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Introduction

The project has two main goals.

Prove Fermat's Last Theorem for regular prime exponents in
Lean.

Develop algebraic number theory in mathlib.

https://github.com/leanprover-community/�t-regular.
A lot of results are already in mathlib.
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Joint work with the mathlib community.

Especially

Alex Best

Chris Birkbeck

Eric Rodriguez

If you want to contribute just write on Zulip, in the flt-regular
stream.
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Fermat's Last Theorem

Fermat's Last Theorem is the following statement.

Theorem

Let n > 2 be a natural number. Then the equation

xn + yn = zn

has no nontrivial solutions in Z.

It has been conjectured by Fermat around 1637.
Finally proved by Wiles and Taylor in 1995.
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Regular prime exponents

The proof uses advanced 20th century mathematics.

Results in
several areas of mathematics.

Number theory.

Algebraic geometry.

Harmonic analysis...

It's currently unreasonable to formalize it.

We will concentrate on a special case.
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Proposition (Fermat)

Fermat's last theorem is true for n = 4.

Corollary

It is enough to prove FLT in the case the exponent is an odd prime

p.

The proposition is already in mathlib.

theorem not_fermat_4 {a b c : Z} (ha : a 6= 0)

(hb : b 6= 0) : a ^ 4 + b ^ 4 6= c ^ 4

The proof is less than 300 lines of code.
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Kummer's idea:

if zp = xp + yp, then

zp = (x + y)(x + ζpy)(x + ζ2py) · · · (x + ζp−1

p y)

in Z[ζp] = OQ(ζp), where ζp = e
2πi
p .

This implies that

(z)p = (x + y)(x + ζpy)(x + ζ2py) · · · (x + ζp−1

p y)

as ideals.
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The ideals on the right are coprime, so each of them must be a
p-th power

(x + ζkp y) = I pk .

In the class group of OQ(ζp) this implies

I pk = 1,

but in general Ik 6= 1.

8 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

The ideals on the right are coprime, so each of them must be a
p-th power

(x + ζkp y) = I pk .

In the class group of OQ(ζp) this implies

I pk = 1,

but in general Ik 6= 1.

8 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

The ideals on the right are coprime, so each of them must be a
p-th power

(x + ζkp y) = I pk .

In the class group of OQ(ζp) this implies

I pk = 1,

but in general Ik 6= 1.

8 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

The ideals on the right are coprime, so each of them must be a
p-th power

(x + ζkp y) = I pk .

In the class group of OQ(ζp) this implies

I pk = 1,

but in general Ik 6= 1.

8 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

The ideals on the right are coprime, so each of them must be a
p-th power

(x + ζkp y) = I pk .

In the class group of OQ(ζp) this implies

I pk = 1,

but in general Ik 6= 1.

8 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

De�nition

We say that an odd prime p is regular if p does not divide the order
of the class group of OQ(ζp).

In this case, since I pk = 1, we have Ik = 1, so Ik = (αk) is principal.

Theorem (FLT for regular primes, case I)

Let p be a regular prime. The equation

xp + yp = zp and p - xyz

has no nontrivial solutions in Z.
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De�nition

We say that p is strongly regular if it is regular and the following
holds.

For all u ∈ Z[ζp]∗ with u ≡ a mod p for some integer a,
there is v ∈ Z[ζp]∗ such that u = vp.

Theorem (FLT for regular primes, case II)

Let p be a strongly regular prime. The equation

xp + yp = zp and p | xyz

has no nontrivial solutions in Z.

10 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

De�nition

We say that p is strongly regular if it is regular and the following
holds. For all u ∈ Z[ζp]∗ with u ≡ a mod p for some integer a,
there is v ∈ Z[ζp]∗ such that u = vp.

Theorem (FLT for regular primes, case II)

Let p be a strongly regular prime. The equation

xp + yp = zp and p | xyz

has no nontrivial solutions in Z.

10 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

De�nition

We say that p is strongly regular if it is regular and the following
holds. For all u ∈ Z[ζp]∗ with u ≡ a mod p for some integer a,
there is v ∈ Z[ζp]∗ such that u = vp.

Theorem (FLT for regular primes, case II)

Let p be a strongly regular prime.

The equation

xp + yp = zp and p | xyz

has no nontrivial solutions in Z.

10 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

De�nition

We say that p is strongly regular if it is regular and the following
holds. For all u ∈ Z[ζp]∗ with u ≡ a mod p for some integer a,
there is v ∈ Z[ζp]∗ such that u = vp.

Theorem (FLT for regular primes, case II)

Let p be a strongly regular prime. The equation

xp + yp = zp and p | xyz

has no nontrivial solutions in Z.

10 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Fermat's Last Theorem
Regular prime exponents

Lemma (Kummer's lemma)

A prime is regular if and only if it is strongly regular.

The proof needs several ingredients.

Class �eld theory.

Class number formula.

Corollary

An odd prime p is regular if and only if it does not divide the

denominator of any of the Bernoulli numbers Bk for

k = 2, 4, 6, . . . , p − 3.

This is very easy to check in practice.
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Regular prime exponents

Historically, Kummer's proof was the �rst that worked for many
cases at once.

The �rst irregular primes are: 37, 59, 67, 101, 103, 131, . . .

Conjecture

There are in�nitely many regular primes. More precisely the natural

density of the set of regular primes among the primes is

e−1/2 ≈ 0.61.

Proposition

There are in�nitely many irregular primes.
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Informal de�nition:

a cyclotomic extension is an extension
generated by roots of unity.
We want a de�nition as general as possible.

Allows in�nite extension like Q(ζp∞)/Q.

Allows positive characteristic.

Allows rings extensions like Z[ζp]/Z.

More importantly: we want a characteristic predicate:

Q(e
2πi
n ) ⊆ C but also Q[x ]/Φn(x)
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variables (S : set N+) (A : Type) (B : Type)

[comm_ring A] [comm_ring B] [algebra A B]

class is_cyclotomic_extension S A B : Prop :=

(exists_root {a : N+} (ha : a ∈ S) :

∃ r : B, aeval r (cyclotomic a A) = 0)

(adjoin_roots : ∀ (x : B),

x ∈ adjoin A { b : B | ∃ a : N+, a ∈ S ∧ b ^ (a

: N) = 1 })
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Cyclotomic �elds

We want to be able to produce a cyclotomic extension of a �eld.

@[derive [field, algebra K]]

def cyclotomic_field (n : N+) (K : Type) [field K] :

Type := (cyclotomic n K).splitting_field

instance :

is_cyclotomic_extension {n} K (cyclotomic_field n K)
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Cyclotomic rings

We want to be able to produce a cyclotomic extension of a ring.

variables (n : N+) (A : Type) (K : Type)

[comm_ring A] [field K] [is_domain A] [algebra A K]

[is_fraction_ring A K]

def cyclotomic_ring n A K : Type :=

adjoin A { b : (cyclotomic_field n K) |

b ^ (n : N) = 1 }

One has to write cyclotomic_ring n A K even if K is
mathematically irrelevant.
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Regular primes

instance (n : N+) :

fintype (class_group (cyclotomic_ring n Z Q)

(cyclotomic_field n Q))

This needs OQ(ζn) = Z[ζn].

def is_regular_prime (p : N) [hp : fact p.prime] :

Prop :=

p.coprime

(fintype.card (class_group (cyclotomic_ring 〈p, hp

.1.pos〉 Z Q)

(cyclotomic_field 〈p, hp.1.pos〉 Q)))
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The discriminant
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Ring of integers of cyclotomic extensions

Proposition

We have OQ(ζn) = Z[ζn]

if n = pk is a prime power.

We need two lemmas about number �elds. Let x ∈ Z.

Lemma

The discriminant of Q(x)/Q kills OQ(x)/Z[x ].

Lemma

If the minimal polynomial of x is Eiseinstein at p, then the index of

Z[x ] inside OQ(x) is prime to p.
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Proof of the proposition.

Let εn = 1− ζn.

Recall that n = pk .

We have Z[ζn] = Z[εn].

The discriminant of 1, εn, ε
2
n, . . . , ε

ϕ(n)−1

n is

±ppk−1((p−1)k−1).

The minimal polynomial of εn is Eiseinstein at p.
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The minimal polynomial of εn is Eiseinstein at p.
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Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

The discriminant

variables (A : Type) {B ι : Type}

[comm_ring A] [comm_ring B] [algebra A B]

def trace_matrix (b : ι → B) : matrix ι ι A

| i j := trace_form A B (b i) (b j)

def discr [fintype ι] (b : ι → B) :=

by { classical, exact (trace_matrix A b).det }
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Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

variables (K : Type u) {L : Type v} [field K]

[field L] [algebra K L] [finite K L]

(pb : power_basis K L) [is_separable K L]

lemma discr_power_basis_eq_norm :

discr K pb.basis =

(-1) ^ (n * (n - 1) / 2) * (norm K

(aeval pb.gen (minpoly K pb.gen).derivative))

Here n := finrank K L.
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Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

lemma discr_eq_discr {K : Type} [number_field K]

{b : basis ι Q K} {b' : basis ι' Q K}

(h : ∀ i j, is_integral Z (b.to_matrix b' i j))

(h' : ∀ i j, is_integral Z (b'.to_matrix b i j)) :

discr Q b = discr Q b'

No problems in formalizing the general results about the
discriminant of number �elds.
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Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

lemma discr_prime_pow {ζ : L} {k : N} {p : N+}
[is_cyclotomic_extension {p ^ k} K L]

[fact (p : N).prime]
[ne_zero ((p : N) : K)]

(hζ : is_primitive_root ζ ↑(p ^ k))

(h : irreducible (cyclotomic (↑(p ^ k) : N) K)) :

discr K (hζ.power_basis K).basis =

(-1) ^ (((p ^ k : N).totient) / 2) *

p ^ ((p : N) ^ (k - 1) * ((p - 1) * k - 1))

Remark

In N we have 1/2 = 0 and 0− 1 = 0.
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Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

The ring of integers

variables {p : N+} {k : N} {K : Type} [field K]

[char_zero K] {ζ : K} [hp : fact (p : N).prime]

lemma is_integral_closure {ζ : K}

[is_cyclotomic_extension {p ^ k} Q K]

(hζ : is_primitive_root ζ ↑(p ^ k)) :

is_integral_closure (adjoin Z ({ζ} : set K)) Z K
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Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

Informal proof
The discriminant
The ring of integers

We are now ready for the �nal result.

lemma cyclotomic_ring_is_integral_closure :

is_integral_closure (cyclotomic_ring (p ^ k) Z Q)

Z (cyclotomic_field (p ^ k) Q)

We encounter here the char_zero diamond.

local attribute [-instance] cyclotomic_field.algebra
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Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K

(since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.

We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

The ne_zero class

Let L/K be a n-th cyclotomic extension of �elds.

Lemma

If n 6= 0 in K , then L contains a primitive n-th root of unity.

This is false if n = 0 in K (since there are no primitive n-roots of
unity in any extension of K ).

In practice the theory is rather di�erent if n = 0 in K or not.
We would like to assume this once and then forget about it.

class ne_zero {R : Type} [has_zero R] (n : R) : Prop

:= (out : n 6= 0)

28 / 30



Introduction
Fermat's Last Theorem for regular primes

Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

variables {n : N+} {K : Type} {L : Type} (C : Type)

[field K] [field L] [comm_ring C] [algebra K L]

[algebra K C] [is_cyclotomic_extension {n} K L]

{ζ : L} (hζ : is_primitive_root ζ n) [is_domain C]

[ne_zero ((n : N) : K)]

(hirr : irreducible (cyclotomic n K))

def embeddings_equiv_primitive_roots :

(L →a[K] C) ' primitive_roots n C
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Cyclotomic extensions in Lean
Ring of integers of cyclotomic extensions

The ne_zero class

The ne_zero class

In the proof we need

haveI hn : ne_zero ((n : N) : C) :=

ne_zero.of_no_zero_smul_divisors K C n,

Easy to prove, but it is not automatically found.
Lean wants ne_zero ((n : N): C). The problem with using
ne_zero ((n : N): K) automatically is that Lean has no way of
guessing K.
Moving between N+ and N also causes troubles.
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