Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, I. Itenberg, S. Shen, T.-D. Tô
Email des responsables : {olivier.biquard, ilia.itenberg, shu.shen, tat-dat.to}@imj-prg.fr
Salle : 15–25.502
Adresse :Jussieu
Description

Pour recevoir le programme du séminaire, abonnez-vous à cette lettre mensuelle.
Ce programme est mis à jour en permanence ici et sur cette page même.
     


Orateur(s) Kuang-Ru Wu - Erdős Center, Budapest,
Titre Mean curvature of direct image bundles
Date25/11/2025
Horaire14:00 à 15:00
Diffusion
Résume

Let E → X be a vector bundle of rank r over a compact complex manifold X of dimension n. It is known that if the line bundle \(O_{P (E*)}(1)\) over the projectivized bundle P (E*) is positive, then E ⊗ det E is Nakano positive by the work of Berndtsson. In this talk, we give a subharmonic analogue. Let p : P (E*) → X be the projection and α be a Kähler form on X. If the line bundle \(O_{P (E*)}(1)\) admits a metric h with curvature Θ positive on every fiber and \(Θ^r ∧ p^*α^{n−1} > 0\), then E ⊗ det E carries a Hermitian metric whose mean curvature is positive. As an application, we show that the following subharmonic analogue of the Griffiths conjecture is true: if the line bundle \(O_{P (E*)}(1)\) admits a metric h with curvature Θ positive on every fiber and \(Θ^r ∧ p^*α^{n−1} > 0\), then E carries a Hermitian metric with positive mean curvature.

Salle15–25.502
AdresseJussieu
© IMJ-PRG