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1 Historical roots
ca 1800 BCE. Sîn-ka²id, tablets, centralized

government and harmonisation of tax. Silver
shekel, units of weight or currency.

[ca 680BCE¡ ca 547BCE]. Mermnad
dynasty: Gyges, Ardys, Sadyattes II, Alyattes,
Croesus, Lydia, Pactolus,
Histories, Herodotus of Halicarnasse, (ca. 450).
Gold coins, Artemision, Ephesus. Manipulation
of the state.

1494. Venice, Tractatus XI Particularis de
Computibus et Scripturis, Luca Pacioli,
invention of Double-Entry Bookkeeping
System.

1923. Hyperin�ation in the Weimar Republic.
Solved by Hjalmar Schacht. Must read : Le
Banquier du Diable, J.-F. Bouchard, Max Milo
(2015)

Europe. Individualism.
Italy: 10 cents Botticelli, 1€ Da Vinci, 2€ Dante,
Spain : Cervantès (10; 20; 50 cents)

Importance of middlemen in business, clearing
houses...

Daniel Pinto :

To sell a loan is a very cumbersome,
time-consuming process; settlement can
take weeks.
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2 Political roots
Cypherpunks electronic mailing list, Tim May
The Crypto Anarchist Manifesto, T. May (1992)

Openbazar, decentralized e-commerce open source project,
Sam Patterson

PGP Zimmerman

Satoshi Nakamoto satoshi at vistomail.com
Thu Nov 6 15:15:40 EST 2008

>You will not find a solution to
political problems in cryptography.

Yes, but we can win a major battle in
the arms race and gain a new territory
of freedom for several years.

Governments are good at cutting off
the heads of a centrally controlled
networks like Napster, but pure P2P
networks like Gnutella and Tor seem to
be holding their own.

Satoshi

The Cryptography Mailing List

www.metzdowd.com/pipermail/cryptography/2008-
November/014823.html
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3 Advances in computer science
TCP/IP
Transmission Control Protocol / Internet Protocol. V.
G. Cerf, B. Kahn, 1972
Open, shared public network without any central
authority
Secure and scalable
Arpanet
Internet
E-mail
World Wide Web, R. Cailliau, T. Berners-Lee, 1987
Chat online, Instant messaging
P2P computer networks
= client-server model
Music-sharing application Napster (1999¡ 2001)
BitTorrent, Peer-to-peer �le sharing
Distributed systems
Byzantine fault tolerance
NASA late 70s.
The Byzantine Generals Problem, L. Lamport,
R. Shostak, M. Pease, ACM Transactions on
Programming Languages and Systems (1982)
Another Advantage of Free Choice: completely
asynchronous agreement protocols, M. Ben-Or (1983)
Randomized Consensus
Paxos, Lamport (1989)
King Algorithm
ZYZZYVA

4
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5 Advances in Cryptography

5.1 Public key cryptography
UK, seventies, J.H. Ellis, C. Cocks, M.J. Williamson
Research declassi�ed by the British government in
1997.
Di�e�Hellman key exchange
New Directions in Cryptography, W. Di�e, M.
Hellman, IEE Transactions on Information theory
(1976).
1977, R. Rivest, A. Shamir, L. Adleman
Alice and Bob
Secret key, public key
RSA
ECDSA
Elliptic curve on Galois �eld Fp secp256k1,

y2 = x3+7

with

p = 2256¡ 232¡ 29¡ 28¡ 27¡ 26¡ 24¡ 1
= 11579208923731619542357098500868790785326998466\

5640564039457584007908834671663

Only used for Bitcoin? Gaining in popularity.
Elliptic curve useful for generating a �nite group
Discrete logarithmic problem hard to solve

Base point G
Secret integer n
Public key =n �G
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5.2 Hash functions
Rabin, Yuval, Merkle, late 70.
�Swiss army knife� of cryptography

� input of any size

� output of �xed-size

� easy to calculate (in O(n) if input is n-bit
string)

i. collision resistance

ii. preimage resistance

iii. second preimage resistance

One way function
Random Oracles are Practical: A Paradigm for
Designing E�cient Protocols, M. Bellare, P. Rogaway,
ACM Conference on Computer and Communications
Security (1993).
Based on block ciphers
Compression function
Initialization Vector (IV)
Merkle�Damgård construction
Birthday paradox
Integrity of transfered data
Message digest
Commitments
Puzzle
Digital signature
SHA-1, MD5 broken
SHA-2
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5.3 Proof of Work
Use of hash function to create a puzzle
Time consuming
Cost function. A string, D integer, x integer

F : C � [0; Dmax]� [0; N ] ¡! fTrue;Falseg
(A;D; x) 7¡! F(A;D; x)

Example: F(A; D; x) = True if Hash(AjD jx) starts
with D zeros and false else.
Problem. Given A;D, �nd x such that

F(A;D;x) = True (1)

Solution x (not necessarily unique) called nonce
Very hard to solve
Use of computational power

Pricing via Processing or Combatting Junk Mail, C.
Dwork and M. Naor, (1993).
Denial-of-service counter measure technique in a
number of systems
Anti-spam tool

Hashcash, A Denial of Service Counter-Measure, A.
Back, preprint (2002)
Hashcash: a proof-of-work algorithm
Create a stamp to attach to mail
Cost functions proposed are di�erent
Solution of (1) by brute-force.
Calculus of plenty of hash
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5.4 Merkle root
Patent in 1979...

A Digital Signature Based on a Conventional
Encryption Function, R. C. Merkle (1988).

Merkle tree = Tree of hashes
Oriented Acyclic Rooted tree
Binary Tree
Leaf = Hash (block)
Top Hash = Merkle root

Used to check integrity of a list of blocks

How to prove that an element x belongs to a set S ?
Screen all S ? Solution in O(n).

Solution proportional to the logarithm of the number
of nodes of the tree O(ln(n))

Any permutation of leaves gives a new Merkle root...
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5.5 Timestamping
Works of S. Haber, W.S. Stornetta, J.-J.
Quisquater,...
How should a Patent O�ce timestamp a digital
document?
Let D be a document. How to de�ne Certi�cate(D)?

Certi�cate(D) : = Hash(D) ?

If D came just before D 0 how to prove it using
certi�cates?
Idea: Certi�cate of D reused to de�ne
Certi�cate of D 0

Certi�cate(D 0) := Hash(D 0jCerti�cate(D))

Proof that D came before...

Improving the E�ciency and Reliability of Digital
Time-Stamping, D. Bayer, S. Haber, W.S. Stornetta
(1993)

To establish that a document was
created after a given moment in time, it
is necessary to report events that could
not have been predicted before they
happened. To establish that a document
was created before a given moment in
time, it is necessary to cause an event
based on the document, which can be
observed by others.

What if many documents came at the same period of
time? Solution with a Merkle tree...
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6 �Blockchain�
Block of certi�cates
Each block contains a reference to previous block

Ledger of certi�cates.

Block = Merkle tree of certi�cates + header(block)
Header(Block) = Merkle root + Hash(previous block
header) + (possibly a date?)

Easy to check if a given certi�cate belongs to the ledger
Any modi�cation of the ledger is automatically
detected

Linked list of hash pointers

Huge di�erence between blockchain and proof of work
Concepts are di�erent!

Blockchain popularized by bitcoin
Blockchain = Ledger
Hal Finney on the cypherpunk mailing list
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7 The creation of Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System,
October 31; 2008.

Probably more cryptography in payment cards than
in Bitcoin!

ECDSA
Secret/Public Key with secp256k1

Hash Functions RIPEMD160 & SHA-256.
Bitcoin Adress = SHA-256 �RIPEMD160(PublicKey)

Each block contains a Merkle tree of transactions
Blockchain, Ledger
Proof of work for mining blocks

Two natural questions

1. How to avoid double spending?

2. How can it work in a decentralized network?

Two clever answers

1. Make each transaction a patent certi�cate

2. Use of proof of work to get decentralization

Tour de force
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More related questions.

1. How to avoid Sybill attacks?

2. How to solve the byzantine problem?

Answers

1. Naturally thanks to proof of work

2. Thanks to public key cryptography &
asumption that �The requirement is that the
good guys collectively have more CPU power
than any single attacker.�

Commitment schemes in Lightning Network
Payment Channels

Many failed attempts

� SET (Visa & Mastercard)

� Cybercash (bug 2000)

� Bitgold (Nick Szabo, 1998)

� Digicash (David Chaum 1990, banqueroute
1998)

� B-money (Wei Dai 1998)

� Paypal (1998)

Blind signatures for untraceable payments, David
Chaum (1983)

Satoshi Nakamoto (forum bitcointalk 2010) :
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Bitcoin is an implementation of Wei
Dai's b-money proposal on Cypher-
punks in 1998 and Nick Szabo's Bitgold
proposal.

Satoshi's white paper

Double-spending is prevented with
a peer-to-peer network. No mint or
other trusted parties. Participants can
be anonymous. New coins are made
from Hashcash style proof-of-work. The
proof-of-work for new coin generation
also powers the network to prevent
double-spending.

Everything is public
Ledger of transactions
Page = block
Everybody can maintain the ledger
Writer = miner
Money transfer = smart contract

Satoshi

The only way to prevent double
spending is to have a ledger accounting
for all transactions, so that the recipient
can check that the transaction is
legitimate. If we don't want this ledger
to be centralized under the control of a
third party, then it must be public.
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What is a (bit)coin?

We de�ne an electronic coin as a chain of
digital signatures. Each owner transfers
the coin to the next by digitally signing a
hash of the previous transaction and the
public key of the next owner and adding
these to the end of the coin. A payee can
verify the signatures to verify the chain
of ownership.

Transaction = 2 scripts = scriptsig + scriptpubkey

What does a miner do?
Verify transactions, gather valid transactions,
constitute a block, he tries to win the mining race
with other miners. The �rst one to mine a new block
wins 12.5 bitcoins.

How to recognize the o�cial blockchain?
It is (Bi)06i6N such that

P
i=0
N Di is maximum with

Di=di�culty associated with block Bi.
Di�culty adjusted every 2016 blocks
O�cial blockchain � longest chain
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8 Why should we trust Bitcoin?

8.1 First results
Satoshi was wrong !
Underestimation of double spend success probability
Existence of closed form formulas
Mathematical foundation of Bitcoin
Bitcoin and Gamma functions

Notation 1. Let 0 < q <
1

2
(resp. p = 1 ¡ q), the

relative hash power of the group of attackers (resp. of
honest miners).

Theorem 2. After z blocks have been validated by
the honest miners, the probability of success of the
attackers is

P (z) = I4pq

�
z;
1
2

�
where Ix(a; b) is the regularized incomplete beta
function

Ix(a; b) := ¡(a+ b)
¡(a) ¡(b)

Z
0

x

ta¡1 (1¡ t)b¡1 dt

Corollary 3. Let s=4 p q <1. When z!1, we have

P (z) � sz

p (1¡ z) s
p
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8.2 Other results
Given z 2 N, block generation time t for mining z
block(s) is publicly known.

De�nition 4. We denote by P (z; t) the probability of
success of a double spend attack when z blocks have
been validated within a period of time of t.

What we'll obtain also:

� Closed form formula for P (z; t).

� Satoshi's formula PSN(z) is actually a P (z; t)

� Asymptotics formulas for PSN(z) and P (z; t)

� Explicit rank z0 such that P (z)<PSN(z).

In particular,

PSN(z) �
e
¡z
�
q

p
¡1¡ln q

p

�
2

9 Other considerations
Economic cost of a double spend attack (with and
without �eclipse attack�):

An Analysis of Attacks on Blockchain Consensus
G. Bissias, B. Levine, A. Pinar-Pzisik, G. Andresen,
preprint, (2016/11/20).

Is it necessary to wait for con�rmations?

17



Have a Snack, Pay With Bitcoins
O. Bamert, C. Decker, L. Elsen, R. Wattenhofer, S.
Welten, 13-th IEEE International Conference on Peer-
to-Peer Computing, Trento, Italy (2013).
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10 Mathematics of mining
10.1 Introduction
Looking for a nonce y (�number used once�)
= Waiting for a bus!

Hashcash proof-of-work (Adam Back).
F =hash function=SHA2562

Looking for y such that F (xjy)<Target
x=x1jx2jx3jx4jx5
x1=Version
x2= hash Previous Block
x3= hashMerkleRoot
x4=Timestamp
x5=Target
Block Header =xjy.
Reference: Bitcoin Wiki
https://en.bitcoin.it/wiki/Block_hashing_algorithm

Example 5. Block Hash 0
000000000019d6689c085ae165831e934�763ae46a2a6c172b3f1b60a8ce26f

Example 6. Block Hash 447384
0000000000000000027175e4c9a3216c1331650e45eafdb948�03ab59ef1778

Notation 7. (Random variable) Interblock Time is
T. Time used for mining k-th block Tk.

Bitcoin Protocol : E[T] = �0 := 600 (seconds)
Adjustment of target every 2 weeks (2016 = 2 �7 �
24� 6 blocs)
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See https://bitcoinwisdom.com/bitcoin/di�culty

Targetnew = Targetold �
t

2016� �0
where t= time spent for mining the last 2016 blocks.

10.2 Mining one block
The time it takes to mine a block is memoryless

P[T > t1+ t2jT > t2] = P[T > t1]

Proposition 8. The random variable T has the
exponential distribution with parameter �= 1

600 i.e.,

fT (t) = � e¡�t

Parameter � seen as a mining speed, E[T ] = 1

�
.

Con�rmation by studying timestamps sequence

10.3 Mining more blocks
Interblock times T1; :::;Tn are independent identically
distributed exponential random variables. The sum

Sn = T1+ :::Tn

is the time spent to get n blocks

Proposition 9. The random variable Sn has a
Gamma distribution with parameter (n; �):

fSn(t) = �n

(n¡ 1)! t
n¡1 e¡�t
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De�nition 10. Let N (t) be the number of blocks
already mined at t-time. Start is at t=0.

Proposition 11. The random process N is a Poisson
process with parameter � i.e.,

P[N(t)= k] = (� t)k

k!
e¡�t

Notation 12. The letters T ; �; Sn;N (resp. T 0; �0;
Sn0 ;N) are reserved for honest miners (resp. attacker).

10.4 Interpretation of speed mining
Same notations as above. Mining speed � (honest) and
�0 (attacker). Probability p (honest) and q (attacker).
We note also �0= 600 seconds =10 minutes.

Proposition 13. We have:

p = P[T<T 0] (2)

p = �
�+�0

(3)

q = �0

�+�0
(4)

�+�0 = 1
�0

(5)

� = p
�0

(6)

�0 = q
�0

(7)

Proof. The random variable Inf(T ; T 0) has the
exponential distribution with parameter �+�0. �
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Proof. (Another proof). Denote by h (resp. h0) the
hashrate of the honest miners (resp. attacker) and t0
(resp. t00 ) the average time it takes for mining a block.

Total hashrate of the network =h+h0.

Proof-of-work: search for a nonce in Block Header such
that

Hash(BlockHeader) < Target

Set m= 2256

Target We have

p = h

h+h0
(8)

q = h0

h+h0
(9)

(h+h0) �0 = m (10)
h t0 = m (11)
h0 t0

0 = m (12)
�

So, �; h; p are proportionnal.
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11 Classical Double Spend
Attack
No eclips attack

11.1 What is a double spend?
A single output may not be used as an input to
multiple transactions.

� T =0. A merchant M receives a transaction tx
from A (= attacker). Transaction tx is issued
from an UTXO tx0

� Honest Miners start mining openly,
transparently

� Attacker A starts mining secretly

� One block of honest miners include tx

� No block of attacker include tx

� On the contrary, one blocks of the attacker
includes another transaction tx' con�icting
with tx from same UTXO tx0

� As soon as the z-th block has been mined, M
sends his good to A

� A keeps on mining secretly

� As soon as A has mined a blockchain with a
lenght greater than the o�cial one, A releases
his blockchain to the network

� Transaction tx has disappeared from the
o�cial blockchain.

Free Lunch!
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12 Interlude: Gambler's ruin
problem

12.1 Original gambler's ruin problem
Gambler has probability p of winning one unit and
q=1¡ p of loosing one unit.
What is the probability Pi that starting with i units,
gambler's fortune will reach N before reaching 0 ?
We denote by Xn gambler's fortune at time n.
Possible states: f0g; f1g; :::; fN g.
Process (Xn)=Markov chain
Transition probability Pk;l:

P0;0 = 1
PN;N = 1

8k 2f1; :::; N ¡ 1g Pk;k+1 = p

Pk;k¡1 = q

Conditionning on the outcome of the initial play

8i2f1; :::; N ¡ 1g Pi = pPi+1+ q Pi¡1

P0 = 0
PN = 1

Pi+1¡Pi = q
p
(Pi¡Pi¡1)

So,

Pi =

8<:
1¡ (q/p)i

1¡ (q/p)N ; if p=1

2
i

N
; if p= 1

2
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When N!1;

Pi !

8<: 1¡ (q/p)i; if p=1

2

0; if p= 1

2

12.2 Another gambler's ruin problem
Competition

� Gambler against Banker.

� At the beginning, gambler's fortune = banker's
fortune minus n units

� Gambler's fortune can be negative

Game takes end if gambler's fortune = banker's
fortune at a certain time t.

What is the probability of success?
Note qn this probability. We have: q0= 1 and qn! 0
when n!1. Also by Markov's property,

qn = q qn¡1+ p qn+1 (13)

Proposition 14. We have qn=
�
q

p

�n
when n>0 and

qn=1 when n6 0.

An Introduction to Probability Theory and Its
Applications, W. Feller (1957)
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13 Nakamoto's Analysis

13.1 Some de�nitions

De�nition 15. Let n 2 Z. We denote by qn the
probability of the attacker A to catch up honest miners
whereas A's blockchain is n blocks behind.

Same problem as gambler's ruin problem!

qn =
�
q
p

�n
(14)

De�nition 16. For, z 2N, the probability of success
of a double-spending attack is denoted by P (z).

Problem: P (z)= ?

Note 17. The probability P (z) is evaluated at t =
0. The double-spending attack cannot be successful
before t=Sz.

13.2 Formula for P (z)
When t = Sz, the attacker has mined N 0(Sz) blocks.
By conditionning on N 0(Sz), we get:

P (z) =
X
k=0

1

P[N 0(Sz)= k] qz¡k

= P[N 0(Sz)> z] +
X
k=0

z¡1

P[N 0(Sz)= k] qz¡k

= 1¡
X
k=0

z¡1

P[N 0(Sz)= k]
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+
X
k=0

z¡1

P[N 0(Sz)= k] qz¡k

= 1¡
X
k=0

z¡1

P[N 0(Sz)= k] (1¡ qz¡k)

13.3 Satoshi's approximation

White paper, Section 11 Calculations

According to Satoshi,

Sz � E[Sz]

and

N 0(Sz) � N 0(E[Sz])
� N 0(z �E[T ])

� N 0
�
z � �0

p

�
So, N 0(Sz)�Poisson process with parameter � given
by

� = �0 � z � �0
p

= z � q
p
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The recipient waits until the transaction
has been added to a block and z blocks
have been linked after it. He doesn't
know the exact amount of progress the
attacker has made, but assuming the
honest blocks took the average expected
time per block, the attacker's potential
progress will be a Poisson distribution
with expected value:

�= z q
p

De�nition 18. We denote by PSN(z) the (false)
formula obtained by Satoshi in Bitcoin's white paper.

Then,

PSN(z) = 1¡
X
k=0

z¡1
�k e¡�

k!

�
1¡
�
q

p

�
z¡k�

(15)

Converting to C code...

#include <math.h>
double AttackerSuccessProbability(double q, int z)
{

double p = 1.0 - q;
double lambda = z * (q / p);
double sum = 1.0;
int i,k;
for (k=0; k<=z; k++)
{

double poisson = exp(-lambda);

28



for (i=1; i<=k; i++)
poisson *= lambda/i;

sum -= poisson * (1 - pow(q / p, z - k));
}
return sum;

}

However,

P (z) = PSN(z)

since

N 0(Sz) = N 0(E[Sz])
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14 A correct analysis of double-
spending attack
14.1 Meni Rosenfeld's correction
Set Xn :=N0(Sn).

Proposition 19. The random variable Xn has a
negative binomial distribution with parameters (n; p),
i.e., for k> 0

P[Xn= k] = pn qk
�
k+n¡ 1

k

�
Proof. We have Sn�¡(�; n) i.e.,

fSn(t) = �n

(n¡ 1)! t
n¡1 e¡�t

with fSn(t)=density of Sn. So,

P[Xn= k] =
Z
0

+1
P[N0(Sn)= k jSn= t] fSn(t) dt

=
Z
0

+1 (�0 t)k

k!
e¡�0t �n

(n¡ 1)! t
n¡1 e¡�tdt

= pn qk

(n¡ 1)! k!

Z
0

+1
tk+n¡1dt

= pn qk

(n¡ 1)! k! � (k+n¡ 1)!

�

�The attacker's potential progress� is not �a Poisson
distribution with expected value �= z q

p
�...

Already remarked in 2012 (probably seen by
Satoshi...)
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Analysis of Hashrate-Based Double-Spending, Meni
Rosenfeld, preprint, First Version December 11, 2012,
p.7.

Proposition 20. (Probability of success of the
attacker) The probabilitu of success of a double-
spending attack is

P (z) = 1¡
X
k=0

z¡1

(pz qk¡ qz pk)
�
k+ z¡ 1

k

�
Proof. Direct application of Section 13.2 and
Proposition 19. �

14.2 Numerical Applications
For q= 0.1,

z P (z) PSN(z)
0 1 1
1 0.2 0.2045873
2 0.0560000 0.0509779
3 0.0171200 0.0131722
4 0.0054560 0.0034552
5 0.0017818 0.0009137
6 0.0005914 0.0002428
7 0.0001986 0.0000647
8 0.0000673 0.0000173
9 0.0000229 0.0000046
10 0.0000079 0.0000012
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For q= 0.3,

z P (z) PSN(z)
0 1 1
5 0.1976173 0.1773523
10 0.0651067 0.0416605
15 0.0233077 0.0101008
20 0.0086739 0.0024804
25 0.0033027 0.0006132
30 0.0012769 0.0001522
35 0.0004991 0.0000379
40 0.0001967 0.0000095
45 0.0000780 0.0000024
50 0.0000311 0.0000006

Solving for P less than 0.1%:

q z zSN
0.1 6 5
0.15 9 8
0.20 18 11
0.25 20 15
0.3 32 24
0.35 58 41
0.40 133 89

Satoshi underestimates P (z)...
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15 A closed form formula
References.

Hanbook of Mathematical Functions, M.
Abramovitch, I.A. Stegun, Dover NY (1970).

Digital Library of Mathematical Functions,
http://dlmf.nist.gov

De�nition 21. The Gamma function is de�ned for
x> 0 by

¡(x) :=
Z
0

+1
tx¡1 e¡tdt

The incomplete Bêta function is de�ned for a;b>0
and x2 [0; 1] by

Bx(a; b) :=
Z
0

x

ta¡1(1¡ t)b¡1dt

The (classical) Bêta function is de�ned for a; b> 0 by

B(a; b) := B1(a; b)

The regularized Bêta function is de�ned by

Ix(a; b) := Bx(a; b)
B(a; b)

Classical result: for a; b> 0,

B(a; b) = ¡(a) ¡(b)
¡(a+ b)
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Theorem 22. We have:

P (z) = Is(z; 1/2)

with s=4 p q < 1.

Proof. It turns out that the cumulative distribution
function of a negative binomial random variable X
(same notation as above) is

FX(k) = P[X 6 k]
= 1¡ Ip(k+1; z)

By parts,

Ip(k; z)¡ Ip(k+1; z) = pk qz

kB(k; z)

So,

P (z) = 1¡ Ip(z; z)+ Iq(z; z)

Classical symmetry relation for Bêta function:

Ip(a; b)+ Iq(b; a) = 1

(change of variable t 7! 1¡ t in the de�nition). So,

Ip(z; z)+ Iq(z; z) = 1

We also use:

Iq(z; z) = 1
2
Is(z; 1/2)

with s=4 p q. �

Classical function pbeta implemented in R gives the
true double-spending attack success probability.
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16 Asymptotic analysis

According to Satoshi,

Given our assumption that p > q, the
probability drops exponentially as the
number of blocks the attacker has to
catch up with increases.

A result which has never been proven...

Lemma 23. Let f 2C1(R+) with f(0)=0 and absolut
convergent integral. Then,Z

0

+1
f(u) e¡zu du � f(0)

z

Lemma 24. For b > 0 and s 2 [0; 1], we have when
z� 1,

Bs(z; b) �
sz

z
(1¡ s)b¡1

Proof. By the change of variable u = ln(s/ t) in the
de�nition of Bs(z; b)=

R
0

s
tz¡1(1¡ t)b¡1dt,

Bs(z; b) = sz
Z
0

+1
(1¡ s e¡u)b¡1 e¡zu du

Then, we apply Lemma 23 with f(u) := (1¡s e¡u)b¡1.
�
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Proposition 25. When z!1, we have:

P (z) � sz

p(1¡ s) z
p

with s=4 p q < 1.

Proof. By Stirling formula,

B(z; 1/2) = ¡(z) ¡(1/2)
¡(z+1/2)

� p
z

q
So,

P (z) = Is(z; 1/2)

�
(1¡ s)¡

1
2
sz

z

p
z

q
� sz

p(1¡ s) z
p

�
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17 A more accurate risk analysis

The merchant waits for z blocks. Once it has been
done, he knows how long it took... Denote this number
by �1. In average, it should take E[zT ] = z �0

p
.

De�nition 26. Set � := p �1
z �0

Dimensionless parameter.

Satoshi's approximation: �=1...

Instead of computing P (z), let us compute P (z; �).

Probability for a successful double-spending attack
knowing that z blocks have been mined by the honest
miners at Sz= �1.

Note 27. We have PSN(z)=P (z; 1).

Note 28. Two di�erent probabilities.

� Theoretical probability P (z) calculated at T =
0 by the attacker or the merchant.

� concrete probability P (z; �) calculated at T =
�1 by the merchant .
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Number of bocks mined by the attacker at T = �1
unknown to the merchant = Poisson distribution
parameter �(z; �):

�(z; �) = �0 �1

= q
�0
� z � �0

p

= z q
p
�

i.e.,

P[N 0(�1)= k] =

�
z q

p
�
�
k

k!
e
¡zq

p
�

De�nition 29. The regularized Gamma function is
de�ned by:

¡(s; x) : =
Z
x

+1
ts¡1 e¡tdt

The regularized incomplete Gamma function is:

Q(s; x) := ¡(s; x)
¡(s)

It turns out that

Q(z; �) =
X
k=0

z¡1
�k

k!
e¡�

So,
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Theorem 30. We have:

P (z; �) = 1¡Q
�
z;
� z q
p

�
+
�
q
p

�z
e
�z

p¡q
p Q(z; � z)

Proof. We have:

P (z; �) = P[N 0(�1)> z] +
X
k=0

z¡1

P[N 0(�1)= k] qz¡k

= 1¡
X
k=0

z¡1
�(z; �)k

k!
e¡�(z;�)

+
X
k=0

z¡1 �
q
p

�
z¡k

� �(z; �)
k

k!
e¡�(z;�)

= 1¡Q
�
z;
� z q
p

�
+
�
q
p

�z
e
�z

p¡q
p Q(z; � z)

�

18 Asymptotics Analysis

Lemma 31. We have:

i. For �2 ]0; 1[; Q(z; � z)! 1 and

1¡Q(z; � z)� 1
1¡ �

1
2 p z

p e¡z(�¡1¡ln�)

ii. For �=1; Q(z; z)! 1

2
and

1
2
¡Q(z; z)� 1

3 2 p z
p
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iii. For �2 ]1;+1[,

Q(z; � z)� 1
�¡ 1

1
2 p z

p e¡z(�¡1¡ln�)

Proposition 32. We have PSN (z)� e
¡zc

�
q

p

�
2

with

c(�) := �¡ 1¡ ln �

Proof. It follows that

1¡Q
�
z;
q
p
z

�
� 1

1¡ q

p

1
2 p z

p e
¡zc

�
q

p

�
�
q
p

�z
e
�z

p¡q
p Q(z; z) � 1

2
e
¡zc

�
q

p

�
�

More generally, we have 5 di�erent regimes.

Proposition 33. When z!+1, we have:

� For 0<�< 1; P (z; �)� 1

1¡� q

p

1

2 p z
p e

¡zc
�
�
q

p

�

� For �=1; P (z; 1)=PSN(z)� e
¡zc

�
q

p

�
2

� For 1<�< p

q
,

P (z; �)�
�
�
1¡ q

p

�
(�¡ 1)

�
1¡� q

p

� 1
2 p z

p e
¡zc

�
�
q

p

�

40



� For �= p

q
, P
�
z;

p

q

�
! 1

2
and

P

�
z;
p

q

�
¡ 1
2
� 1

2 p z
p

�
1
3
+ q

p¡ q

�
� For �> p

q
, P (z; �)! 1 and

1¡P (z; �)�
�
�
1¡ q

p

�
�
�
q

p
¡ 1
�
(�¡ 1)

1
2 p z

p e
¡zc

�
�
q

p

�

Proof. Repetitive application of Lemma 31. �

19 Comparison between P (z)
and PSN(z)

19.1 Asymptotic behaviours

The asymptotic behaviours of P (z) and PSN(z) are
quite di�erent

Proposition 34. We have PSN(z)�P (z)

Proposition 35. We have:

q
p
¡ 1¡ ln

q
p
¡ ln

�
1

4 p q

�
= ln 4¡ 2+x¡ 2 lnx

with x= 1

p
2 [1; 2].
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19.2 Bounds for P (z) and PSN(z)

Goal: compute an explicit rank z0 such that

PSN(z) < P (z)

for all z > z0.

19.2.1 Upper and lower bounds for P (z)
Remember that s=4 p q.
We'll use Gautschi's inequalities.

Proposition 36. For any z > 1,

z
z+1

r
sz

p z
p 6P (z)6 sz

p (1¡ s) z
p

Proof. The function x 7! (1¡x)¡
1
2 is non-decreasing.

So, by de�nition of Is,

P (z)= Is

�
z;
1
2

�
=

¡
¡
z+ 1

2

�
¡
¡ 1
2

�
¡(z)

Z
0

s

tz¡1 (1¡ t)¡
1
2 dt

6
¡
¡
z+ 1

2

�
¡
¡ 1
2

�
¡(z)

Z
0

s

tz¡1 (1¡ s)¡
1
2 dt

6
 
¡
¡
z+ 1

2

�
z

p
¡(z)

!
sz

p (1¡ s) z
p

Then, we use Gautschi's inequality

¡
¡
z+ 1

2

�
z

p
¡(z)

< 1
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On the same way, using other side of Gautschi's
inequality,

P (z)= Is

�
z;
1
2

�
>

¡
¡
z+ 1

2

�
¡
¡ 1
2

�
¡(z)

Z
0

s

tz¡1dt

>
¡
¡
z+ 1

2

�
¡
¡ 1
2

�
¡(z)

sz

p z
p

> z
z+1

r
sz

p z
p

�

19.2.2 An upper bound for PSN(z)

Lemma 37. Let z 2N� and �2R+
� . We have:

i. If �2 ]0; 1[, then

1¡Q(z; � z) <
1

1¡�
1
2 p z

p e¡z(�¡1¡ln�)

ii. If �=1; Q(z; z)< 1

2
.

Proof. Let us prove i. �rst.
We use dlmf.nist.gov/8.7.1,

(a; x) = e¡xxa
X
n=0

+1
¡(a)

¡(a+n+1)
xn

valid for a; x2R and

(a; x) :=
Z
x

+1
ta¡1 e¡tdt

= ¡(a)¡¡(a; x)
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Let �2 ]0; 1[. Using recursively ¡(z+1)= z ¡(z),

(z; z �) = e¡z� (z �)z
X
n=0

+1
¡(z)

¡(z+n+1)
(z �)n

= �z zz¡1 e¡z�

1¡� z (1¡�) �

�
�
1
z
+ 1
z (z+1)

(z �)+ :::
�

6 �z zz¡1 e¡z�

1¡� z (1¡�) �

�
�
1
z
+ 1
z2
(z �)+ 1

z3
(z �)2+ :::

�
6 �z zz¡1 e¡z�

1¡� z (1¡�) � 1
z
� (1+�+ :::)

6 �z zz¡1 e¡z�

1¡� z (1¡�) � 1
z
� 1
1¡�

6 �z zz¡1 e¡z�

1¡�
By dlmf.nist.gov/5.6.1,

1
¡(z)

<
ez

2 p z
p

zz¡1

So, for 0<�< 1,

1¡Q(z; � z) = (z; z �)
¡(z)

<
1

1¡�
1
2 p z

p e¡z(�¡1¡ln�)

The second inequality (ii) comes directly from
dlmf.nist.gov/8.10.13 �
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Proposition 38. We have

PSN(z) <
1

1¡ q

p

1
2 p z

p e
¡zc

�
q

p

�
+ 1
2
e
¡zc

�
q

p

�

with c(�) := �¡ 1¡ ln�.

19.3 An explicit rank z0

Lemma 39. For �;  ; x> 0, the inequality

e¡ x< �

x+1
p

is satis�ed if x> 2
p
¡ 1+ 2

p

2

ln (2  �2)
 

.

Theorem 40. Let z 2 N�. A su�cient condition to
get P (z)<PSN(z) is z > z0 with

z0 := Max

0B@ 2

p
�
1¡ q

p

�
2 ; 2
p

¡ 1+ 2
p

2

ln
�
2  0
p

�
 0

1CA
with

 0 := q
p
¡ 1¡ ln

�
q
p

�
¡ ln

�
1

4 p q

�
> 0
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20 Securing Fast Payments

On the Scalability and Security of Bitcoin, C. Decker,
2016. Chapter 8.

Group Thesis T. Bamert, L. Elsen, S. Welten, R.
Wattenhofer, ETH Zurich.

Have a snack, pay with Bitcoins, 2014 ?

Tradeo� between transaction speed and
confirmation reliability in the Bitcoin
network.

C. Decker and R. Wattenhofer, Information
propagation in the bitcoin network, 2013.

Two transactions from the same output TA and TV .

The attacker attempts to convince the
merchant about the validity of TV while
broadcasting TA to the network at the
same time.

Goal: Hide TA to the merchant but TA must be
included in a block of the blockchain

In�uence of node sample size. Double spending-attack
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20.1 Risk of information eclipsing
If the merchant forwards TV to its
neighboring nodes, they will verify
and tentatively commit it to the local
ledger. Should they later receive TA,
it will not be considered valid as it
con�icts with TV , and it will not
be forwarded to the merchant. The
merchant inadvertently shields itself
against con�icting transactions like TA,
and will be unaware of the double-
spending attempt.

20.2 Countermeasures
� The merchant should connect

to a su�ciently large random
sample of nodes in the Bitcoin
network.

� The merchant should not accept
incoming connections.

� The merchant can e�ectively
avoid isolation by not relaying
transaction TV

As soon as a single node is unin�uenced
by the attacker, it will forward TA to the
merchant, thus informing the merchant
of the attempted double-spend

Many simulations: 192 200 000
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At 100 nodes the merchant will not learn
of a double-spending attempt in only
0.77% of all attempted double-spends.

Time before detection.

The time until the merchant detects
the double-spending attack quickly
decreases for larger sample sizes. The
99 percentile is at 6; 29 seconds for 100
peers.

Transaction TV should be seen �rst but not con�rmed
by the blockchain

Conclusion of the study

Bitcoin can be used as a reliable
alternative for fast cashless payments.

But not scalable...

21 What is the cost of a double-
spending attack?
Economic evaluation

21.1 Cost of mining
Mining during t with hashing power h has a cost C
(for honest miners) which is proportionnal to t and h:
9�> 0 such that

C(h; t) = �h t

Let B be the block reward. Today, B= 12; 5 BTC
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Parameter � is adjusted so that

C(h+h0; �0) = B

Therefore,

� (h+h0) �0 = B

and

C(h; t) = h t

(h+h0) �0
B

= p t

�0
B

Simirarly, for an attacker,

C(h; t) = q t

�0
B

21.2 Classical double spending attack
Competition attacker/honest miners
Cost is a random variable
Cost function at T =0

C = q �
�0
B

where � is the stopping time:

� := Inf ft>Sz /N 0(t)>N(t)g

Economic evaluation:

C = E

�
q �

�0
B

�
= qB

�0
E[� ]

= +1
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Other possible stopping time:

�T := Inf ft>Sz /N 0(t)>N(t)g^T

Andresen & al:

We assume that the attacker will stop
mining when he reaches z + 1 blocks
on the fraudulent branch or when the
honest miners reach z+1 blocks on the
main branch, whichever happens �rst.

�~ := Sz+1^Sz+10

Economic evaluation:

C = E

�
q �~
�0
B

�
= qB

�0
E[Sz+1^Sz+10 ]

and Sz+1 and Sz+1
0 are two independent random

variables that has a Gamma distribution

21.3 Double spending attack and eclips
attack
It is simply the cost for mining z blocks

C = q �

�0
B

with

� : = Sz
0

With a deadline T :

C = q �
�0
B
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with

� = Sz^T

See Andresen & al...

The security of a transaction increases
roughly logarithmically with the number
of con�rmations that it receives, where
an attacker bene�ts from the increasing
goods at risk but is also throttled by
the increasing proof of work required.
Additionally, we have demonstrated
that, if merchants impose a conservative
con�rmation deadline, the eclipse attack
does not increase an attacker's pro�t
when his share of the mining power
is less than 35% or more than 10
con�rmations are required.
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