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Blockchains and Smart Contracts

• Crypto-currencies use a blockchain as a distributed ledger.

• Appending transactions to this ledger transfers funds between
participants.

• Funds are locked by small programs.

• These programs use cryptography to authorize transactions.

• More complex programs allow for escrow, covenants, digital
swaps, et cetera.
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Language Design for Blockchains

Why not use JavaScript?

• Ethereum’s primary smart-contract language, Solidity, is
syntactically similar to JavaScript.

• Solidity is compiled to machine code for an abstract machine
called EVM.

What could go wrong?
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The DAO incident
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Problems with EVM

• Difficult to assign costs to operations.

• Difficult to bound the costs of programs.

• Complex and informal language semantics makes reasoning
difficult.

But things are better now, right?
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Parity’s multisig wallet deleted

2017-11-07: TODO
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What about Bitcoin?

• Bitcoin’s programming language is too inexpressive.
• e.g. multiplication has been disabled since 2010.
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A language design problem

Tony Hoare

There are two methods in software design. One is to make the
program so simple, there are obviously no errors. The other is to
make it so complicated, there are no obvious errors.
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What we need is Simplicity

to create a solid foundation for building smart contracts upon.
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What is Simplicity?

Simplicity is low-level language designed for specifying user-defined
programs to be evaluated within an adversarial environment.
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Simplicity’s Features

• Typed combinator language

• Finitarily-complete instead of Turing-complete

• Simple, formal denotational semantics

• Formal operational semantics

• Easy static analysis of computational costs
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Type System

• 1 - Unit type

• A + B - Sum types

• A× B - Product types
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Expressions

Every Simplicity expression, t, is a function from an input type, A,
to an output type, B.

t : A ` B
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Simplicity Language

iden : A ` A

s : A ` B t : B ` C

comp s t : A ` C

unit : A ` 1

t : A ` B

injl t : A ` B + C

t : A ` C

injr t : A ` B + C

s : A× C ` D t : B × C ` D

case s t : (A+ B)× C ` D

s : A ` B t : A ` C

pair s t : A ` B × C

t : A ` C

take t : A× B ` C

t : B ` C

drop t : A× B ` C

Typing rules for the terms of core Simplicity.
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Denotational Semantics
Formally, the language and semantics are defined in the Coq proof
assistant. Informally the semantics are as follows:

JidenK(a) := a

Jcomp s tK(a) := JtK(JsK(a))

JunitK(a) := 〈〉
Jinjl tK(a) := σL(JtK(a))

Jinjr tK(a) := σR(JtK(a))

Jcase s tK〈σL(a), c〉 := JsK〈a, c〉
Jcase s tK〈σR(b), c〉 := JtK〈b, c〉

Jpair s tK(a) := 〈JsK(a), JtK(a)〉
Jtake tK〈a, b〉 := JtK(a)

Jdrop tK〈a, b〉 := JtK(b)
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Denotational Semantics
So simple, it fits on a T-shirt.

22 / 58



Example Expressions
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Bits

2 := 1 + 1

22 := 2× 2

24 := 22 × 22

...
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Half-Adder

half-adder : 2× 2 ` 22

half-adder := case (drop (pair (injl unit) iden))

(drop (pair iden (comp (pair iden unit)

(case (injr unit) (injl unit)))))
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SHA-256 Block Compression

sha-256-block : 2256 × 2512 ` 2256

We use the formal semantics of Simplicity to prove in Coq that our
implementation of sha-256-block is correct.
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Expression DAGs

half-adder

injl

unit drop

injl

drop

pair

iden

drop

pair

unit

comp

casepair

case

drop

injr
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Expression DAGs
Sha-256 compression function
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Simplicity in a Blockchain
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Commitment

By recursively hashing the DAG of a Simplicity program, we
compute a Merkle root that commits to the program.
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Merkle Roots

#(iden) := SHA256Block〈tagiden, b0c2512〉
#(comp s t) := SHA256Block〈tagcomp, 〈#(s),#(t)〉〉

#(unit) := SHA256Block〈tagunit, b0c2512〉
#(injl t) := SHA256Block〈taginjl, 〈#(t), b0c2256〉〉
#(injr t) := SHA256Block〈taginjr, 〈#(t), b0c2256〉〉

#(case s t) := SHA256Block〈tagcase, 〈#(s),#(t)〉〉
#(pair s t) := SHA256Block〈tagpair, 〈#(s),#(t)〉〉
#(take t) := SHA256Block〈tagtake, 〈#(t), b0c2256〉〉
#(drop t) := SHA256Block〈tagdrop, 〈#(t), b0c2256〉〉
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Witness Values

Simplicity adds a special witness combinator that directly provides
input values such as digital signatures.

b : B

witness b : A ` B

These witness values are not committed as part of the
commitment Merkle root.

#(witness b) := SHA256Block〈tagwitness, b0c2512〉
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Redemption

At redemption time, one provides a full Simplicity DAG, including
witness values.

• The system checks that the Merkle root matches the
commitment.

• The system evaluates the Simplicity program an ensures that
it succeeds.
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Pruning

During redemption unused branches of the Simplicity program can
be pruned.

Types are not committed, they are inferred. Pruning may result is
smaller types being inferred and reduce memory usage.
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More Features

Full Simplicity is intended to support:

• Signature aggregation

• Covenants

• Delegation
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Operational Semantics
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Bit Machine

An abstract machine, called the Bit Machine, evaluates Simplicity
expressions.

read frame stack write frame stack

[10011??110101000] [11??1101]

[0000] [111??]
[]

[10]

Example state for the Bit Machine

Simple instructions for the Bit Machine manipulate the two stacks.
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Simplicity Costs

The cost (or weight) of a Simplicity program is determined by

• the size of the programs DAG.

• the number of steps the Bit Machine model takes.

• the amount of memory needed by the Bit Machine model.

This costs can be quickly bounded using static analysis.
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Jets

read frame stack write frame stack

[10011??110101000] [1???????]
[0000] [111??]
[]

[10]

Evaluating a Simplicity subexpression can only read from a
fragment of the active read frame and can only write to a fragment
of the active write frame.
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Jets

Jets allow the Simplicity interpreter to recognize common
subexpressions and preform the computation with C code instead.

Discounted jets allow reduced costs for Simplicity programs that
use these jets.
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Jets

read frame stack write frame stack

[10011??110101000] [1011??1?]
[0000] [111??]
[]

[10]

The jet writes the answer directly to the active write frame.
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Formal Verification
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Formal Verification

We want to be able to build smart contracts that

• manage millions of dollars worth of funds.

• are custom tailored.

• may be single purpose.

• run on a public blockchain.

Formal verification is the only conceivable way of achieving the
safety required.

43 / 58



Formal Verification
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Formal Verification
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Formal Verification
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Playing Go Off-chain with Smart Contracts

A Concept Illustration
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Playing Go

Both players pay funds into a smart-contract that knows the rules
of Go, and the two player’s public keys.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Playing Go

Off-chain, players append their moves to a log, digitally signing
each move they make.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Playing Go

When cooperating, the player who forfeits signs the funds over to
the winner.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Playing Go

When a player cheats, the honest player posts the illegal move,
verified by the smart contract, and redeems the funds.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Playing Go

When a player abandons, the honest player posts the last pair of
moves to force an on-chain move within a fixed time period.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Playing Go

In all cases at most the last two moves ever need to be posted.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons
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Blockchain as Judiciary

Smart contracts act as a mechanical judiciary to resolve disputes.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons
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Blockchain as Judiciary

Bonds can be allocated to cover fees.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons

55 / 58

http://creativecommons.org/licenses/by/2.0


Blockchain as Judiciary

Ideally, participants know in advance the judicial outcome, it never
needs to be invoked.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons
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Solutions provided by Simplicity

• Avoids denial of service:
• The Bit Machine provides a simple model for computational

resource costs.

• Avoids running out of gas:
• Simple static analysis algorithms can bound resource costs of

arbitrary programs.

• Avoids hacks:
• Practical proofs of program correctness made possible by

formal semantics in Coq.

• Add privacy:
• Unused code is pruned before appearing on the Blockchain.
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Read more about Simplicity

https://arxiv.org/abs/1711.03028
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