Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :S. André, R. Avdek, F. Ben Aribi, H. Eynard-Bontemps, P.-A. Guihéneuf, J. Marché, M. Mazzucchelli, B. Petri
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie. Les exposés seront accessibles à une audience large, doctorants inclus. Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502. Le séminaire a l'agenda google suivante: https://calendar.google.com/calendar/b/0?cid=dDgzNTJoczNmdDhlMm5nb2IzMXJwaWpsdHNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ


Orateur(s) Blandine Galiay - ,
Titre Convexes divisibles dans les variétés de drapeaux
Date13/03/2025
Horaire11:00 à 12:00
Diffusion
Résume

Un convexe divisible est un ouvert propre de l'espace projectif qui admet une action cocompacte d'un sous-groupe discret du groupe projectif linéaire. L'exemple le plus connu est l'espace hyperbolique plongé dans l'espace projectif via le modèle de Klein, mais il existe également des exemples qui ne sont pas des espaces symétriques Riemanniens. L'étude de ces objets s'appelle la théorie des convexes divisibles, et est développée depuis les années 60. Une généralisation au cas où l'espace ambiant n'est plus l'espace projectif mais une variété de drapeaux quelconque G/P a été initiée par A. Zimmer. Une question de Limbeek-Zimmer est alors : existe-t-il des exemples d'ensembles convexes divisibles dans G/P qui ne sont pas symétriques ? Dans un certain nombre de cas, il a été prouvé que ce n'était pas le cas; on dit alors qu'il y a rigidité. Dans cet exposé, nous nous concentrerons sur certains cas particuliers de variétés de drapeaux, dont l'Univers d'Einstein, dans lesquelles cette rigidité peut effectivement être observée.

Salle15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG