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What is it?

• Proposal for a cryptocurrency system

– Privacy (all amounts hidden; forget spent tx’s)

– Scalability (forget spent tx’s)

• uses ideas from Gregory Maxwell

• proposed by
“Tom Elvis Jedusor”
in 2016

• further developed by Andrew Poelstra

• implemented by Grin



Bitcoin

• Transactions

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Block

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Blockchain

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Reference
to previous
output

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Coinbase 12.5 BTC
transaction

Transaction

Out

Out

In12.5 BTC

0.5 BTC

12 BTC

Transaction
ion



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

• σ is signature for pk

2 BTC

4 BTC

6 BTC



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

Security

• signatures
⇒ no theft

• balancedness of tx’s
checkable
⇒ no inflation

2 BTC

4 BTC

6 BTC

• σ is signature for pk



Bitcoin

Transaction

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

Unspent
transaction
outputs
(UTXO’s)

= existing
money in
system



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability
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σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”
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Anonymity

• CoinJoin [Maxwell’13]

– no link between inputs and outputs

– can we join many transactions together?

– in Bitcoin: only interactively, since all inputs must sign tx
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Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

How can we get

• Confidential transactions
(check balancedness)

• Coin-join
(non-interactively)

• Cut-through
(thus scalability)

while maintaining verifiability?



Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

Mimblewimble



Some maths . . . and crypto!
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Elliptic curves

• defined over finite field
• curve points can be added “+” ⇒ group G

– generator G
– xG := G+ . . .+G︸ ︷︷ ︸

x times

• Discrete logarithm problem:
– given G,H ∈ G
– find x such that H = xG

• used in signature schemes

(e.g. ECDSA ,
Schnorr )

◦ secret key: x
◦ public key: X = xG
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Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

logG C = v · logGH + r

• hiding: for any v exists r so that C commits v:
(r = logG C − v · logGH)
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Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• binding: assume Alice finds v, r, v′, r′ with

vH + rG = C = v′H + r′G, then r′−r
v−v′G = H

⇒ Alice solved discrete log problem!



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

Com(v; r) :=

vH + rG

• commitments are homomorphic:

Com(v1; r1) + Com(v2; r2) = (v1H + r1G) + (v2H + r2G)

= (v1 + v2)H + (r1 + r2)G
= Com(v1 + v2; r1 + r2)

e.g.: Com(1; 5) + Com(1; 10)− Com(2, 15) = 0
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[Back,Maxwell ’13–’15]

• use commitments to amounts

• ensure that transactions do not create money?

Range proofs

– add proofs that committed values are in ∈ [0, 264]
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Signatures ⇒
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Original proposal. To pay p:
• Sender

– choose input coins worth
∑
vini ≥ p

– create change coins Cchg
i worth

∑
vchgi =

∑
vini − p

– send r =
∑
rchgi −

∑
rini

• Receiver
– creates output coins Cout

i worth p
– signs using x = r +

∑
routi
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But:

• Receiver knows x
⇒ can revert

transaction!
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Grin: Sender & Receiver

compute σ interactively
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. . . satisfying
joint security

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model

• Instantiations: proof that
– Pedersen + Schnorr
– Pedersen + (aggregate) BLS . . . satisfy joint security


