) = (cz + d)kf(z), g(γz) = (cz + d)kg(z),

Im (γz) =
Im z

|cz + d|2
.

so f(z)g(z)yk is invariant under Γ. Now Γ\H =
⋃
i∈I
γiD with |I| = C(Γ). So

if Γ′ also satisfy that f, g ∈ Sk(Γ
′,C), then f, g ∈ Sk(Γ ∩ Γ′,C), and

1
C(Γ)

∫
Γ\H

f(z)g(z)yk
dxdy

y2
= 1

C(Γ ∩ Γ′)

∫
(Γ∩Γ′)\H

f(z)g(z)yk
dxdy

y2

= 1
C(Γ′)

∫
Γ′\H

f(z)g(z)yk
dxdy

y2
.

Because f|kγi and g|kγi are exponentially decreasing as y → ∞ on D,
〈f, g〉 converges.

Remark. In fact, we can choose one modular form and one cusp form, and
the integral will still converge.

Proposition 2.5.4. For f ∈ Sk(1), we have 〈Gk, f〉 = 0.

Proof. By definition,

Gk(z) =
1

2

Γ(k)

(−2πi)k

∑
m,n

′ 1

(mz + n)k
∈ Mk(1),

and ∑
m,n

′ 1

(mz + n)k
=

∞∑
a=1

∑
(m,n)=1

1

(amz + an)k

=
Γ(k)

(2πi)k
ζ(k)

∑
γ∈Γ∞\ SL2(Z)

1

(cz + d)k
,
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where Γ∞ denotes the subgroup of SL2(Z) consisting of all upper triangular
matrices. So we just compute 〈

∑
γ∈Γ∞\ SL2(Z)

1
(cz+d)k

, f〉. We have

〈
∑

γ∈Γ∞\ SL2(Z)

1
(cz+d)k

, f〉 =
∫

SL2(Z)\H

( ∑
γ∈Γ∞\ SL2(Z)

1

(cz+d)
k

)
f(z)yk dxdy

y2

=
∫

SL2(Z)\H
∑

γ∈Γ∞\ SL2(Z)

f(γz) Im (γz)k dxdy
y2

=
∫

Γ∞\H f(z)yk dxdy
y2

=
∫∞

0

∫ 1

0
f(x+ iy)yk−2dxdy = 0,

where the last equality is because a0(f) = 0 and
∫ 1

0
e2πinxdx = 0 for n ≥

1.

Lemma 2.5.5. (i) For α ∈ GL2(Q)+, we have

〈f|kα, g|kα〉 = (detα)k−2〈f, g〉.

(ii) Let α′ = (detα)α−1, then 〈f|kα, g〉 = 〈f, g|kα′〉.

Proof. (i) Choose Γ such that f, g ∈ Sk(Γ) and α−1Γα ⊂ SL2(Z), then

C(α−1Γα)〈f|kα, g|kα〉 = (detα)2(k−1)

∫
α−1Γα\H

f(αz)g(αz)
yk

|cz + d|2k
dxdy

y2

= (detα)k−2

∫
Γ\H

f(z)g(z)yk
dxdy

y2

= (detα)k−2C(Γ)〈f, g〉.

(ii) Replace g by g|kα
−1, then we get

〈f|kα, g〉 = (detα)k−2〈f, g|kα−1〉
= (detα)k−2〈f, g|k

(
1

detα
α′

)
〉

= 〈f, g|kα′〉.

2.6 Primitive forms

Theorem 2.6.1. (i) If n ≥ 1, then Rn and Tn are hermitian.
(ii) The eigenvalues of Tn are integers in a totally real field.
(iii) Sk(1) has a basis of common eigenvectors for all Tn, n ≥ 1.
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Proof. (i) It is trivial for Rn. Since TZ is generated by Rp and Tp for p prime,
it suffices to consider Tp.

Let α ∈ M2(Z), detα = p, then there exist γ1, γ2 ∈ SL2(Z) such that
α = γ1

(
p 0
0 1

)
γ2, then

〈f|kα, g〉 = 〈f|k(γ1

(
p 0
0 1

)
γ2), g〉

= 〈f|k
(
p 0
0 1

)
, g|kγ

′
2〉

= 〈f|k
(
p 0
0 1

)
, g〉

= 〈f, g|k
(
p 0
0 1

)
〉,

thus 〈f|kTp, g〉 = (p+ 1)〈f|k
(
p 0
0 1

)
, g〉 = 〈f, g|kTp〉.

(ii) Sk(SL2(Z),Z) is a lattice in Sk(1) stable under Tn, so det(XI −Tn) ∈
Z[X], so the roots are algebraic integers, and real since Tn is hermitian.

(iii) Tn
′s are hermitian, hence they are semisimple. Since the Tn commute

to each other, by linear algebra, there exists a common basis of eigenvectors
for all Tn.

Theorem 2.6.2. Let f =
+∞∑
n=0

an(f)qn ∈ Mk(1) − {0}. If for all n, f|kTn =

λnf , then
(i) a1(f) 6= 0;
(ii) if f is normalized, i.e. a1(f) = 1, then an(f) = λn, for all n, and

(a) amn(f) = am(f)an(f) when (m,n) = 1.
(b) ap(f)apr(f) = apr+1(f) + pk−1apr−1(f) for p prime and r ≥ 1.

Proof. (i) Since an(f) = a1(f|kTn) = a1(λnf) = λna1(f), if a1(f) = 0, then
f = 0.

(ii) The first assertion is obvious, and the other two follow by the same
formulae for the Rp, Tp.

Definition 2.6.3. f ∈ Sk(1) is called primitive if a1(f) = 1 and f is an
eigenform for all Hecke operators.

Theorem 2.6.4. (i) If f, g are primitive with the same set of eigenvalues,
then f = g. (called “Multiplicity 1 theorem”).

(ii) The primitive forms are a basis of Sk(1).

Proof. (i) Apply (i) of the previous theorem to f − g, since a1(f − g) = 0, so
f = g.
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(ii) By (iii) of Theorem 2.6.1, there exists a basis of primitive forms. For
any two distinct such forms f and f ′, then there exist n and λ 6= λ′ such that

f |kTn = λf, f ′|kTn = λ′f,

then λ〈f, f ′〉 = 〈f |kTn, f ′〉 = 〈f, f ′|kTn〉 = λ′〈f, f ′〉, so 〈f, f ′〉 = 0. Therefore
one has to take all the primitive forms to get a basis of Sk(1).

Remark. Since (Gk)|kTn = σk−1(n)Gk, we get a basis ofMk(1) of eigenforms.

Example 2.6.5. Write

∆ = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

where τ(n) is Ramanujan’s τ -function. Then

τ(mn) = τ(m)τ(n), if (m,n) = 1,

τ(p)τ(pr) = τ(pr+1) + p11τ(pr−1), if p is a prime, n ≥ 1.

Proof. Since S12(1) = C ·∆, and is stable by the Tn, ∆ is an eigenform of Tn
with eigenvalue τ(n).

Remark. In 1973, Deligne proved Ramanujan’s conjecture that

|τ(p)| ≤ 2p11/2(⇐⇒ Re (s) = 11/2, if 1− τ(p)p−s + p11−2s = 0)

as a consequence of the proof of Riemann Hypothesis (Weil Conjecture) for
zeta functions of varieties over finite fields.



Chapter 3

p-adic L-functions of modular
forms

3.1 L-functions of modular forms.

3.1.1 Estimates for the fourier coefficients

Proposition 3.1.1. Let Γ ⊂ SL2(Z) be a subgroup of finite index, let f =∑
n∈ 1

M
N
an(f)qn ∈ Mk(Γ,C). Then

(i)

an(f) =


O(nk−1), if k ≥ 3;

O(n log n), if k = 2;

O(
√
n), if k = 1.

(ii) an(f) = O(nk/2), if f ∈ Sk(Γ).

Proof. We have that

an(f) = e2πnyy−
k
2

1

M

∫ M

0

y
k
2 f(x+ iy)e−2πinxdx, ∀ y.

Define

ϕ(z) = y
k
2 sup
δ∈Γ\ SL2(Z)

|f|kδ(z)|.

It is finite since [SL2(Z) : Γ] < +∞, and ϕ(γz) = ϕ(z) for γ ∈ SL2(Z).

63
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Let D be the fundamental domain of SL2(Z). For any δ ∈ Γ\ SL2(Z),
there exists Cδ such that, for all z ∈ D,

|f|kδ(z)− a0(f|kδ)| ≤ Cδe
− 2πy

M .

Let C = sup
δ
Cδ, ψ(z) = sup

(c,d) 6=(0,0)

y
|cz+d|2 , then ϕ(z) ≤ Cψ(z)k/2 + B for some

B.
an(f) ≤ e2πnyy−

k
2

1
M

∫M

0
ϕ(x+ iy)dx

≤ e2πnyy−
k
2

1
M

∫M

0
(Cψ(x+ iy)k/2 +B)dx.

If C = 0, take y = 1
Mn

, then we get (ii).
We now need to evaluate ∫ M

0

ψ(x+ iy)
k
2 .

Let y ≤ 1 (in application, y = 1
Mn

), then ψ(x + iy) ≤ 1
y
. Let j ∈ N. If

ψ(x + iy) ≥ 1
4j
y, there exists (c, d) such that c2y2 + (cx + y)2 ≤ 4jy2, hence

there exist c, d ∈ Z, such that

1 ≤ |c| ≤ 2j, |cx+ d| ≤ 2jy.

Now
Meas({x ∈ [0,M ] : ∃d, s.t.|cx+ d| ≤ 2jy}) ≤ 2j+1yM,

so Meas({x ∈ [0,M ] : ψ(x+ iy) ≥ 1
4jy
}) ≤ 4j2yM , and∫M

0
ψ(x+ iy)k/2dx

≤
[− log4 y]∑
j=1

Meas({x ∈ [0,M ] : 1
4jy
≤ ψ(x+ iy) ≤ 1

4j−1y
})( 1

4j−1y
)k/2

+4k/2Meas({x ∈ [0,M ] : ψ(x+ iy) ≤ 4})

≤M4k/2 +
[− log4 y]∑
j=1

4j2yM( 1
4j−1y

)k/2

= M4k/2
(
1 + 2

[− log4 y]∑
j=1

y1−k/24j(1−k/2)
)
.

When k ≥ 3, let y = 1/Mn. As
[− log4 y]∑
j=1

4j(1−k/2) converges, we get an(f) =

O(nk−1). When k = 2, it is obvious. For k = 1,
[− log4 y]∑
j=1

y1−k/24j(1−k/2) <

2− y1/2 < 2, then we get the result.
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Remark. (i) L(f, s) =
∑
n6=0

an(f)n−s converges for Re (s)� 0.

(ii) If Γ is a congruence subgroup, f ∈ Sk(Γ), Deligne showed that

an(f) = O(n(k−1)/2+ε), ∀ ε > 0

in the same theorem mentioned above.
Question: What about the noncongruence subgroups?

3.1.2 Dirichlet series and Mellin transform

Definition 3.1.2. Let {an}n≥1 be a sequence in C, the Dirichlet series of

(an) is D(s) =
∞∑
n=1

an
ns

.

Lemma 3.1.3. If D(s0) converges, then D(s) converges uniformly on com-
pact subsets of Re (s) > Re (s0).

Proof. One can assume s0 = 0, then use Abel’s summation.

Corollary 3.1.4. There exists a maximal half plane of convergence (resp.
absolute convergence).

Remark. (i) if f(z) =
∞∑
n=0

anz
n, then the maximal open disc of convergence

of f is the maximal open disc of absolute converge, and also is the maximal
open disc of center 0 on which f can be extended analytically.

(ii) Let an = (−1)n−1, then D(s) = (1 − 21−s)ζ(s), which converges for
Re (s) > 0, absolutely converges Re (s) > 1 and can be extended analytically
to C.

(iii) In general you can’t extend D(s) outside its half plane of absolute
convergence, but for D(s) coming from number theory, it seems that you can
always extend meromorphically to C (Langlands program).

We review some basic facts about Mellin transform:

Proposition 3.1.5. (i) Let ϕ : R∗
+ → C be in Cr, and suppose there exist

A > B satisfying, for 0 ≤ i ≤ n,

ϕ(i)(t) =

{
O(tA−i) near 0
O(tB−i) near ∞.



66 CHAPTER 3. P -ADIC L-FUNCTIONS OF MODULAR FORMS

Let

Mel(ϕ, s) :=

∫ ∞

0

ϕ(t)ts
dt

t
.

Then it is holomorphic on −A < Re (s) < −B, and O(|s|−r) on −A < a ≤
Re (s) ≤ b < −B.

(ii) If r ≥ 2, ϕ(x) = 1
2πi

∫ C+i∞
C−i∞ Mel(ϕ, s)x−sds, for any C with −a < C <

−B.

Proof. (i) The first assertion is clear. For the second, use

Mel(ϕ, s) = (−1)r
1

s(s+ 1) · · · (s+ r − 1)
Mel(ϕ(r), s+ r).

(ii) Mel(ϕ,C + it) = ψ̂C(t), where ψC(x) = ϕ(ex)eCx, and ψ̂C is the
Fourier transform of ψC . Then use Fourier inversion formula.

3.1.3 Modular forms and L-functions

For f =
∞∑
n=0

an(f)qn ∈ M2k(1), define

L(f, s) =
∞∑
n=1

an(f)

ns
, Λ(f, s) =

Γ(s)

(2π)s
L(f, s).

Example 3.1.6. Take f = G2k, we get

L(G2k, s) =
∞∑
n=1

σ2k−1(n)
ns

=
∞∑
n=1

( ∑
ad=n

d2k−1
)
(ad)−s

=
( ∞∑
a=1

a−s
)( ∞∑

d=1

d2k−1−s) = ζ(s)ζ(s− 2k + 1).

Theorem 3.1.7. (i) L(f, s) absolutely converges for Re (s) > 2k;

(ii) (a) Λ(f, s) has a meromorphic continuation to C;

(b) Λ(f, s) is holomorphic except for simple poles at s = 0 of residue
a0(f) and 2k of residue (−1)ka0(f);

(c) Λ(f, 2k − s) = (−1)kΛ(f, s);

(d) Λ(f, s) goes to zero at ∞ in each vertical strip.
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Proof. (i) The result follows from an(f) = O(n2k−1).
(ii) Let ϕ(t) = f(it) − a0(f), then ϕ is C∞ on R∗

+, and ϕ(t) = O(e−2πt)
at ∞. f ∈ M2k(1) implies

ϕ(t−1) = (−1)kt2kϕ(t) + (−1)ka0(f)t2k − a0(f).

For Re (s) > 0, we have
∫ +∞

0
e−2πntts dt

t
= Γ(s)

(2πn)s
. Then for Re (s) > k,

Λ(f, s) =
∞∑
n=1

an(f) Γ(s)
(2πn)s

=
∫ +∞

0
ϕ(t)ts dt

t

=
∫ +∞

1
ϕ(t)ts dt

t
+

∫ +∞
1

ϕ(t−1)t−s dt
t

=
∫ +∞

1
ϕ(t)(ts + (−1)kt2k−s)dt

t
− a0(f)

(
(−1)k

2k−s + 1
s

)
, (∗)

since the first term is holomorphic for all s ∈ C, this gives (a) and (b).
Replacing s by 2k − s in (∗), we get (c). (d) follows from integration by
part.

Theorem 3.1.8 (Hecke’s converse theorem). Let (cn)n∈N be a sequence

in C such that L(s) =
∞∑
n=1

cn
ns

converges for Re (s) > A, and Λ(s) = Γ(s)
(2π)s

L(s)

satisfy (ii)(a)− (d) of previous theorem, then

f(z) :=
∞∑
n=0

cnq
n ∈ M2k(1).

Proof. Since f(z) converges if |q| < 1, it is holomorphic on H. Obviously
f(z + 1) = f(z), we just have to verify

g(z) = f(−1

z
)− z2kf(z) = 0 on H.

It suffices to prove that g(it) = 0 for t > 0. Let

ϕ(t) = f(it)− c0 =
∞∑
n=1

cne
−2πnt,

one can check that Λ(s) = Mel(ϕ, s). Take c > A, then

ϕ(t )− (−1)k

t2k
ϕ(t−1)

= 1
2πi

( ∫ c+i∞
c−i∞ Λ(s)t−sds− (−1)k

∫ c+i∞
c−i∞ Λ(s)ts−2kds

)
= 1

2πi

( ∫ c+i∞
c−i∞ Λ(s)t−sds−

∫ c+i∞
c−i∞ Λ(2k − s)ts−2kds

)
= 1

2πi

( ∫ c+i∞
c−i∞ Λ(s)t−sds−

∫ 2k−c+i∞
2k−c−i∞ Λ(s)t−sds

)
.
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-

6?

�

r r c2k − c
0 2k

↓
−∞

−R

↑
+∞

R
γR

Consider the integral of the function Λ(s)t−s around the closed path γ.
Since Λ(s)→ 0 on vertical strips, by Cauchy formula,

lim
R→+∞

∫
γR

Λ(s)t−sds =
∫ c+i∞
c−i∞ Λ(s)t−sds−

∫ 2k−c+i∞
2k−c−i∞ Λ(s)t−sds

= 2πi
(
ress=0(Λ(s)t−s) + ress=2k(Λ(s)t−s)

)
= 2πi(−c0 + (−1)kc0t

−2k).

So

ϕ(t)− (−1)k

t2k
ϕ(t−1)− (−c0 + (−1)kc0t

−2k) = 0,

by an easy computation, the left hand is just (−1)k

t2k
(−g(it)), then we get

g(it) = 0, which completes the proof.

3.1.4 Euler products

Theorem 3.1.9. If f =
∞∑
n=0

an(f)qn ∈ M2k(1) is primitive, then

L(f, s) =
∏
p

1

1− ap(f)p−s + p2k−1−2s
.

Proof. By Theorem 2.6.2, anm(f) = an(f)am(f) whenever (n,m) = 1, so

L(f, s) =
∏
p

( ∞∑
r=0

apr(f)p−rs
)
.

Since,

apr+1 − apapr + p2k−1apr−1 = 0,
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multiplying by p−(r+1)s, and summing over r from 1 to +∞, we get

∞∑
r=2

aprp
−rs − app−s

∞∑
r=1

aprp
−rs + p2k−1−2s

∞∑
r=0

aprp
−rs = 0.

Using the fact that a1 = 1, the result follows.

3.2 Higher level modular forms

3.2.1 Summary of the results

For N ≥ 2, define

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

and write Sk(Γ0(N)) = Sk(N).

Exercise. If DM |N , f ∈ Sk(M), let fD(z) = f(Dz), then fD ∈ Sk(N). Such
a form is said to be old if M 6= N .

Definition 3.2.1. Snew
k (N) = {f ∈ Sk(N) : 〈f, g〉 = 0,∀ g “old”}.

On Sk(N), we have the Hecke operators Tn, (n,N) = 1,

f|kTn = nk−1
∑

ad=n,a>1
bmod d

d−kf

(
az + b

d

)
,

and for p | n, the operator

f|kUp =
1

p

p−1∑
i=0

f

(
z + i

p

)
.

We also have a involution wN given by

f|kwN = N− k
2 z−kf

(
− 1

Nz

)
.

Definition 3.2.2. f ∈ Sk(N) is called primitive if f ∈ Snew
k (N), a1(f) = 1

and f|kTn = an(f)f , whenever (n,N) = 1.



70 CHAPTER 3. P -ADIC L-FUNCTIONS OF MODULAR FORMS

Theorem 3.2.3. (i) The primitive forms are a basis of Snew
k (N).

(ii) If f is primitive, then Q({an(f)}, n ∈ N) is a totally real number field,
an(f) are integers, and fσ is primitive for all σ ∈ Aut(C).

(iii) If f is primitive, then
(a) anm(f) = an(f)am(f) if (n,m) = 1, (nm,N) = 1;
(b) For p - N , apr+1 − ap(f)apr(f) + pk−1apr−1(f) = 0.
(c) f|kUp = ap(f)f , and this implies apr(f) = (ap(f))r for p|N ;
(d) There exists εf = ±1, such that f|kwN = εff .

Theorem 3.2.4. Suppose f =
∞∑
n=1

anq
n ∈ Sk(N) is primitive. Define

L(f, s) =
∞∑
n=1

an
ns
, Λ(f, s) = Γ(s)

(√N
2π

)s
L(f, s).

Then
(i) L(f, s) =

∏
p|N

1
1−app−s

∏
p-N

1
1−app−s+pk−1−2s ;

(ii) Λ(s) has an analytic continuation to C. And

Λ(f, s) = i−kεfΛ(f, k − s);

(iii) More generally, if (D,N) = 1, χ : (Z/DZ)∗ → C is a character of
conductor D. Then

(a) f ⊗ χ =
∞∑
n=1

anχ(n)qn ∈ Sk(ND
2, χ2);

(b) L(f ⊗ χ, s) =
∏
p|N

1
1−χ(p)app−s

∏
p-N

1
1−χ(p)app−s+χ2(p)pk−1−2s ;

(c) Λ(f ⊗ χ, s) = Γ(s)
(
D
√
N

2π

)s
L(f ⊗ χ, s) has a analytic continuation

to C and

χ(−N)
Λ(f ⊗ χ, s)

G(x)
= i−kεf

Λ(f ⊗ χ−1, s)

G(χ−1)

where G(χ) is the Gauss sum

G(χ) =
∑

x∈(Z/DZ)∗

χ(x)e
2πix
D .

Theorem 3.2.5 (Weil’s Converse Theorem). Conversely, if (am)m≥1

satisfy (b) and (c) of condition (iii) of the above theorem for all χ of conductor

D, (D,N) = 1, then
∞∑
m=1

amq
m ∈ Sk(N) and is primitive.
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3.2.2 Taniyama-Weil Conjecture

Let Λ be a finitely generated Z-algebra. Define its Hasse-Weil zeta function
ζΛ(s) by

ζΛ(s) =
∏

℘ prime in Λ

1

(1− |Λ/℘|−s)
.

Conjecture 3.2.6 (Hasse-Weil). ζΛ has a meromorphic continuation to
C.

Let E : y2 = x3 + ax2 + bx + c, a, b, c ∈ Q be an elliptic curve, ΛE =
Z[x, y]/(y2 − x3 − ax2 − bx − c) be its coordinate ring, which is a finitely
generated algebra over Z.

Theorem 3.2.7 (Wiles, Breuil-Conrad-Diamond-Taylor). There exists
a unique NE and fE ∈ S2(NE) which is primitive, such that

ζΛE ∼
ζ(s− 1)

L(fE, s)

while ∼ means up to multiplication by a finite numbers of Euler factors.

Remark. This proves Hasse-Weil conjecture in this case thanks to theorem
3.2.4.

Theorem 3.2.8 (Mordell-Weil). E(Q) ∪ {∞} ' Zr(E)⊕finite group.

Conjecture 3.2.9 (Birch,Swinnerton-Dyer). ords=1 L(fE, s) = r(E).

3.3 Algebraicity of special values of L-functions

3.3.1 Modular symbols.

Let N ≥ 1, f ∈ Sk(N), P ∈ A[x](k−2) (polynomials of degree ≤ k − 2) with

A ⊂ C a subring. For r ∈ Q, the integral
∫ i∞
r

f(z)P (z)dz converges because
f is exponentially small around i∞ and r. These integrals are called modular
symbols.

For 0 ≤ j ≤ k − 2, define

rj(f) =

∫ i∞

0

f(z)zjdz =
Γ(j + 1)

(−2πi)j+1
L(f, j + 1).

Let Lf be the Z-module generated by rj(f|kδ), 1 ≤ j ≤ k − 2 and δ ∈
Γ0(N)\ SL2(Z). Then Lf is finitely generated.
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Theorem 3.3.1. If P ∈ A[x](k−2), r ∈ Q, then
∫ i∞
r

f(z)P (z)dz ∈ A·Lf ⊂ C.

Proof. For γ ∈ SL2(Z),∫ γ(i∞)

γ(0)
f(z)P (z)dz =

∫ i∞
0

f(γz)P (γz)d(γz)

=
∫ i∞

0
f|kγ(z)P|2−kγ(z)dz,

where P|2−kγ(z) = (cz + d)k−2P (az+b
cz+d

) ∈ A[x](k−2). Take r = a/b, (a, b) =

1, then there exists γl =

(
al−1 al
bl−1 bl

)
∈ SL2(Z) satisfying (a0, b0) = (1, 0),

(an, bn) = (a, b).

∫ i∞
r

f(z)P (z)dz =
n∑
l=1

∫ al−1
bl−1
al
bl

f(z)P (z)dz

=
n∑
l=1

∫ γl(i∞)

γl(0)
f(z)P (z)dz

=
n∑
l=1

∫ i∞
0

f|kγl(z)P |2−kγl(z)dz ∈ A · Lf .

Exercise. For N = 1, let L+
f (resp. L−f ) be the Z-module generated by rj(f)

for all odd (resp. even) j. For P ∈ A[X](k−2), r ∈ Q, ε = ±, then∫ i∞

r

f(z)P (z)dz − ε
∫ i∞

−r
f(z)P (−z)dz ∈ A · Lεf .

Corollary 3.3.2. (i) Suppose f ∈
∞∑
n=1

anq
n, φ : Z → Q̄ is constant mod

MZ for some M . Then L(f, φ, s) =
∞∑
n=1

φ(n)an
ns

has an analytic continuation

to C and

Λ(f, φ, j) =
Γ(j)

(−2πi)j
L(f, φ, j) ∈ Q̄ · Lf ,

if 1 ≤ j ≤ k − 1.

(ii) If N = 1 and φ(−x) = ε(−1)jφ(x), then Λ(f, φ, j) ∈ Q̄ · Lεf , if
1 ≤ j ≤ k − 1.
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Proof. we may assume φ(n) = e2πi
nu
M for some 0 ≤ u ≤ M − 1 because such

functions form a basis, then

Γ(s)
(2π)s

L(f, φ, s) =
∫ +∞

0

∑∞
n=1 ane

2πinu
M e−2πnyys dy

y

=
∫ +∞

0
f( u

M
+ iy)ys dy

y
,

this proves the first assertion of (i) as f is exponentially small around i∞
and u

M
.

Λ(f, φ, j) =
∫ +∞

0
f( u

M
+ iy)(iy)j d(iy)

iy

=
∫ i∞
u
M
f(z)(z − u

M
)j−1dz

∈ Q · Lf .

For (ii), we may assume φ(n) = e2πi
nu
M + ε(−1)je−2πinu

M , and similarly,

Λ(f, φ, j) =
∫ i∞
u
M
f(z)(z − u

M
)j−1dz + ε(−1)j

∫ i∞
− u
M
f(z)(z + u

M
)j−1dz

=
∫ i∞
u
M
f(z)(z − u

M
)j−1dz − ε

∫ i∞
− u
M
f(z)(−z − u

M
)j−1dz,

then one uses the exercise.

3.3.2 The results

Theorem 3.3.3. If f is primitive, then there exist Ω+
f and Ω−

f ∈ C, if

φ : Z→ Q̄ (mod MZ), 1 ≤ j ≤ k − 1, φ(x) = ε(−1)jφ(−x),

then Λ(f, φ, j) ∈ Q̄ · Ωε
f .

Proof. We prove the case N = 1, ε = 1.
We shall prove that

rk−2(f)rl(f) ∈ Q̄〈f, f〉, for l odd. (3.1)

This implies

Ω+
f ∼

〈f, f〉
rk−2(f)

∼
〈f, f〉

L(f, k − 1)
πk−2

where ∼ stands for equality up to multiplication by an algebraic number. The
method to show (3.1) is the Rankin’s method in the following section.
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3.3.3 Rankin’s method

Assume k = l + j for k, l, j ∈ N. Suppose χ1, χ2 : (Z/NZ)× → C× are
multiplicative characters. Let

f =
+∞∑
n=1

anq
n ∈ Sk(N,χ−1

1 ), g =
+∞∑
n=0

bnq
n ∈Ml(N,χ2).

So
f(γz) = χ−1

1 (d)(cz + d)kf(z), g(γz) = χ2(d)(cz + d)lg(z).

Let

Gj,χ1χ2,s(z) =
1

2
· Γ(j)

(−2πi)j
·

′∑
N |m

(N,n)=1

χ1χ2(n)ys+1−k

(mz + n)j | mz + n |2(s+1−k)

=
Γ(j)

(−2πi)j
L(χ1χ2, j + 2(s+ 1− k)) ·

∑
γ=

(
a b
c d

)
∈Γ∞\Γ0(N)

χ1χ2(d)

(cz + d)j
· Im (γz)s+1−k.

We have

Proposition 3.3.4.

D(f, g, s) = L(χ1χ2, j + 2(s+ 1− k))
+∞∑
n=1

ānbn
ns

=
(4π)s

Γ(s)

(−2πi)j

Γ(j)
· 〈f, gGj, χ1χ2, s〉 · [SL2(Z) : Γ0(N)].

Proof. Using the Fourier expansion, then

+∞∑
n=1

ānbn
ns

=
Γ(s)

(4π)s

∫ +∞

0

∫ 1

0

f(z)g(z) dx · ys dy
y

=
Γ(s)

(4π)s

∫
Γ∞\H

f(z)g(z)ys+1 dxdy

y2

=
Γ(s)

(4π)s

∫
Γ0(N)\H

∑
γ∈Γ∞\Γ0(N)

(f(γz)g(γz) Im (γz)s+1)
dxdy

y2

=
Γ(s)

(4π)s

∫
Γ0(N)\H

f(z)
(
g(z)

∑
γ∈Γ∞\Γ0(N)

χ1χ2(d)

(cz + d)j
Im (γz)s+1−k

)
yk

dxdy

y2
,

this implies the Proposition.
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Theorem 3.3.5. (i) D(f, g, s) admits a meromorphic continuation to C,
which is holomorphic outside a simple pole at s = k if l = k and χ1χ2 = 1

(ii) if f is primitive, g ∈Ml(N,χ2, Q̄), then

D(f, g, k − 1) ∈ Q̄ · πj+k−1〈f, f〉.

Proof. As D(f, g, s) = 〈f, gGs〉,
(i) we have to prove the same statement for Gs, which can be done by

computing its Fourier extension. The pole comes from the constant Fourier
coefficients.

(ii) For the case N = 1,χ1 = χ2 = 1 and j ≥ 3, then Gj,χ1χ2,k−1 = Gj, we
are reduced to prove

〈f, gGj〉 ∈ Q̄〈f, f〉.

Let fi, i ∈ I be a basis of Sk(1) of primitive forms, with f1 = f . As
gGj ∈Mk(1, Q̄), we can write gGj = λ0Gk +

∑
i λifi, with λi ∈ Q̄. Since

〈Gk, f〉 = 0, 〈f, fj〉 = 0, if j 6= 1,

Then 〈f, gGj〉 = λ1〈f, f〉.

Remark. The general case can be treated in the same way, once we prove
that

Gj,χ1χ2,k−1 ∈Mj(N,χ1χ2, Q̄) (if j 6= 2 or χ1χ2 6= 1).

Proposition 3.3.6. If

+∞∑
n=1

ān
ns

=
( ∑
n∈Z[ 1

N ]
×

ān
ns

) ∏
p-N

1

(1− αpp−s)(1− βpp−s)
, αpβp = χ1(p)p

k−1,

+∞∑
n=1

bn
ns

=
( ∑
n∈Z[ 1

N ]
×

bn
ns

) ∏
p-N

1

(1− γpp−s)(1− δpp−s)
, γpδp = χ2(p)p

l−1,

then D(f, g, s) =

( ∑
n∈Z[ 1

N ]
×

ānbn
ns

) ∏
p-N

1

(1− αpγpp−s)(1− βpγpp−s)(1− αpδpp−s)(1− βpδpp−s)
.
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Proof. Exercice, noting that

āpr =
αr+1
p − βr+1

p

αp − βp
, bpr =

γr+1
p − δr+1

p

γp − δp
.

We give one application here:

Corollary 3.3.7. The claim (3.1) holds, i.e.

rk−2(f)rl(f) ∈ Q̄〈f, f〉, for l odd.

Proof. Let f ∈ Sk(1) be primitive, k given. For l even, let g = Gl, then

+∞∑
n=1

bn
ns

=
∏
p

1

(1− p−s)(1− pl−s−1)
,

hence D(f,Gl, s) = L(f, s)L(f, s− l + 1). Therefore

L(f, k − 1)L(f, k − l) ∈ Q̄ · πj+k−1〈f, f〉

which implies
rk−2(f)rk−l−1(f) ∈ Q̄〈f, f〉.

Remark. In the general case,

L(Gj, χ1χ2, k − 1, s) ∼ ζ(s)L(χ1χ2, s− l + 1).

If f1, f2, · · · , fn are primitive forms ∈ Sk(Ni) for Ni | N . Write

L(fi, s) = ∗
∏
p-N

1

(1− α(i)
p,1p

−s)(1− α(i)
p,2p

−s)
,

then

L(f1 ⊗ · · · ⊗ fn, s) = ∗
∏
p-N

1∏
j1,j2,··· ,jn∈{1,2}

(1− α(1)
p,j1
· · ·α(n)

p,jn
p−s)

.

One has the following conjecture:

Conjecture 3.3.8 (Part of Langlands Program). L(f1⊗· · ·⊗fn, s) has a
meromorphic continuation to C, and is holomorphic if fi 6= f̄j, for all i 6= j.

Remark. Rankin’s method implies the above conjecture is OK for n = 2.
The case for n = 3 is due to Paul Garrett. The case for n ≥ 4 is still open.
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3.4 p-adic L-functions of modular forms

In the following, we assume f ∈ Sk(N) is primitive.

Definition 3.4.1. φ+(x) = 1
2
(φ(x) + φ(−x)), φ−(x) = 1

2
(φ(x) − φ(−x)).

Then

Λ̃(f, φ, j) =
Λ(f, φ+, j)

Ω
(−1)j

f

+
Λ(f, φ−, j)

Ω
(−1)j+1

f

∈ Q̄

if φ : Z→ Q̄ and 1 ≤ j ≤ k − 1.

Fix an embedding Q̄ ↪→ Q̄p. The function L(f, s) has an Euler product

L(f, s) =
∏

` prime

1

E`(s)
, E`(s) ∈ Q̄[`−s], degE`(s) ≤ 2.

Write Ep(s) = (1 − αp−s)(1 − βp−s) and assume α 6= 0. Then β = 0 if and
only if p | N . Set

fα(z) = f(z)− βf(pz).

Lemma 3.4.2. fα|kUp = αfα in all cases.

Proof. It is clear if p | N as in the case β = 0. If p - N , then

α+ β = ap, αβ = pk−1.

and f |kTp = (α+ β)f , thus

fα|kUp − αfα =
1

p

p−1∑
i=0

f

(
z + i

p

)
− βf(z + i)− αf(z) + αβf(pz)

=− (α+ β)f(z) + fkTp = 0.

If we write fα =
∑+∞

n=1 bnq
n, the above lemma implies that bnp = αbn for

all n. Define bn for n ∈ Z
[

1
p

]
as

bn = α−rbprn, r � 0.
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Take φ ∈ LCc(Qp, Q̄) a locally constant function with compact support and
let

L(f, φ, s) =
∑

n∈Z[ 1
p ]

φ(n)
an
ns
.

If φ has support in p−rZp, then φ(x) = φ0(p
rx) for φ0 : Z→ Q̄ constant mod

pmZ for some m.Then

L(f, φ, s) = α−rprsL(f, φ0, s)

which implies

Λ̃(f, φ, j) ∈ Q̄ ⊂ Q̄p, for all φ ∈ LCc(Qp, Q̄).

Definition 3.4.3. Assume φ ∈ LCc(Qp, Q̄) and φ is constant modulo pnZ.
The discrete Fourier transform of φ is

φ̂(x) = p−m
∑

y mod pm

φ(y)e−2πixy,

for m ≥ n − vp(x), where xy ∈ Qp → Qp/Zp ↪→ Q/Z. This definition does
not depend on the choice of m ≥ n− vp(x).

Exercise. (i) φ̂ is constant mod pmZp if and only if φ has support in p−mZp.

(ii)
ˆ̂
φ(x) = φ(−x).

(iii) For a ∈ Qp, let φa(x) = φ(ax), then φ̂a(x) = pvp(a)φ̂
(
x
a

)
.

Theorem 3.4.4. (i) There exists a unique µf,α : LP [0,k−2](Zp, Q̄p) → Q̄p,
such that for all φ ∈ LC(Zp, Q̄),∫

Zp
φ(x)xj−1µf,α = Λ̃(fα, φ̂, j), 1 ≤ j ≤ k − 1.

Moreover, ψ(µf,α) = 1
α
µf,α, or equivalently∫
pZp

φ

(
x

p

)
µf,α =

1

α

∫
Zp
φµf,α.

(ii) if vp(α) < k − 1, then µf,α extends uniquely as an element of Dvp(α).
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Proof. (i) The existence of µf,α : LP [0,k−2](Zp, Q̄p)→ Q̄p is just the linearity

of φ→ φ̂. The uniqueness is trivial. The second claim follows from∫
pZp

φ

(
x

p

) (
x

p

)j−1

µf,α =
1

pj−1
Λ̃(fα, p

−1φ̂(px), j)

=
1

α
Λ̃(fα, φ̂, j) =

1

α

∫
Zp
φ(x)xj−1µf,α.

(ii) One needs to show there exists a constant C, such that

vp(

∫
a+pnZp

(x− a)jµf,α) ≥ C + (j − vp(α))n,

for all a ∈ Zp, n ∈ N, j ≤ k − 2. Note that

1̂a+pnZp(x) =

{
p−ne−2πiax, if x ∈ p−nZp,

0, if not.
= p−nφa(p

nx)

for

φa(x) =

{
e2πi

ax
pn x ∈ Zp,

0, otherwise.

Then ∫
a+pnZp

(x− a)jµf,α =

j∑
l=0

(−a)l
(
j

l

)
p−nΛ̃(fα, φa(p

nx), l + 1)

=α−n
j∑
l=0

(−1)l
(
j

l

)
pnlΛ̃(fα, φa, l + 1).

Since

pnlΛ̃(fα, φa, l + 1) = pnl
∫ i∞

0

fα(z −
a

pn
)zl dz =

∫ i∞

− a
pn

fα(z)(p
nz + a)l dz,

we get

j∑
l=0

(−1)l
(
j

l

) ∫
a+pnZp

(x− a)jµf,α = α−npnj
∫ i∞

− a
pn

fα(z)z
j dz ∈ α−npnjLfα .

We just pick C = min(vp(r̃j(fα|kδ))).
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Remark. (i) If p | N , then β = 0, and α 6= 0 implies vp(α) = k−2
2
< k − 1,

hence µf,α exists by the above Theorem.
(ii) If p - N , then vp(α), vp(β) ≥ 0. Since vp(α) + vp(β) = k − 1, at least

one of µf,α or µf,β always exists.
In the case vp(α) = k−1, then α+β = ap(f) is a unit. This case is called

the ordinary case. The conditions are not strong enough for the uniqueness
of µf,α, as we can add the (k − 1)-th derivative of any λ ∈ D0.

(iii) In the case α = β = 0, we do not understand what happens.

Definition 3.4.5. Let χ : Z∗
p → C∗

p be a continuous character. Set

Lp,α(f ⊗ χ, s) =

∫
Z∗p
x−1χ(x)µf,α.

In particular, take χ(x) = x
k
2 〈x〉s− k

2 where 〈x〉t = exp(t log x). Set

Lp,α(f, s) =

∫
Z∗p
x
k
2
−1〈x〉s−

k
2µf,α.

Proposition 3.4.6. For 1 ≤ j ≤ k − 1,

Lp,α(f ⊗ χj) = (1− pj−1

α
)(1− β

pj
)Λ̃(f, j).

Proof. Follows from

(i) 1̂Z∗p = 1Zp − p−11p−1Zp ,

(ii) Λ̃(fα, 1Zp , j) = (1− β
pj

Λ̃(f, j)),

(iii) ψ(µf,α) = 1
α
µf,α.

Remark. (i) As Λ(f, s) = Λ(f, k − s) and αβ = pk−1 if p - N , then

(1− pj−1

α
) = 1− β

pk−j
.

Note Ep(f, s) = (1−αp−s)(1−βp−s). Then the Euler factor of the p-adic L-
function is actually the product of one part of the Euler factor for L(f, s) and
one part of the Euler factor for L(f, k − s). This is a general phenomenon.

(ii) If p | N , α 6= 0, the vp(α) = k−2
2

. It can happen that α = p
k−2
2 , which

means Lp,α(f,
k
2
) = 0. In this case
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Conjecture 3.4.7 (Mazur-Tate-Teitelbaum Conjecture).

L′p,α(f,
k

2
) = LFont.(f)Λ̃(f,

k

2
).

Here the p-adic L-function is related to 2-dimensional (ϕ,N)-filtered modules
D with N 6= 0 and Fil0D = D, Fil1D 6= D. For the pair (λ, α) as in
Fontaine’s course, where λ is the eigenvalue of ϕ and α is the parameter
associated to the filtration, λ is our α and α is our LFont..

The conjecture is proved by Kato-Kurihara-Tsuji, Perrin-Riou, and Stevens,
Orton, Emerton with other definitions of the L-invariant.

(iii) Mazur, Tate and Teitelbaum have also formulated a p-adic analog of
the BSD conjecture. For E/Q an elliptic curve, by Taniyama-Weil, it is
associated to a primitive form f ∈ S2(N). Set Lp,α(E, s) = Lp,α(f, s) if it
exists, which is the case if E has either good reduction (hence p - N) or
multiplicative reduction (hence p | N, p2 - N) mod p.

Conjecture 3.4.8 (p-adic BSD Conjecture).

ords=1 Lp,α(E, s) =

{
rankE(Q), if p - N or α 6= 1;

rankE(Q) + 1, if p | N and α = 1.

Kato showed that

ords=1 Lp,α(E, s) ≥

{
rankE(Q), if p - N or α 6= 1;

rankE(Q) + 1, if p | N and α = 1.

(iv) To prove Kato or Kato-Kurihara-Tsuji, we need another construction
of p-adic L-functions via Iwasawa theory and (ϕ,Γ)-modules; this construc-
tion is the subject of the next part of the course and is based on ideas of
Perrin-Riou.
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Part II

Fontaine’s rings and Iwasawa
theory

83





Chapter 4

Preliminaries

4.1 Some of Fontaine’s rings

This section is a review of notations and results from Fontaine’s course. For
details, see Fontaine’s notes.

4.1.1 Rings of characteristic p

(1) Cp is the completion of Qp for the valuation vp with vp(p) = 1.

a = {x ∈ Cp, vp(x) >
1

p
}.

(2) Ẽ+ is the ring R in Fontaine’s course. By definition

Ẽ+ := {x = (xn)n∈N | xn ∈ Cp/a, x
p
n+1 = xn,∀n}

is a ring of characteristic p with an action of GQp . For x = (xn) ∈ Ẽ+, for
every xn, pick a lifting x̂n ∈ OCp , then

lim
k→+∞

(x̂n+k)
pk := x(n) ∈ OCp

is a canonical lifting of xn such that

Ẽ+ = {x = (x(n))n∈N | x(n) ∈ OCp , (x
(n+1))p = x(n),∀n}

with the addition and multiplication by

(x+ y)(n) = lim
k→+∞

(x(n+k) + y(n+k))p
k

, (xy)(n) = x(n)y(n).
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Ẽ+ is a valuation ring with valuation

vE(x) = vp(x
(0))

and maximal ideal
mẼ+ = {x ∈ Ẽ+, vE(x) > 0}.

(3) Choose once for all

ε = (1, ε(1), · · · ) ∈ Ẽ+, ε(1) 6= 1.

Then ε(n) is a primitive pn-th root of 1 for all n. Set

π̄ = ε− 1 ∈ Ẽ+.

We know that vE(π̄) = p
p−1

> 0.
From now on, χ : GQp → Z∗

p will be the cyclotomic character. The action
of GQp on ε is given by

g(ε) = εχ(g) =
+∞∑
k=0

(
χ(g)

k

)
π̄k.

(4) In the following, without further specification, K ⊆ Qp will be a finite
extension of Qp. Denote by k = kK its residue field. Set

Kn = K(ε(n)), K∞ =
⋃
n∈N

Kn.

Set

F ⊆ K= the maximal unramified extension of Qp inside K,

F ′ ⊆ K∞= the maximal unramified extension of Qp inside K∞.

Set
GK = Gal(Q̄p/K), HK = Kerχ = Gal(Q̄p/K∞),

and
ΓK = GK/HK = Gal(K∞/K)

χ
↪→ Z∗

p.

(5) For every K, let

Ẽ+
K := {x = (xn) ∈ Ẽ+, xn ∈ OK∞/a, ∀n} = (Ẽ+)HK (by Ax-Sen-Tate’s Theorem),

E+
K := {x = (xn) ∈ Ẽ+, xn ∈ OKn/a, ∀n ≥ n(K)}.
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Then
π̄ ∈ E+

K ⊆ Ẽ+
K ⊆ Ẽ+, ∀K.

We set

EK := E+
K [π̄−1] ⊆ ẼK := Ẽ+

K [π̄−1] ⊆ Ẽ = Ẽ+[π̄−1] = FrR

with valuation
vE(π̄−kx) = vE(x)− kvE(π̄).

The following Theorem is the topics in the last section of Chapter 2 of
Fontaine’s Notes.

Theorem 4.1.1. (i) Ẽ is a field complete for vE with residue field F̄p, ring
of integers Ẽ+ and GQp acts continuously with respect to vE.

(ii) EF = kF ((π̄)) if F/Qp is unramified.
In general, EK is a totally ramified extension of EF ′ of degree [K∞ : F ′

∞],
thus a local field of characteristic p, with ring of integers E+

K and residue field
kF ′.

(iii) E =
⋃

[K:Qp]<+∞
EK is a separable closure of EQp, is stable under GQp

and Gal(E/EK) = HK. So HQp acts continuously on E for the discrete
topology.

(iv) Ẽ (resp. ẼK) is the completion of the radical closure of E (resp.
ẼK), i.e.,

⋃
n∈N

Ep−n (resp.
⋃
n∈N

Ep−n
K ). In particular, Ẽ is algebraically closed.

4.1.2 Rings of characteristic 0

(6) Set
Ã+ := W (Ẽ+) = W (R), Ã := W (Ẽ) = W (FrR).

Every element x ∈ Ã can be written as

x =
+∞∑
k=0

pk[xk]

while xk ∈ Ẽ and [xk] is its Teichmüller representative.
As we know from the construction of Witt rings, there are bijections

Ã+ ∼= (Ẽ+)N, Ã ∼= (Ẽ)N.
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There are two topologies in Ã+ and Ã:
(i) Strong topology or p-adic topology : topology by using the above bijec-

tion and the discrete topology on Ẽ+ or Ẽ. A basis of neighborhoods of 0
are the pkÃ, k ∈ N.

(ii) Weak topology : topology defined by vE. A basis of neighborhoods of
0 are the pkÃ+ [π̄n]A+, k, n ∈ N.

The commuting actions of GQp and ϕ on Ã are given by

g(
+∞∑
k=0

pk[xk]) =
+∞∑
k=0

pk[g(xk)], ϕ(
+∞∑
k=0

pk[xk]) =
+∞∑
k=0

pk[xpk].

(7) B̃ := Ã[1
p
] is the fraction field of Ã. B̃ is complete for the valuation vp,

its ring of integers is Ã and its residue field is Ẽ.
For the GQp and ϕ-actions,

Ãϕ=1 = Zp, B̃ϕ=1 = Qp,

ÃHK = W (ẼK) := ÃK , B̃HK = ÃK [
1

p
] := B̃K .

(8) Set
π = [ε]− 1, t = log[ε] = log(1 + π).

The element [ε] is the p-adic analogue of e2πi. The GQp- and ϕ- actions are
given by

ϕ(π + 1) = (π + 1)p, ϕ(π + 1) = (π + 1)χ(g).

(9) Set
A+

Qp := Zp[[π]] ↪→ Ã+

which is stable under ϕ and GQp . Set

AQp :=
̂

Zp[[π]][
1

π
] ↪→ Ã

whilêstands for completion under the strong topology, thus

AQp = {
∑
k∈Z

akπ
−k | ak ∈ Zp, lim

k→−∞
vp(ak) = +∞}.

Set BQp := AQp [
1
p
], then BQp is a field complete for the valuation vp, with

ring of integers AQp and residue field EQp .
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Moreover, if [K : Qp] < +∞, B̃ contains a unique extension BK of BQp
whose residue field is EK , and AK = BK ∩ Ã is the ring of integers. By
uniqueness, BK is stable under ϕ and GK acting through ΓK .

The field
Eur =

⋃
[K:Qp]<+∞

BK

is the maximal unramified extension of BQp = E . Set

B = Êur

be the closure of
⋃

[K:Qp]<+∞
BK in B̃ for the strong topology. Then A = B∩ Ã

is the ring of integers OdEur and the residue field of B is A/pA = E. By
Ax-Sen-Tate,

BHK = BK , AHK = AK .

Remark. If π̄K is a uniformising parameter of EK , let πK ∈ AK be any
lifting. Then

AK = {
∑
k∈Z

akπ
k
K |ak ∈ OF ′ , lim

k→−∞
vp(ak) = +∞}.

Remark. In the above construction, the correspondence Λ −→ Λ̃ is obtained
by making ϕ bijective and then complete, where Λ = (EK , E,AK , A,BK , B).

4.2 (ϕ,Γ)-modules and Galois representations.

Let K be a fixed finite extension over Qp, let Γ = ΓK .

Definition 4.2.1. (i) A (ϕ,Γ)-module over AK is a finitely generated AK-
module with semi-linear continuous (for the weak topology) and commuting
actions of ϕ and Γ.

A (ϕ,Γ)-module over BK is a finite dimensional BK-vector space with
semi-linear continuous (for the weak topology) and commuting actions of ϕ
and Γ.

(ii) A (ϕ,Γ)-module D/AK is étale (or of slope 0) if ϕ(D) generates D as
an AK-module.

A (ϕ,Γ)-module D/BK is étale (or of slope 0) if it has an AK-lattice
which is étale, equivalently, there exists a basis {e1, · · · , ed} over BK , such
that the matrix of ϕ(e1), · · · , ϕ(ed) in e1, · · · , ed is inside GLd(AK).
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The following theorem is similar to Theorem 1.5.9 in §1.5.4 of Fontaine’s
Notes.

Theorem 4.2.2. The correspondence

V 7−→ D(V ) := (A⊗Zp V )HK

is an equivalence of ⊗ categories from the category of Zp-representations
(resp. Qp-resp) of GK to the category of étale (ϕ,Γ)-modules over AK (resp.
BK), and the Inverse functor is

D 7−→ V (D) = (A⊗AK D)ϕ=1.

Remark. (i) ΓK is essentially pro-cyclic, so a (ϕ,Γ)-module is given by two
operators and commuting relations between them. For example, if D/AK is
free of rank d, let U be the matrix of γ for 〈γ〉 = ΓK , let P be the matrix of
ϕ, then

Uγ(P ) = Pϕ(U), U, P ∈ GLd(AK).

(ii) We want to recover from D(V ) the known invariants of V :

- H i(GK , V ); we shall do so in the coming lectures. We will also recover
the Iwasawa modules attached to V and thus give another construction
of p-adic L-functions.

- DdR(V ), Dcris(V ), Dst(V ).



Chapter 5

(ϕ,Γ)-modules and Galois
cohomology

5.1 Galois Cohomology

LetM be a topological Zp-module (e.g. a finite module with discrete topology
or a finitely generated Zp-module with p-adic topology, or a Fontaine’s ring
B+
dR · · · ), with a continuous action of GK .

Let H i(GK ,M) be the i-th cohomology groups of M of continuous coho-
mology. Then:

H0(GK ,M) = MGK = {x ∈M : (g − 1)x = 0 ∀g ∈ GK};

H1(GK ,M) =
{c : GK →M continuous, g1cg2 − cg1g2 + cg1 = 0, ∀g1, g2 ∈ GK}

{c : g → (g − 1)x, for some x ∈M}

To a 1-cocycle c, we associate a GK module Ec such that

0→M → Ec → N → 0

where Ec ' Zp ×M as a Zp-module and GK acts on Ec by

g(a,m) = (a, gm+ cg).

One can check easily

g1(g2(a,m)) = g1(a, g2m+ cg2) = (a, g1g2m+ g1cg2 + cg1) = g1g2(a,m).

Ec is trivial if and only if there exists 1̂ ∈ Ec, such that g1̂ = 1̂ for all g, i.e.
1̂ = (1, x), g1̂− 1̂ = (0, gx−x+cg) = 0, that is, cg = (1−g)x is a coboundary.
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Theorem 5.1.1 (Tate’s Local Duality Theorem). Suppose K is a finite
extension of Qp. Let M be a Zp[GK ]-module of finite length. Then:

(i) H i(GK ,M) = 0 for i ≥ 3; H i(GK ,M) is finite if i ≤ 2.

(ii)
2∏
i=0

|H i(GK ,M)|(−1)i = |M |−[K:Qp];

(iii) H2−i(GK ,Hom(M,µp∞)) ' Hom(H i(GK ,M),Qp/Zp).

We will give a proof using (ϕ,Γ)-module (Herr’s thesis).

Remark. (i) If M is a finitely generated Zp-module with p-adic topology,
then M ' lim←−M/pnM , and H i(GK ,M) ' lim←−H

i(GK ,M/pnM).

Z! Not tautological, the proof uses finiteness of (i) to ensure Mittag-Leffler
conditions.

(ii) If V is a Qp-representation of GK , let T ⊂ V be a Zp-lattice stable
by GK . Then H i(GK , V ) ' Qp ⊗H i(GK , T ).

Corollary 5.1.2. If V is a Qp-representation of GK. Then:

(i)
2∑
i=0

(−1)i dimQp H
i(GK , V ) = −[K : Qp] dimQp V ;

(ii) H2(GK , V ) = H0(GK , V
∗(1))∗.

5.2 The complex Cϕ,γ(K,V )

Assume that ΓK is pro-cyclic (ΓQp ' Z∗
p), γ is a topological generator of ΓK .

This assumption is automatic if p ≥ 3, or if K ⊃ Q(µ4) when p = 2. Let V
be a Zp- or Qp-representation of GK . Set

D(V ) = (A⊗Zp V )HK .

Definition 5.2.1. The complex C•
ϕ,γ(K,V ) = Cϕ,γ(K,V ) is

0→ D(V )
(ϕ−1, γ−1)−−−−−−→ D(V )⊕D(V )

(γ−1) pr1−(ϕ−1) pr2−−−−−−−−−−−−→ D(V )→ 0.

It is easy to see Cϕ,γ(K,V ) is really a complex (as ϕ, γ commute to each
other). We shall denote the complex by C•(V ) if no confusion is caused. We
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have

H0(C•(V )) = {x ∈ D(V ), γ(x) = x, ϕ(x) = x},

H1(C•(V )) =
{(x, y) : (γ − 1)x = (ϕ− 1)y}
{((ϕ− 1)z, (γ − 1)z) : z ∈ D(V )}

,

H2(C•(V )) =
D(V )

(γ − 1, ϕ− 1)
,

H i(C•(V )) = 0, for i ≥ 3.

Theorem 5.2.2. H i(Cϕ,γ(K,V )) ' H i(GK , V ) for all i in N.

Proof. We have the following exact sequence (which can be proved by reduc-
ing mod p):

0→ Zp → A
ϕ−1−−→ A→ 0,

here A = OdEur in Fontaine’s course.
(1) i = 0: For x ∈ D(V )ϕ=1, since D(V ) = (A ⊗Zp V )HK , we have

D(V )ϕ=1 = (Aϕ=1 ⊗Zp V )HK = V HK , and (V HK )γ=1 = V GK .
(2) i = 1: Let (x, y) satisfy the condition (γ − 1)x = (ϕ − 1)y. Choose

b ∈ (A⊗Zp V )HK , (ϕ− 1)b = x. We define the map:

g ∈ GK → cx,y(g) =
g − 1

γ − 1
y − (g − 1)b.

while the meaning of g−1
γ−1

y is: as χ(g) = lim
i→+∞

χ(γ)ni , y is fixed by HK , we

let
g − 1

γ − 1
y = lim

i→+∞
(1 + γ + · · ·+ γni−1)y.

This is a cocycle with values in V , because g 7→ (g− 1)( y
γ−1
− b) is a cocycle,

and (ϕ − 1)cxy(g) = (g − 1)x − (ϕ − 1)(g − 1)b = 0, which implies that
cxy(g) ∈ D(V )ϕ=1 = V .

Injectivity: If cxy = 0 in H1(GK , V ), then there exists z ∈ V , cxy(g) =
(g − 1)z for all g ∈ GK , that is, g−1

γ−1
y = (g − 1)(b − z) for all g. Now

b−z ∈ D(V ), because it is fixed by g ∈ HK . Then we have: y = (γ−1)(b−z)
and x = (ϕ− 1)(b− z), hence (x, y) equal to 0 in H1(C•(V )).

Surjectivity: If c ∈ H1(GK , V ), we have:

0→ V −→ Ec −→ Zp → 0,
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here Ec = Zp × V , e ∈ Ec 7→ 1 ∈ Zp and ge = e+ cg for g 7→ cg representing
c. We have:

0→ D(V ) −→ D(Ec) −→ AK → 0,

here D(Ec) ⊂ A⊗ Ec and ẽ ∈ D(Ec) 7→ 1 ∈ AK . Let

x = (ϕ− 1)ẽ, y = (γ − 1)ẽ,

they are both in D(V ) and satisfy (γ − 1)x = (ϕ − 1)y. Let b = ẽ − e ∈
A⊗Zp Ec. Then cx,y(g) = g−1

γ−1
y − (g − 1)b = cg and (ϕ− 1)(b) = x.

(3) i general: from the exact sequence:

0→ Zp → A
ϕ−1−−→ A→ 0,

tensoring with V and taking the cohomology H i(HK ,−), we get

0→ V HK → D(V )
ϕ−1−−→ D(V )→ H1(HK , V )→ 0,

because A ⊗ V ' ⊕(A/pi) as HK-modules and H i(HK , E) = 0, if i ≥ 1, so
H i(HK , A⊗ V ) = 0 for all i ≥ 1. Hence H i(HK , V ) = 0 for all i ≥ 1.

By the Hochschild-Serre Spectral Sequence for

1→ HK → GK → ΓK → 1,

we have H i(ΓK , H
j(HK , V )) ⇒ H i+j(GK , V ). When j or i ≥ 2, the coho-

mology vanishes. So we have:

Hq(GK , V ) = 0, if q ≥ 3

H2(GK , V ) ' H1(ΓK , H
1(HK , V )).

Since H1(HK , V ) = D(V )
ϕ−1

, we get

H2(GK , V ) ' D(V )

ϕ− 1

/
(γ − 1)

D(V )

ϕ− 1
=

D(V )

(ϕ− 1, γ − 1)
.

Remark. (1) The inflation-restriction exact sequence becomes the commu-
tative diagram

0 // H1(ΓK , V
HK ) // H1(GK , V ) //

ιϕ,γ

��

H1(HK , V
ΓK ) // 0

0 // D(V )ϕ=1

γ−1
// H1(Cϕ,γ(K,V )) // (D(V )

ϕ−1
)ΓK // 0
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where the map H1(Cϕ,γ(K,V ))→ (D(V )
ϕ−1

)ΓK is given by sending (x, y) to the
image of x.

(2) Let γ′ be another generator of ΓK , we have γ−1
γ′−1
∈ (Zp[[ΓK ]])∗ and a

commutative diagram:

Cϕ,γ : 0 // D(V ) //

γ−1
γ′−1

��

D(V )

γ−1
γ′−1

��

⊕ D(V ) //

Id
��

D(V ) //

Id
��

0

Cϕ,γ′ : 0 // D(V ) // D(V ) ⊕ D(V ) // D(V ) // 0

It induces a commutative diagram

H1(C•
ϕ,γ)

ιγ,γ′ //

lK(γ)ιϕ,γ &&NNNNNNNNNNN
H1(C•

ϕ,γ′)

lK(γ′)ιϕ,γ′wwppppppppppp

H1(GK , V )

where lK(γ) = logχ(γ)

pr(K) for logχ(ΓK) ' pr(K)Zp. So lK(γ)c,ϕγ “does not depend
on the choice of γ”.

5.3 Tate’s Euler-Poincaré formula.

5.3.1 The operator ψ.

Lemma 5.3.1. (i) {1, ε, · · · , εp−1} is a basis of EQp over ϕ(EQp);
(ii) {1, ε, · · · , εp−1} is a basis of EK over ϕ(EK), for all [K : Qp] < +∞;
(iii) {1, ε, · · · , εp−1} is a basis of E over ϕ(E);
(iv) {1, [ε], · · · , [ε]p−1} is a basis of A over ϕ(A).

Proof. (i) Since EQp = Fp((π̄)) with π̄ = ε− 1, we have ϕ(EQp) = Fp((π̄p));
(ii) Use the following diagram of fields, note that EQp/ϕ(EQp) is purely

inseparable and ϕ(EK)/ϕ(EQp) is separable:

EK ϕ(EK)

EQp ϕ(EQp)

(iii) Because E = ∪EK .
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(iv) To show that

(x0, x1, · · · , xp−1) ∈ Ap
∼7−→

p−1∑
i=0

[ε]iϕ(xi) ∈ A

is a bijection, it suffices to check it mod p and use (iii).

Definition 5.3.2. The operator ψ : A→ A is defined by

ψ(

p−1∑
i=0

[ε]iϕ(xi)) = x0.

Proposition 5.3.3. (i) ψϕ = Id;
(ii) ψ commutes with GQp.

Proof. (i) The first statement is obvious.
(ii) Note that

g(

p−1∑
i=0

[ε]iϕ(xi)) =

p−1∑
i=0

[ε]iχ(g)ϕ(g(xi)).

If for 1 ≤ i ≤ p− 1, write iχ(g) = ig + pjg with 1 ≤ ig ≤ p− 1, then

ψ(

p−1∑
i=0

[ε]iχ(g)ϕ(g(xi))) = ψ(ϕ(g(x0)) +

p−1∑
i=1

[ε]igϕ([ε]jgg(xi))) = g(x0).

Corollary 5.3.4. (i) If V is a Zp-representation of GK, there exists a unique
operator ψ : D(V )→ D(V ) with

ψ(ϕ(a)x) = aψ(x), ψ(aϕ(x)) = ψ(a)x

if a ∈ AK , x ∈ D(V ) and moreover ψ commute with ΓK.
(ii) If D is an étale (ϕ,Γ)-module over AK or BK, there exists a unique

operator ψ : D → D with as in (i). Moreover, for any x ∈ D,

x =

pn−1∑
i=0

[ε]iϕn(xi)

where xi = ψn([ε]−ix).
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Proof. (i) The uniqueness follows from AK ⊗ϕ(AK) ϕ(D) = D. For the exis-
tence, use ψ on A⊗V ⊃ D(V ). D(V ) is stable under ψ because ψ commutes
with HK , ψ commutes with ΓK since ψ commutes with GK .

(ii) D = D(V (D)), thus we have existence and uniqueness of ψ. The rest
is by induction on n.

Example 5.3.5. Let D = AQp ⊃ A+
Qp = Zp[[π]] be the trivial (ϕ,Γ)-module,

here [ε] = (1 + π). Then for x = F (π) ∈ A+
Qp , ϕ(x) = F ((1 + π)p− 1). Write

F (π) =

p−1∑
i=0

(1 + π)iFi((1 + π)p − 1),

then ψ(F (π)) = F0(π). It is easy to see if F (π) belongs to Zp[[π]], Fi(π)
belongs to Zp[[π]] for all i. Then ψ(E+

Qp) ⊂ E+
Qp = Fp[[π]]. Hence ψ(A+

Qp) ⊂
A+

Qp . Consequently, ψ is continuous for the weak topology.
Moreover, we have:

ϕ(ψ(F )) = F0((1 + π)p − 1) =
1

p

∑
zp=1

p−1∑
i=0

(z(1 + π))iFi((z(1 + π))p − 1)

=
1

p

∑
zp=1

F (z(1 + π)− 1).

Recall D0(Zp,Qp) ' B+
Qp = Qp ⊗Zp A

+
Qp by µ 7→ Aµ(π) =

∫
Zp [ε]

xµ. Recall

that ψ(µ) is defined by ∫
Zp
φ(x)ψ(µ) =

∫
pZp

φ(
x

p
)µ.

From the above formula, we get, using formulas for Amice transforms,

Aψ(µ)(π) = ψ(Aµ)(π).

Proposition 5.3.6. If D is an étale ϕ-module over AK, then ψ is continuous
for the weak topology.

Proof. As AK is a free AQp-module of rank [K∞ : Qp(µp∞)], we can assume
K = Qp. Choose e1, e2, · · · , ed in D, such that

D = ⊕(AQp/p
ni)ei, ni ∈ N ∪ {∞}.
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Since D is étale, we have D = ⊕(AQp/p
ni)ϕ(ei). Then we have the following

diagram:

D
ψ //

o
��

D

o
��

⊕(AQp/p
ni)ϕ(ei) // ⊕(AQp/p

ni)ei

∑
xiϕ(ei)

� //
∑
ψ(xi)ei

Now x 7→ ψ(x) is continuous in AQp , hence ψ is continuous in D.

5.3.2 Dψ=1 and D/(ψ − 1)

Lemma 5.3.7. If D is an étale ϕ-module over EQp, then:
(i) Dψ=1 is compact;
(ii) dimFp(D/(ψ − 1)) < +∞.

Proof. (i) choose a basis {e1, · · · , ed}, then {ϕ(e1), · · · , ϕ(ed)} is still a basis.
Set vE(x) = infi vE(xi) if x =

∑
i xiϕ(ei), xi ∈ E+

Qp . We have

ψ(x) =
∑
i

ψ(xi)ei and ei =
d∑
i=1

ai,jϕ(ej).

Let c = inf
i,j
vE(ai,j), then we have

vE(ψ(x)) ≥ c+ inf
i
vE(ψ(xi)). (5.1)

From ψ(E+
Qp) ⊂ E+

Qp and ψ(π̄p
k
x) = π̄kψ(x), we get vE(ψ(x)) ≥

[
vE(x)
p

]
. So

vE(ψ(x)) ≥ c+ inf
i

[
vE(xi)

p
] ≥ c+ [

vE(x)

p
].

If vE(x) < p(c−1)
p−1

, then vE(ψ(x)) > vE(x). Now Dψ=1 is closed since ψ is
continuous, and is a subset of the compact set

M := {x : vE(x) ≥ p(c− 1)

p− 1
} ⊆

d∑
i=1

π̄kFp[[π̄]] · ϕ(ei).
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Hence Dψ=1 is also compact.
(ii) ψ − 1 is bijective on D/M from the proof of (i). We only need to

prove that M/((ψ− 1)D ∩M) is finite, equivalently, that (ψ− 1)D contains
{x : vE(x) ≥ c′} for some c′.

ϕ(xi) can be written uniquely as ϕ(xi) =
d∑
j=1

bi,jej. Let c0 = inf
i,j
vE(bi,j),

then

x =
d∑
i=1

xiϕ(ei) =
d∑
i=1

xi

d∑
j=1

bi,jej =
d∑
j=1

(
d∑
i=1

xibi,j)ej.

Let yj =
d∑
i=1

xibi,j, then x =
d∑
j=1

yjej, and

vE(yj) ≥ c0 + vE(x).

From ϕ(x) =
d∑
j=1

ϕ(yj)ϕ(ej), we get

vE(ϕ(x)) = inf vE(ϕ(yj)) = p inf vE(yj) ≥ pvE(x) + pc0.

So, if vE(x) ≥ −pc0
p−1

+ 1, then vE(ϕn(x)) ≥ pn. It implies y =
+∞∑
i=1

ϕi(x)

converges in D. Now

(ψ − 1)y =
+∞∑
i=0

ϕi(x)−
+∞∑
i=1

ϕi(x) = x

implies that (ψ − 1)D contains {x|vE(x) ≥ −pc0
p−1

+ 1}.

Proposition 5.3.8. If D is an étale ϕ-module over AK(resp. over BK),
then:

(i) Dψ=1 is compact (resp. locally compact);
(ii) D/(ψ − 1) is finitely generated over Zp(resp. over Qp).

Proof. We can reduce to K = Qp. BK follows from AK by Qp ⊗Zp −. So we
consider D over AQp .

(i) Note that Dψ=1 = lim←−(D/pnD)ψ=1. From the previous lemma we have

D/pnD is compact by easy induction on n. So Dψ=1 is compact.
(ii) The quotient (D/(ψ−1))/p ' (D/p)/ψ − 1 is finite dimensional over

Fp. We have to check that
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if x = (ψ − 1)yn + pnZp for all n, then x ∈ (ψ − 1)D.

If m ≥ n, ym−yn ∈ (D/pn)ψ=1, which is compact, we can extract a sequence
converging mod pn. Thus we can diagonally extract a sequence converging
mod pn for all n. Then yn converges to y in D and x = (ψ − 1)y.

5.3.3 The Γ-module Dψ=0.

If p 6= 2, we let Γ0 = ΓQp ' Z∗
p. Let Γn ⊆ Γ0 and Γn ' 1 + pnZp if n ≥ 1.

Then Γ0 = 4× Γ1 where 4 = µp−1, and Γn = lim←−
m

Γn/Γn+m. We define

Zp[[Γn]] = lim←−Zp[Γn/Γn+m] = D(Γn,Zp).

If n ≥ 1, let γn be a topological generator of Γn. So Γn = γ
Zp
n . The corre-

spondence

Zp[[Γn]] Zp[[T ]]∼oo ∼ // A+
Qp

γn − 1 T
� //�oo π

is just the Amice transform. Then

Zp[[Γ0]] = Zp[4]⊗ Zp[[Γ1]],

Zp{{Γn}} := (Zp[[Γn]][(γn − 1)−1])∧ ' AQp (as a ring),

Zp{{Γ0}} = Zp[4]⊗ Zp{{Γ1}}.

Modulo p, we get Fp{{Γn}} ' EQp as a ring.

Remark. Zp[[Γ0]] ' D0(Γ0,Zp) ' D0(Z∗
p,Zp) ' (A+

Qp)
ψ=0. So (A+

Qp)
ψ=0 is

a free Zp[[Γ0]]-module of rank 1. This a special case of a general theorem
which will come up later on.

Lemma 5.3.9. (i) If M is a topological Zp-module (M = lim←−M/Mi) with
a continuous action of Γn (i.e. for all i, there exists k, such that Γn+k acts
trivially on M/Mi), then Zp[[Γn]] acts continuously on M ;

(ii) If γn − 1 has a continuous inverse, then Zp{{Γn}} also acts continu-
ously on M .
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Lemma 5.3.10. (i) If n ≥ 1, vE(γn(π̄)− π̄) = pnvE(π̄);
(ii) For all x in EQp, we have vE(γn(x)− x) ≥ vE(x) + (pn − 1)vE(π̄).

Proof. Since χ(γ) = 1 + pnu, u ∈ Z∗
p, we have

γn(π̄)− π̄ =γn(1 + π̄)− (1 + π̄) = (1 + π̄)((1 + π̄)p
nu − 1)

=(1 + π̄)((1 + π̄)u − 1)p
n

.

Then we get (i).

In general, for x =
+∞∑
k=k0

akπ̄
k, then vE(x) = k0vE(π̄). Now

γn(x)− x
γn(π̄)− π̄

=
+∞∑
k=k0

ak
γn(π̄)k − π̄k

γn(π̄)− π̄
,

and

vE(
γn(π̄)k − π̄k

γn(π̄)− π̄
) ≥ (k − 1)vE(π̄).

Proposition 5.3.11. Let D be an étale (ϕ,Γ)-module of dimension d over
EQp. Assume n ≥ 1, (i, p) = 1. Then

(i) γ ∈ Γ induces εiϕn(D) ' εχ(γ)iϕn(D);
(ii) γn−1 admits a continuous inverse on εiϕn(D). Moreover if {e1, · · · , ed}

is a basis of D, then:

Fp{{Γn}}d
∼−→ ϕn(D)

(λ1, · · · , λd) 7−→ λ1 ∗ εiϕn(e1) + · · ·+ λd ∗ εiϕn(ed)

is a topological isomorphism.

Proof. (i) is obvious. Now, remark that (ii) is true for n + 1 implies (ii) is
true for n, since

εiϕn(D) = εiϕn(⊕p−1
j=0ε

jϕ(D)) = ⊕p−1
j=0ε

i+pnjϕn+1(D),

and for n > 1, γn+1 = γpn, so 1
γn−1

= 1
γn+1−1

(1 + γn + · · ·+ γp−1
n ), and

Fp{{Γn}} = Fp{{Γn+1}}+ · · ·+ γp−1
n Fp{{Γn+1}}.
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So we can assume n big enough.
Recall vE(x) = inf

i
vE(xi) if x =

∑
i

xiei. We can, in particular, assume

vE(γn(ei) − ei) ≥ 2vE(π̄), it implies vE(γn(x) − x) ≥ vE(x) + 2vE(π̄) for all
x ∈ D (as vE(γn(x)− x) ≥ vE(x) + (pn − 1)vE(π̄) for all x ∈ EQp). Now

χ(γn) = 1 + pnu, u ∈ Z∗
p,

so

γn(ε
iϕn(x))− εiϕn(x) = εi(εip

nuϕn(γn(x))− ϕn(x)) = εiϕn(εiuγn(x)− x).

So we have to prove x 7→ f(x) = εiuγn(x)−x has a continuous inverse on D,
and D is a Fp{{f}}-module with basis {e1, · · · , ed}. Let α = εiu−1; iu ∈ Z∗

p,

so vE(α) = vE(π̄). Then vE( f
α
(x)− x) ≥ vE(x) + vE(π̄). It implies f

α
has an

inverse

g =
+∞∑
n=0

(1− f

α
)n and vE(g(x)− x) ≥ vE(x) + vE(π̄).

So f has an inverse f−1(x) = g( x
α
) and vE(f−1(x)− x

α
) ≥ vE(x).

By induction, for all k in Z, we have

vE(fk(x)− αkx) ≥ vE(x) + (k + 1)vE(π̄).

Let M = E+
Qpe1 ⊕ · · · ⊕ E

+
Qped, then fk induces

M/π̄M ' αkM/αk+1M ' π̄kM/π̄k+1M.

So fkFp[[f ]]e1⊕· · ·⊕fkFp[[f ]]ed is dense in π̄kM and is equal by compactness.

Corollary 5.3.12. γ − 1 has a continuous inverse on Dψ=0, and Dψ=0 is a
free Fp{{Γ0}}-module with basis {εϕ(e1), · · · , εϕ(ed)}.

Proof. Copy the proof that (ii) for n + 1 implies (ii) for n in the previous
proposition, using γ1 = γp−1

0 .

Proposition 5.3.13. If D is an étale (ϕ,Γ)-module over AK or BK, then
γ − 1 has a continuous inverse on Dψ=0.
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Proof. BK follows from AK by Qp⊗Zp ; and we can reduce AK to AQp .

SinceDψ=0 → (D/p)ψ=0 is surjective, (
p−1∑
i=1

εiϕ(xi) can be lifted to
p−1∑
i=1

[ε]iϕ(x̂i)),

so we have the following exact sequence:

0 −→ (pD)ψ=0 −→ Dψ=0 −→ (D/p)ψ=0 −→ 0.

Everything is complete for the p-adic topology, so we just have to verify the
result mod p, which is in corollary 5.3.12.

5.3.4 Computation of Galois chomology groups

Proposition 5.3.14. Let Cψ,γ be the complex

0→ D(V )
(ψ−1, γ−1)−−−−−−−→ D(V )⊕D(V )

(γ−1) pr1−(ψ−1) pr2−−−−−−−−−−−−→ D(V )→ 0.

Then we have a commutative diagram of complexes

Cϕ,γ : 0 // D(V ) //

Id
��

D(V )

−ψ
��

⊕ D(V ) //

Id
��

D(V ) //

−ψ
��

0

Cψ,γ : 0 // D(V ) // D(V ) ⊕ D(V ) // D(V ) // 0

which induces an isomorphism on cohomology.

Proof. Since (−ψ)(ϕ − 1) = ψ − 1 and ψ commutes with γ (i.e. ψγ = γψ),
the diagram commutes. ψ is surjective, hence the cokernel complex is 0. The
kernel is nothing but

0 −→ 0 −→ D(V )ψ=0 γ−1−−→ D(V )ψ=0 −→ 0,

it has no cohomology by Proposition 5.3.13.

Theorem 5.3.15. If V is a Zp or a Qp-representation of GK, then Cψ,γ(K,V )
computes the Galois cohomology of V :

(i) H0(GK , V ) = D(V )ψ=1,γ=1 = D(V )ϕ=1,γ=1.

(ii)H2(GK , V ) ' D(V )
(ψ−1,γ−1)

.

(iii) One has an exact sequence

0 −→ D(V )ψ=1

γ − 1
−→ H1(GK , V ) −→

(
D(V )

ψ − 1

)γ=1

−→ 0

(x, y) 7−→ x
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Let C(V ) = (ϕ− 1)Dψ−1 ⊂ Dψ=0, the exact sequence

0 −→ D(V )ϕ=1 −→ D(V )ψ=1 −→ C(V ) −→ 0

induces an exact sequence

0 −→ D(V )ϕ=1

γ − 1
−→ D(V )ψ=1

γ − 1
−→ C(V )

γ − 1
−→ 0

since C(V )γ=1 ⊂ (Dψ=0)γ=1 = 0.

Proposition 5.3.16. If D is an étale (ϕ,Γ)-module of dimension d over
EQp, then C = (ϕ− 1)Dψ=1 is a free Fp[[Γ0]]-module of rank d.

Proof. We know:

• C ⊂ Dψ=0, it implies C is a Fp[[Γ0]]-module of rank less than d;

• C is compact, because Dψ=1 is compact;

• So we just have to prove (see proposition 5.3.11 and corollary 5.3.12)
that C contains {εϕ(e1), · · · , εϕ(ed)}, where {e1, · · · , ed} is any basis
of D over EQp .

Let {f1, · · · , fd} be any basis. Then ϕn(π̄kfi) goes to 0 when n goes to +∞

if k � 0. Let gi =
+∞∑
n=0

ϕn(εϕ(π̄kfi)). Then we have:

• ψ(gi) = gi, because ψ(εϕ(π̄kfi)) = 0;

• (ϕ− 1)gi = −εϕ(π̄kfi) ∈ C.

We can take ei = π̄kfi.

5.3.5 The Euler-Poincaré formula.

Theorem 5.3.17. If V is a finite Zp-representation of GK, then

χ(V ) =
2∏
i=0

|H i(GK , V )|(−1)i = |V |−[K:QP ].
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Proof. From Shapiro’s lemma, we have

H i(GK , V ) ' H i(GQp , Ind
GQp
GK

V ).

Since | Ind
GQp
GK

V | = |V |[K:Qp], we can assume K = Qp. Given an exact se-
quence

0→ V1 → V → V2 → 0,

then χ(V ) = χ(V1)χ(V2) and |V | = |V1||V2| from the long exact sequence
in Galois Cohomology, thus we can reduce to the case that V is a Fp-
representation of GK . Then we have:

|H0| = |D(V )ϕ=1,γ=1|;

|H1| = |D(V )ϕ=1

γ − 1
| · | C(V )

γ − 1
| · |

(
D(V )

ψ − 1

)γ=1

|;

|H2| = | D(V )

(ψ − 1, γ − 1)
|.

So |H0||H2||H1|−1 = |C(V )
γ−1
|−1, because D(V )ϕ=1 and D(V )

ψ−1
are finite groups,

and for a finite group M , the exact sequence:

0 −→Mγ=1 −→M
γ−1−→M −→ M

γ − 1
−→ 0

implies that |Mγ=1| = | M
γ−1
|. Now C(V )

γ−1
is a (Fp[[Γ0]]/(γ − 1)) = Fp-module

of rank dimEQp
D(V ) = dimFp V . Hence |C(V )

γ−1
| = |V |.

5.4 Tate’s duality and residues

Let M be a finite Zp module. We want to construct a perfect pairing

H i(GK ,M)×H2−i(GK ,M
∧(1)) −→ Qp/Zp.

By using Shapiro’s lemma, we may assume K = Qp.

Definition 5.4.1. Let x =
∑
k∈Z

akπ
k ∈ BQp , define

res(xdπ) = a−1.

The residue of x, denoted by Res(x) is defined as

Res(x) = res(x
dπ

1 + π
).
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The map Res : BQp → Qp maps AQp to Zp, thus it induced a natural
map BQp/AQp → Qp/Zp.

Proposition 5.4.2.

Res(ψ(x)) = Res(x);

Res(γ(x)) = χ(γ)−1 Res(x)

Proof. Exercise.

LetD be an étale (ϕ,Γ)-module overAQp , denoteD∨ = HomAQp
(D,BQp/AQp),

let x ∈ D∨, y ∈ D, denote

〈x, y〉 = x(y) ∈ BQp/AQp .

Then

〈γ(x), γ(y)〉 = γ(〈x, y〉),
〈ϕ(x), ϕ(y)〉 = ϕ(〈x, y〉)

determines the (ϕ,Γ)-module structure on D∨. Set

[x, y] := Res(〈x, y〉) ∈ Qp/Zp.

The main step is following proposition.

Proposition 5.4.3. (i) The map x 7→ (y 7→ [x, y]) gives an isomorphism
from D∨ to D∧(V ) = Homcont(D,Qp/Zp).

(ii) The following formulas hold:

[x, ϕ(y)] = [ψ(x), y]

[γ(x), y] = χ(γ)−1[x, γ−1(y)].

Corollary 5.4.4. Let V ∧(1) = HomZp(V, (Qp/Zp)(1)), then D(V ∧(1)) =
D∨(1).

Now the two complexes

Cϕ,γ(Qp, V ) : D(V )
d1 // D(V )⊕D(V )

d2 // D(V )

D∨(V ) D∨(1)⊕D∨(1)
d2′oo D∨(1)

d′1oo : Cψ,γ−1(Qp, V
∧(1))
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are in duality, where d1z = ((ϕ−1)z, (γ−1)z), d2(x, y) = (γ−1)x−(ϕ−1)y,
d′1z

′ = ((ψ − 1)z′, (γ−1 − 1)z′), d2
′(x′, y′) = (γ−1 − 1)x′ − (ψ − 1)y′, and the

duality map in the middle given by [(x, y), (x′, y′)] = [x′, x]− [y′, y].
One can check that the images are closed. Therefore their cohomology

are in duality. For details, see Herr’s paper in Math Annalen (2001?).
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Chapter 6

(ϕ,Γ)-modules and Iwasawa
theory

6.1 Iwasawa modules H i
Iw(K,V )

6.1.1 Projective limits of cohomology groups

In this chapter we assume that K is a finite extension of Qp and GK is the

Galois group of K̄/K. Then Kn = K(µpn) and Γn = Gal(K∞/Kn) = γ
Zp
n

if n ≥ 1 (n ≥ 2 if p = 2) where γn is a topological generator of Γn. We

choose γn such that γn = γp
n−1

1 . The Iwasawa algebra Zp[[ΓK ]] is isomorphic
to Zp[[T ]] with the (p, T )-adic topology by sending T to γ − 1. We have

Zp[[ΓK ]]/(γn − 1) = Zp[Gal(Kn/K)].

Furthermore Zp[[ΓK ]] is a GK-module: let g ∈ GK and x ∈ Zp[[ΓK ]], then
gx = ḡx, where ḡ is the image of g in ΓK . By the same way, GK acts on
Zp[Gal(Kn/K)].

Using Shapiro’s Lemma, we get, for M a Zp[GK ]-module,

H i(GKn ,M)
∼−→ H i(GK ,Zp[Gal(Kn/K)]⊗M),

with the inverse map given by(
(σ1, ..., σi) 7→

∑
g∈Gal(Kn/K)

g⊗Cg(σ1, ..., σi)
)
7−→

(
(σ1, ..., σi) 7→ Cid(σ1, ..., σi)

)
.

109
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Thus we have a commutative diagram:

H i(GKn+1 ,M)
∼−−−→ H i(GK ,Zp[Gal(Kn+1/K)]⊗M)

cor

y y
H i(GKn ,M)

∼−−−→ H i(GK ,Zp[Gal(Kn/K)]⊗M)

One can check that the second vertical arrow is just induced by the natural
map Gal(Kn+1/K)→ Gal(Kn/K).

Definition 6.1.1. (i) If V is a Zp-representation of GK , define

H i
Iw(K,V ) = lim←−

n

H i(GKn , V )

while the transition maps are the corestriction maps.
(ii) If V is a Qp-representation, choose T a stable Zp-lattice in V , then

define
H i

Iw(K,V ) = Qp ⊗Zp H
i
Iw(K,T ).

6.1.2 Reinterpretation in terms of measures

Proposition 6.1.2. H i(GK ,Zp[[ΓK ]]⊗ V ) ∼= H i
Iw(K,V ).

Proof. The case of Qp follows from the case of Zp by using Qp⊗Zp . Now
assume that V is a Zp-representation of GK . By definition,

Λ = Zp[[ΓK ]] = lim←−Zp[[ΓK ]]/(γn − 1),

it induces the map θ:

H i(GK ,Λ⊗ V )
θ //

α

++WWWWWWWWWWWWWWWWWWWWW
lim←−H

i(GK ,Λ/(γn − 1)⊗ V ) = H i
Iw(K,V )

��
lim←−H

i(GK ,Λ/(p
n, γn − 1)⊗ V )

The surjectivity is general abstract nonsense.
The injectivity of α implies the injectivity of θ; to prove that of α, it is

enough to verify the Mittag-Leffler conditions of H i−1, which are automatic,
because of the Finiteness Theorem: Λ/(pn, γn− 1)⊗ V is a finite module, so
H i−1(GK ,Λ/(p

n, γn − 1)⊗ V ) is a finite group.
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Remark. (i) Recall that D0(ΓK , V ) is the set of p-adic measures from ΓK
to V :

Zp[[ΓK ]]⊗ V ∼= D0(ΓK , V ), γ ⊗ v 7→ δγ ⊗ v,

where δγ is the Dirac measure at γ. Let g ∈ GK , µ ∈ D0(ΓK , V ); the action
of GK on D0(ΓK , V ) is as follow:∫

ΓK

φ(x)(gµ) = g(

∫
ΓK

φ(ḡx)µ).

Hence, for any n ∈ N, the map H i(GK ,Zp[[ΓK ]]⊗ V )→ H i(GKn , V ) (trans-
lation of Shapiro’s lemma) can be written in the following concrete way:

(
(σ1, ..., σi) 7→ µ(σ1, ..., σi)

)
7−→

(
(σ1, ..., σi) 7→

∫
ΓK

1ΓKn
·µ(σ1, ..., σi) ∈ V

)
n∈N.

(ii) Let g ∈ GK , λ, µ ∈ Zp[[ΓK ]], x ∈ V , then

g(λµ⊗ v) = ḡλµ⊗ gv = λḡµ⊗ gv = λg(µ⊗ µ).

So λ and g commutes, it implies that H i
Iw(K,V ) are Zp[[ΓK ]]-modules.

6.1.3 Twist by a character (à la Soulé)

Let η : ΓK → Q∗
p be a continuous character. It induces a transform

D0(ΓK , V )→ D0(ΓK , V ), µ 7→ η · µ.

For λ ∈ Zp[[ΓK ]], we have

η · (λµ) = (η · λ)(η · µ).

Indeed, it is enough to check it on Dirac measures. In this case

η · (δλ1δλ2 ⊗ v) = η(λ1λ2)δλ1δλ2 ⊗ v = (η · δλ1)(η · δλ2)⊗ v.

Recall that Zp(η) = Zp · eη, where, if g ∈ GK , then geη = η(ḡ)eη. Define
V (η) = V ⊗ Zp(η).

Exercise. The map µ ∈ D0(ΓK , V ) 7→ (η ·µ)⊗ eη ∈ D0(ΓK , V ) is an isomor-
phism of Zp[GK ]-modules.
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By the above exercise, we have a commutative diagram:

H i
Iw(K,V )

iη // H i
Iw(K,V (η))

H i(GK ,D0(ΓK , V ))
∼ // H i(GK ,D0(ΓK , V (η)))

So iη is an isomorphism of cohomology groups. It can be written in a concrete
way

iη :
(
(σ1, ..., σi) 7→ µ(σ1, ..., σi)

)
7−→

(
(σ1, ..., σi) 7→

∫
ΓK

1ΓKn
η·µ(σ1, ..., σi)⊗eη

)
n∈N.

It is an isomorphism of Zp-modules.
Warning: iη is not an isomorphism of Zp[[ΓK ]]-modules, because iη(λx) =
(η · λ)iη(x): there is a twist.

6.2 Description of H i
Iw in terms of D(V )

Remark. H i
Iw(K,V ) = lim←−n≥n0

H i(GKn , V ), so we can always assume n� 0.

Lemma 6.2.1. Let τn = γn−1
γn−1−1

= 1 + γn−1+, ...,+γ
p−1
n−1 ∈ Zp[[ΓK ]], the

diagram

Cψ,γn(Kn, V ) : 0 // D(V ) //

τn

��

D(V )

τn

��

⊕ D(V ) //

Id
��

D(V ) //

Id
��

0

Cψ,γn−1(Kn−1, V ) : 0 // D(V ) // D(V ) ⊕ D(V ) // D(V ) // 0

is commutative and induces corestrictions on cohomology via

H i(Cψ,γn(Kn, V ))
∼−→ H i(GKn , V ).

Proof. τn is a cohomological functor and induces TrKn/Kn−1 on H0, so it
induces corestrictions on H i.

Theorem 6.2.2. If V is a Zp or Qp representation of GK, then we have:
(i) H i

Iw(K,V ) = 0, if i 6= 1, 2.

(ii) H1
Iw(K,V ) ∼= D(V )ψ=1, H2

Iw(K,V ) ∼= D(V )
ψ−1

, and the isomorphisms are
canonical.
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Remark. (i) The isomorphism

Exp∗ : H1
Iw(K,V )→ D(V )ψ=1

is the map that will produce p-adic L-functions. Let’s describe (Exp∗)−1. Let
y ∈ D(V )ψ−1, then (ϕ− 1)y ∈ D(V )ψ=0. There exists unique xn ∈ D(V )ψ=0

satisfying that (γn − 1)xn = yn, then we can find bn ∈ A ⊗ V such that
(ϕ− 1)bn = xn. Then

g 7→ logχ(γn)

pn

(
(g − 1)

(γn − 1)
y − (g − 1)bn

)
gives a cocycle on GKn with values in V , and logχ(γn)

pn
does not depend on n.

Denote by ιψ,n(y) ∈ H1(GKn , V ) the image of this cocycle, then

(Exp∗)−1 : y 7−→ (· · · , ιψ,n(y), · · · )n∈N ∈ H1
Iw(K,V )

doesn’t depend on the choice of γn.
(ii) We see that D(V )

ψ−1
is dual to D(V ∧(1))ψ=1 = V ∧(1)HK , so H2

Iw(K,V ) =
D(V )
ψ−1

= (V ∧(1)HK )∧.

Before proving the theorem, we introduce a lemma.

Lemma 6.2.3. If M is compact with continuous action of ΓK, then

M ' lim←−
n

(M/γn − 1).

Proof. We have a natural map from M to lim←−n(M/γn − 1).
Injectivity: let V be an open neighborhood of 0. For all x ∈ M , there

exists nx ∈ N and Ux 3 x, an open neighborhood of x such that (γ−1)x′ ∈ V
for γ ∈ ΓKnx and x′ ∈ Ux. By compactness, M =

⋃
i∈I
Uxi , where I is a finite

set. Let n = max
i∈I

nxi . It implies that (γ − 1)M ⊂ V , if γ ∈ Γn, then⋂
n∈N

(γn − 1)M = 0, this shows the injectivity.

Surjectivity: Let (xn)n∈N ∈ lim←−n(M/γn−1). From the proof of injectivity,
we know that xn is a Cauchy-sequence. Because M is compact, there exists
x = lim xn. We have xn+k − xn = (γn − 1)yk for all k ≥ 0, as M is compact,
there exists a subsequence of yk converging to y, passing to the limit, we get
x− xn = (γn − 1)y. This shows the surjectivity.
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Proof of Theorem 6.2.2. H i
Iw(K,V ) is trivial if i ≥ 3 and the case of Qp

follows from Zp by Qp⊗Zp .

For i = 0,

H0
Iw(K,V ) = lim←−

Tr

V GKn .

V GKn is increasing and ⊂ V , as V is a finite dimensional Zp-module, the
sequence is stationary for n ≥ n0. Then TrKn+1/Kn is just multiplication by
p for n ≥ n0, but V does not contain p-divisible elements. This shows that
lim←−Tr

V GKn = 0.

For i = 2: H2(GKn , V ) = D(V )
(ψ−1,γn−1)

. The corestriction map is induced by

Id on D(V ), thus

H2
Iw(K,V ) = lim←−

D(V )

ψ − 1

/
(γn − 1) =

D(V )

ψ − 1

by Lemma 6.2.3, as D(V )
ψ−1

is compact (and even finitely generated over Zp).

For i = 1: we have commutative diagrams:

0 // D(V )ψ=1

γn−1
//

p1
��

H1(GKn , V )
p2 //

cor

��

(D(V )
ψ−1

)γn=1 //

τn

��

0

0 // D(V )ψ=1

γn−1−1
// H1(GKn−1 , V ) // (D(V )

ψ−1
)γn−1=1 // 0

where p1(ȳ) = ȳ, p2((x̄, ȳ)) = x̄, for any x, y ∈ D(V ). Using the functor lim←−,
we get:

0 // lim←−
D(V )ψ=1

γn−1
// lim←−H

1(GKn , V ) // lim←−(D(V )
ψ−1

)γn=1 .

BecauseD(V )ψ=1 is compact, by Lemma 6.2.3 we haveD(V )ψ=1 ' lim←−
D(V )ψ=1

γn−1
.

By definition, H1
Iw(K,V ) = lim←−H

1(GKn , V ). The same argument for showing

H0
Iw(K,V ) = 0 shows that lim←−(D(V )

ψ−1
)γn=1 = 0. So we get

D(V )ψ=1 ∼−→ H1
Iw(K,V ).
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6.3 Structure of H1
Iw(K,V )

Recall that we proved that if D is an étale (ϕ,Γ)-module of dim d over EQp ,
then C = (ϕ− 1)Dψ=1 is a free Fp[[ΓQp ]]-module of rank d. The same proof
shows that if n ≥ 1, i ∈ Z∗

p, C ∩ εϕn(D) is free of rank d over Fp[[Γn]].

Corollary 6.3.1. If D is an étale (ϕ,Γ)-module of dimension d over EK,
then C is a free Fp[[ΓK ]]-module of rank d · [K : Qp].

Proof. Exercise. Hint: D is of dimension d · [HQp : HK ] over EQp and [K :
Qp] = [GQp : GK ] = [ΓQp : ΓK ][HQp : HK ].

Proposition 6.3.2. If V is a free Zp or Qp representation of rank d of GK,
then

(i) D(V )ϕ=1 is the torsion sub-Zp[[ΓK ∩ Γ1]]-module of D(V )ψ=1.

(ii) We have exact sequences:

0 −→ D(V )ϕ=1 −→ D(V )ψ=1 ϕ−1−−→ C(V ) −→ 0.

and C(V ) is free of rank d · [K : Qp] over Zp[[ΓK ]] (or over Qp⊗Zp Zp[[ΓK ]]).

Corollary 6.3.3. If V is a free Zp representation of rank d of GK, then
the torsion Zp[[ΓK ∩ Γ1]]-module of H1

Iw(K,V ) is D(V )ϕ=1 = V HK , and
H1

Iw(K,V )/V HK is free of rank d · [K : Qp] over Zp[[ΓK ]].

Proof of Proposition 6.3.2. D(V )ϕ=1 = V HK is torsion because it is finitely
generated over Zp, so (ii) implies (i). To prove (ii), we have to prove
C(V )/pC(V ) is free of rank d · [K : Qp] over Fp[[ΓK ]].

Consider the following commutative diagram with exact rows

0 // D(V )ϕ=1

��

// D(V )ψ=1

��

ϕ−1 // C(V )

��

// 0

0 // (D(V )/p)ϕ=1 // (D(V )/p)ψ=1ϕ−1 // C(V/p) // 0

Using the exact sequence

0→ pV → V → V/p→ 0
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and apply the snake lemma to the vertical rows of the diagram above, we
have the cokernel complex is

p− torsion of
D(V )

(ϕ− 1)
→ p− torsion of

D(V )

(ψ − 1)
→ C(V/p)
C(V )/pC(V )

→ 0.

Note that the p-torsion of D(V )
(ψ−1)

is a finite dimensional Fp-vector space, thus
C(V/p)

C(V )/pC(V )
is also a finite dimensional Fp-vector space, hence C(V )/pC(V ) is

a Fp[[ΓK ]]-lattice of C(V/p), but C(V/p) is a free Fp[[ΓK ]]-module of rank
d · [K : Qp] by Corollary 6.3.1.

Remark. (i) The sequence

0→ D(V )ϕ=1 → D(V )ψ=1 → C(V )→ 0

is just the inflation-restriction exact sequence

0→ H1(ΓK ,Λ⊗ V HK )→ H1(GK ,Λ⊗ V )→ H1(HK ,Λ⊗ V )ΓK → 0.

(ii) Let 0 → V1 → V → V2 → 0 be an exact sequence, then the exact
sequence

0→ D(V1)→ D(V )→ D(V2)→ 0

and the snake lemma induces

0→ D(V1)
ψ=1 → D(V )ψ=1 → D(V2)

ψ=1 → D(V1)

ψ − 1
→ D(V )

ψ − 1
→ D(V2)

ψ − 1
→ 0.

By Theorem 6.2.2, this is just

0→ H1
Iw(K,V1)→H1

Iw(K,V )→ H1
Iw(K,V2)

→H2
Iw(K,V1)→ H2

Iw(K,V )→ H2
Iw(K,V2)→ 0.

It can also be obtained from the longer exact sequence in continuous coho-
mology from the exact sequence

0→ Zp[[ΓK ]]⊗ V1 → Zp[[ΓK ]]⊗ V → Zp[[ΓK ]]⊗ V2 → 0.



Chapter 7

Zp(1) and Kubota-Leopoldt zeta
function

7.1 The module D(Zp(1))ψ=1

The module Zp(1) is just Zp with the action of GQp by g ∈ GQp , x ∈ Zp(1),
g(x) = χ(g)x. We shall study the exponential map

Exp∗ : H1
Iw(Qp,Zp(1))→ D(Zp(1))

ψ=1.

Note that D(Zp(1)) = (A⊗Zp(1))HQp = AQp(1), with usual actions of ϕ and
ψ, and for γ ∈ Γ, γ(f(π)) = χ(γ)f((1 + π)χ(γ) − 1), for all f(π) ∈ AQp(1).

Proposition 7.1.1. (i) Aψ=1
Qp = Zp · 1

π
⊕ (A+

Qp)
ψ=1.

(ii) We have an exact sequence:

0 −→ Zp −→ (A+
Qp)

ψ=1 ϕ−1−−→ (πA+
Qp)

ψ=0 −→ 0.

Remark. Under the map µ 7→
∫

Zp [ε]
xµ, (πA+

Qp)
ψ=0 is the image of measures

with support in Z∗
p (ψ = 0) and

∫
Z∗p
µ = 0

(πA+
Qp)

ψ=0 = C(Zp) = (γ − 1)Zp[[ΓQp ]].

Zp[[ΓQp ]] can be viewed as measures on ΓQp
∼= Z∗

p, and µ ∈ (γ − 1)Zp[[ΓQp ]]
means

∫
Zp µ = 0. It implies that C(Zp) is free of rank 1 over Zp[[ΓQp ]] which

is a special case of what we have proved.

117
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Proof. (i) We have proved

ψ(A+
Qp) ⊂ A+

Qp , ψ(
1

π
) =

1

π
,

vE(ψ(x)) ≥ [
vEx

p
], if x ∈ EQp .

These facts imply that ψ− 1 is bijective on EQp/π̄
−1E+

Qp and hence it is also

bijective on AQp/π
−1A+

Qp . So

ψ(x) = x⇒ x ∈ π−1A+
Qp .

(ii) We know that (ϕ− 1)A+
Qp ⊂ πA+

Qp For x ∈ (πA+
Qp)

ψ=0, then

ϕn(x) ∈ ϕn(π)A+
Qp → 0 if n→∞.

Hence y =
+∞∑
n=0

ϕn(x) converges, and one check that ψ(y) = y, (ϕ−1)y = −x.

This implies the surjectivity of ϕ− 1.

7.2 Kummer theory

Recall that

ε = (1, ε(1), ε(2), ..., ε(n), ...) ∈ E+
Qp ⊂ Ẽ+ = R, ε(1) 6= 1.

Let πn = ε(n)−1, Fn = Qp(πn) for n ≥ 1. Then πn is a uniforming parameter
of Fn, and

NFn+1/Fn(πn+1) = πn, OFn+1 = OFn [πn+1]/((1 + πn+1)
p = 1 + πn).

For an element a ∈ F ∗
n , choose x = (a, x(1), ...) ∈ Ẽ. This x is unique up to

εu with u ∈ Zp. So if g ∈ GFn , then

g(x)

x
= εc(g), c(g) ∈ Zp

gives a 1-cocycle c on GFn with values in Zp(1). This defines the Kummer
map:

κ : F ∗
n −→ H1(GFn ,Zp(1))

a 7−→ κ(a).
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By Kummer theory, we have H1(GFn ,Zp(1)) = Zp · κ(πn) ⊕ κ(O∗
Fn

). The
diagram

F ∗
n+1

κ−−−→ H1(GFn+1 ,Zp(1))yNFn+1/Fn

ycor

F ∗
n

κ−−−→ H1(GFn ,Zp(1))

is commutative, we have a map:

κ : lim←−F
∗
n → H1

Iw(Qp,Zp(1))

and
H1

Iw(Qp,Zp(1)) = Zp · κ(πn)⊕ κ(lim←−O
∗
Fn).

7.3 Coleman’s power series

Theorem 7.3.1 (Coleman’s power series). Let u = (un)n≥1 ∈ lim←−(OFn)−
{0} (pour les applications NFn+1/Fn), then there exists a unique power series
fu ∈ Zp[[T ]] such that fu(πn) = un for all n ≥ 1.

Lemma 7.3.2. (i) If x ∈ OFn, γ ∈ Gal(Fn+1/Fn), then γ(x)− x ∈ π1OFn+1.
(ii) NFn+1/Fnx− xp ∈ π1OFn+1.

Proof. It is easy to see that (i) implies (ii) since [Fn+1 : Fn] = p. Write

χ(γ) = 1 + pnu for u ∈ Zp. Let x =
p−1∑
i=0

xi(1 + πn+1)
i, where xi ∈ OFn . Then

γ(x)− x =

p−1∑
i=0

xi(1 + πn+1)
i((1 + π1)

iu − 1) ∈ π1OFn+1 .

Corollary 7.3.3. ū = (ūp1, ū1, ..., ūn, ...) ∈ E+
Qp, where ūn is the image of

un modπ1.

Definition 7.3.4. Let N : OF1 [[T ]]→ OF1 [[T ]] such that

N(f)((1 + T )p − 1) =
∏
zp=1

f((1 + T )z − 1).
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Lemma 7.3.5. (i) N(f)(πn) = NFn+1/Fn(f(πn+1)),
(ii) N(Zp[[T ]]) ⊂ Zp[[T ]],
(iii) N(f)− f ∈ π1OF1 [[T ]],
(iv) If f ∈ OF1 [[T ]]∗, k ≥ 1, if (f − g) ∈ πk1OF1 [[T ]], then

N(f)− N(g) ∈ πk+1
1 OF1 [[T ]].

Proof. (i) The conjugates of πn+1 under Gal(Fn+1/Fn) are those (1+πn)z−1
for zp = 1, this implies (i).

(ii) Obvious, is just Galois theory.
(iii) Look mod π1, because z = 1 mod π1, we have N(f)(T p) = f(T )p.

(iv) We have N(f
g
) = N(f)

N(g)
, so we can reduce to f = 1 and g = 1 + πk1h.

Then

N(g)((1 + T )p − 1) = 1 + πk1
∑
zp=1

h((1 + T )z − 1) modπk+1
1 ,

and
∑
zp=1

h((1 + T )z − 1) is divisible by p.

Corollary 7.3.6. (i) If ū ∈ E+
Qp and vE(ū) = 0, then there exists a unique

gu ∈ Zp[[T ]] such that N(gu) = gu and gu(π̄) = ū.
(ii) If x ∈ 1 + πk1OFn+1, then NFn+1/Fn(x) ∈ 1 + πk+1

1 OFn.

Proof. (i) Take any g ∈ Zp[[T ]] such that g(π̄) = ū, then g ∈ Zp[[T ]]∗, by (iv)
of Lemma 7.3.5, Nk(g) converges in g + π1Zp[[T ]] and gu is the limit.

(ii) There exists f ∈ 1 + πk1OF1 [T ] such that x = f(πn+1). Then use (i)
and (iv) of Lemma 7.3.5.

Proof of Theorem 7.3.1. The uniqueness follows from the fact that 0 6= f ∈
Zp[[T ]] has only many finitely zeros in mCp (Newton polygons).

Existence: let u = (un), write un = πknαu
′
n, where k ∈ Z and α ∈ µp−1

do not depend on n, and u′n ∈ 1 + mFn . Then NFn+1/Fnu
′
n+1 = u′n. If for all

n, fu′(πn) = u′n, let fu = T kαfu′ , then fu(πn) = un. Thus we are reduced to
the case that un ∈ 1 + mFn for all n.

By (i) of Corollary 7.3.6, we can find gu ∈ Zp[[T ]] for ū. We have to check
that gu(πn) = un for all n 6= 1. Write vn = gu(πn). Then N(gu) = gu, by
(i) of Lemma 7.3.5, implies that NFn+1/Fn(vn+1) = vn; and gu(π̄) = ū implies
that vn = un modπ1 for all n. Let wn = vn

un
, then we have

NFn+1/Fn(wn+1) = wn and wn ∈ 1 + π1OFn .
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By (ii) of Corollary 7.3.6, we have

wn = NFn+k/Fn(wn+k) ∈ 1 + πk1OFn for all k,

then wn = 1. This completes the proof.

Corollary 7.3.7.

N(fu) = fu, ψ(
∂fu
fu

) =
∂fu
fu

where ∂ = (1 + T ) d
dT

.

Proof. By (i) of Lemma 7.3.5, we have N(fu)(πn) = NFn+1/Fn(fu(πn+1)) =
fu(πn), for all n, thus N(fu) = fu.

Using the formula ψ(∂ log f) = ∂(log N(f)), we immediately get the result
for ψ. As for the proof of this last formula, we know that

ϕ(N(f)(T )) = N(f)((1 + T )p − 1) =
∏
zp=1

f((1 + T )z − 1)

ψ(f)((1 + T )p − 1) =
1

p

∑
zp=1

f((1 + T )z − 1)

Then we have two ways to write ∂(logϕ(N(f)))

∂(logϕ(N(f))) = pϕ (∂ log N(f))(∂ ◦ ϕ = pϕ ◦ ∂)

= pϕ(
∂N(f)

N(f)
) = p(

∂N(f)

N(f)
)((1 + T )p − 1)

= p(∂ log N(f))((1 + T )p − 1),

∂(logϕ(N(f))) = ∂(log
∏
zp=1

f((1 + T )z − 1))

=
∑
zp=1

(1 + T )zf ′((1 + T )z − 1)

f((1 + T )z − 1)

=
∑
zp=1

∂f

f
((1 + T )z − 1) = pψ(

∂f

f
)((1 + T )p − 1)

= p(ψ(∂ log f))((1 + T )p − 1),

hence the formula.



122CHAPTER 7. ZP (1) AND KUBOTA-LEOPOLDT ZETA FUNCTION

7.4 An explicit reciprocity law

Theorem 7.4.1. The diagram

lim←−(OFn − {0})

u 7→ ∂fu
fu

(π) ((QQQQQQQQQQQQQ
κ // H1

Iw(Qp,Zp(1))

Exp∗
∼

vvmmmmmmmmmmmmm

D(Zp(1))
ψ=1

is commutative.

Remark. (i) The proof is typical of invariants defined via Fontaine’s rings:
easy to define and hard to compute.

(ii) For another example, let X/K be a smooth and projective variety,
then

DdR(H i
ét(X ×K,Qp)) = H i

dR(X/K).

The proof is very hard and is due to Faltings and Tsuji.
(iii) Let a ∈ Z such that a 6= 1, (a, p) = 1. The element

un =
e−a

2πi
pn − 1

e−
2πi
pn − 1

∈ Q(µpn)

is a cyclotomic unit in OQ(µpn ) (whose units are called global units). Then

un ∈ Fn = Qp(µpn), un =
γ−a(πn)

γ−1(πn)
,

where γb ∈ ΓQp such that χ(γb) = b. From NFn+1/Fn(πn+1) = πn, one gets
NFn+1/Fn(un+1) = un (γ commutes with norm), thus

u = (un) ∈ lim←−OFn .

Obviously the Coleman power series

fu =
(1 + T )−a − 1

(1 + T )−1 − 1
,

∂fu
fu

=
a

(1 + T )a − 1
− 1

T
.

So ∂fu
fu

is nothing but the Amice transform of µa that was used to construct
p-adic zeta function. So Exp∗ produces Kubota-Leopoldt zeta function from
the system of cyclotomic units.



7.5. PROOF OF THE EXPLICIT RECIPROCITY LAW 123

(iv) The example in (iii) is part of a big conjectural picture. For V a fixed
representation of GQ, then conjecturally

{compatible system of global elements of V } −→ H1
Iw(Q, V )

−→ H1
Iw(Qp, V )

Exp∗−→ D(V )ψ=1 Amice−−−−−−→
transform

p-adic L-functions.

At present there are very few examples representation of GQ for which this
picture is known to work. The Amice transform works well for Zp(1), because

ψ improves denominators in π, and Aψ=1
Qp ⊂

1
π
A+

Qp can be viewed as measures.
In general, to use the properties of ψ, we will have to introduce overconvergent
(ϕ,Γ)-modules.

7.5 Proof of the explicit reciprocity law

7.5.1 Strategy of proof of Theorem 7.4.1

Let u ∈ lim←−OFn , and g 7→ Cn(g) be the cocycle on GFn by Kummer theory,
i.e the image of u under the composition of

lim←−(OFn − {0})
κ−→ H1

Iw(Qp,Zp(1)) −→ H1(GFn ,Zp(1)).

Let y ∈ D(Zp(1))ψ=1 = Aψ=1
Qp (1), let g 7→ C ′

n(g) be the image of y under the
composition of

D(Zp(1))ψ=1 = Aψ=1
Qp (1)

(Exp∗)−1

−−−−−→ H1
Iw(Qp,Zp(1)) −→ H1(GFn ,Zp(1)).

We need to prove that Cn = C ′
n for all n implies y = ∂fu

fu
(π).

For C ′
n, we have

C ′
n(g) =

logχ(γn)

pn

(
χ(g)− 1

χ(γn)− 1
y − (χ(g)g − 1)bn

)
,

where bn ∈ A is a solution of (ϕ− 1)bn = (χ(γn)γn − 1)−1(ϕ− 1)y, we know
that (ϕ− 1)y ∈ Aψ=0

Qp . The exact value of bn is not important.

For Cn, choose xn = (x
(0)
n , ..., x

(k)
n , ...) ∈ Ẽ+ such that x

(0)
n = un. Let

ũn = [xn], then
g(ũn)

ũn
= [ε]Cn(g).
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Proposition 7.5.1. Assume n ≥ 1.
(i) There exists k ∈ Z, b′n ∈ OCp/p

n such that

p2C ′
n(g) = p2 logχ(γn)

pn
· g − 1

γn − 1
y(πn+k) + (g − 1)b′n

in OCp/p
n.

(ii) There exists k ∈ Z, b′′n ∈ OCp/p
n such that

p2Cn(g) = p2 logχ(g)

pn
∂fu
fu

y(πn) + (g − 1)b′′n

in OCp/p
n.

Proposition 7.5.2. There exists a constant c ∈ N, such that for all n and
for all k, if x ∈ OFn+k

, b ∈ OCp satisfy

vp
( g − 1

γn − 1
x+ (g − 1)b

)
≥ n, ∀g ∈ GFn

then
p−k TrFn+k/Fn x ∈ p

n−cOFn .

We shall prove Proposition 7.5.1 in the next no, and Proposition 7.5.2
in the third no. We first explain how the above two propositions imply the
theorem:

If h(π) = ψ(h(π)), then h(πn) = p−1 TrFn+1/Fn(h(πn+1)). By hypothesis,
ψ(y) = y, we get

p−k TrFn+k/Fn(y(πn+k)) = y(πn), ∀n, ∀k (∗).

Let

x = p2 logχ(γn)

pn
(
y(πn+k)−

∂fu
fu

(πn)
)
, b = b′n − b′′n.

By Proposition 7.5.1, and the hypothesis Cn(g) = C ′
n(g), we get

g − 1

γn − 1
x+ (g − 1)b = p2(C ′

n(g)− Cn(g)) = 0.

The first equality is because for every x ∈ Fn,
g−1
γn−1

x = logχ(g)
logχ(γn)

x. Using
Proposition 7.5.2, we get

p2 log(χ(γn))

pn
(
y(πn)−

∂fu
fu

(πn)
)
∈ pn−cOFn ,
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then for every n,

y(πn)−
∂fu
fu

(πn) ∈ pn−c−2OFn .

Let h = y − ∂fu
fu

, then ψ(h) = h and h(πn) ∈ pn−c−2OFn . Using the fact

p−k TrFn+k/Fn OFn+k
⊂ OFn and the formula (*), then for every i ∈ N, n ≥ i,

h(πi) = p−(n−i) TrFn/Fi(h(πn)) ∈ pn−c−2OFi ,

thus h(πi) = 0 for every i ∈ N, hence h = 0.

7.5.2 Explicit formulas for cocyles

This no is devoted to the proof of Proposition 7.5.1
(i) Recall that π = [ε]− 1, θ(

∑
pm[xm]) =

∑
pmx

(0)
m and θ(π) = 1− 1 =

0. Let π̃n = ϕ−n(π) ∈ Ã+, then π̃n = [ε1/pn ] − 1, θ(π̃n) = πn. Write

bn =
+∞∑
l=0

pl[zl], where zl ∈ Ẽ. As C ′
n(g) ∈ Zp, we have

ϕ−(n+k)C ′
n(g) = C ′

n(g), for all n and k.

As

vE(ϕ−k(zl)) =
1

pk
vE(zl),

we can find k such that

vE(ϕ−(n+k)(zl)) ≥ −1, for all l 6 n− 1.

Let p̃ = (p, ...) ∈ Ẽ+, then for every l 6 n− 1, p̃ ·ϕ−(n+k)(zl) ∈ Ẽ+. We have

[p̃]C ′
n(g) =

logχ(γn)

pn
[p̃] · χ(g)g − 1

χ(γn)γn − 1
y(π̃n+k) + [p̃](χ(g)g − 1)ϕ−(n+k)(bn).

Both sides live in Ã+ + pnÃ, reduce mod pn and use θ : Ã+/pn → OCp/p
n,

then [p̃] 7→ p and

pC ′
n(g) = p

logχ(γn)

pn
p · g − 1

γn − 1
y(πn+k) + (g − 1)b′n

where b′n = θ([p̃]ϕ−(n+k)(bn)).
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(ii) Write u = (πkn)(vn), where vn are units ∈ O∗
Fn

. So we just have to
prove the formula for (πn) and (vn). Thus we can assume vp(un) 6 1.

Let

H : 1 + tB+
dR → Cp, x 7→ θ(

x− 1

π
) = θ(

x− 1

t
),

recall that t = log(1 + π). We have

H((1+πx′)(1+πy′)) = H(1+π(x′+y′)+π2x′y′) = θ(x′+y′) = H(1+πx′)+H(1+πy′),

thus H(xy) = H(x) +H(y).

Write ũn = [(un, u
1
p
n , ...)], we have g(ũn)

ũn
= [ε]Cn(g) = 1+Cn(g)π+ · · · , thus

Cn(g) = H(
g(ũn)

ũn
).

We know un = fu(πn) and θ(ũn) = un, then

θ(fu(π̃n)) = fu(θ(π̃n)) = fu(πn) = un = θ(ũn).

So, if we set an = fu(π̃n)
ũn

, then θ(an) = 1.

We know that [p̃]an ∈ Ã+ since vp(un) ≤ 1. Then we get H(an) ∈ 1
pπ1
OCp

because of the following identity

H(an) = θ
( [p̃]an − [p̃]

[p̃]π

)
= θ

( [p̃]an − [p̃]

ω

)
· θ

( 1

[p̃]π̃1

)
,

and because ω = π
π̃1

is a generator of Ker θ in Ã+ as ω ∈ Ker θ, and

ω̄ =
ε− 1

ε1/p − 1
, so vE(ω̄) = (1− 1

p
)vE(ε− 1) = 1.

Then we have

g(fu(π̃n))

fu(π̃n)
=
fu((1 + π̃n)

χ(g) − 1)

fu(π̃n)

=
fu((1 + π̃n)(1 + π)

χ(g)−1
pn − 1)

fu(π̃n)

= 1 +
∂fu
fu

(π̃n) ·
χ(g)− 1

pn
π + terms of higher degree in π,



7.5. PROOF OF THE EXPLICIT RECIPROCITY LAW 127

hence

H
(g(fu(π̃n))

fu(π̃n)

)
=
χ(g)− 1

pn
· ∂fu
fu

(πn).

Using formula fu(π̃n) = ũnan, we get

Cn(g) = H
(g(ũn)
ũn

)
= H

(g(fu(π̃n))
fu(π̃n)

)
−H

(g(an)
an

)
=
χ(g)− 1

pn
· ∂fu
fu

(πn)− (χ(g)g − 1)H(an).

We conclude the proof by multiplying p2, noticing that χ(g) = 1 mod pn, so

χ(g)− 1

pn
=

exp(logχ(g))− 1

pn
=

logχ(g)

pn
mod pn;

set b′′n = −p2H(an), we get the result.

7.5.3 Tate’s normalized trace maps

Let πn = ε(n) − 1, Fn = Qp(πn), F∞ =
⋃
n

Fn.

Lemma 7.5.3. If n ≥ 1, x ∈ F∞, then p−k TrFn+k/Fn x does not depend on
k such that x ∈ Fn+k.

Proof. Use the transitive properties of the trace map and the fact [Fn+k :
Fn] = pk.

Let Rn : F∞ −→ Fn be the above map. Denote

Yi = {x ∈ Fi,TrFi/Fi−1
x = 0}.

Lemma 7.5.4. (i) Rn commutes with ΓQp, is Fn linear and Rn ◦Rn+k = Rn.

(ii) Let x ∈ F∞, then x = Rn(x)+
+∞∑
i=1

R∗
n+i(x), where R∗

n+i(x) = Rn+i(x)−

Rn+i−1(x) ∈ Yn+i and is 0 if i� 0.

(iii) Let k ∈ Z, then vp(x) > kvp(πn) if and only if vp(Rn(x)) > kvp(πn)
and vp(R

∗
n+i(x)) > kvp(πn) for every i ∈ N.
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Proof. (i) is obvious.
(ii) is also obvious, since Rn+i−1(R

∗
n+i(x)) = 0⇒ R∗

n+i(x) ∈ Yn+i.
(iii) ⇐ is obvious. For ⇒, let x ∈ OFn+k

, then

x =

pk−1∑
j=0

aj(1 + πn+k)
j, aj ∈ OFn .

Write j = pk−ij′ with (j′, p) = 1, then

Rn(x) = a0, R∗
n+i(x) =

∑
(j′,p)=1

apn−ij′(1 + πn+i)
j′

since

p−1 TrFn+i/Fn+i−1
(1 + πn+i)

j =

{
(1 + πn+i)

j, if p | j
0, if (j, p) = 1.

Thus
vp(x) > 0⇒ vp(Rn(x)) > 0 and vp(R

∗
n+i(x)) > 0.

By Fn-linearity we get the result.

Remark. In the whole theory, the following objects play similar roles:

ψ ←→ p−1 TrFn+1/Fn

ψ = 0←→ Yi.

Lemma 7.5.5. Assume that j 6 i − 1 and j ≥ 2. and assume γj is a
generator of Γj. Let u ∈ Q∗

p. If vp(u− 1) > vp(π1), then uγj − 1 is invertible
on Yi. Moreover if x ∈ Yi, vp(x) > kvp(πn), then vp((uγj−1)−1x) > kvp(πn)−
vp(π1).

Proof. If γi−1 = γp
i−j−1

j , then

(uγj − 1)−1 = (up
i−j−1

γi−1 − 1)−1(1 + uγj + · · ·+ (uγj)
pi−j−1−1),

so it is enough to treat the case j = i− 1.
Let x ∈ OFi ∩ Yi, write

x =

p−1∑
a=1

xa(1 + πi)
a, xa ∈ OFi−1

,
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write χ(γi−1) = 1 + pi−1v with v ∈ Z∗
p, then

(uγi−1 − 1)x =

p−1∑
a=1

xa(1 + πi)
a(u(1 + π1)

av − 1).

We can check directly

(uγi−1 − 1)−1x =

p−1∑
a=1

xa
(u(1 + π1)av − 1)

(1 + πi)
a.

Moreover, if vp(x) ≥ 0, then vp((uγj − 1)−1x) > −vp(π1).

Proposition 7.5.6. Assume n > 1, u ∈ Q∗
p and vp(u− 1) > vp(π1), then

(i) x ∈ F∞ can be written uniquely as x = Rn(x) + (uγn − 1)y with
Rn(y) = 0, and we have

vp(Rn(x)) > vp(x)− vp(πn), vp(y) > vp(x)− vp(πn)− vp(π1).

(ii) Rn extends by continuity to F̂∞, and let Xn = {x ∈ F̂∞, Rn(x) = 0}.
Then every x ∈ F̂∞ can be written uniquely as x = Rn(x) + (uγn − 1)y with
y ∈ Xn and Rn(x) ∈ Fn, and with the same inequalities

vp(Rn(x)) > vp(x)− vp(πn), vp(y) > vp(x)− vp(πn)− vp(π1).

Proof. (i) As

x = Rn(x) +
+∞∑
i=1

(uγn − 1)((uγn − 1)−1R∗
n+i(x)).

we just let y =
+∞∑
i=1

(uγn − 1)−1R∗
n+i(x).

(ii) By (i), we have vp(Rn(x)) > vp(x) − C, so Rn extends by continuity

to F̂∞; the rest follows by continuity.

Remark. (i) The maps Rn : F̂∞ −→ Fn are Tate’s normalized trace maps.
(ii) they commutes with ΓQp (or GQp).

(iii) Rn(x) = x if x ∈ F∞ and n � 0, hence Rn(x) → x if x ∈ F̂∞ and
n→∞.
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7.5.4 Applications to Galois cohomology

Proposition 7.5.7. (i) The map

x ∈ Fn 7−→ (γ 7→ x logχ(γ)) ∈ H1(ΓFn , Fn)

induces isomorphism

Fn
∼→ H1(ΓFn , Fn)

∼→ H1(ΓFn , F̂∞).

(ii) If η : ΓFn −→ Q∗
p is of infinite order, then H1(ΓFn , F̂∞(η)) = 0.

Proof. If n� 0 so that vp(η(γn)− 1) > vp(π1). Using the above proposition
(let u = η(γn)), we get

H1(ΓFn , F̂∞(η)) =
F̂∞

(uγn − 1)
=
Fn

⊕
Xn

(uγn − 1)
=

Fn
uγn − 1

.

If u = 1, we get (γn − 1)Fn = 0. If u 6= 1, we get Fn/(u− 1)Fn = 0.
For n small, using inflation and restriction sequence, as Gal(Fn+k/Fn) is

finite, and F̂∞(η) is a Qp-vector space, we have

H1(Gal(Fn+k/Fn), F̂∞(η)ΓFn+k ) = 0, H2 = 0,

then we get an isomorphism

H1(ΓFn , F̂∞(η))
∼−→ H1(ΓFn+k

, F̂∞(η))Gal(Fn+k/Fn).

From the case of n� 0, we immediately get the result.

Recall that the following result is the main step in Ax’s proof of the
Ax-Sen-Tate theorem (cf. Fontaine’s course).

Proposition 7.5.8. There exists a constant C ∈ N, such that if x ∈ Cp, if
H ⊂ GQp is a closed subgroup, if for all g ∈ H, vp((g− 1)x) > a for some a,
then there exists y ∈ CH

p such that vp(x− y) > a− C.

The following corollary is Proposition 7.5.2 in the previous section.

Corollary 7.5.9. For x ∈ OF̂∞, if there exists c ∈ OCp such that

vp

( g − 1

γn − 1
x− (g − 1)c

)
> n, for all g ∈ GFn .

Then we have
vp(Rn(x)) > n− C − 1(or 2).
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Proof. By assumption, we get

vp((g − 1)c) > n, ∀ g ∈ HQp = Kerχ,

then by Ax, there exists c′ ∈ F̂∞ such that

vp(c− c′) > n− C.

Take g = γn, then vp(x− (γn−1)c′) > n−C. As Rnγn = γnRn = Rn, we get

vp(Rn(x)) = vp(Rn(x− (γn − 1)c′)) > n− C − vp(π1)− vp(πn),

hence the result.

7.5.5 No 2πi in Cp!

Theorem 7.5.10. (i) Cp does not contain log 2πi, i.e. there exists no x ∈ Cp

satisfies that g(x) = x+logχ(g) for all g ∈ GK, where K is a finite extension
of Qp.

(ii) Cp(k) = 0, if k 6= 0.

Proof. (i) If K = Qp, if there exists such an x, by Ax-Sen-Tate, we get

x ∈ F̂∞ = CHQp
p . Then we have:

Rn(g(x)) = g(Rn(x)) = Rn(x) + logχ(g).

Because Rn(x) ∈ Fn, it has only finite number of conjugates but logχ(g) has
infinitely many values, contradiction!

Now for K general, we can assume K/Qp is Galois, let

y =
1

[K : Qp]

∑
σ∈S

σ(x)

where S are representatives ofGQp/GK . For g ∈ GQp , we can write gσ = σ′σhσ
for hσ ∈ GK and σ′σ ∈ S. From this we get∑

σ∈S

logχ(hσ) = [K : Qp] logχ(g).
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Then we have

g(y) =
1

[K : Qp]

∑
σ∈S

gσ(x) =
1

[K : Qp]

∑
σ∈S

σ′σhσx

=
1

[K : Qp]

∑
σ∈S

σ′σ(x+ logχ(hσ))

=
1

[K : Qp]

∑
σ∈S

σ(x) +
1

[K : Qp]

∑
σ∈S

logχ(hσ)

= y + logχ(g).

Then by the case K = Qp, we get the result.
(ii) If 0 6= x ∈ Cp(k), then g(x) = χ(g)−kx. Let y = log x

−k , then we have
g(y) = y + logχ(g), which is a contradiction by (i).



Chapter 8

(ϕ,Γ)-modules and p-adic
L-functions

8.1 Tate-Sen’s conditions

8.1.1 The conditions (TS1), (TS2) and (TS3)

Let G0 be a profinite group and χ : G0 → Z∗
p be a continuous group homo-

morphism with open image. Set v(g) = vp(logχ(g)) and H0 = Kerχ.
Suppose Λ̃ is a Zp-algebra and

v : Λ̃ −→ R ∪ {+∞}

satisfies the following conditions:
(i) v(x) = +∞ if and only if x = 0;
(ii) v(xy) > v(x) + v(y);
(iii) v(x+ y) > inf(v(x), v(y));
(iv) v(p) > 0, v(px) = v(p) + v(x).

Assume Λ̃ is complete for v, and G0 acts continuously on Λ̃ such that
v(g(x)) = v(x) for all g ∈ G0 and x ∈ Λ̃.

Definition 8.1.1. The Tate-Sen’s conditions for the quadruple (G0, χ, Λ̃, v)
are the following three conditions TS1–TS3.

(TS1). For all C1 > 0, for all H1 ⊂ H2 ⊂ H0 open subgroups, there exists an
α ∈ Λ̃H1 with

v(α) > −C1 and
∑

τ∈H2/H1

τ(α) = 1.

133
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(In Faltings’ terminology, Λ̃/Λ̃H0 is called almost étale.)

(TS2). Tate’s normalized trace maps : there exists C2 > 0 such that for
all open subgroups H ⊂ H0, there exist n(H) ∈ N and (ΛH,n)n≥n(H), an

increasing sequence of sub Zp-algebras of Λ̃H and maps

RH,n : Λ̃H −→ ΛH,n

satisfying the following conditions:

(a) if H1 ⊂ H2, then ΛH2,n = (ΛH1,n)
H2 , and RH1,n = RH2,n on Λ̃H2 ;

(b) for all g ∈ G0,

g(ΛH,n) = ΛgHg−1,n g ◦RH,n = RgHg−1,n ◦ g;

(c) RH,n is ΛH,n-linear and is equal to Id on ΛH,n;
(d) v(RH,n(x)) > v(x)− C2 if n > n(H) and x ∈ Λ̃H ;
(e) lim

n→+∞
RH,n(x) = x.

(TS3). There exists C3, such that for all open subgroups G ⊂ G0, H =
G ∩ H0, there exists n(G) > n(H) such that if n > n(G), γ ∈ G/H and
v(γ) = vp(logχ(γ)) 6 n, then γ − 1 is invertible on XH,n = (RH,n − 1)Λ̃ and

v((γ − 1)−1x) > v(x)− C3

for x ∈ XH,n.

Remark. RH,n ◦RH,n = RH,n, so Λ̃H = ΛH,n ⊕XH,n.

8.1.2 Example : the field Cp

Theorem 8.1.2. The quadruple (Λ̃ = Cp, v = vp, G0 = GQp and χ=the
cyclotomic character) satisfies (TS1), (TS2), (TS3).

Proof. (TS1): In Fontaine’s course, we know that for any Qp ⊂ K ⊂ L such
that [L : Qp] < +∞, then

vp(dLn/Kn)→ 0 as n→ +∞.

The proof showed that vp(γ(πn) − πn) → 0 as n → +∞, where πn is a
uniformizer of Ln and γ ∈ Gal(Ln/Kn) = Gal(L∞/K∞) when n � 0. We
also have

TrL∞/K∞ = TrLn/Kn
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on Ln if n� 0 and

TrLn/Kn(OLn) ⊃ dLn/Kn
⋂
OKn ,

thus TrL∞/K∞(OL∞) contains elements with vp as small as we want. Take
x ∈ OL∞ and let α = x

TrL∞/K∞ (x)
, then∑

τ∈HK/HL

τ(α) = TrL∞/K∞(α) = 1.

Then for all C1 > 0, we can find x ∈ OL∞ such that vp(TrL∞/K∞(x)) is small
enough, thus vp(α) > −C1.

(TS2) and (TS3): By Ax-Sen-Tate, CHK
p = K̂∞, let ΛHK ,n = Kn, and

RHK ,n = p−k TrKn+k/Kn on Kn+k.
If K = Qp, RHK ,n = Rn, that’s what we did in last chapter. We are going

to use what we know about Rn.
For G = GK , then H = HK , choose m big enough such that for any

n > m, vp(dKn/Fn) is small and [K∞ : F∞] = [Kn : Fn] = d. Let {e1, ..., ed}
be a basis of OKn over OFn and {e∗1, ..., e∗d} be the dual basis of Kn over Fn
for the trace map (x, y) 7→ TrKn/Fn(xy). This implies that {e∗1, ..., e∗d} is a
basis of d−1

Kn/Fn
and vp(e

∗
i ) > −vp(dKn/Fn) are small. Any x ∈ K∞ can be

written as

x =
d∑
i=1

TrK∞/K(xei)e
∗
i ,

then

inf
i
vp(TrK∞/F∞(xei)) ≥ vp(x) ≥ inf

i
vp(TrK∞/F∞(xei))− vp(dKn/Fn),

and

RHK ,n(x) =
d∑
i=1

Rn(TrK∞/F∞(xei))e
∗
i , n > m.

So use what we know about Rn to conclude.

Remark. By the same method as Corollary 7.5.7, we get
(i) H1(Γ, K̂∞) ∼= K, where the isomorphism is given by x ∈ K 7−→ (γ 7→

x logχ(γ)).
(ii) H1(Γ, K̂∞(η)) = 0 if η is of infinite order.
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8.2 Sen’s method

Proposition 8.2.1. Assume Λ̃ verifying (TS1), (TS2) and (TS3). Let σ 7→
Uσ be a continuous cocycle from G0 to GLd(Λ̃). If G ⊂ G0 is an open normal
subgroup of G0 such that v(Uσ − 1) > 2C2 + 2C3 for any σ ∈ G. Set
H = G ∩H0, then there exists M ∈ GLd(Λ̃) with v(M − 1) > C2 + C3 such
that

σ 7−→ Vσ = M−1Uσσ(M)

satisfies Vσ ∈ GLd(ΛH,n(G)) and Vσ = 1 if σ ∈ H.

Example 8.2.2. Example of Sen: For the case Λ̃ = Cp, for Uσ a 1-cocycle
on GK with values in GLd(Cp), there exists [L : K] < ∞, such that Uσ is
cohomologous to a cocycle that which is trivial on HL and with values in
GLd(Ln) for some n.

The proof of Proposition 8.2.1 needs three Lemmas below. It is technical,
but the techniques come over again and again.

8.2.1 Almost étale descent

Lemma 8.2.3. If Λ̃ satisfies (TS1), a > 0, and σ 7→ Uσ is a 1-cocycle on H
open in H0 and

v(Uσ − 1) > a for any σ ∈ H,
then there exists M ∈ GLd(Λ̃) such that

v(M − 1) >
a

2
, v(M−1Uσσ(M)− 1) > a+ 1.

Proof. The proof is approximating Hilbert’s Theorem 90.
Fix H1 ⊂ H open and normal such that v(Uσ − 1) > a + 1 + a/2 for

σ ∈ H1, which is possible by continuity. Because Λ̃ satisfies (TS1), we can
find α ∈ Λ̃H1 such that

v(α) > −a/2,
∑

τ∈H/H1

τ(α) = 1.

Let S ⊂ H be a set of representatives of H/H1, denote MS =
∑
σ∈S

σ(α)Uσ, we

have MS − 1 =
∑
σ∈S

σ(α)(Uσ− 1), this implies v(MS − 1) > a/2 and moreover

M−1
S =

+∞∑
n=0

(1−MS)
n,
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so we have v(M−1
S ) > 0 and MS ∈ GLd(Λ̃).

If τ ∈ H1, then Uστ − Uσ = Uσ(σ(Uτ )− 1). Let S ′ ⊂ H be another set of
representatives of H/H1, so for any σ′ ∈ S ′, there exists τ ∈ H1 and σ ∈ S
such that σ′ = στ , so we get

MS −MS′ =
∑
σ∈S

σ(α)(Uσ − Uστ ) =
∑
σ∈S

σ(α)Uσ(1− σ(Uτ )),

thus
v(MS −MS′) > a+ 1 + a/2− a/2 = a+ 1.

For any τ ∈ H,

Uττ(MS) =
∑
σ∈S

τσ(α)Uττ(Uσ) = MτS.

Then
M−1

S Uττ(MS) = 1 +M−1
S (MτS −MS),

with v(M−1
S (MτS − MS)) ≥ a + 1. Take M = MS for any S, we get the

result.

Corollary 8.2.4. Under the same hypotheses as the above lemma, there
exists M ∈ GLd(Λ̃) such that

v(M − 1) > a/2, M−1Uσσ(M) = 1,∀ σ ∈ H.

Proof. Repeat the lemma (a 7→ a+1 7→ a+2 7→ · · · ), and take the limits.

Exercise. Assume Λ̃ satisfies (TS1), denote by Λ̃+ = {x ∈ Λ̃|v(x) > 0}. Let
M be a finitely generated Λ̃+-module with semi-linear action of H, an open
subgroup of H0. Then H i(H,M) is killed by any x ∈ Λ̃H with v(x) > 0.

Hint: Adapt the proof that if L/K is finite Galois and M is a L-module with
semi-linear action of Gal(L/K), then H i(Gal(L/K), L) = 0 for all i > 1. Let
α ∈ L such that TrL/K(α) = 1. For any c(g1, · · · , gn) an n-cocycle, let

c′(g1, · · · , gn−1) =
∑

h∈Gal(L/K)

g1 · · · gn−1h(α)c(g1, · · · , gn−1, h),

then dc′ = c.



138 CHAPTER 8. (ϕ,Γ)-MODULES AND P -ADIC L-FUNCTIONS

Theorem 8.2.5. (i) The map x 7−→ (g 7→ x logχ(g)) gives an isomorphism
K

∼→ H1(GK ,Cp).
(ii) If η : GK → ΓK → Q∗

p is of infinite order, then H1(GK ,Cp(η)) = 0.

Proof. Using the inflation and restriction exact sequence

0 −→ H1(ΓK ,Cp(η)
HK )

inf−→ H1(GK ,Cp(η))
res−→ H1(HK ,Cp(η))

ΓK .

by the above exercise, H1(HK ,Cp(η))
ΓK = 0, then the inflation map is actu-

ally an isomorphism. We have Cp(η)
HK = K̂∞(η), and use Corollary 7.5.7.

In fact

K = H1(ΓK , K̂∞) = H1(ΓK , K) = Hom(Γ, K) = K · logχ,

the last equality is because ΓK is pro-cyclic.

8.2.2 Decompletion

Now recall that we have the continuous character: G0
χ−→ Z∗

p, H0 = Kerχ. Λ̃
is complete for v, with continuous action of G0. H is an open subgroup of H0,
and we have the maps:RH,n : Λ̃H → ΛH,n. By (TS2), v(RH,n(x)) ≥ v(x)−C2;
and by (TS3), v((γ−1)−1x) ≥ v(x)−C3, if RH,n(x) = 0 and vp(logχ(γ)) ≤ n.
We can use these properties to reduce to something reasonable.

Lemma 8.2.6. Assume given δ > 0, b ≥ 2C2 + 2C3 + δ, and H ⊂ H0 is
open. Suppose n ≥ n(H), γ ∈ G/H with n(γ) ≤ n, U = 1 + U1 + U2 with

U1 ∈ Md(ΛH,n), v(U1) ≥ b− C2 − C3

U2 ∈ Md(Λ̃
H), v(U2) ≥ b.

Then, there exists M ∈ GLd(Λ̃
H), v(M − 1) ≥ b− C2 − C3 such that

M−1Uγ(M) = 1 + V1 + V2,

with

V1 ∈ Md(ΛH,n), v(V1) ≥ b− C2 − C3),

V2 ∈ Md(Λ̃
H), v(V2) ≥ b+ δ.
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Proof. Using (TS2) and (TS3), one gets U2 = RH,n(U2) + (1− γ)V , with

v(RH,n(U2)) ≥ v(U2)− C2, v(V ) ≥ v(U2)− C2 − C3.

Thus,

(1 + V )−1Uγ(1 + V ) = (1− V + V 2 − · · · )(1 + U1 + U2)(1 + γ(V ))

= 1 + U1 + (γ − 1)V + U2 + (terms of degree ≥ 2)

Let V1 = U1 +RH,n(U2) ∈ Md(ΛH,n) and W be the terms of degree ≥ 2. Thus
v(W ) ≥ 2(b− C2 − C3) ≥ b+ δ. So we can take M = 1 + V, V2 = W .

Corollary 8.2.7. Keep the same hypotheses as in Lemma 8.2.6. Then there
exists M ∈ GLd(Λ̃

H), v(M − 1) ≥ b − C2 − C3 such that M−1Uγ(M) ∈
GLd(ΛH,n).

Proof. Repeat the lemma (b 7→ b+δ 7→ b+2δ 7→ · · · ), and take the limit.

Lemma 8.2.8. Suppose H ⊂ H0 is an open subgroup, i ≥ n(H), γ ∈ G/H,

n(γ) ≥ i and B ∈ GLd(Λ̃
H). If there exist V1, V2 ∈ GLd(ΛH,i) such that

v(V1 − 1) > C3, v(V2 − 1) > C3, γ(B) = V1BV2,

then B ∈ GLd(ΛH,i).

Proof. Take C = B − RH,i(B). We have to prove C = 0. Note that C has

coefficients in XH,i = (1 − RH,i)Λ̃
H , and RH,i is ΛH,i-linear and commutes

with γ. Thus,

γ(C)− C = V1CV2 − C = (V1 − 1)CV2 + V1C(V2 − 1)− (V1 − 1)C(V2 − 1)

Hence, v(γ(C) − C) > v(C) + C3. By (TS3), this implies v(C) = +∞, i.e.
C = 0.

Proof of Proposition 8.2.1. Let σ 7→ Uσ be a continuous 1-cocycle on G0 with
values in GLd(Λ̃). Choose an open normal subgroup G of G0 such that

inf
σ∈G

v(Uσ − 1) > 2(C2 + C3).

By Lemma 8.2.3, there exists M1 ∈ GLd(Λ̃), v(M1 − 1) > 2(C2 + C3) such
that σ 7→ U ′

σ = M−1
1 Uσσ(M1) is trivial in H = G ∩H0 (In particular, it has

values in GLd(Λ̃
H)).



140 CHAPTER 8. (ϕ,Γ)-MODULES AND P -ADIC L-FUNCTIONS

Now we pick γ ∈ G/H with n(γ) = n(G). In particular, we want n(G)
big enough so that γ is in the center of G0/H. Indeed, the center is open,
since in the exact sequence:

1→ H0/H → G0/H → G/H → 1,

G/H ' Zp × (finite), and H0/H is finite. So we are able to choose such a
n(G).

Then we have v(U ′
γ) > 2(C2 + C3), and by Corollary 8.2.7, there exists

M2 ∈ GLd(Λ̃
H) satisfying

v(M2 − 1) > C2 + C3 and M−1
2 U ′

γγ(M2) ∈ GLd(ΛH,n(G)).

Take M = M1 ·M2, then the cocycle

σ 7→ Vσ = M−1Uσσ(M)

a cocycle trivial on H with values in GLd(Λ̃
H), and we have

v(Vγ − 1) > C2 + C3 and Vγ ∈ GLd(ΛH,n(G)).

This implies Vσ comes by inflation from a cocycle on G0/H.
The last thing we want to prove is Vτ ∈ GLd(ΛH,n(G)) for any τ ∈ G0/H.

Note that γτ = τγ as γ is in the center, so

Vττ(Vγ) = Vτγ = Vγτ = Vγγ(Vτ )

which implies γ(Vτ ) = V −1
γ Vττ(Vγ). Apply Lemma 8.2.8 with V1 = V −1

γ , V2 =
τ(Vγ), then we obtain what we want.

8.2.3 Applications to p-adic representations

Proposition 8.2.9. Let T be a free Zp-representation of G0, k ∈ N, v(pk) >
2C2 + 2C3, and suppose G ⊂ G0 is an open normal subgroup acting trivially
on T/pkT , and H = G ∩ H0. Let n ∈ N, n ≥ n(G). Then there exists a

unique DH,n(T ) ⊂ Λ̃⊗ T , a free ΛH,n-module of rank d, such that:
(i) DH,n(T ) is fixed by H, and stable by G;

(ii) Λ̃⊗ΛH,n DH,n(T )
∼−→ Λ̃⊗ T ;

(iii) there exists a basis {e1, . . . , ed} of DH,n over ΛH,n such that if γ ∈
G/H, then v(Vγ − 1) > C3, Vγ being the matrix of γ.
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Proof. Translation of Proposition 8.2.1, by the correspondence

Λ̃-representations of G0 ←→ H1(G0,GLd(Λ̃)).

For the uniqueness, one uses Lemma 8.2.8.

Remark. H0 acts throughH0/H (which is finite) onDH,n(T ). If ΛH,n is étale
over ΛH0,n (the case in applications), and then DH0,n(T ) = DH,n(T )(H0/H), is
locally free over ΛH0,n (in most cases it is free), and

ΛH,n

⊗
ΛH0,n

DH0,n(T )
∼−→ DH,n(T ).

Example 8.2.10. For Λ̃ = Cp, let V be a Qp-representation of GK for
[K : Qp] < +∞, T ⊂ V be a stable lattice. Then

DSen,n(V ) := DHK ,n(T )

is a Kn-vector space of dimension d = dimQp V with a linear action of ΓKn .
Sen’s operator is defined as follows:

ΘSen =
log γ

logχ(γ)
, where γ ∈ ΓKn , logχ(γ) 6= 0.

It is easy to see:

Proposition 8.2.11. V is Hodge-Tate if and only if ΘSen is semi-simple,
and the eigenvalues lie in Z. These eigenvalues are the Hodge-Tate weights
of V .

Remark. For general V , the eigenvalues of ΘSen are the generalized Hodge-
Tate weights of V .

8.3 Overconvergent (ϕ,Γ)-modules

8.3.1 Overconvergent elements

Definition 8.3.1. (i) For x =
+∞∑
i=0

pi[xi] ∈ Ã, xi ∈ Ẽ = FrR, k ∈ N, define

wk(x) := inf
i≤k
vE(xi) (One checks easily that wk(x) ≥ vE(α), α ∈ Ẽ, if and

only if [α]x ∈ Ã+ + pk+1Ã).
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(ii) For a real number r > 0, define

v(0, r](x) := inf
k∈N

wk(x) +
k

r
= inf

k∈N
vE(xk) +

k

r
∈ R ∪ {±∞}.

(iii) Ã(0, r] := {x ∈ Ã : lim
k→+∞

(
vE(xk) + k

r

)
= lim

k→+∞

(
wE(xk) + k

r

)
= +∞}.

Proposition 8.3.2. Ã(0, r] is a ring and v = v(0, r] satisfies the following
properties:

(i) v(x) = +∞⇔ x = 0;
(ii) v(xy) ≥ v(x) + v(y);
(iii) v(x+ y) ≥ inf(v(x), v(y));
(iv) v(px) = v(x) + 1

r
;

(v) v([α]x) = vE(α) + v(x) if α ∈ Ẽ;
(vi) v(g(x)) = v(x) if g ∈ GQp;

(vii) v(0, p−1r](ϕ(x)) = pv(0, r](x).

Proof. Exercise.

Lemma 8.3.3. Given x ∈
+∞∑
k=0

pk[xk] ∈ Ã, the following conditions are equiv-

alent:

(i)
+∞∑
k=0

pk[xk] converges in B+
dR;

(ii)
+∞∑
k=0

pkx
(0)
k converges in Cp;

(iii) lim
k→+∞

(k + vE(xk)) = +∞;

(iv) x ∈ Ã(0, 1].

Proof. (iii) ⇔ (iv) is by definition of Ã(0, r]. (ii) ⇔ (iii) is by definition of
vE. (i) ⇒ (ii) is by the continuity of θ : B+

dR → Cp. So it remains to show
(ii)⇒ (i).

Write p̃ = (p, p1/p, · · · ) ∈ Ẽ+, then ξ = [p̃]−p is a generator of Ker θ∩Ã+.
We know

ak = k + [vE(xk)]→ +∞ if k → +∞.

Write xk = p̃k−akyk, then yk ∈ Ẽ+. We have

pk[xk] =

(
p

p̃

)k

[p̃]ak [yk] = pak(1 +
ξ

p
)ak−k[yk].
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Note that pk(1 + ξ
p
)ak−k ∈ pak−mÃ+ + (Ker θ)m+1 for all m. Thus, ak → +∞

implies that pk[xk]→ 0 ∈ B+
dR/(Ker θ)m+1 for every m, and therefore also in

B+
dR by the definition of the topology of B+

dR.

Remark. We just proved Ã(0,1] := B+
dR ∩ Ã, and we can use

ϕ−n : Ã(0,p−n] ∼−→ Ã(0, 1]

to embed Ã(0,r] in B+
dR, for r ≥ p−n.

Define

Ã† :=
⋃
r>0

Ã(0, r] = {x ∈ Ã : ϕ−n(x) converges in B+
dR for n� 0}.

Lemma 8.3.4. x ∈
+∞∑
k=0

pk[xk] is a unit in Ã(0,r] if and only if x0 6= 0 and

vE(xk
x0

) > −k
r

for all k ≥ 1.

Proof. Exercise. Just adapt the proof of Gauss Lemma.

Set

B̃(0, r] = Ã(0,r][
1

p
] =

⋃
n∈N

p−nÃ(0,r],

endowed with the topology of inductive limit, and

B̃† =
⋃
r>0

B̃(0, r],

again with the topology of inductive limit.

Theorem 8.3.5. B̃† is a subfield of B̃, stable by ϕ and GQp, both acting
continuously.

B̃† is called the field of overconvergent elements. We are going to prove
elements of D(V )ψ=1 are overconvergent.

Definition 8.3.6. (i) B† = B̃† ∩ B, A† = Ã† ∩ B (so B† is a subfield of B

stable by ϕ and GQp), A
(0, r] = Ã(0, r] ∩B.

(ii) If K/Qp is a finite extension and Λ ∈ {Ã†, B̃†, A†, B†, A(0, r], B(0, r]},
define ΛK = ΛHK . For example A

(0, r]
K = Ã(0, r] ∩ AK .

(iii) If Λ ∈ {A,B,A†, B†, A(0, r], B(0, r]}, and n ∈ N, define ΛK,n = ϕ−n(ΛK) ⊂
B̃.
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We now want to make A
(0, r]
K more concrete. Let F ′ ⊂ K∞ be the maximal

unramified extension of Qp, π̄K be a uniformizer of EK = kF ′((π̄K)), P̄K ∈
EF ′ [X] be a minimal polynomial of π̄K . Let PK ∈ A+

F ′ [X] (note that A+
F ′ =

OF ′ [[π]]) be a lifting of P̄K . By Hensel’s lemma, there exists a unique πK ∈
AK such that PK(πK) = 0 and π̄K = πK mod p. If K = F ′, we take πK = π.

Lemma 8.3.7. If we define

rK =

{
1, if EK/EQp is unramified,

(2vE(dEK/EQp
))−1, otherwise .

then πK and P ′
K(πK) are units in A

(0, r]
K for all 0 < r < rK.

Proof. The proof is technical but not difficult and is left to the readers.

Proposition 8.3.8. (i) AK = {
∑
n∈N

anπ
n
K : an ∈ OF ′ , lim

n→−∞
vp(an) = +∞};

(ii) A
(0, r]
K = {

∑
n∈N

anπ
n
K : an ∈ OF ′ , lim

n→−∞
(vp(an) + rnvE(π̄K)) = +∞}.

So f 7→ f(πK) is an isomorphism from bounded analytic functions on the

annulus 0 < vp(T ) ≤ rvE(π̄K) to the ring B
(0, r]
K .

Proof. The technical but not difficult proof is again left as an exercise. See
Cherbonnier-Colmez Invent. Math. 1998.

Corollary 8.3.9. (i) A
(0, r]
K is a principal ideal domain;

(ii) If L/K is a finite Galois extension, then A
(0, r]
L is an étale extension

of A
(0, r]
K if r < rL, and the Galois group is nothing but HK/HL.

Define π̃n = ϕ−n(π), π̃K,n = ϕ−n(πK,n).

Proposition 8.3.10. (i) If pnrK ≥ 1, θ(π̃K,n) is a uniformizer of Kn;
(ii) π̃K,n ∈ Kn[[t]] ⊂ B+

dR.

Proof. First by definition

π̃n = [ε1/pn ]− 1 = ε(n)et/p − 1 ∈ Fn[[t]] ⊂ B+
dR

(for [ε1/pn ] = ε(n)et/p
n

: the θ value of both sides is ε(n), and the pn-th power
of both side is [ε] = et (recall t = log[ε])). This implies the proposition in
the unramified case.
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For the ramified case, we proceed as follows.
By the definition of EK , πK,n = θ(π̃K,n) is a uniformizer of Kn mod a =

{x : vp(x) ≥ 1
p
}. Write ωn be the image of πK,n in Kn mod a. So we just have

to prove πK,n ∈ Kn.
Write

PK(x) =
d∑
i=0

ai(π)xi, ai(π) ∈ OF ′ [[π]].

Define

PK,n(x) =
d∑
i=0

aϕ
−n

i (πn)xi,

then PK,n(πK,n) = θ(ϕ(PK(πK))) = 0. Then we have vp(PK,n(ωn)) ≥ 1
p

and

vp(P
′
K,n(ωn)) =

1

pn
vE(P ′

K(π̄K)) =
1

pn
vE(dEK/EQp

) <
1

2p
if pnrK > 1.

Then one concludes by Hensel’s Lemma that πK,n ∈ Kn.
For (ii) , one uses Hensel’s Lemma in Kn[[t]] to conclude π̃K,n ∈ Kn[[t]].

Corollary 8.3.11. If 0 < r < rK and pnr ≥ 1, ϕ−n(A
(0, r]
K ) ⊂ Kn[[t]] ⊂ B+

dR.

8.3.2 Overconvergent representations

Suppose V is a free Zp representation of rank d of GK . Let

D(0, r] := (A(0, r] ⊗Zp V )HK ⊂ D(V ).

This is a A
(0, r]
K -module stable by ΓK . As for ϕ, we have

ϕ : D(0, r](V ) −→ D(0, p−1r](V ).

Definition 8.3.12. V is overconvergent if there exists an rV > 0, rV ≤ rK
such that

AK
⊗

A
(0, rV ]

K

D(0, rV ](V )
∼−→ D(V ).

By definition, it is easy to see for all 0 < r < rV ,

D(0, r](V ) = A
(0, r]
K

⊗
A

(0, rV ]

K

D(0, rV ](V ).
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Proposition 8.3.13. If V is overconvergent, then there exists a CV such
that if γ ∈ ΓK, n(γ) = vp(log(χ(γ))) and r < inf{p−1rV , p

−n(γ)}, then γ − 1
is invertible in D(0, r](V )ψ=0 and

v(0, r]((γ − 1)−1x) ≥ v(0, r](x)− CV − pn(γ)vE(π̄).

Proof. Write x =
p−1∑
i=1

[ε]iϕ(xi) and adapt the proof of the same statement as

in the characteristic p case. One has to use the fact that [ε]ip
n−1 is a unit in

A
(0, r]
K if r < p−n and i ∈ Z∗

p.

Remark. This applies to (A
(0, r]
K )ψ=0.

Theorem 8.3.14 (Main Theorem). (i) All (free Zp or Qp) representations
of GK are overconvergent.

(ii) D(V )ψ=1 ⊂ D(0, rV ](V ).

Sketch of Proof. (ii) is just because ψ improves convergence.
(i) follows from Sen’s method applied to

Λ̃ = Ã(0, 1], v = v(0, 1], G0 = GK ,ΛHK,n = ϕ−n(A
(0, 1]
K ).

Now we show how to check the three conditions.
(TS1). Let L ⊃ K ⊃ Qp be finite extensions, for α = [π̄L](

∑
τ∈HK/HL τ([π̄L]))−1,

then for all n, ∑
τ∈HK/HL

τ(ϕ−n(α)) = 1,

and

lim
n→+∞

v(0, 1](ϕ−n(α)) = 0.

(TS2). First ΛHK ,n = A
(0,1]
K,n . Suppose pnrK ≥ 1. We can define RK,n by

the following commutative diagram:

RK,n : Ã
(0,1]
K

// A
(0,1]
K,n

A
(0,1]
K,n+k

ϕn◦ψn+k◦ϕn+k

;;xxxxxxxx?�

OO
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One verifies that ϕ−n ◦ψn+k ◦ϕn+k does not depend on the choice of k, using
the fact ψϕ = Id. Then the proof is entirely parallel to that for Cp with ψ
in the role of p−1 TrFn+1/Fn and π̃n+k in the role of πn+k.

(TS3). For an element x such that RK,n(x) = 0, write

x =
+∞∑
i=0

R∗
K,n(x), where R∗

K,n(x) ∈ ϕ−(n+i+1)((A
(0,p−(n+i+1)]
K )ψ=0).

Then just apply Proposition 8.3.13 on (A
(0,p−(n+i+1)]
K )ψ=0.

Now Sen’s method implies that there exists an n and a A
(0,1]
K,n -module

D
(0, 1]
K,n ⊂ Ã(0, 1]

⊗
V such that

Ã(0, 1] ⊗
A

(0, 1]
K,n

D
(0, 1]
K,n

∼−→ Ã(0, 1] ⊗ V.

Play with (TS3) just like Lemma 8.2.8, one concludes thatD
(0, 1]
K,n ⊂ ϕ−n(D(V ))

and ϕn(D
(0, 1]
K,n ) ⊂ D(0, p−n](V ). We can just take rV = n.

8.3.3 p-adic Hodge theory and (ϕ,Γ)-modules

Suppose we are given a representation V , 0 < r < rV and n such that
pnr > 1. Then we have

ϕ−n(D(0, r](V )) ↪→ B+
dR ⊗ V

θ−→ Cp ⊗ V

and
ϕ−n(A

(0, r]
K ) ↪→ Kn[[t]]

θ−→ Kn.

So we get the maps

θ ◦ ϕ−n : Kn ⊗A(0, 1]
K

D(0, r](V ) −→ Cp ⊗ V (8.1)

and
ϕ−n : tiKn[[t]]⊗A(0, r]

K
D(0, r](V ) −→ tiB+

dR ⊗ V, ∀ i ∈ Z. (8.2)

Theorem 8.3.15. There exists an n(V ) ∈ N such that if n ≥ n(V ), then we
have

(i) the image of θ ◦ ϕ−n in (8.1) is exactly DSen, n(V );
(ii) FiliDdR(V ) = (Im ϕ−n)ΓK in (8.2) for all i;

(iii) DdR(V ) =
(
Kn((t))

⊗
A

(0, r]
K

D(0, r](V )
)ΓK .
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Let K/Qp be a finite extension, and define

B†
K = {F (πK) : F is a bounded analytic function on 0 < vp(t) ≤ r(F ), r(F ) > 0},

B†
rig,K = {F (πK) : F is an analytic function on 0 < vp(t) ≤ r(F ), r(F ) > 0}

(this last ring is the Robba ring in the variable πK), and

B†
log,K = B†

rig,K [log πK ].

Extend ϕ,ΓK by continuity on B†
rig,K , and set

ϕ(log πK) = p log πK + log
ϕ(πK)

πpK
,

γ(log πK) = log πK + log
γ(πK)

πK

where log ϕ(πK)
πpK
∈ B†

K and log γ(πK)
πK
∈ B†

rig,K . Let

N = − 1

vE(π̄K)
· d

d log πK
.

Theorem 8.3.16 (Berger). For

D†(V ) = (B† ⊗ V )HK =
⋃
r>0

D(0, r](V ),

if V is semi-stable, then

B†
log,K

[1

t

]
⊗K0 Dst(V ) = B†

log,K

[1

t

]
⊗B†K D

†(V )

is an isomorphism of (ϕ,N,ΓK)-modules. This implies that Dst(V ) is the
invariant under ΓK.

8.3.4 A map of the land of the rings

The following nice picture outlines most of the objects that we have discussed
till now and that we shall have to discover more about in the future.
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where

B̃+
rig =

⋂
n

ϕn(B+
cris), B̃+

log =
⋂
n

ϕn(B+
st).

Note that most arrows from (ϕ,Γ)-modules to p-adic Hodge theory are in
the wrong direction, but overconvergence and Berger’s theorem allow us to
go backwards.

8.4 Explicit reciprocity laws and p-adic L-functions

8.4.1 Galois cohomology of BdR

Suppose K is a finite extension of Qp. Recall that we have the following:

Proposition 8.4.1. For k ∈ Z, then

(i) if k 6= 0, then H i(GK ,Cp(k)) = 0 for all i

(ii) if k = 0, then H i(GK ,Cp) = 0 for i ≥ 2, H0(GK ,Cp) = K,
and H1(GK ,Cp) is a 1-dimensional K-vector space generated by logχ ∈
H1(GK ,Qp). (i.e, the cup product x 7→ x ∪ logχ gives an isomorphism
H0(GK ,Cp) ' H1(GK ,Cp)).
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Remark. This has been proved for i ≤ 1. For i ≥ 2, H i(HK ,Cp(k)) = 0 by
using the same method as for H1. Then just use the exact sequence

1 −→ HK −→ GK −→ ΓK −→ 1

and Hochschild-Serre spectral sequence to conclude.

Proposition 8.4.2. Suppose i < j ∈ Z ∪ {±∞}, then if i ≥ 1 or j ≤ 0,

H1(GK , t
iB+

dR/t
jB+

dR) = 0;

if i ≤ 0 and j > 0, then x 7→ x ∪ logχ gives an isomorphism

H0(GK , t
iB+

dR/t
jB+

dR)(' K)
∼−→ H1(GK , t

iB+
dR/t

jB+
dR).

Proof. Use the long exact sequence in continuous cohomology attached to
the exact sequence

0 −→ ti+nCp(' Cp(i+ n)) −→ tiB+
dR/t

n+i+1B+
dR −→ tiB+

dR/t
i+nB+

dR −→ 0,

and use induction on j−i (note that in the base step j = i+1, tiB+
dR/t

jB+
dR
∼=

Cp(i)), and Proposition 8.4.1 to do the computation. This concludes for
the case where i, j are finite. For the general case, one proves it by taking
limits.

8.4.2 Bloch-Kato’s dual exponential maps

Let V be a de Rham representation of GK , we have

BdR ⊗Qp V
∼= BdR ⊗K DdR(V ) = H0(GK , BdR ⊗ V )

and

H1(GK , BdR⊗ V ) = H1(GK , BdR⊗K DdR(V )) = H1(GK , BdR)⊗K DdR(V ).

So we get an isomorphism

DdR(V )
∼−→ H1(GK , BdR ⊗ V ); x 7→ x ∪ logχ.
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Definition 8.4.3. The exponential map exp∗ is defined through the com-
mutative diagram:

exp∗ : H1(GK , V ) //

((RRRRRRRRRRRRR
DdR(V )

∼

vvmmmmmmmmmmmm

H1(GK , BdR ⊗ V )

66mmmmmmmmmmmm

Proposition 8.4.4. (i) The image of exp∗ lies in Fil0DdR(V ).
(ii) For c ∈ H1(GK , V ), exp∗(c) = 0 if and only if the extension Ec

0 −→ V −→ Ec −→ Qp −→ 0,

is de Rham as a representation of GK.

Proof. (ii) is just by the definition of de Rham. For (i), c ∈ H1(GK , V )
implies c = 0 ∈ H1(GK , (BdR/B

+
dR) ⊗ V ). But x 7→ x ∪ logχ gives an

isomorphism

DdR(V )/Fil0(DdR(V ))(= H0(GK , (BdR/B
+
dR)⊗V )) −→ H1(GK , (BdR/B

+
dR)⊗V )).

So exp∗(c) = 0 (mod Fil0)

Remark. exp∗ is a very useful tool to prove the non-triviality of cohomology
classes.

Now suppose k ∈ Z, L is a finite extension of K. Then V (k) is still de
Rham as a representation of GL. Define

DdR,L(V (k)) := H0(GL, BdR ⊗ V (k)) = t−kL⊗K DdR(V )

by an easy computation. Thus,

Fil0(DdR,L(V (k))) = t−k ⊗K FilkDdR(V )

and this is 0 if k � 0. So for every k ∈ Z, for L/K finite,

exp∗ : H1(GL, V (k)) −→ t−kL⊗K DdR(V )

is identically 0 for k � 0.
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8.4.3 The explicit reciprocity law

Recall that

H1
Iw(K, V )

∼−→ H1(GK , Zp[[ΓK ]]⊗ V ) = H1(GK , D0(ΓK , V )).

If η : ΓK → Q∗
p is a continuous character, for n ∈ N,

µ ∈ H1(GK , D0(ΓK , V )) 7−→
∫

ΓKn

ηµ ∈ H1(GKn , V ⊗ η).

where we write V ⊗ η, not as V (η) to distinguish from V (k) = V ⊗χk. Then

exp∗(

∫
ΓKn

χkµ) ∈ t−kKn ⊗K DdR(V )

and is 0 if k � 0.

Recall also that we have the isomorphism Exp∗ : H1(K, V )
∼−→ D(V )ψ=1,

that D(V )ψ=1 ⊂ D(0, rV ](V ) and that there exists n(V ) such that

ϕ−n(D(0, rV ](V )) ⊂ Kn((t))⊗K DdR(V ), for all n ≥ n(V ).

Now denote by

TrKn+k/Kn = TrKn+k((t))/Kn((t))⊗ Id : Kn+k((t))⊗DdR(V )→ Kn((t))⊗DdR(V ).

Theorem 8.4.5 (Explicit Reciprocity Law). Let V be a de Rham repre-
sentation of GK and µ ∈ H1

Iw(K, V ).

(i) If n ≥ n(V ), then

p−nϕ−n(Exp∗(µ)) =
∑
k∈Z

exp∗(

∫
ΓKn

χkµ).

(ii) For n ∈ N, n+ i ≥ n(V ), then

Exp∗Kn(µ) := TrKn+i/Kn

(
p−(n+i)ϕ−(n+i)(Exp∗(µ))

)
does not depend on i, and Exp∗Kn(µ) =

∑
k∈Z

exp∗(
∫

ΓKn
χkµ).
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Proof. (ii) follows from (i) and from the commutative diagram:

H1(GL2, V )
exp∗−−−→ L2 ⊗K DdR(V )

cor

y yTrL2/L1
⊗K Id

H1(GL1, V )
exp∗−−−→ L1 ⊗K DdR(V )

where L1 ⊂ L2 are two finite extensions of K.
For (i), suppose y = Exp∗(µ), x ∈ D(V ), and x(k) is the image of x in

D(V (k)) = D(V )(k) (Thus, ϕ(x(k)) = ϕ(x)(k) and γ(x(k)) = χ(γ)kγ(x)(k)).
The integral

∫
ΓKn

χkµ is represented by the cocycle:

g 7→ cg =
logχ(γn)

pn
·
( g − 1

γn − 1
y(k)− (g − 1)b

)
where b ∈ A⊗ V is the solution of

(ϕ− 1)b = (γn − 1)−1
(
(ϕ− 1)(y)(k)

)
.

From y ∈ D(0, rV ](V )ψ=1 one gets

(ϕ− 1)y ∈ D(0, p−1rV ](V )ψ=0

and then
(γn − 1)−1(ϕ− 1)y ∈ D(0, p−n](V )ψ=0.

Thus b ∈ A(0, p1−n] ⊗ V . This implies that ϕ−n(b) and ϕ−n(y) both converge
in B+

dR ⊗ V . Then cg = ϕ−n(cg) differs from

c′g =
logχ(γn)

pn
· g − 1

γn − 1
· ϕ−n(y)(k)

by the coboundary (g − 1)(ϕ−n(b)). Therefore, they have the same image in
H1(GKn B

+
dR ⊗ V (k)). Write

p−nϕ−n(y) =
∑
i≥i0

yit
i, yi ∈ Kn ⊗K DdR(V ),

then

c′g = logχ(g)y−kt
−k +

∑
i6=−k

χ(g)i+k − 1

χ(γn)i+k − 1
· yiti

= logχ(g)y−kt
−k + (g − 1)

∑
i6=−k

yit
i

(χ(γn)i+k − 1)
.

So we get exp∗
(∫

ΓKn
χkµ

)
= y−kt

−k.
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8.4.4 Cyclotomic elements and Coates-Wiles morphisms.

Let K = Qp, V = Qp(1), u =
(

πn
1+πn

)
n≥1
∈ lim←−OFn , κ(u) ∈ H

1
Iw(Qp, Qp(1)),

the Coleman power series fu = T
1+T

. Then we have

Exp∗(κ(u)) = (1 + T )
dfu
dT

(π) =
1

π
.

Note that

ϕ−1(π)−1 = ([ε1/p]− 1)−1 =
1

(1 + π1)et/p − 1
,

then

Exp∗Qp(κ(u)) =
1

p
TrQp(π1)/Qp ϕ

−1(π)−1 =
1

p

∑
zp=1, z 6=1

1

et/p − 1

=
1

et − 1
− 1

p
· 1

et/p − 1
=

1

t
·
( t

et − 1
− t/p

et/p − 1

)
=

+∞∑
n=1

(1− p−n)ζ(1− n)
(−t)n−1

(n− 1)!
.

So

exp∗
(∫

ΓQp

χkκ(µ)
)

=

{
0, if k ≥ 0;

(1− pk)ζ(1 + k) (−t)−k−1

(−k−1)!
, if k ≤ −1.

Remark. (i) The map

lim←−OFn − {0} −→ H1
Iw(Qp, Qp(1)) −→ Qp, u 7→ tk+1 exp∗

(∫
ΓQp

χkκ(u)
)

is the Coates-Wiles homomorphism.
(ii) Since ζ(1 + k) 6= 0 if k ≤ −1 is even, the above formula implies that

the extensions of Qp by Qp(k + 1) constructed via cyclotomic elements are
non-trivial and are even not de Rham.

(iii) dimQp H
1(GQp , Qp(k)) = 1 if k 6= 0, 1.

Corollary 8.4.6. Non-trivial extensions of Qp by Qp(k) are not de Rham if
k ≤ 0 is odd.

Exercise. (i) Prove that this is also true for k ≤ −1 even by taking a general
element of D(Qp(1))ψ=1.

(ii) For [K : Qp] <∞, prove the same statement.
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8.4.5 Kato’s elements and p-adic L-functions of mod-
ular forms.

Now we come to see the relations with modular forms. Suppose

f =
∞∑
n=1

anq
n ∈ Sk(N), k ≥ 2

is primitive. So Q(f) = Q(a1, · · · , an, · · · ) is a finite extension of Q, and
Qp(f) = Qp(a1, . . . , an, . . . ) is a finite extension of Qp.

Theorem 8.4.7 (Deligne). There exists a representation Vf of GQ of di-
mension 2 over Qp(f), non-ramified outside Np, such that if ` - Np, for ϕ`

the arithmetic Frobenius at ` (ϕ`(e
2πi
pn ) = e

2πi`
pn ), then

det(1−Xϕ−1
` ) = 1− a`X + `k−1X2.

Remark. A Qp(f)-representation V of dimension d is equivalent to a Qp

representation of dimension d · [Qp(f) : Qp] endowed with a homomorphism
Qp(f) ↪→ End(V ) commuting with GQ. Therefore, Dcris(V ), Dst(V ), DdR(V )
are all Qp(f)-vector spaces.

Theorem 8.4.8 (Faltings-Tsuji-Saito). (i) Vf is a de Rham representa-
tion of GQp with Hodge-Tate weights 0 and 1− k, the 2-dimensional Qp(f)-
vector space DdR(Vf ) contains naturally f , and

D0
dR(Vf ) = DdR(Vf ), D

k
dR(Vf ) = 0, Di

dR(Vf ) = Qp(f)f if 1 ≤ i ≤ k − 1.

(ii) If p - N , then Vf is crystalline and

det(X − ϕ) = X2 − apX + pk−1.

If p|N but ap 6= 0, then Vf is semi-stable but not crystalline and ap is the
eigenvalue of ϕ on Dcris(V ); if ap = 0, then Vf is potentially crystalline.

Remark. If V is a representation of GK , µ ∈ H1
Iw(K, V ),∫

ΓKn

χkµ ∈ H1(GKn , V (k)),

then this is also true for
∫
aΓKn

χkµ for all a ∈ ΓK and for
∫

ΓK
φ(x)χkµ, with

φ : ΓK → Zp being constant modulo ΓKn .
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Theorem 8.4.9 (Kato). There exists a unique element zKato ∈ H1
Iw(Qp, Vf )

(obtained by global methods using Siegel units on modular curves), such that
if 0 ≤ j ≤ k− 2, φ is locally constant on Z∗

p
∼= ΓQp with values in Q(f), then

exp∗
(∫

Z∗p
φ(x)xk−1−j · zKato

)
=

1

j!
Λ̃(f, φ, j + 1) · f

tk−1−j

where

Λ̃(f, φ, j + 1) ∈ Q(f, µpn),
f

tk−1−j ∈ Fil0(DdR

(
Vf (k − 1− j))

)
.

Our goal is to recover Lp, α(f, s) from zKato (recall Lp, α is obtained from
µf, α ∈ Dvp(α)(Zp) before). We have Exp∗(zKato) ∈ D(Vf )

ψ=1, but the question
is how to relate this to Dcris(Vf ), Dst(Vf ).

If p |N , let α be a root of X2 − apX + pk−1 with vp(α) < k− 1; if p - N ,
let α = ap 6= 0 (in this case pα2 = pk−1). In both cases, take β = pk−1α−1.
Thus, α, β are eigenvalues of ϕ on Dst(Vf ).

Assume α 6= β (which should be the case for modular forms by a conjec-
ture). Define Πβ = ϕ−α

β−α to be the projection on the β-eigenspace in Dst(Vf )

and extend it by B†
log,K-linearity to

B†
log,K

[1

t

]
⊗K0 Dst(Vf ) −→ B†

log,K ⊗B†K D
†(Vf ).

Theorem 8.4.10. (i) Πβ(f) 6= 0;
(ii)

Πβ

(
Exp∗(zKato)

)
=

(∫
Zp

[ε]xµf, α

)Πβ(f)

tk−1
.

Remark. µf, α exists up to now only in the semi-stable case, but zKato exists
all the time. So a big question is:

How to use it for p-adic L-function?


