Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, I. Itenberg, S. Shen, T.-D. Tô
Email des responsables : {olivier.biquard, ilia.itenberg, shu.shen, tat-dat.to}@imj-prg.fr
Salle : 15–25.502
Adresse :Jussieu
Description

Pour recevoir le programme du séminaire, abonnez-vous à cette lettre mensuelle.
Ce programme est mis à jour en permanence ici et sur cette page même.
     


Orateur(s) Fei Han - National University of Singapore,
Titre Generalizations of two classical theorems in Riemannian Geometry
Date01/04/2025
Horaire14:00 à 15:00
Diffusion
Résume

The classical theorem in Riemannian geometry, the Myerss theorem, says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Another classical theorem, the Bochner theorem, asserts that a compact Riemannian manifold with negative Ricci curvature has finite isometry group. In this talk, I will show how to generalize these two classical theorems to the almost nonnegative Ricci curvature and almost nonpositive Ricci curvature cases respectively. Our main tools are the Atiyah-Singer index theorem and the rigidity theorems for genera. This represents our joint work with Xiaoyang Chen and Jian Ge

Salle15–25.502
AdresseJussieu
© IMJ-PRG