Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers, Georges Comte, Antoine Ducros, Tamara Servi
Email des responsables : antoine.ducros@imj-prg.fr
Salle :
Adresse :
Description

http://gtm.imj-prg.fr/

 

Pour recevoir le programme par e-mail, écrivez à : antoine.ducros@imj-prg.fr
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : https://webusers.imj-prg.fr/~zoe.chatzidakis/papiers/MTluminy.dvi/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Ulla Karhumäki - University of Helsinki,
Titre Pseudofinite primitive permutation groups of finite SU-rank
Date17/01/2025
Horaire14:15 à 15:45
Diffusion
Résume

A (definably) primitive permutation group (G,X) is a group G together with a transitive faithful and definable action on X such that there are no proper nontrivial (definable) G-invariant equivalence relations on X. Definably primitive permutation groups of finite Morley rank are well-studied: in particular, it is shown by Macpherson and Pillay that such a group with infinite point stabilisers is actually primitive and by Borovik and Cherlin that, given such a group (G,X), the Morley rank of G can be bounded in terms of the Morley rank of X. We show similar results for a pseudofinite definably primitive permutation group (G,X) of finite SU-rank: we first show that (G,X) is primitive if and only if the point stabilisers are infinite. This then allows us to apply a classification result by Liebeck, Macpherson and Tent on (G,X) so that we may bound the SU-rank of G in terms of the SU-rank of X. This is joint work in with Nick Ramsey.


 

SalleSalle Olga Ladyjenskaïa
AdresseIHP
© IMJ-PRG