Séminaires : Géométrie et dynamique dans les espaces de modules

Equipe(s) Responsable(s)SalleAdresse
Analyse Algébrique
Géométrie et Dynamique
Carlos Matheus, Bram Petri, Anton Zorich
Olga Ladyjenskaïa (ex-salle 01) à IHP IHP

Séminaire mensuel à l'Institut Henri Poincaré, plupart du temps mercredi de 14h à 15h salle Olga Ladyjenskaïa (ex-salle 01). Pour plus de détails voire la page web :

http://carlos.matheus.perso.math.cnrs.fr/seminaire/index.html

Monthly seminar at the Institute Henri Poincaré. It usually takes place on Wednesday from 2pm to 3pm at the room Olga Ladyjenskaïa (ex-room 01). For more details see

http://carlos.matheus.perso.math.cnrs.fr/seminaire/index.html

Séances à suivre

Orateur(s)Titre Date DébutSalleAdresseDiffusion
+ Séances antérieures

Séances antérieures

Orateur(s)Titre Date DébutSalleAdresse
+ Nguyen-Bac Dang Dérivée de la dimension de Hausdorff pour des famille d'ensemble limites dégénérescentes 17/09/2025 14:00

Dans cet exposé issu d'un travail en cours avec Vlerë Mehmeti, je vais tenter comment dans certains cas, on peut donner une notion de dérivée à la dimension de Hausdorff d'ensembles limites associés à des groupes engendrés par des matrices 2x2 à coefficient méromorphes.

+ Richard Schwartz Simion Filip Exposés de Richard Schwartz et Simion Filip 18/06/2025 14:00

Richard Schwartz (Brown University) de 14h a 15h

The optimal paper Moebius band

If the number L is large you can take a 1xL rectangular strip, smoothly twist it in space, and glue the ends together so as to make an embedded paper Moebius band.  If L is too small this is impossible.  In this talk I will explain why L>sqrt(3) is a necessary and sufficient condition for the existence of a smoothly embedded paper Moebius band. This is the solution to the 1977 conjecture of B. Halpern and C. Weaver. I will also explain why a sequence of L-minimizing examples must converge to an equilateral triangle.

-------------------------

S. Filip (University of Chicago) de 15h30 a 16h30
 
Measure and Topological Rigidity Beyond Homogeneous Dynamics
 
To study the asymptotic behavior of orbits of a dynamical system, one can look at orbit closures or invariant measures. When the underlying system has a homogeneous structure, usually coming from a Lie group, with appropriate assumptions a wide range of rigidity theorems show that ergodic invariant measures and orbit closures have to be well-behaved and can often be classified. I will describe joint work with Brown, Eskin, and Rodriguez-Hertz, which establishes rigidity results for quite general smooth dynamical systems having some hyperbolicity. I will also explain some of the necessary assumptions as well as the homogeneous structures that emerge.
+ David Aulicino Anja Randecker Séance double de David Aulicino et de Anja Randecker 30/04/2025 14:00

David Aulicino (Brooklyn College) de 14h a 15h

Siegel-Veech Constants of Cyclic Covers of Generic Translation Surfaces

We consider generic translation surfaces of genus g>0 with marked points and take covers branched over the marked points such that the monodromy of every element in the fundamental group lies in a cyclic group of order d . Given a translation surface, the number of cylinders with waist curve of length at most L grows like L2 . By work of Veech and Eskin-Masur, when normalizing the number of cylinders by L2 , the limit as L goes to infinity exists and the resulting number is called a Siegel-Veech constant. The same holds true if we weight the cylinders by their area. Remarkably, the Siegel-Veech constant resulting from counting cylinders weighted by area is independent of the number of branch points n . All necessary background will be given and a connection to combinatorics will be presented. This is joint work with Aaron Calderon, Carlos Matheus, Nick Salter, and Martin Schmoll.
---------------------------------------------------------------------------------------------------------
Anja Randecker (Saarland University, Heidelberg University) de 15h30 a 16h30
 
Free groups as Veech groups of finite-area translation surfaces
 
The question of realization of Veech groups is one of the few instances where we know essentially everything about infinite translation surfaces and not so much about finite translation surfaces. An intermediate case between the two extremes is the one of finite-area infinite-genus translation surfaces: while we do not have a classification of groups that can be realized as Veech groups, a careful study of covers of the Chamanara surface shows that every free group appears as projective Veech group. 
 
In this talk, I will introduce the Chamanara surface and its Veech group, explain how to describe all its finite covers by monodromy vectors, and show how to determine from the monodromy vector the Veech group of the corresponding cover. This is based on joint work with Mauro Artigiani, Chandrika Sadanand, Ferrán Valdez, and Gabriela Weitze-Schmithüsen.
+ Jeremy TOULISSE Problème de Plateau dans l'espace pseudo-hyperbolique 19/03/2025 14:00

L'espace pseudo-hyperbolique H2,n est l'analogue pseudo- Riemannien de l'espace hyperbolique. Dans cet exposé, j'expliquerai comment résoudre le problème de Plateau asymptotique dans cet espace : étant donné un cercle topologique dans le bord à l'infini de H2,n, nous construisons une unique surface maximale complète qui s'appuie sur ce cercle. Cette construction repose sur la théorie des courbes pseudo-holomorphes développée par Gromov. Il s'agit d'un travail en commun avec François Labourie et Mike Wolf.

+ Vaibhav Gadre Diagonal flow, topology and applications to Lyapunov exponents 19/02/2025 15:30
Given a flow on a manifold, we may define the flow group to be the subgroup of the fundamental group generated by the almost flow loops, namely, by based loops that are obtained from flow segments that start and end in a fixed contractible open set. For the diagonal (Teichmüller) flow on a linear invariant submanifold in a stratum of abelian differentials, we prove that the flow group equals the fundamental group. For components of strata of abelian/ quadratic differentials, we use the flow group result to derive simplicity of Lyapunov exponents for the plus and minus Kontsevich—Zorich cocycles, a generalisation in statement and in approach of simplicity for abelian strata by Avila—Viana. In the process, we answer in the affirmative several questions by Yoccoz regarding Rauzy diagrams for interval exchange maps. This is (variously) joint work with Arana-Herrera, Bell, Delecroix, Gutierrez-Romo and Schleimer.

 

+ Pascal Hubert Longueur combinatoire des liens de selles dans les surfaces de translations et complexité pour les billards dans les polygones réguliers 19/02/2025 14:00

Dans ce travail en commun avec Jayadev Athreya et Serge Troubetzkoy, nous montrons comment relier, dans une surface de translation, la longueur géométrique et la longueur combinatoire (nombre de rebonds pour un billard). On applique ce résultat au calcul de la complexité du billard dans un polygone régulier où on code les trajectoires suivant la suite de côtés rencontrée.

+ Vladimir Markovic Random covers and virtual homology of moduli spaces 22/01/2025 14:00

I will discuss Ivanov conjectures (and the closely related Putman-Wieland conjecture) regarding the virtual homology and fibering of the Moduli space of holomorphic curves. Recent results will be presented including that the Putman-Weiland conjecture holds for random covers.

+ Adrien Sauvaget Masur-Veech volumes and intersection theory 23/10/2024 14:00

I will discuss the relation between Masur-Veech volumes and different intersection numbers on (compactifications of) moduli spaces of differentials and applications of such formulas. Along the way, I will try to outline some of the currently open problems in this domain.
 

+ Francisco Arana-Herrera Weak mixing rational billiards 23/10/2024 15:30

We give a complete classification of the rational polygons whose billiard flow is weak mixing in almost every direction, proving a longstanding conjecture of Gutkin. This is joint work with Jon Chaika and Giovanni Forni.

+ Gregorio Baldi Finiteness theorems for atypical intersections 25/09/2024 14:00

Many manifolds M come naturally with a distinguished class of submanifolds exhibiting a special behaviour. Examples include abelian varieties with sub-abelian varieties, locally homogeneous spaces with totally geodesic sub-spaces, period domains with sub-period domains, as well as strata of abelian differentials with affine invariant submanifolds. Starting from the recent finiteness theorem of Eskin-Filip-Wright, I will describe various related results (in the different settings described above) and a new framework, based on "Galois theory of foliations", that recovers most of those works. The new approach is effective and it is a joint work with D. Urbanik.

+ Michele Ancona Aspects métriques et spectraux des courbes planes aléatoires 19/06/2024 14:00

Une courbe (complexe) plane est le lieu des zéros dans CP2 d'un polynôme homogène en trois variables.
Toute courbe plane est munie d’une métrique riemannienne induite par la métrique ambiante de Fubini-Study du plan projectif complexe. Nous donnons des bornes inférieures probabilistes sur certaines quantités métriques et spectrales (telles que la systole ou le trou spectral) des courbes planes lorsque celles-ci sont choisies aléatoirement. Il s’agit d’un travail commun avec Damien Gayet.

+ Daniel Monclair Sous-groupes projectivement Anosov, flots localement homogènes et mélange exponentiel 15/05/2024 14:00 salle Maurice Fréchet (ex-salle 05) à IHP

Les sous-groupes projectivement Anosov de SL(n,R) ont été introduits (par Labourie) puis étudiés comme des généralisations des sous-groupes convexe-cocompacts de SL(2,R). Dans le cas de SL(2,R), cette propriété se lit sur la dynamique uniformément hyperbolique du flot géodésique du quotient du plan hyperbolique par un tel sous-groupe. Dans un travail commun avec B. Delarue et A. Sanders, nous expliquons comment retrouver cette même propriété de dynamique uniformément hyperbolique pour un flot sur le quotient d'un ouvert d'un espace homogène de SL(n,R) qui généralise le flot géodésique du plan hyperbolique pour SL(2,R), mais qui n'est pas le flot géodésique de l'espace symétrique de SL(n,R) (puisque ce dernier ne vit pas sur un espace homogène quand n>2). Nous montrons le mélange exponentiel pour ces flots, et en déduisons des formules de comptage avec terme d'erreur exponentiel pour le nombre de classes de conjugaisons dont le rayon spectral est majoré (le terme dominant du développement asymptotique étant du à A. Sambarino). Si le temps le permet, j'expliquerai également comment appliquer ce résultat au flot géodésique des convexes divisibles à bord C^1.

+ Alexander Bobenko Orthogonal ring patterns, discrete surfaces and integrable systems 24/04/2024 14:00

We introduce orthogonal ring patterns consisting of pairs of concentric circles. They generalize orthogonal circle patterns which can be treated as conformal limit. It is shown that orthogonal ring patterns in Euclidean and hyperbolic planes and in a sphere are governed by integrable equations. We deliver variational principles which are used to prove existence and uniqueness results, and also to compute ring patterns with classical boundary conditions. The later are used to generate discrete cmc surfaces. Relation to minimal surfaces in S3 and AdS3 is discussed. Numerous virtual and printed models as well as animation movies will be demonstrated.

+ Raphaël Krikorian Une généralisation d’un théorème de Yoccoz sur les difféomorphismes du cercle 17/01/2024 14:00

Yoccoz a démontré dans sa thèse que tout difféomorphisme lisse du cercle  de nombre de rotation $\alpha$ irrationnel   peut être approché en topologie $C^\infty$ par des difféomorphismes du cercle  $C^\infty$-linéarisables de nombre de rotation $\alpha$. 
Je démontrerai dans cet exposé la généralisation suivante de ce résultat : soit $k$ un entier et $f$ un difféomorphisme lisse de nombre de rotation $\alpha$ irrationnel ; alors, il existe un chemin continu $t\mapsto f_t$ de difféomorphismes $C^k$ du cercle tel que $f_0=f$, $f_1=T_\alpha$ et pour tout $t\in ]0,1]$ le difféomorphisme $f_t$ est $C^k$-linéarisable.
La preuve de ce résultat est basée sur un schéma de renormalisation que j'expliquerai et l’exposé sera une occasion de revisiter un certain nombre de résultats de la théorie des difféomorphismes du cercle via cette approche.

+ Serge Cantat Dynamique sur les surfaces de Markov 20/12/2023 11:00
+ Serge Cantat Dynamique sur les surfaces de Markov 20/12/2023 11:00

Les surfaces de Markov sont des surfaces algébriques affines cubiques
qui apparaissent lorsqu’on étudie les représentations du groupe libre
de rang 2 dans SL(2,C). Le groupe des automorphismes du groupe libre
agit sur ces surfaces par transformations polynomiales. Cet exposé
concernera la dynamique de cette action de groupe ; plus précisément,
je décrirais la classification des mesures de probabilités
stationnaires. (Avec Christophe Dupont et Florestan Martin-Baillon)

© IMJ-PRG