Séminaires : Séminaire Théorie des Nombres

Equipe(s) : fa, tn, tga,
Responsables :Marc Hindry, Wieslawa Niziol, Cathy Swaenepoel
Email des responsables : cathy.swaenepoel@imj-prg.fr
Salle :
Adresse :
Description

http://www.imj-prg.fr/tn/STN/stnj.html

 


Orateur(s) Katharine Woo - Stanford University,
Titre Applying stratification theorems to counting integral points in thin sets of type II
Date15/09/2025
Horaire14:00 à 15:00
Diffusion
Résume

For $n>1$, consider an absolutely irreducible polynomial $F(Y,X_1,...,X_n)$ that is a polynomial in $Y^m$ and monic in $Y$. Let $N(F,B)$ be the number of integral vectors $x$ of height at most $B$ such that there is an integral solution to $F(Y,x)=0$. For $m>1$ unconditionally, and $m=1$ under GRH, we show that $N(F,B) \ll_{\epsilon} log(||F||) ^c B^{n-1+1/(n+1)+\epsilon}$ under a non-degeneracy condition that encapsulates that $F(Y,X_1,...,X_n)$ is truly a polynomial in $n+1$ variables. A strength of this result is that it requires no smoothness assumptions for $F(Y,X_1,...,X_n)$ nor constraints on the degrees of $F$ in $X_1,...,X_n$. A key ingredient in this work is a formulation of the Katz-Laumon stratification theorems for exponential sums that is uniform in families. This talk is based on joint work with Dante Bonolis, Emmanuel Kowalski, and Lillian B. Pierce.

Salle1016
AdresseSophie Germain
© IMJ-PRG