Séminaires : Séminaire Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :Emmanuel Letellier, Michela Varagnolo, Eric Vasserot
Email des responsables : varagnol@math.u-cergy.fr; eric.vasserot@imj-prg.fr
Salle : 1016
Adresse :Sophie Germain
Description

Le séminaire de l'équipe GRG. SI vous n'êtes pas membre de l'équipe mais souhaitez recevoir les informations, abonnez vous à la liste https://listes.services.cnrs.fr/wws/info/sem-gr.paris

 


Orateur(s) Paul Ziegler - ,
Titre chi-independence for K3 surfaces
Date05/12/2025
Horaire10:30 à 12:30
Diffusion
Résume

BPS invariants naturally appear in the enumerative geometry of sheaves with one-dimensional support on a Calabi-Yau threefold. Toda conjectured that these invariants are independent of the appearing Euler characteristic $\chi$. I will talk about work in progress with M. Groechenig and D. Wyss proving this conjecture in the K3 case.  We argue by relating BPS cohomology to p-adic integration on moduli stacks of sheaves, for which $\chi$-independence was shown by Carocci-Orecchia-Wyss. For this, we use a local description of these moduli stacks of sheaves in terms of moduli stacks of quiver representations.

I will start with an introduction to the various concept appearing here.

Salle1016
AdresseSophie Germain
© IMJ-PRG