Séminaires : Séminaire sur les Singularités

Equipe(s) : gd,
Responsables :André BELOTTO, Hussein MOURTADA, Matteo RUGGIERO, Bernard TEISSIER
Email des responsables : hussein.mourtada@imj-prg.fr
Salle : salle 1013
Adresse :Sophie Germain
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 


 


Orateur(s) Maria Martin Vega - ,
Titre The Bruno ideal for logarithmic vector fields.
Date26/01/2026
Horaire14:00 à 15:00
Diffusion
Résume

Given a germ of a logarithmic analytic vector field ∂, let ∂ = ∂_ss + ∂_nilp be its unique formal Jordan decomposition, where ∂_ss is its semi-simple component and ∂_nilp is its nilpotent component. We define the Bruno ideal B(∂) as the collinearity ideal of its semi-simple and nilpotent components, that is, the vanishing locus of ∂_ss ∧ ∂_nilp.

We prove the following result originally stated by A. D. Bruno: If the eigenvalues of ∂_ss satisfy Bruno's arithmetic condition, then B(∂) is analytic and the restriction of ∂ to the variety V(B(∂)) is analytically normalizable.

We will end the talk by exposing some examples of applications of this result.

This is a joint work with Daniel Panazzolo.

Sallesalle 1013
AdresseSophie Germain
© IMJ-PRG