Séminaires : Séminaire d'Algèbres d'Opérateurs

Equipe(s) : ao,
Responsables :Pierre Fima, Romain Tessera
Email des responsables :
Salle : 1013
Adresse :Sophie Germain
Description

Orateur(s) Alain Valette - Université de Neuchatel,
Titre Reciprocal hyperbolic elements in PSL_2(\Z)
Date13/11/2025
Horaire14:00 à 15:00
Diffusion
Résume

An element A in PSL_2(\Z) is hyperbolic if |Tr(A)|>2. The maximal virtually abelian subgroup of PSL2(\Z) containing A is either infinite cyclic or infinite dihedral; say that A is reciprocal if the second case happens (A is then conjugate to its inverse). We give a characterization of reciprocal hyperbolic elements in PSL_2(\Z) in terms of the continued fractions of their fixed points in P^1(\R) (those are quadratic surds). Doing so we revisit results of P. Sarnak (2007) , themselves rooted in classical work by Gauss and Fricke & Klein. This is joint work with C.-L. Simon (Rennes).

Salle1013
AdresseSophie Germain
© IMJ-PRG