
Sel�sh Mining in Ethereum

by Cyril Grunspan

École Supérieure Ingénieurs Léonard de Vinci
12 Avenue Léonard de Vinci, 92400 Courbevoie

De Vinci Research Center

Email: cyril.grunspan@devinci.fr
Web: cyrilgrunspan.fr

June 13, 2019

Joint work with Ricardo Pérez-Marco



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles

Sel�sh Mining in Ethereum (2019: arXiv:1904.13330), Sel�sh Mining and Dyck Words in Bitcoin
and Ethereum Networks (proceedings of Tokenomics 2019 conference, ENS, arXiv:1904.07675)



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles

Sel�sh Mining in Ethereum (2019: arXiv:1904.13330), Sel�sh Mining and Dyck Words in Bitcoin
and Ethereum Networks (proceedings of Tokenomics 2019 conference, ENS, arXiv:1904.07675)

Foundational article: On pro�tability of sel�sh mining (2018)



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles

Sel�sh Mining in Ethereum (2019: arXiv:1904.13330), Sel�sh Mining and Dyck Words in Bitcoin
and Ethereum Networks (proceedings of Tokenomics 2019 conference, ENS, arXiv:1904.07675)

Foundational article: On pro�tability of sel�sh mining (2018)

Other articles:

On pro�tability of stubborn mining (2018), On Pro�tability of Trailing Mining (2018), Bitcoin
Sel�sh Mining and Dyck Words (2019), Bitcoin Sel�sh Mining and Dyck Words (2019) All
available on arxiv.org



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles

Sel�sh Mining in Ethereum (2019: arXiv:1904.13330), Sel�sh Mining and Dyck Words in Bitcoin
and Ethereum Networks (proceedings of Tokenomics 2019 conference, ENS, arXiv:1904.07675)

Foundational article: On pro�tability of sel�sh mining (2018)

Other articles:

On pro�tability of stubborn mining (2018), On Pro�tability of Trailing Mining (2018), Bitcoin
Sel�sh Mining and Dyck Words (2019), Bitcoin Sel�sh Mining and Dyck Words (2019) All
available on arxiv.org

Here: mathematical articles with theorems and proofs! Be careful with �well known results� with
no proof...



Bibliography 2/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Talk based on the following articles

Sel�sh Mining in Ethereum (2019: arXiv:1904.13330), Sel�sh Mining and Dyck Words in Bitcoin
and Ethereum Networks (proceedings of Tokenomics 2019 conference, ENS, arXiv:1904.07675)

Foundational article: On pro�tability of sel�sh mining (2018)

Other articles:

On pro�tability of stubborn mining (2018), On Pro�tability of Trailing Mining (2018), Bitcoin
Sel�sh Mining and Dyck Words (2019), Bitcoin Sel�sh Mining and Dyck Words (2019) All
available on arxiv.org

Here: mathematical articles with theorems and proofs! Be careful with �well known results� with
no proof...

Online mining simulators for Bitcoin exist and con�rm our study



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 Bitcoin Protocol



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

2 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

3 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

4 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

5 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

6 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.

4.When a node �nds a proof-of-work, it broadcasts the block to all nodes.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

7 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.

4.When a node �nds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already spent.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

8 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.

4.When a node �nds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already spent.

6. Nodes express their acceptance of the block by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.

4.When a node �nds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already spent.

6. Nodes express their acceptance of the block by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on extending
it



A Short History of Sel�sh Mining 3/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10 Bitcoin Protocol

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, October 31th 2008

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on �nding a di�cult proof-of-work for its block.

4.When a node �nds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already spent.

6. Nodes express their acceptance of the block by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on extending
it

A miner should never mine secretly and never withholds his blocks



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

11 Genesis



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

12 Genesis

Old question in the Bitcoin community



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

13 Genesis

Old question in the Bitcoin community

RHorning, Mining cartel attack, Bitcointalk forum, December 12, 2010



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 Genesis

Old question in the Bitcoin community

RHorning, Mining cartel attack, Bitcointalk forum, December 12, 2010

A cartel that would only recognize blocks generated by each other.



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

15 Genesis

Old question in the Bitcoin community

RHorning, Mining cartel attack, Bitcointalk forum, December 12, 2010

A cartel that would only recognize blocks generated by each other.

Meni Rosenfeld, Analysis of Bitcoin Pooled Mining Reward Systems , technical report, December
22, 2011



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

16 Genesis

Old question in the Bitcoin community

RHorning, Mining cartel attack, Bitcointalk forum, December 12, 2010

A cartel that would only recognize blocks generated by each other.

Meni Rosenfeld, Analysis of Bitcoin Pooled Mining Reward Systems , technical report, December
22, 2011

Ittay Eyal, Emin Gun Sirer, Majority is not Enough: Bitcoin Mining is Vulnerable, November 1
2013, Financial Cryptography 2014



A Short History of Sel�sh Mining 4/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

17 Genesis

Old question in the Bitcoin community

RHorning, Mining cartel attack, Bitcointalk forum, December 12, 2010

A cartel that would only recognize blocks generated by each other.

Meni Rosenfeld, Analysis of Bitcoin Pooled Mining Reward Systems , technical report, December
22, 2011

Ittay Eyal, Emin Gun Sirer, Majority is not Enough: Bitcoin Mining is Vulnerable, November 1
2013, Financial Cryptography 2014

Lear Bahack, Theoretical Bitcoin Attacks with less than Half of the Computational Power ,
December 25 2013, technical report



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

18 Model Parameters



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

19 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

20 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

21 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

22 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

23 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner

In case of a public competition between a honest block and a sel�sh block, there are 3 outcomes.



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

24 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner

In case of a public competition between a honest block and a sel�sh block, there are 3 outcomes.

The winner can be:



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

25 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner

In case of a public competition between a honest block and a sel�sh block, there are 3 outcomes.

The winner can be:

� The attacker (with probability q)



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

26 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner

In case of a public competition between a honest block and a sel�sh block, there are 3 outcomes.

The winner can be:

� The attacker (with probability q)

� A honest miner who has mined a block on top of the attacker's block (with probability 
 p)



Sel�sh Mining Parameters 5/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

27 Model Parameters

Sel�sh Miner S with relative hashrate q < 1

2

Honest miners H with relative hashrate p=1¡ q

New parameter 
: connectivity of the attacker

Fraction of honest miners following the sel�sh miner

In case of a public competition between a honest block and a sel�sh block, there are 3 outcomes.

The winner can be:

� The attacker (with probability q)

� A honest miner who has mined a block on top of the attacker's block (with probability 
 p)

� A honest miner who has mined a block on top of the honest block (with probability (1¡ 
) p)



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

28 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

29 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

30 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).

3. If S is �rst to validate a block, then S keeps on mining secretly on top of her secret block



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

31 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).

3. If S is �rst to validate a block, then S keeps on mining secretly on top of her secret block

4. If S is �rst to validate a block but then H mines one block before S validates a second one,
S broadcasts immediately her secret block. A competition follows. After resolution of this
competition, S goes back to 1 (end of a cycle).



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

32 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).

3. If S is �rst to validate a block, then S keeps on mining secretly on top of her secret block

4. If S is �rst to validate a block but then H mines one block before S validates a second one,
S broadcasts immediately her secret block. A competition follows. After resolution of this
competition, S goes back to 1 (end of a cycle).

5. If S mines two blocks in a row then, S keeps on mining secretly on top of her secret fork



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

33 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).

3. If S is �rst to validate a block, then S keeps on mining secretly on top of her secret block

4. If S is �rst to validate a block but then H mines one block before S validates a second one,
S broadcasts immediately her secret block. A competition follows. After resolution of this
competition, S goes back to 1 (end of a cycle).

5. If S mines two blocks in a row then, S keeps on mining secretly on top of her secret fork

6. When the advance of S reduces to 1, S broadcasts her entire fork (end of a cycle).



Sel�sh Mining Strategy 6/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

34 Description of the Strategy

1. S mines on top of the last block of the o�cial blockchain

2. If H is �rst to validate a block, then S goes back to 1 (end of a cycle).

3. If S is �rst to validate a block, then S keeps on mining secretly on top of her secret block

4. If S is �rst to validate a block but then H mines one block before S validates a second one,
S broadcasts immediately her secret block. A competition follows. After resolution of this
competition, S goes back to 1 (end of a cycle).
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39 A state machine approach

Strategy with last optional point (7).

Modelization of the advance of the attack with the help of a Markov chain (almost a simple
random walk on N with a partial re�exive bound at 0).

Each transition gives a reward � for the honest miners and � 0 for the attacker. These are rewards
that the honest miners or the sel�sh miner will eventually earn (possibly not immediatly).
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De�nition 13. Let q 0 be the mean number of blocks mined by the attacker in the blockchain.
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Theorem 15. We have q 0= [(p¡ q)(1+ p q)+ p q] q¡ (p¡ q) p2 q (1¡ 
)

p q2+ p¡ q
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Figure 1.
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Wrong solution as proved in Optimal Sel�sh Mining Strategies in Bitcoin, Ayelet Sapirshtein,
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with low connectivity

Ethan Heilman (2014) resorts to a non-decentralized timestamp server, One Weird Trick to Stop
Sel�sh Miners: Fresh Bitcoins, A Solution for the Honest Miner , Financial Cryptography 2014.

Controversy: Reality of Sel�sh Mining?
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50 �Bitcoin is broken�?

Eyal-Sirer (2013): in case of a competition, instead of the ��rst seen rule�, nodes should broadcast
randomly between two blocks sharing the same height: 
= 1

2
always.

Wrong solution as proved in Optimal Sel�sh Mining Strategies in Bitcoin, Ayelet Sapirshtein,
Yonatan Sompolinsky, Aviv Zohar, Financial Cryptography 2016 : amplify the attack by a miner
with low connectivity

Ethan Heilman (2014) resorts to a non-decentralized timestamp server, One Weird Trick to Stop
Sel�sh Miners: Fresh Bitcoins, A Solution for the Honest Miner , Financial Cryptography 2014.

Controversy: Reality of Sel�sh Mining?

None understood that the root of the problem lies in the di�culty adjustment
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51 �Bitcoin is broken�?

Eyal-Sirer (2013): in case of a competition, instead of the ��rst seen rule�, nodes should broadcast
randomly between two blocks sharing the same height: 
= 1

2
always.

Wrong solution as proved in Optimal Sel�sh Mining Strategies in Bitcoin, Ayelet Sapirshtein,
Yonatan Sompolinsky, Aviv Zohar, Financial Cryptography 2016 : amplify the attack by a miner
with low connectivity

Ethan Heilman (2014) resorts to a non-decentralized timestamp server, One Weird Trick to Stop
Sel�sh Miners: Fresh Bitcoins, A Solution for the Honest Miner , Financial Cryptography 2014.

Controversy: Reality of Sel�sh Mining?

None understood that the root of the problem lies in the di�culty adjustment

Because none considered the good objective function to decide between two strategies
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52 Pro�t and Loss per unit of time
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53 Pro�t and Loss per unit of time

Time considerations
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54 Pro�t and Loss per unit of time

Time considerations

Quantity of interest: pro�t and loss per unit of time



Pro�tability of mining strategies 11/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

55 Pro�t and Loss per unit of time

Time considerations

Quantity of interest: pro�t and loss per unit of time

De�nition 19. For any activity with duration time T, we set:

PnL = R¡C

PnLt =
R¡C
T

We set also

PnL1= lim
T!1

R¡C
T
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56 Repetitive Games
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57 Repetitive Games

De�nition 25. A repetitive strategy is made of repetition of cycles
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58 Repetitive Games

De�nition 30. A repetitive strategy is made of repetition of cycles

Example 31. A gambler plays repeatedly to a game such as �Head and Tail�
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59 Repetitive Games

De�nition 35. A repetitive strategy is made of repetition of cycles

Example 36. A gambler plays repeatedly to a game such as �Head and Tail�

De�nition 37. We denote by R (resp. C, T) the revenue (resp. cost, duration time) per cycle.

The revenue ratio ¡ and the cost ratio � of an integrable strategy are ¡= E[R]

E[T ]
and �= E[C]

E[T ]
.
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60 Repetitive Games

De�nition 40. A repetitive strategy is made of repetition of cycles

Example 41. A gambler plays repeatedly to a game such as �Head and Tail�

De�nition 42. We denote by R (resp. C, T) the revenue (resp. cost, duration time) per cycle.

The revenue ratio ¡ and the cost ratio � of an integrable strategy are ¡= E[R]

E[T ]
and �= E[C]

E[T ]
.

Theorem 43. For an integrable repetitive strategy, we have PnL1=
E[R]¡E[C]

E[T ]
.
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61 Repetitive Games

De�nition 45. A repetitive strategy is made of repetition of cycles

Example 46. A gambler plays repeatedly to a game such as �Head and Tail�

De�nition 47. We denote by R (resp. C, T) the revenue (resp. cost, duration time) per cycle.

The revenue ratio ¡ and the cost ratio � of an integrable strategy are ¡= E[R]

E[T ]
and �= E[C]

E[T ]
.

Theorem 48. For an integrable repetitive strategy, we have PnL1=
E[R]¡E[C]

E[T ]
.

Theorem 49. Let � and � 0 be two strategy � 0 sharing the same cost per unit of time i.e.,
�(�)=�(� 0). Then, � is less pro�table than � 0 if and only if ¡(�)<¡(� 0)
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63 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)
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64 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)

� The relation �� � 0 is independent with the exchange rate BTC/USD



Observations 13/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

65 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)

� The relation �� � 0 is independent with the exchange rate BTC/USD

� We haveE[R]=E[L] � (b+E[f ]) where L is the number of o�cial blocs added to the o�cial
blockchain after an attack cycle, b is the coinbase and f is the (random) fees per block.
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66 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)

� The relation �� � 0 is independent with the exchange rate BTC/USD

� We haveE[R]=E[L] � (b+E[f ]) where L is the number of o�cial blocs added to the o�cial
blockchain after an attack cycle, b is the coinbase and f is the (random) fees per block.

� So, we can assume that the coinbase includes fees: b b+E[f ]
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67 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)

� The relation �� � 0 is independent with the exchange rate BTC/USD

� We haveE[R]=E[L] � (b+E[f ]) where L is the number of o�cial blocs added to the o�cial
blockchain after an attack cycle, b is the coinbase and f is the (random) fees per block.

� So, we can assume that the coinbase includes fees: b b+E[f ]

� The relation �� � 0 is independent with the amount of fees per block.
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68 Key observations

� A deviant strategy � and the honest strategy �H shares the same cost per unit of time:

�(�)=�(�H)

� The relation �� � 0 is independent with the exchange rate BTC/USD

� We haveE[R]=E[L] � (b+E[f ]) where L is the number of o�cial blocs added to the o�cial
blockchain after an attack cycle, b is the coinbase and f is the (random) fees per block.

� So, we can assume that the coinbase includes fees: b b+E[f ]

� The relation �� � 0 is independent with the amount of fees per block.

� The revenue ratio is the good notion to decide between two mining strategies
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69 Bitcoin's stability theorem
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70 Bitcoin's stability theorem

Theorem 51. Without a di�culty adjustment, the best strategy is the honest one.
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71 Bitcoin's stability theorem

Theorem 52. Without a di�culty adjustment, the best strategy is the honest one.

Proof. For t 2 R+, we denote by N (t) resp. N 0(t)) the number of blocks validated by the
honest miners (resp. attacker) between 0 and t.

Without a di�culty adjustment, N(t), (resp. N 0(t)) is a true Poisson process with
parameter �= p

�0
(resp. �0= q

�0
) and R(t)6N 0(t).

For any integrable stopping time � , N (�)¡�� (resp. N 0(�)¡�� ) is a martingale.

Then, we apply Doob's theorem. We get E[R(�)]

E[� ]
6 q

b

�0
=¡(HM). �
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72 Bitcoin's stability theorem

Theorem 53. Without a di�culty adjustment, the best strategy is the honest one.

Proof. For t 2 R+, we denote by N (t) resp. N 0(t)) the number of blocks validated by the
honest miners (resp. attacker) between 0 and t.

Without a di�culty adjustment, N(t), (resp. N 0(t)) is a true Poisson process with
parameter �= p

�0
(resp. �0= q

�0
) and R(t)6N 0(t).

For any integrable stopping time � , N (�)¡�� (resp. N 0(�)¡�� ) is a martingale.

Then, we apply Doob's theorem. We get E[R(�)]

E[� ]
6 q

b

�0
=¡(HM). �

So, the problem lies in the di�culty adjustment formula
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74 Bitcoin di�culty adjustment

The di�culty adjustment in Bitcoin today is Dnew=Dold � n0 �0Sn0
where Sn0 is the time used to

mine n0= 2016 blocks.
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75 Bitcoin di�culty adjustment

The di�culty adjustment in Bitcoin today is Dnew=Dold � n0 �0Sn0
where Sn0 is the time used to

mine n0= 2016 blocks.

Note 56. In reality, due to a well known bug, it isDnew=Dold � n0 �0Sn0¡1
. So, if there is no attacker

and the di�culty parameter remains constant, the exact mean interblock time � in Bitcoin is
given by ( 1

Sn0¡1
follows an inverse Gamma distribution):

1 =
n0 �0

(n0¡ 2)�

i.e., � = �0+
2

n0¡ 2
�0>�0 (inverse Gamma distribution)
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77 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).
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78 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).

� After a di�culty adjustment, the expected revenue per cycle E[R] is not modi�ed but the
mean time it takes E [T ] is reduced by a factor Dold

Dnew
.
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79 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).

� After a di�culty adjustment, the expected revenue per cycle E[R] is not modi�ed but the
mean time it takes E [T ] is reduced by a factor Dold

Dnew
.

� The revenue ratio is multiplied by a factor Dold

Dnew
.
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80 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).

� After a di�culty adjustment, the expected revenue per cycle E[R] is not modi�ed but the
mean time it takes E [T ] is reduced by a factor Dold

Dnew
.

� The revenue ratio is multiplied by a factor Dold

Dnew
.

� The di�culty parameter changes dramatically whereas the total hashrate remains constant.
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81 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).

� After a di�culty adjustment, the expected revenue per cycle E[R] is not modi�ed but the
mean time it takes E [T ] is reduced by a factor Dold

Dnew
.

� The revenue ratio is multiplied by a factor Dold

Dnew
.

� The di�culty parameter changes dramatically whereas the total hashrate remains constant.

� Why that? The di�culty parameter should re�ect the exact hashrate of the network
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82 Analysis of the problem

� An attacker �rst slows down the progression of the blockchain: Sn0>n0 �0. So,Dnew<Dold

and the speeds of validation are modi�ed: �new=�old � Dold

Dnew
(resp. �new0 =�old

0 � Dold

Dnew
).

� After a di�culty adjustment, the expected revenue per cycle E[R] is not modi�ed but the
mean time it takes E [T ] is reduced by a factor Dold

Dnew
.

� The revenue ratio is multiplied by a factor Dold

Dnew
.

� The di�culty parameter changes dramatically whereas the total hashrate remains constant.

� Why that? The di�culty parameter should re�ect the exact hashrate of the network

� It is not the case because the di�culty adjustment formula ignores orphan blocks.
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83 Solution for thwarting sel�sh mining
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84 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:
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85 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:

Dnew=Dold �
(n0+n0) �0

Sn0

where n0 is the number of orphan blocks during the last period of n0 o�cial blocks
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86 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:

Dnew=Dold �
(n0+n0) �0

Sn0

where n0 is the number of orphan blocks during the last period of n0 o�cial blocks

Miners signal orphan blocks in o�cial blocks.
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87 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:

Dnew=Dold �
(n0+n0) �0

Sn0

where n0 is the number of orphan blocks during the last period of n0 o�cial blocks

Miners signal orphan blocks in o�cial blocks.

Nodes relay headers of orphan blocks. Do not need to relay full orphan blocks.
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88 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:

Dnew=Dold �
(n0+n0) �0

Sn0

where n0 is the number of orphan blocks during the last period of n0 o�cial blocks

Miners signal orphan blocks in o�cial blocks.

Nodes relay headers of orphan blocks. Do not need to relay full orphan blocks.

Incentives for miners: in case of a competition, nodes relay the block with the most proof-of-
work, including proof-of-work of orphan blocks.
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89 Solution for thwarting sel�sh mining

Incorporate the count of orphan blocks in the di�culty adjustment formula:

Dnew=Dold �
(n0+n0) �0

Sn0

where n0 is the number of orphan blocks during the last period of n0 o�cial blocks

Miners signal orphan blocks in o�cial blocks.

Nodes relay headers of orphan blocks. Do not need to relay full orphan blocks.

Incentives for miners: in case of a competition, nodes relay the block with the most proof-of-
work, including proof-of-work of orphan blocks.

BIP proposal
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90 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold
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91 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)
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92 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)

� Gives the time it takes before the attack becomes pro�table: information unreachable with
other methods
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93 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)

� Gives the time it takes before the attack becomes pro�table: information unreachable with
other methods

� Example. With q=0.1 and 
=0.9, the attack takes 10 weeks on average before pro�tability
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94 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)

� Gives the time it takes before the attack becomes pro�table: information unreachable with
other methods

� Example. With q=0.1 and 
=0.9, the attack takes 10 weeks on average before pro�tability

� After a di�culty adjustment, equivalence between the two methods: E[T ] =E[L] �0

where L is the number of blocks added to the o�cial blockchain per cycle. So, ¡= q 0
b

�0
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95 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)

� Gives the time it takes before the attack becomes pro�table: information unreachable with
other methods

� Example. With q=0.1 and 
=0.9, the attack takes 10 weeks on average before pro�tability

� After a di�culty adjustment, equivalence between the two methods: E[T ] =E[L] �0

where L is the number of blocks added to the o�cial blockchain per cycle. So, ¡= q 0
b

�0

� Can be applied to other block witholding strategies: cf On Pro�tability of Sel�sh Mining ,
On Pro�tability of Stubborn Mining , On Pro�tability of Trailing Mining .
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96 Martingale approach to compute the long-term apparent hashrate

� Compute E[T ];E[R] and Dnew

Dold

� Exercise on Poisson process theory (Poisson races)

� Gives the time it takes before the attack becomes pro�table: information unreachable with
other methods

� Example. With q=0.1 and 
=0.9, the attack takes 10 weeks on average before pro�tability

� After a di�culty adjustment, equivalence between the two methods: E[T ] =E[L] �0

where L is the number of blocks added to the o�cial blockchain per cycle. So, ¡= q 0
b

�0

� Can be applied to other block witholding strategies: cf On Pro�tability of Sel�sh Mining ,
On Pro�tability of Stubborn Mining , On Pro�tability of Trailing Mining .

� Graph of pro�tability with other strategies
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Figure 2. Comparing pro�tabilities of HM, SM, LSM, EFSM, A-TSM
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Figure 3. Comparing pro�tabilities of HM, SM, LSM, EFSM, A-TSM

Optimal strategy obtained by Zohar&al using a black box solver of Markov Decision Process
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Figure 4. Comparing pro�tabilities of HM, SM, LSM, EFSM, A-TSM

Optimal strategy obtained by Zohar&al using a black box solver of Markov Decision Process

Analogous general study missing for Ethereum
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97 A combinatorics approach
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98 A combinatorics approach

De�nition 60. We denote by Z (resp. L) the number of blocks validated by the attacker (resp.
the network) and added to the o�cial blockchain per attack cycle.
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99 A combinatorics approach

De�nition 63. We denote by Z (resp. L) the number of blocks validated by the attacker (resp.
the network) and added to the o�cial blockchain per attack cycle.

Proposition 64. After a di�culty adjustment, we have ¡= E[Z]

E[L]
� b
�0
.
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De�nition 66. We denote by Z (resp. L) the number of blocks validated by the attacker (resp.
the network) and added to the o�cial blockchain per attack cycle.
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A cycle is described with the chronological sequence of discoveries S and H i.e. SSSHSSHHH
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101 A combinatorics approach

De�nition 69. We denote by Z (resp. L) the number of blocks validated by the attacker (resp.
the network) and added to the o�cial blockchain per attack cycle.

Proposition 70. After a di�culty adjustment, we have ¡= E[Z]

E[L]
� b
�0
.

A cycle is described with the chronological sequence of discoveries S and H i.e. SSSHSSHHH

De�nition 71. A Dyck word of length n built on fS; Hg is a string of S and H containing n
S and n H and such that no initial segment of the string has more H's than S's. We denote by
Dn the set of such words and by D the space of all Dyck words.
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Theorem 72. The attack cycles of the sel�sh mining strategies are H, SHS, SHH and SSwH
with w 2D.
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Theorem 74. The attack cycles of the sel�sh mining strategies are H, SHS, SHH and SSwH
with w 2D.

Corollary 75. We have P[L=1]= p;P[L=2]= p+ p q2 and P[L=n]= p q2 (p q)n¡2Cn¡2

for n> 2 with Ck=
1

k+1

�
2k
k

�
= k-th Catalan number.
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Theorem 78. The attack cycles of the sel�sh mining strategies are H, SHS, SHH and SSwH
with w 2D.

Corollary 79. We have P[L=1]= p;P[L=2]= p+ p q2 and P[L=n]= p q2 (p q)n¡2Cn¡2

for n> 2 with Ck=
1

k+1

�
2k
k

�
= k-th Catalan number.

Similarly, we get the distribution of Z (note that for n> 2, [Z =n] = [L=n]) and E[Z]

E[L]

We use: X
n>0

p (p q)nCn = 1X
n>0

p (p q)nCn =
q

p¡ q
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Interblock times �E reduced: between 13 and 14 sec today

More or less block propagation time

A priori orphan blocks
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109 Ethereum network

Interblock times �E reduced: between 13 and 14 sec today

More or less block propagation time

A priori orphan blocks

To decide between two blockchains, we count for uncles

Variation of GHOST protocol

Blocks signal uncles

Incentives: uncle rewards and inclusion rewards
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111 Uncles and nephews

De�nition 82. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.
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112 Uncles and nephews

De�nition 84. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.

De�nition 85. The distance between a nephew and an uncle is the number of blocks between
the nephew and the uncle's parent.
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De�nition 86. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.

De�nition 87. The distance between a nephew and an uncle is the number of blocks between
the nephew and the uncle's parent.

A nephew block can refer at most two uncles.
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114 Uncles and nephews

De�nition 88. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.

De�nition 89. The distance between a nephew and an uncle is the number of blocks between
the nephew and the uncle's parent.

A nephew block can refer at most two uncles.

An uncle can be refered by a nephew only if its distance d satis�es d6n1 with n1=6 today.
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115 Uncles and nephews

De�nition 90. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.

De�nition 91. The distance between a nephew and an uncle is the number of blocks between
the nephew and the uncle's parent.

A nephew block can refer at most two uncles.

An uncle can be refered by a nephew only if its distance d satis�es d6n1 with n1=6 today.

Uncle reward Ku(d)=
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8
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116 Uncles and nephews

De�nition 92. An �uncle� is a stale block whose parent belongs to the blockchain and signaled
by an o�cial block called �nephew�.

De�nition 93. The distance between a nephew and an uncle is the number of blocks between
the nephew and the uncle's parent.

A nephew block can refer at most two uncles.

An uncle can be refered by a nephew only if its distance d satis�es d6n1 with n1=6 today.

Uncle reward Ku(d)=
8¡ d
8
1d6n1 b with b=2 ETH (coinbase)

Inclusion reward Kn(d)=� b with �= 1

32
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A di�erent reward system

Dangerous. A sel�sh miner earns money even if its attack fails.
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A di�erent reward system

Dangerous. A sel�sh miner earns money even if its attack fails.

Di�culty adjustment is made continuously

No natural protection against SM as in Bitcoin with the quite important time before reaching
di�culty adjustment and becoming pro�table
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124 Main di�erences with Bitcoin

A di�erent reward system

Dangerous. A sel�sh miner earns money even if its attack fails.

Di�culty adjustment is made continuously

No natural protection against SM as in Bitcoin with the quite important time before reaching
di�culty adjustment and becoming pro�table

The attack is possibly immediatly pro�table in Ethereum

Di�culty adjustment incorporates some orphan blocks

The di�culty adjustment formula in Ethereum is more robust than the di�culty adjust-
ment formula in Bitcoin.
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There is only one sel�sh mining strategy in Bitcoin but there are plenty ones in Ethereum.
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There is only one sel�sh mining strategy in Bitcoin but there are plenty ones in Ethereum.

In Bitcoin, only the number of blocks L and Z added to the o�cial blockchain per cycle are
important.
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128 Sel�sh Mining in Ethereum

There is only one sel�sh mining strategy in Bitcoin but there are plenty ones in Ethereum.

In Bitcoin, only the number of blocks L and Z added to the o�cial blockchain per cycle are
important.

In Ethereum, if the attacker releases his block one by one, she creates a lot of competition with
the honest miners. Hence, there are a lot of uncles.
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129 Sel�sh Mining in Ethereum

There is only one sel�sh mining strategy in Bitcoin but there are plenty ones in Ethereum.

In Bitcoin, only the number of blocks L and Z added to the o�cial blockchain per cycle are
important.

In Ethereum, if the attacker releases his block one by one, she creates a lot of competition with
the honest miners. Hence, there are a lot of uncles.

If the attacker witholds its fork and only release it at the end of an attack cycle, there are few
competitions and few uncles.
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130 Sel�sh Mining in Ethereum

There is only one sel�sh mining strategy in Bitcoin but there are plenty ones in Ethereum.

In Bitcoin, only the number of blocks L and Z added to the o�cial blockchain per cycle are
important.

In Ethereum, if the attacker releases his block one by one, she creates a lot of competition with
the honest miners. Hence, there are a lot of uncles.

If the attacker witholds its fork and only release it at the end of an attack cycle, there are few
competitions and few uncles.

Also the attacker can decide to ignore all uncles. She can also signal some uncles...
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138 Short Bibliography

Quite recent topic

The Impact of Uncle Rewards on Sel�sh Mining in Ethereum, Fabian Ritz, Alf Zugenmaier

Sel�sh mining in Ethereum, Chen Feng, Jianyu Niu

In both articles, only the classical case has been considered

Classical case = the attacker refers to all possible uncles and (if possible) always broadcasts the
part of his fork sharing the same height that the o�cial blockchain

First article: simulations

Second article: state machine approach which leads to a quite complicated formula involving a
double in�nite sum for the long-term apparent hashrate
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140 Some de�nitions

De�nition 98. Let ! be a cycle. We denote by U(!) (resp. US(!); UH(!)) the number of
uncles created during the cycle ! which are refered by nephew blocks (resp. nephew blocks mined
by the sel�sh miner, nephew blocks mined by the honest miners) in the cycle ! or in a latter cycle.
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141 Some de�nitions

De�nition 102. Let ! be a cycle. We denote by U(!) (resp. US(!); UH(!)) the number of
uncles created during the cycle ! which are refered by nephew blocks (resp. nephew blocks mined
by the sel�sh miner, nephew blocks mined by the honest miners) in the cycle ! or in a latter cycle.

De�nition 103. We denote by R (resp. Rs; Ru; Rn) the revenue (resp. revenue coming from
static blocks, uncle rewards, inclusion rewards) of a miner per cycle.



27/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

142 Some de�nitions

De�nition 106. Let ! be a cycle. We denote by U(!) (resp. US(!); UH(!)) the number of
uncles created during the cycle ! which are refered by nephew blocks (resp. nephew blocks mined
by the sel�sh miner, nephew blocks mined by the honest miners) in the cycle ! or in a latter cycle.

De�nition 107. We denote by R (resp. Rs; Ru; Rn) the revenue (resp. revenue coming from
static blocks, uncle rewards, inclusion rewards) of a miner per cycle.

Note 108. We have: R=Rs+Ru+Rn and Rs does not depend on the particular strategy.

Lemma 109. Whatever the sel�sh mining strategy is, we get E[Ru] = p2 q (1¡ 
)Ku(1) with

Ku(1)=
7

8
b currently on Ethereum and E[Rs] =E[L]b with E[L] = 1+

p2 q

p¡ q
.
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We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles
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145 Sel�sh mining strategies

We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles

� Strategy 2A = Minimum Belligerence & the attacker signals all uncles
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146 Sel�sh mining strategies

We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles

� Strategy 2A = Minimum Belligerence & the attacker signals all uncles

� Strategy 2B = Minimum Belligerence & the attacker signals no uncles.
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147 Sel�sh mining strategies

We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles

� Strategy 2A = Minimum Belligerence & the attacker signals all uncles

� Strategy 2B = Minimum Belligerence & the attacker signals no uncles.

Strategy 1 maximizes E[U ] and E[R].
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148 Sel�sh mining strategies

We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles

� Strategy 2A = Minimum Belligerence & the attacker signals all uncles

� Strategy 2B = Minimum Belligerence & the attacker signals no uncles.

Strategy 1 maximizes E[U ] and E[R].

Strategy 2B minimizes E[U ] and E[R].
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149 Sel�sh mining strategies

We consider three di�erent sel�sh mining strategies:

� Strategy 1 = classical case = Maximum Belligerence & the attacker signals all uncles

� Strategy 2A = Minimum Belligerence & the attacker signals all uncles

� Strategy 2B = Minimum Belligerence & the attacker signals no uncles.

Strategy 1 maximizes E[U ] and E[R].

Strategy 2B minimizes E[U ] and E[R].

Strategy 2A in the middle...
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151 Revenue ratio with the new di�culty adjustment formula

The revenue ratio of a strategy (recent DA on Ethreum) is proportional to

¡~E =
E[R]

E[L] +E[U ]

=
E[Rs] +E[Ru] +E[Rn]
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152 Revenue ratio with the new di�culty adjustment formula

The revenue ratio of a strategy (recent DA on Ethreum) is proportional to

¡~E =
E[R]

E[L] +E[U ]

=
E[Rs] +E[Ru] +E[Rn]

E[L] +E[U ]

Only the terms in red depend on the strategy.
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153 Revenue ratio with the new di�culty adjustment formula

The revenue ratio of a strategy (recent DA on Ethreum) is proportional to

¡~E =
E[R]

E[L] +E[U ]

=
E[Rs] +E[Ru] +E[Rn]

E[L] +E[U ]

Only the terms in red depend on the strategy.

Strategy 1 maximizes the numerator (but also the denominator). Strategy 2B minimizes the
denominator (but also the numerator).
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154 Revenue ratio with the new di�culty adjustment formula

The revenue ratio of a strategy (recent DA on Ethreum) is proportional to

¡~E =
E[R]

E[L] +E[U ]

=
E[Rs] +E[Ru] +E[Rn]

E[L] +E[U ]

Only the terms in red depend on the strategy.

Strategy 1 maximizes the numerator (but also the denominator). Strategy 2B minimizes the
denominator (but also the numerator).

Theorem 114. We have: ¡~E=¡~B � E[L]

E[L] +E[U ]
+

p2qKu(1)

E[L] +E[U ]
+

E[US]

E[L] +E[U ]
p
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156 Dyck words, Dyck paths and probability space

A Dyck word w can be identi�ed with a Dyck path X : [0; 2n] ¡! N such that X0 = 0 and
Xn+1=Xn+1 (resp. Xn+1=Xn¡ 1) if and only if wi=S (resp. wi=H).
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157 Dyck words, Dyck paths and probability space

A Dyck word w can be identi�ed with a Dyck path X : [0; 2n] ¡! N such that X0 = 0 and
Xn+1=Xn+1 (resp. Xn+1=Xn¡ 1) if and only if wi=S (resp. wi=H).

The space D is a probability space with a probability measure P� given by P� [w] = p (p q)n for
w 2Dn. If w 2D, then P[!= SSwH] = q2P� [w].
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158 Dyck words, Dyck paths and probability space

A Dyck word w can be identi�ed with a Dyck path X : [0; 2n] ¡! N such that X0 = 0 and
Xn+1=Xn+1 (resp. Xn+1=Xn¡ 1) if and only if wi=S (resp. wi=H).

The space D is a probability space with a probability measure P� given by P� [w] = p (p q)n for
w 2Dn. If w 2D, then P[!= SSwH] = q2P� [w].

Dyck paths more appropriated than Dyck words for Ethereum for the following reason.
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159 Dyck words, Dyck paths and probability space

A Dyck word w can be identi�ed with a Dyck path X : [0; 2n] ¡! N such that X0 = 0 and
Xn+1=Xn+1 (resp. Xn+1=Xn¡ 1) if and only if wi=S (resp. wi=H).

The space D is a probability space with a probability measure P� given by P� [w] = p (p q)n for
w 2Dn. If w 2D, then P[!= SSwH] = q2P� [w].

Dyck paths more appropriated than Dyck words for Ethereum for the following reason.

Proposition 119. Let ! be an attack cycle with !=SSwH and w2D. Let bi be the i-th block
validated in !. If bi is an uncle, then Xi=Xi¡1¡ 1 and Xi<n1¡ 2.

Proof. We have that Xi+ 2= h(f)¡ h(bi) where h(f) (resp. h(bi)) is the the height of the
secret block at the time of the creation of bi (resp. the height of bi). �
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161 Strategy 1: Maximum Belligerence & refers all (classical case)

We need to compute E[US] and E[U ].
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162 Strategy 1: Maximum Belligerence & refers all (classical case)

We need to compute E[US] and E[U ].

We can precise Proposition 119.

Proposition 126. Let ! be a cycle with !=SSwH and w2D. Let bi be the i-th block validated
in !. If Xi<Xi¡1 and Xi<n1¡ 2 then bi is an uncle with probability 
 unless Xi<n1¡ 2
and bi is the �rst block validated by the honest miners.
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163 Strategy 1: Maximum Belligerence & refers all (classical case)

We need to compute E[US] and E[U ].

We can precise Proposition 119.

Proposition 129. Let ! be a cycle with !=SSwH and w2D. Let bi be the i-th block validated
in !. If Xi<Xi¡1 and Xi<n1¡ 2 then bi is an uncle with probability 
 unless Xi<n1¡ 2
and bi is the �rst block validated by the honest miners.

De�nition 130. If ! is a cycle starting with SS, we denote by H(!) the number of blocks mined
by the honest miners and corresponding to an index i such that Xi<Xi¡1 and Xi<n1¡ 2.
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164 Strategy 1: Maximum Belligerence & refers all (classical case)

We need to compute E[US] and E[U ].

We can precise Proposition 119.

Proposition 132. Let ! be a cycle with !=SSwH and w2D. Let bi be the i-th block validated
in !. If Xi<Xi¡1 and Xi<n1¡ 2 then bi is an uncle with probability 
 unless Xi<n1¡ 2
and bi is the �rst block validated by the honest miners.

De�nition 133. If ! is a cycle starting with SS, we denote by H(!) the number of blocks mined
by the honest miners and corresponding to an index i such that Xi<Xi¡1 and Xi<n1¡ 2.

Proposition 134. We have: E[H(!)j!= SS � ] = p

p¡ q

�
1¡

�
q

p

�
n1¡1

�
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Proposition 135. We have: E[U ] = q+
q3


p¡ q
¡ p3

p¡ q

�
q

p

�
n1+1


 ¡ qn1+1(1¡ 
)



Strategy 1: uncles 32/40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Proposition 136. We have: E[U ] = q+
q3


p¡ q
¡ p3

p¡ q

�
q

p

�
n1+1


 ¡ qn1+1(1¡ 
)

Proof. We have U(fHg)= 0 and U(!)= 1 if ! 2fSHS; SHHg. Also,

E[U j!= SS::: ] =E[H(!)j!= SS]
+(1¡ 
)(p+ p q+ ::: + p qn1¡2)

Indeed, there is a probability 
 that a block bi satisfying Xi=Xi¡1¡ 1 and Xi<n1¡ 2 is an
uncle except for the �rst block mined by the honest miners. In this case, the probability is 1. So,

E[U ] = p q+

�
p

p¡ q

�
1¡

�
q

p

�
n1¡1

�

+(1¡ 
) (1¡ qn1¡1)

�
� q2

�



Strategy 1: uncles (2) 33/40
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De�nition 137. Let V (!) be the number of uncles u2! refered by a nephew n2!.
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De�nition 139. Let V (!) be the number of uncles u2! refered by a nephew n2!.

Lemma 140. We have: E[V ] = q2

p
(1¡ qn1¡1) 
+(1¡ 
) p q2 1¡ (p q)

n1¡1

1¡ p q
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De�nition 141. Let V (!) be the number of uncles u2! refered by a nephew n2!.

Lemma 142. We have: E[V ] = q2

p
(1¡ qn1¡1) 
+(1¡ 
) p q2 1¡ (p q)

n1¡1

1¡ p q

Proof. We have V (!) = 0 if ! 2 fH; SHH; SHSg. If ! = �SHH::: H with k H at the end,
then only the last n1¡ 1 blocks can be uncles signaled by future blocks in the next cycle after
! unless !=SS::: SH::: H with at most n1 letters S and n1¡ 1 letters H. In that case, the �rst
block validated by the honest miners. So,

E[V ] = q2
X
k>1

inf (k; n1¡ 1) p qk¡1
+(1¡ 
) q
X
k=1

n1¡1

(p q)k

Note that p qk¡1 is the probability that a Dyck word ends exactly with (k¡ 1) H. �
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De�nition 143. Let V (!) be the number of uncles u2! refered by a nephew n2!.

Lemma 144. We have: E[V ] = q2

p
(1¡ qn1¡1) 
+(1¡ 
) p q2 1¡ (p q)

n1¡1

1¡ p q

Proof. We have V (!) = 0 if ! 2 fH; SHH; SHSg. If ! = �SHH::: H with k H at the end,
then only the last n1¡ 1 blocks can be uncles signaled by future blocks in the next cycle after
! unless !=SS::: SH::: H with at most n1 letters S and n1¡ 1 letters H. In that case, the �rst
block validated by the honest miners. So,

E[V ] = q2
X
k>1

inf (k; n1¡ 1) p qk¡1
+(1¡ 
) q
X
k=1

n1¡1

(p q)k

Note that p qk¡1 is the probability that a Dyck word ends exactly with (k¡ 1) H. �



Strategy 1: uncles (3) 34/40
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Proposition 145. We have: E[Uh] = p2q+(p+(1¡ 
)p2q)E[V ]



Strategy 1: uncles (3) 34/40
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Proposition 147. We have: E[Uh] = p2q+(p+(1¡ 
)p2q)E[V ]

Proof. Let ! be a cycle and let Uh
(1)
(!) (resp. Uh

(2)
(!)) be the number of uncles refered by

honest nephews only present in ! (resp. not present in !). Clearly, E
�
Uh
(1)�

= p2q. Moreover,
the probability that H is the �rst o�cial block of the next attack cycle is p+ (1¡ 
)p2q. So,

E
�
Uh
(2)�

=(p+(1¡ 
)p2q)E[V ]. �



Strategy 1: uncles (3) 34/40
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Proposition 149. We have: E[Uh] = p2q+(p+(1¡ 
)p2q)E[V ]

Proof. Let ! be a cycle and let Uh
(1)
(!) (resp. Uh

(2)
(!)) be the number of uncles refered by

honest nephews only present in ! (resp. not present in !). Clearly, E
�
Uh
(1)�

= p2q. Moreover,
the probability that H is the �rst o�cial block of the next attack cycle is p+ (1¡ 
)p2q. So,

E
�
Uh
(2)�

=(p+(1¡ 
)p2q)E[V ]. �

Corollary 150. We have:

E[US] = q+
q3


p¡ q ¡
p q2

p¡ q

�
q

p

�
n1¡1


 ¡ qn1+1(1¡ 
)

¡
�
p2q+(p+(1¡ 
)p2q)

�
q2

p
(1¡ qn1¡1)
+(1¡ 
)p q2 1¡ (p q)

n1¡1

1¡ p q

��
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HM (blue) and SM (yellow). X-axis: q, Y-axis: 


Figure 5.
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From left to right: HM, SM2A and SM2B

Figure 6.



Ethereum with its old di�culty adjustment 37/40
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From left to right: HM, SM (old di�culty adjustment)

Figure 7.
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From left to right: HM, SM (possible di�culty adjustment with uncles)

Figure 8.



Ethereum: di�erent thresholds 39/40
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SM1 (black), SM2A (blue), SM2B (red)

Figure 9.



Comparing SM thresholds for Bitcoin and Ethereum 40/40
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Thresholds SM Bitcoin (black) & SM2A Ethereum (red)

Figure 10.
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