Séminaires : Géométrie et dynamique dans les espaces de modules

Equipe(s) : aa, gd,
Responsables :Carlos Matheus, Bram Petri, Anton Zorich
Email des responsables : matheus.cmss@gmail.com, bpetri@imj-prg.fr, anton.zorich@gmail.com
Salle : Olga Ladyjenskaïa (ex-salle 01) à IHP
Adresse :IHP
Description

Séminaire mensuel à l'Institut Henri Poincaré, plupart du temps mercredi de 14h à 15h salle Olga Ladyjenskaïa (ex-salle 01). Pour plus de détails voire la page web :

http://carlos.matheus.perso.math.cnrs.fr/seminaire/index.html

Monthly seminar at the Institute Henri Poincaré. It usually takes place on Wednesday from 2pm to 3pm at the room Olga Ladyjenskaïa (ex-room 01). For more details see

http://carlos.matheus.perso.math.cnrs.fr/seminaire/index.html


Orateur(s) Richard Schwartz - Brown University, Simion Filip - Université de Chicago,
Titre Exposés de Richard Schwartz et Simion Filip
Date18/06/2025
Horaire14:00 à 16:30
Diffusion
Résume

Richard Schwartz (Brown University) de 14h a 15h

The optimal paper Moebius band

If the number L is large you can take a 1xL rectangular strip, smoothly twist it in space, and glue the ends together so as to make an embedded paper Moebius band.  If L is too small this is impossible.  In this talk I will explain why L>sqrt(3) is a necessary and sufficient condition for the existence of a smoothly embedded paper Moebius band. This is the solution to the 1977 conjecture of B. Halpern and C. Weaver. I will also explain why a sequence of L-minimizing examples must converge to an equilateral triangle.

-------------------------

S. Filip (University of Chicago) de 15h30 a 16h30
 
Measure and Topological Rigidity Beyond Homogeneous Dynamics
 
To study the asymptotic behavior of orbits of a dynamical system, one can look at orbit closures or invariant measures. When the underlying system has a homogeneous structure, usually coming from a Lie group, with appropriate assumptions a wide range of rigidity theorems show that ergodic invariant measures and orbit closures have to be well-behaved and can often be classified. I will describe joint work with Brown, Eskin, and Rodriguez-Hertz, which establishes rigidity results for quite general smooth dynamical systems having some hyperbolicity. I will also explain some of the necessary assumptions as well as the homogeneous structures that emerge.
SalleOlga Ladyjenskaïa (ex-salle 01) à IHP
AdresseIHP
© IMJ-PRG