Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - A.Eskenazis - D. Cordero-Erausquin - M. Fathi - O. Guédon - B. Maurey
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Joseph Lehec - Poitiers,
Titre La conjecture de la variance
Date02/10/2025
Horaire10:30 à 12:00
Diffusion
Résume

  We prove that for any log-concave random vector X in \mathbb{R}^n with mean zero and identity covariance, \mathbb{E} (|X| - \sqrt{n})^2 \leq C where C > 0 is a universal constant. Thus, most of the mass of the random vector X is concentrated in a thin spherical shell, whose width is only C / \sqrt{n} times its radius. This confirms the thin-shell conjecture in high dimensional convex geometry. Our method relies on the construction of a certain coupling between log-affine perturbations of the law of X related to Eldan's stochastic localization and to the theory of non-linear filtering. A crucial ingredient is a recent breakthrough technique by Guan that was previously used in our proof of Bourgain's slicing conjecture, which is known to be implied by the thin-shell conjecture. 

 

Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG