
A cryptographic investigation

of Mimblewimble

Georg Fuchsbauer

joint work with

Michele Orrù and Yannick Seurin



What is it?

• Proposal for a cryptocurrency system

– Privacy (all amounts hidden; forget spent tx’s)

– Scalability (forget spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016



What is it?

• Proposal for a cryptocurrency system

– Privacy (all amounts hidden; forget spent tx’s)

– Scalability (forget spent tx’s)

• uses ideas from Gregory Maxwell

• proposed by
“Tom Elvis Jedusor”
in 2016

• further developed by Andrew Poelstra

• implemented by Grin



Bitcoin

• Transactions

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Block

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Blockchain

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Reference
to previous
output

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Coinbase 12.5 BTC
transaction

Transaction

Out

Out

In12.5 BTC

0.5 BTC

12 BTC

Transaction
ion



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

• σ is signature for pk

2 BTC

4 BTC

6 BTC



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

Security

• signatures
⇒ no theft

• balancedness of tx’s
checkable
⇒ no inflation

2 BTC

4 BTC

6 BTC

• σ is signature for pk



Bitcoin

Transaction

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

Unspent
transaction
outputs
(UTXO’s)

= existing
money in
system



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

“cut-through”



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In



Anonymity

• CoinJoin [Maxwell’13]

– no link between inputs and outputs

– can we join many transactions together?

– in Bitcoin: only interactively, since all inputs must sign tx

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In

Alice Bob
?



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In

• Confidential Transactions [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin system

– balancedness verifiable?

In = Out



Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

How can we get

• Confidential transactions
(check balancedness)

• Coin-join
(non-interactively)

• Cut-through
(thus scalability)

while maintaining verifiability?



Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

Mimblewimble



Some maths . . . and crypto!



Elliptic curves

• defined over finite field
• curve points can be added “+” ⇒ group G

– generator G
– xG := G+ . . .+G︸ ︷︷ ︸

x times



Elliptic curves

• defined over finite field
• curve points can be added “+” ⇒ group G

– generator G
– xG := G+ . . .+G︸ ︷︷ ︸

x times

• Discrete logarithm problem:
– given G,H ∈ G
– find x such that H = xG



Elliptic curves

• defined over finite field
• curve points can be added “+” ⇒ group G

– generator G
– xG := G+ . . .+G︸ ︷︷ ︸

x times

• Discrete logarithm problem:
– given G,H ∈ G
– find x such that H = xG

• used in signature schemes

(e.g. ECDSA ,
Schnorr )

◦ secret key: x
◦ public key: X = xG



Pedersen commitment

Commit

Open

v

v

Commitment

• “digital envelope”



Pedersen commitment

Commit

Open

v

v

• hiding: commitment hides v

• binding: Alice can open commitment only to one value

Commitment

• “digital envelope”



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v

reveal v and r

Pedersen
G,H ∈ G

pick random r

C := vH + rG



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• hiding: for any v exists r so that C commits v



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

logG C = v · logGH + r

• hiding: for any v exists r so that C commits v:
(r = logG C − v · logGH)



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• binding: assume Alice finds v, r, v′, r′ with

vH + rG = C = v′H + r′G



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• binding: assume Alice finds v, r, v′, r′ with

vH + rG = C = v′H + r′G, then r′−r
v−v′G = H

⇒ Alice solved discrete log problem!



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

Com(v; r) :=

vH + rG

• commitments are homomorphic:

Com(v1; r1) + Com(v2; r2) = (v1H + r1G) + (v2H + r2G)

= (v1 + v2)H + (r1 + r2)G
= Com(v1 + v2; r1 + r2)

e.g.: Com(1; 5) + Com(1; 10)− Com(2, 15) = 0



Confidential Transactions

[Back,Maxwell ’13–’15]

• use commitments to amounts

In1

In2

In3

Out1

Out2

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG



Confidential Transactions

In1

In2

In3

Out1

Out2

[Back,Maxwell ’13–’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

Out1 + . . .+ Outn

− In1 − . . .− In` = 0



Confidential Transactions

In1

In2

In3

Out1

Out2

[Back,Maxwell ’13–’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0∑

Cout
i −

∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

!
=0

)G



Confidential Transactions

• negative amounts!

−5
9

In1

In2

In3

Out1

Out2
1

1

2

[Back,Maxwell ’13–’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0



Confidential Transactions

• negative amounts!

1

1

2 −5
9

In1

In2

In3

Out1

Out2

[Back,Maxwell ’13–’15]

• use commitments to amounts

• ensure that transactions do not create money?

Range proofs

– add proofs that committed values are in ∈ [0, 264]

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG, π

∑
Out−

∑
In = 0



Confidential Transactions

In1

In2

In3

Out1

Out2

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG, π

Confidential transaction

Signatures ⇒
• no non-interactive

CoinJoin

• no Cut-Through

∑
Out−

∑
In = 0



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!



Mimblewimble

In1

In2

In3

Out1

Out2

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!

But: sender knows
sum of output r’s

[Jedusor ’16]



Mimblewimble

In1

In2

In3

Out1

Out2

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!

[Jedusor ’16]

∑
Cout

i −
∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

=:x

)G



Mimblewimble

In1

In2

In3

Out1

Out2

Transaction

C = vH + rG, π

no more signatures!

secret key!

[Jedusor ’16]

∑
Cout

i −
∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

=:x

)G

∑
Out−

∑
In

= 0H + xG



Mimblewimble

In1

In2

In3

Out1

Out2

Transaction

C = vH + rG, π

secret key!

∑
Out−

∑
In

= 0H + xG

[Jedusor ’16]

one signature

“proves” that
︷ ︸︸ ︷∑

Out−
∑

In

is commitment to 0

σ xG



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

Tx 2

σ2 X2

In

In

Out

•
∑

Out1−
∑

In1 = X1

• σ1 valid for X1

•
∑

Out2−
∑

In2 = X2

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out
•

∑
Out2−

∑
In2 = X2

• σ2 valid for X2

Non-interactive CoinJoin

•
∑

Out1−
∑

In1 = X1

• σ1 valid for X1

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out

Non-interactive CoinJoin

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out

Cut-Through!

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

Cut-Through!



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

Cut-Through!



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”

12.5 BTC



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”

12.5 BTC



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

Cut through all transactions in blockchain

...

Out

...

...
...

...
...



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

Cut through all transactions in blockchain

...

Out

...

...
...

...
...

Only coinbase transactions

UTXO set



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

How to we actually make payments?

...

Out

...

...
...

...
...



Mimblewimble

In

In

In

Chg

r

How to we actually make payments?

Original proposal. To pay p: [Jedusor ’16]
• Sender

– choose input coins worth
∑
vini ≥ p

– create change coins Cchg
i worth

∑
vchgi =

∑
vini − p

– send r =
∑
rchgi −

∑
rini



Mimblewimble

In

In

In

Chg

r

How to we actually make payments?

In

In

In

Chg

Out

σ xG

Original proposal. To pay p:
• Sender

– choose input coins worth
∑
vini ≥ p

– create change coins Cchg
i worth

∑
vchgi =

∑
vini − p

– send r =
∑
rchgi −

∑
rini

• Receiver
– creates output coins Cout

i worth p
– signs using x = r +

∑
routi



Mimblewimble

In

In

In

Chg

r

How to we actually make payments?

In

In

In

Chg

Out

σ xG

But:

• Receiver knows x
⇒ can revert

transaction!

Chg

Out

σ′ −xG

In

In

In



Mimblewimble

In

In

In

Chg

r

How to we actually make payments?

In

In

In

Chg

Out

σ xG

But:

• Receiver knows x
⇒ can revert

transaction!

Chg

Out

σ′ −xG

In

In

In

Grin: Sender & Receiver

compute σ interactively



Mimblewimble

σ1 X1

Our proposal: non-interactive!

In

In

In

Chg

Out

Sender, to pay p, send:

worth p

rout



Mimblewimble

σ1 X1

σ2 X2

In Out

Our proposal: non-interactive!

In

In

In

Chg

Out

Sender

Receiver

worth p

rout



Mimblewimble

σ1 X1

σ2 X2

In Out

Our proposal: non-interactive!

In

In

In

Chg

Out

Sender

Receiver Merge:

σ1 X1

In

In

In

Chg

Out

σ2 X2

worth p

rout



Mimblewimble

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts



Mimblewimble

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs



Mimblewimble

. . . satisfying
joint security

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs



Mimblewimble

. . . satisfying
joint security

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model



Mimblewimble

. . . satisfying
joint security

Our contributions: to appear at EUROCRYPT’19

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– confidential amounts

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model

• Instantiations: proof that
– Pedersen + Schnorr
– Pedersen + (aggregate) BLS . . . satisfy joint security


