
Simplicity
A New Language for Blockchains

Russell O’Connor

roconnor@blockstream.com

Paris Cryptofinance Seminar
January 17, 2018

1 / 58



Blockchains and Smart Contracts

• Crypto-currencies use a blockchain as a distributed ledger.

• Appending transactions to this ledger transfers funds between
participants.

• Funds are locked by small programs.

• These programs use cryptography to authorize transactions.

• More complex programs allow for escrow, covenants, digital
swaps, et cetera.

2 / 58



Language Design for Blockchains

Why not use JavaScript?

• Ethereum’s primary smart-contract language, Solidity, is
syntactically similar to JavaScript.

• Solidity is compiled to machine code for an abstract machine
called EVM.

What could go wrong?

3 / 58



Language Design for Blockchains

Why not use JavaScript?

• Ethereum’s primary smart-contract language, Solidity, is
syntactically similar to JavaScript.

• Solidity is compiled to machine code for an abstract machine
called EVM.

What could go wrong?

4 / 58



Language Design for Blockchains

Why not use JavaScript?

• Ethereum’s primary smart-contract language, Solidity, is
syntactically similar to JavaScript.

• Solidity is compiled to machine code for an abstract machine
called EVM.

What could go wrong?

5 / 58



6 / 58



7 / 58



The DAO incident

8 / 58



Problems with EVM

• Difficult to assign costs to operations.

• Difficult to bound the costs of programs.

• Complex and informal language semantics makes reasoning
difficult.

But things are better now, right?

9 / 58



Problems with EVM

• Difficult to assign costs to operations.

• Difficult to bound the costs of programs.

• Complex and informal language semantics makes reasoning
difficult.

But things are better now, right?

10 / 58



11 / 58



Parity’s multisig wallet deleted

2017-11-07: TODO

12 / 58



What about Bitcoin?

• Bitcoin’s programming language is too inexpressive.
• e.g. multiplication has been disabled since 2010.

13 / 58



A language design problem

Tony Hoare

There are two methods in software design. One is to make the
program so simple, there are obviously no errors. The other is to
make it so complicated, there are no obvious errors.

14 / 58



What we need is Simplicity

to create a solid foundation for building smart contracts upon.

15 / 58



What is Simplicity?

Simplicity is low-level language designed for specifying user-defined
programs to be evaluated within an adversarial environment.

16 / 58



Simplicity’s Features

• Typed combinator language

• Finitarily-complete instead of Turing-complete

• Simple, formal denotational semantics

• Formal operational semantics

• Easy static analysis of computational costs

17 / 58



Type System

• 1 - Unit type

• A + B - Sum types

• A× B - Product types

18 / 58



Expressions

Every Simplicity expression, t, is a function from an input type, A,
to an output type, B.

t : A ` B

19 / 58



Simplicity Language

iden : A ` A

s : A ` B t : B ` C

comp s t : A ` C

unit : A ` 1

t : A ` B

injl t : A ` B + C

t : A ` C

injr t : A ` B + C

s : A× C ` D t : B × C ` D

case s t : (A+ B)× C ` D

s : A ` B t : A ` C

pair s t : A ` B × C

t : A ` C

take t : A× B ` C

t : B ` C

drop t : A× B ` C

Typing rules for the terms of core Simplicity.

20 / 58



Denotational Semantics
Formally, the language and semantics are defined in the Coq proof
assistant. Informally the semantics are as follows:

JidenK(a) := a

Jcomp s tK(a) := JtK(JsK(a))

JunitK(a) := 〈〉
Jinjl tK(a) := σL(JtK(a))

Jinjr tK(a) := σR(JtK(a))

Jcase s tK〈σL(a), c〉 := JsK〈a, c〉
Jcase s tK〈σR(b), c〉 := JtK〈b, c〉

Jpair s tK(a) := 〈JsK(a), JtK(a)〉
Jtake tK〈a, b〉 := JtK(a)

Jdrop tK〈a, b〉 := JtK(b)

21 / 58



Denotational Semantics
So simple, it fits on a T-shirt.

22 / 58



Example Expressions

23 / 58



Bits

2 := 1 + 1

22 := 2× 2

24 := 22 × 22

...

24 / 58



Half-Adder

half-adder : 2× 2 ` 22

half-adder := case (drop (pair (injl unit) iden))

(drop (pair iden (comp (pair iden unit)

(case (injr unit) (injl unit)))))

25 / 58



SHA-256 Block Compression

sha-256-block : 2256 × 2512 ` 2256

We use the formal semantics of Simplicity to prove in Coq that our
implementation of sha-256-block is correct.

26 / 58



Expression DAGs

half-adder

injl

unit drop

injl

drop

pair

iden

drop

pair

unit

comp

casepair

case

drop

injr

27 / 58



Expression DAGs
Sha-256 compression function

pair

pair pair

pair

pairpair

pair

pair

comp

comp

pair

comp

drop

pair

pair

pairpair

injr

unit

pair

pair pair

drop

compinjl

unit

take

take

pair

pair pair

drop

drop

take

drop

pair

drop take

comp

pair

comp

drop

drop

case

drop drop

pair

pair pair

pair

pairpair

pair

pair pair

injl

unit

pair

pairtake

pair

pair

pair

pairtake

pair

pairtake

pair

comp comp drop

pair

drop

drop

pair

pairpair pair

pair

pairdrop

pair

pair

drop

drop

drop

take

pair

pair pairpair

pair

injl

unit

pair

pair

drop

take

case

drop

pair

pair

pair

pairpair

iden

pair

pair drop

pair

pair

take

pair

pair

comp

pair

case

comp

comp

pairpair

pair

pair

comp

comp

pair

pair

pair pair

pair

pairpair

drop

take

drop

drop

take

take

pair

take drop

pair

pairpair

pair

compcomp

pair

pairtake

pair

comptake

pair

pair

take

drop

drop

drop

take

take

take

drop

take

drop

take

drop

take

pair

pair drop

drop

iden

drop

drop

drop

injl

pair

droppair

pair

pair

pair

take

pair

pair

comp

comp

pair

drop

pair

comp

comp

pair

take

pair

pair

pairpair

take

take

pair

take

comp

drop

take

pair

pair

pair

pair

pair

pair

pair

pair

pair

pair

comp

pair

comp

pair

comp

comp

pair

pair

pair

pair

drop

injr

pair

comp

comp

pair

pair

iden

pair

drop

comp

pair

pair

drop

pair

pair

pair

comp comp

pair

pair

pairpair

pairpair

pair

pairdrop

pair

drop

take

pair

dropdrop

take

comp

pair

comp

pair

pair

pair

pair

take

comp

pair

comp

pair

comp

comp

comp

pair

pair

pairpair

pair

drop

take

pair

pair pair

pair

pair

pair

drop

take

comp

comp

drop

pair

pair

pair pair

pair

pair take

pair

pairpair

pair

drop drop take

pair

comp

comp

pair

comp

pair

comp

pairpair

pair

pairpair

pair

unit

pair

pair pair

pair

injr injl

pair

pairpair

take

pair

pair

pair

pair

comp

pair

pair

pair pair

pair

dropcomp

take

pair

pair

comp

pair

compdrop

comp

pair

pair

take

drop

drop

drop

take

pair

pairpair

pair

take

take

comp

pair

comp

pair

compcomp

drop

comp

comp

pair

pair

drop

pair

takedrop

pair

pair

pair

take

pair

pair

take

pair

pair

pair pair pair pair

pair

take drop

comp

comp

pair

pair

pair

pair

pair pair

pair

pair

take

drop

pair

pair

pair

drop drop

pair pair

pair

take

pair

pairpair

pair

pairpair

comp

pair

pair

pair pair

pair pair

pair

take comp

take

take

pair

pair

pairpair

pair

pair

pair

pair

pairpair

pair

drop

pair

pair

pair pair

pair

pair

takepair

unit

pair

drop

comp

pair

comp

pair

pair

pair

pair

pair

pair

drop comp

pair

comp

comp

pair

pairpair

pair

pair

take pair

pair

comp take

iden

pair

take

drop

pair pairpair

pair

pair

pairpair

comp

pair

comp

comp

pair

pair

pairpair

pair

pair

pair

pair

pair

comp

case pair

take

pair

pair

pair

pairpair

pair

droptake

pair

pair

pair

comp

pair

pair

pair pair

drop

drop

take

pair

comp

drop

pair

pair

comp

pair

pair take

pair

pair

compcomp

pair

pair

take

pair

comp

comp

pairtake

pair

pair

take

drop

pair

pair

drop

pair

pairpair

pair

pair

drop

drop

pair

drop

pair

pair pair

iden

drop

take

pair

pair

comp

drop

pair

pair

pair

comp

pair

take

drop

pair

take

pair

take

pair drop

pair

pair

pair

pair

pair

take

drop

drop

pair

pair

pair

pairtake

pair

pair

drop

drop drop

pair

pair

pairpair

pair

pair

pair

pairpair pair

pair

take pairpair

drop pair

pair

pair

pair

pair

pair

pair

drop

take

comp

pair

take

pair

drop

pair

take

take

drop

take

pair

pair

pair

pair

drop

take

pair

pair pair pair

drop

take

drop

pair

takepair

pair

pairpair

pair

pair

comp

comp

comp

pair

comp

pair

comp

comp

paircase

comp

comp

pair

drop

take

pair

comp

pair

pair

comp

pair

pair

comp

case

pair

pair

pair

pair

drop

injl

pair

drop

pair

pair pair

pair

take

comp

pair

drop

comp

pair

pair

pair

pair

drop

pair

drop

pair

comp

comp

pair

iden

pair

pair pair

pair

pair

comp

pair

drop

drop

pair

pair

comp

drop

comp

pair

pair

take

drop

pair

pair pair

pair

take

take

drop

take

pair

pair

drop

pair

pair

pairtake

pair

pair

pair pair

pair

pair

pair pair

pairpair

pair

comp

drop

pair

pair

drop

pair

take

take

pair

pair

pair

comp

comp

drop

pairpair

take

pair pair

comp

pair

comp

comp

pair

take

pair

comp

drop

comp

pair

comp

comp

pair

pair

pair

pair

pair

pair

pair

pair

pair

comp

comp

pair

pair

pair

pair

pair

pair

drop

comp

pair

comp

take take

pair

pair

pair

iden pair

drop

takedrop

case pair

comp

pair

pairtake

drop

pair

comp

pair

comp

pair

comp

pair

pair

comp

take

comp

comp

pair

comp

pair

pairpair

pair

pair

take

drop

take

pair

pair

pair

pair

pair

pair

pair

pair pair

pair

pair

drop

pair

pair

pair

pair

take

pair

comp

pair

pair

pair

paircomp

pair take

pair

case

pair

pair

pair

comp

comp

pair

pair

drop

pair pair pair

pair

compcomp

pair

pair

pair

pair

take

pair

droptake

comp

comp

pair

drop

pair

droptake

pair

pair

drop

drop

pair

pair

injr

pair

drop

comp

pair

comp

comp

pair

pair

iden

pair

pair pair

pair

drop

pair

pairpair

comp

pair

comp

comp

take

drop

drop

comp

pair

take

pair

pair pair

pair

comp

take

comp

pairpair

pair

drop

pair

comp

take pair

pair

pair

comp

take

drop

pair pair

pair

pair

pair

drop

take

pair

pair

pair

drop

pair

pair

pair

pair

take

pair

pair

pair

comp comp

comp

pair

pair

pairpair

drop

pair

pair

take

take

pair

pair

pairpair

pair

take drop

pair

case

drop

drop

pair

drop

pair

comp

drop

pair

pair pair

pair

pair

pair

pair

pair

pair

pair

pair

pair

take

pair

comp

injr

pair

pair

pair

pair

pairpair

drop

pair

comp

pair

comp

pair

drop

pair

take

drop

comp

pair

pair

pair

pair

iden

comp

pair

take

pair

pair

comp

take

pair

pair

pair

pair

comp

pair

drop

pair

pair

comp

pair

comp

pair

pair

comp

comp

pair

case

comp

pair

pair

pair

pair pair

pairpair

pair

pairpair

comp

take

pair

pair

pair

pair

take

drop

pair

comp

pair

pair

pair

comp

comp

pairpair

pair

pair

take

pair

pair

pair

pair

pair

28 / 58



Simplicity in a Blockchain

29 / 58



Commitment

By recursively hashing the DAG of a Simplicity program, we
compute a Merkle root that commits to the program.

30 / 58



Merkle Roots

#(iden) := SHA256Block〈tagiden, b0c2512〉
#(comp s t) := SHA256Block〈tagcomp, 〈#(s),#(t)〉〉

#(unit) := SHA256Block〈tagunit, b0c2512〉
#(injl t) := SHA256Block〈taginjl, 〈#(t), b0c2256〉〉
#(injr t) := SHA256Block〈taginjr, 〈#(t), b0c2256〉〉

#(case s t) := SHA256Block〈tagcase, 〈#(s),#(t)〉〉
#(pair s t) := SHA256Block〈tagpair, 〈#(s),#(t)〉〉
#(take t) := SHA256Block〈tagtake, 〈#(t), b0c2256〉〉
#(drop t) := SHA256Block〈tagdrop, 〈#(t), b0c2256〉〉

31 / 58



Witness Values

Simplicity adds a special witness combinator that directly provides
input values such as digital signatures.

b : B

witness b : A ` B

These witness values are not committed as part of the
commitment Merkle root.

#(witness b) := SHA256Block〈tagwitness, b0c2512〉

32 / 58



Redemption

At redemption time, one provides a full Simplicity DAG, including
witness values.

• The system checks that the Merkle root matches the
commitment.

• The system evaluates the Simplicity program an ensures that
it succeeds.

33 / 58



Pruning

During redemption unused branches of the Simplicity program can
be pruned.

Types are not committed, they are inferred. Pruning may result is
smaller types being inferred and reduce memory usage.

34 / 58



More Features

Full Simplicity is intended to support:

• Signature aggregation

• Covenants

• Delegation

35 / 58



Operational Semantics

36 / 58



Bit Machine

An abstract machine, called the Bit Machine, evaluates Simplicity
expressions.

read frame stack write frame stack

[10011??110101000] [11??1101]

[0000] [111??]
[]

[10]

Example state for the Bit Machine

Simple instructions for the Bit Machine manipulate the two stacks.

37 / 58



Simplicity Costs

The cost (or weight) of a Simplicity program is determined by

• the size of the programs DAG.

• the number of steps the Bit Machine model takes.

• the amount of memory needed by the Bit Machine model.

This costs can be quickly bounded using static analysis.

38 / 58



Jets

read frame stack write frame stack

[10011??110101000] [1???????]
[0000] [111??]
[]

[10]

Evaluating a Simplicity subexpression can only read from a
fragment of the active read frame and can only write to a fragment
of the active write frame.

39 / 58



Jets

Jets allow the Simplicity interpreter to recognize common
subexpressions and preform the computation with C code instead.

Discounted jets allow reduced costs for Simplicity programs that
use these jets.

40 / 58



Jets

read frame stack write frame stack

[10011??110101000] [1011??1?]
[0000] [111??]
[]

[10]

The jet writes the answer directly to the active write frame.

41 / 58



Formal Verification

42 / 58



Formal Verification

We want to be able to build smart contracts that

• manage millions of dollars worth of funds.

• are custom tailored.

• may be single purpose.

• run on a public blockchain.

Formal verification is the only conceivable way of achieving the
safety required.

43 / 58



Formal Verification

44 / 58



Formal Verification

45 / 58



Formal Verification

46 / 58



Playing Go Off-chain with Smart Contracts

A Concept Illustration

47 / 58



Playing Go

Both players pay funds into a smart-contract that knows the rules
of Go, and the two player’s public keys.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

48 / 58

http://creativecommons.org/licenses/by/2.0


Playing Go

Off-chain, players append their moves to a log, digitally signing
each move they make.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

49 / 58

http://creativecommons.org/licenses/by/2.0


Playing Go

When cooperating, the player who forfeits signs the funds over to
the winner.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

50 / 58

http://creativecommons.org/licenses/by/2.0


Playing Go

When a player cheats, the honest player posts the illegal move,
verified by the smart contract, and redeems the funds.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

51 / 58

http://creativecommons.org/licenses/by/2.0


Playing Go

When a player abandons, the honest player posts the last pair of
moves to force an on-chain move within a fixed time period.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

52 / 58

http://creativecommons.org/licenses/by/2.0


Playing Go

In all cases at most the last two moves ever need to be posted.

Image credit:By mangpages (Flickr: problem) [CC BY 2.0], via Wikimedia Commons

53 / 58

http://creativecommons.org/licenses/by/2.0


Blockchain as Judiciary

Smart contracts act as a mechanical judiciary to resolve disputes.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons

54 / 58

http://creativecommons.org/licenses/by/2.0


Blockchain as Judiciary

Bonds can be allocated to cover fees.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons

55 / 58

http://creativecommons.org/licenses/by/2.0


Blockchain as Judiciary

Ideally, participants know in advance the judicial outcome, it never
needs to be invoked.

Image credit:By Chris Potter (Flickr: 3D Judges Gavel) [CC BY 2.0], via Wikimedia Commons

56 / 58

http://creativecommons.org/licenses/by/2.0


Solutions provided by Simplicity

• Avoids denial of service:
• The Bit Machine provides a simple model for computational

resource costs.

• Avoids running out of gas:
• Simple static analysis algorithms can bound resource costs of

arbitrary programs.

• Avoids hacks:
• Practical proofs of program correctness made possible by

formal semantics in Coq.

• Add privacy:
• Unused code is pruned before appearing on the Blockchain.

57 / 58



Read more about Simplicity

https://arxiv.org/abs/1711.03028

58 / 58

https://arxiv.org/abs/1711.03028

	Blockchains
	What's the Problem?
	Simplicity
	Features
	Example Expressions
	Subexpression Sharing
	Merkle
	Bit Machine
	Jets
	Formal Verification
	Example Applications
	Solutions

