Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :S. André, R. Avdek, F. Ben Aribi, H. Eynard-Bontemps, P.-A. Guihéneuf, J. Marché, M. Mazzucchelli, B. Petri
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie. Les exposés seront accessibles à une audience large, doctorants inclus. Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502. Le séminaire a l'agenda google suivante: https://calendar.google.com/calendar/b/0?cid=dDgzNTJoczNmdDhlMm5nb2IzMXJwaWpsdHNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ


Orateur(s) Jiasheng Lin - ,
Titre Correlation functions of Conformal Field Theory and Conical Singularities
Date16/01/2025
Horaire11:00 à 12:00
Diffusion
RésumeIn this talk we describe the imminently coming work in collaboration with B. Estienne where we demonstrate a purely mathematical construction which recovers some results of Cardy and Calabrese on the so-called entanglement entropy. Skipping briefly over introducing the latter notion, we start by defining mathematically a Conformal Field Theory over a (smooth) Riemann surface $(\Sigma,g)$ and its partition function as well as correlation functions. Then for a Riemann surface with "conical singularities" we will define the CFT “partition function” (denoted $Z$) on it using a simple Hadamard renormalization (removing disks) of the Polyakov anomaly integral, a first main ingredient of the work. Then we state the main result namely for a branched cover $f:\Sigma_d→\Sigma$ of degree $d$, the ratio $Z(\Sigma_d,f^*g)/Z(\Sigma,g)^d$ of partition functions transforms under conformal changes of g like a correlation function of CFT primary operators of specific conformal weights. If time permits, we talk briefly about the physical motivation around entanglement entropies.
Salle15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG