next up previous contents index
Next: Plane geometry Up: Theoretical background Previous: Fourier transforms   Contents   Index


Bessel transforms

Let $f(x)$ a real function defined on an interval $[a,b]$, $n\geq 0$ an integer. The $n$-th Bessel transform of $f$ is the function

\begin{displaymath}B_nf(t) \ = \ \int_a^bj_n(tx)f(x)dx,\end{displaymath}

where $j_n$ is the Bessel function of order $n$. Let $Tf(t)$ the Fourier transform of $f(x)$ and $Rf(t)$, $If(t)$ the real and imaginary part of $Tf(t)$:

\begin{displaymath}Rf(t) \ = \ \int_a^b\cos(tx)f(x)dx, \ \ \ \
If(t) \ = \ \int_a^b\sin(tx)f(x)dx.\end{displaymath}

Then we have

\begin{displaymath}B_nf(t) \ = \ \frac{2}{\pi}\int_0^{\pi/2}Rf(t\sin\theta)\cos(n\theta)d\theta
\ \ \ \ {\rm if \ }n \ {\rm is \ even},\end{displaymath}


\begin{displaymath}B_nf(t) \ = \ \frac{2}{\pi}\int_0^{\pi/2}If(t\sin\theta)\sin(n\theta)d\theta
\ \ \ \ {\rm if \ }n \ {\rm is \ odd}.\end{displaymath}

We use these formulas to compute Bessel transforms in funct.



2009-11-12