Séminaires : Séminaire d'Algèbres d'Opérateurs

Equipe(s) : ao,
Responsables :Pierre Fima, Romain Tessera
Email des responsables :
Salle : 1013
Adresse :Sophie Germain
Description

Orateur(s) Alexandre Danilenko - ,
Titre Irreducible Koopman representations for group of automorphisms of rooted trees
Date18/09/2025
Horaire14:00 à 15:00
Diffusion
Résume

Let  $G$ be a countable branch group of automorphisms of a
spherically homogeneous rooted tree. Under some assumption on finitarity
of  $G$, we construct, for each infinite 0-1sequence  $a$, an
irreducible unitary representation $k_a$ of $G$. Every two
representations  $k_a$  and $k_b$   are weakly equivalent. They are
unitarily equivalent if and only if  $a$ and $b$  are tail equivalent.
Each  $k_a$   appears as the Koopman representation associated with some
ergodic  $G$-quasi-invariant measure (of infinite product type) on the
boundary of the tree.

Salle1013
AdresseSophie Germain
© IMJ-PRG