Séminaires : Séminaire Géométrie et Topologie

Equipe(s) : aa, acg,
Responsables :S. André, R. Avdek, F. Ben Aribi, H. Eynard-Bontemps, P.-A. Guihéneuf, J. Marché, M. Mazzucchelli, B. Petri
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Ce séminaire s’adresse aux géomètres, topologues et dynamiciens au sens large. Il est rattaché aux équipes Analyse Algébrique et Analyse Complexe et Géométrie. Les exposés seront accessibles à une audience large, doctorants inclus. Il se tiendra à Jussieu, le jeudi à 11h, en salle 15-25 502. Le séminaire a l'agenda google suivante: https://calendar.google.com/calendar/b/0?cid=dDgzNTJoczNmdDhlMm5nb2IzMXJwaWpsdHNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ


Orateur(s) Nastaran Einabadi - IMJ-PRG,
Titre Rotation theory and the fine curve graph on the torus: new examples through the Anosov-Katok method
Date27/03/2025
Horaire11:00 à 12:00
Diffusion
Résume

The fine curve graph of a surface was introduced by Bowden, Hensel, and Webb in 2022. This hyperbolic metric graph is used to study the homeomorphism group of the surface through its action on the graph. Since the introduction of this object, there has been an effort to establish connections between the dynamics of surface homeomorphisms, and the dynamics of their action by isometries on the fine curve graph. These endeavors have led to the discovery of a connection between this subject and the rich area of rotation theory on surfaces. Rotation theory was first developed in the late 1980s by Misiurewicz and Ziemian, and remains an active field of research to this day.

 

In this talk, we will introduce the fine curve graph, and the classic and generalized rotation sets on the two-dimensional torus. We will then see how, by using the famous approximation by conjugation method of Anosov and Katok, we can construct examples of torus diffeomorphisms that act parabolically and non-properly on the fine curve graph, while admitting a rich family of generalized rotation sets.

Salle15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG